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Abstract 

This paper describes an extremely fast polynomial time algorithm, the Near Optimal Vertex Cover Algorithm (NOVCA) that 
produces an optimal or near optimal vertex cover for any known undirected graph G (V, E). NOVCA constructs the vertex cover 
by repeatedly adding, at each step, all vertices adjacent to the vertex of minimal degree; in the case of a tie, it selects the one 
having the maximum sum of degrees of its neighbors. The results identifying bounds on the size of the minimum vertex cover as 
well as polynomial complexity of algorithm are given with experimental verification. Future research efforts will be directed at 
tuning the algorithm and providing proof for better approximation ratio with NOVCA compared to any other available vertex 
cover algorithms. 
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1. Introduction 

The Vertex Cover (VC) of a graph G(V,E) with vertex set V and edge set E is a subset of vertices C of  V (
)VC  ) such that every edge of G has at least one endpoint in C. In 1972 Richard Karp [1] showed that 

identification of minimal VC in a graph is an NP-complete problem. 
Vertex Cover has been actively studied because of its important research and application implications. Various 

algorithmic approaches have been used to tackle NP complete problems such as the VC problem.  Polynomial-time 
approximation algorithms for VC have been developed but do not guarantee optimality.  By using the definition of 
approximation ratio, VC has an approximation ratio of (n) for any input of size n. The solution C produced by 
approximation algorithm is within the factor of (n) of the solution C* of an optimal algorithm i.e. C*/C  (n). 
Also, the approximation algorithm has approximation ratio of 2 – , where 0 <  < 1. A 2-approximation [2] 
algorithm has been trivially obtained and similar approximation algorithms have been discovered [3] [4] with an 
achieved approximation of (2 – (ln (ln n)/2ln n)), where n is the number of vertices. Halperin [5] achieved an 
approximation factor of (2 – (1 – o(1))(2ln (ln )/ ln )) with maximum degree at most . Karakostas [6] achieved 
an approximation factor of (2 – (1/(log n)1/2))), the best approximation yet, by using the semidefinite programming 
relaxation of VC. Evolutionary algorithms (EA) that are randomized search heuristics have also been used for 
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solving combinatorial optimization problems including VC [7] [8]. 
Vertex Cover problems have been solved in O (1.2738k + kn) time [9] by using a bounded search technique 

where a function of a parameter restricts the search space. Abu-Khazm et al. have identified crown structure to 
reduce the size of both n and k [10]. It has been known that when relevant parameters are fixed, NP-complete 
problems can be solved in polynomial time. In both [10] and [11], n is the input size and k is the positive integer 
parameter. Though not guaranteed to find a vertex cover, an approximation of 3/2 for almost every single graph was 
obtained in [11]. According to Dinur and Safra [12], it is NP-Hard to get  < 1.3606. 

The paper is organized as follows: the NOVCA algorithm is described in Section 2; Section 3 provides 
experimental results; Section 4 is the conclusion. 

2. Near Optimal Vertex Cover Algorithm (NOVCA) 

NOVCA is motivated by the fact that a vertex cover candidates are those that are adjacent to minimum degree 
vertex so that its degree will be forcibly rendered to zero without choosing it. This fact has been reinforced during 
tie when the vertex with neighbors having maximum degrees is preferred over other minimum vertices. Without any 
optimization effort, the complexity of NOVCA is O (V2 log V); with V = n, the complexity becomes O (n2 log n) 
which is polynomial. The pseudo-code of NOVCA is presented in Fig. 1. Network Bench Node Degree algorithm 
[13] has been applied to determine the degree of each node. Then, the sum of the degree of adjacent nodes for each 
node is calculated. Both these values are included as data structures in a node - deg[v]/adj_deg_sum[v] as showed in 
Fig. 2. Initially, vertex cover set VC is empty. The vertices are chosen in increasing order of their degrees i.e. the 
adjacent vertices of minimum degree vertex are included in VC first. The magic function GetMinVertex() breaks a 
tie in vertex degrees choosing the adjacent vertices of the selected minimum degree vertex having maximum 
adjacent sum of degrees. The idea is to forcibly render the low degree vertices to zero without choosing them. 

 
Declarations: 

V is the set of vertices of G 
E is the set of edges of G 
deg[V] is an integer array indexed by V for a set 
       of vertices V 
sum_adj_deg[V] is an integer array indexed by V for 
               a set of vertices V 
VC is the set of vertices comprising a vertex cover  
Qsum_adj_deg is the set of vertices having min deg[V] 
         (local variable in GetMinVertex()) 
 

Functions: 
Degree(v) is the degree of the vertex v  V 
Adj(v) gives the set of vertices that are adjacent 
       to v  V 
GetMinVertex() identifies the next adjacent 
               vertices to include in the cover 
 
Heap_MIN(deg) returns the value of min. deg[V] 
HEAP_MAX(Qsum_adj_deg) returns the vertex having max  
                   Qsum_adj_deg 

 
 
 
   for each v  V {  
      deg[v] = Degree(v) 
   } 
 
   for each v  V { 
    
    sum_adj_deg[v] = v’ Adj(v)deg[v’]  
  } 
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  E’ = E 
  VC =  
 
  while (E’  ){ 
    vc = GetMinVertex(deg, sum_adj_deg)  
    VC = VC + { Adj(vc) } 
    for each v  Adj(Adj(vc)){                 
     E' = E – { (adj(vc), v) } 
  deg[v] = deg[v] – 1 
    } 
    V = V – { Adj(vc) } 
  for each v  V{             
          If (Adj(v) == ) continue 
   sum_adj_deg[v] = v’ Adj(v)deg[v’] 
    } 
   } //end while 
 
   /// Magic Function GetMinVertex() Declarations /// 
 
   Vertex GetMinVertex(deg, sum_adj_deg){ 
     Qsum_adj_deg =   
     vmin_deg = HEAP_MIN(deg)  
     for each v  V{ 
       If (deg[v] == vmin_deg)  
         Qsum_adj_deg = Qsum_adj_deg + {v} 
     } 
     return Heap_MAX(Qsum_adj_deg)  
   } 

Fig. 1. Pseudo-code for NOVCA; E[G]: set of edges of graph G; VC: Vertex Cover Set; Q: Priority Queue 

3. Experimental Work and Results 

Simulations to corroborate the theoretical results have been conducted on the CWRU High Performance 
Computing Resource using compute nodes with 3.0 GHz Intel Xeon processors running Red Hat Enterprise Linux 4 
and using the gcc 3.4.6 compiler. Simulations are performed in both serial and parallel environments. 

Simulation results for all example graphs as described above always return optimal (minimum) vertex cover. We 
have selected Complete Graph as a test graph to determine time complexity of NOVCA for two reasons: 

 
1. Optimal vertex cover is known; n – 1; where n is the number of vertices 
2. requires exhaustive search; there is an edge from each vertex to all other vertices 
 
The shell script in Fig. 2 “graph_gen.sh” generates a complete graph of size n entered as input. This graph is then 

fed to executable “vc (serial) or vc_openmp (parallel)” (C++ program compiled with g++ compiler) to get vertex 
cover for that particular graph. The outputs are showed in Fig. 3. 
 
#PBS -l walltime=36:00:00 
#PBS -l nodes=1:ppn=4:quad 
#PBS -N graph1000 
#PBS -j oe 
cd $PBS_O_WORKDIR 
/usr/local/bin/pbsdcp -s vc graph_gen.sh $TMPDIR 
cd $TMPDIR 
sh graph_gen.sh 1000 
cp gen_graph graph1000 
time ./vc graph1000 #vc_openmp for parallel 
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/usr/local/bin/pbsdcp -g '*' $PBS_O_WORKDIR 
cd $PBS_O_WORKDIR 

Fig. 2. The graph_gen.sh takes 1000 (number of vertices) as an input that creates a netlist in a file, graph1000, input to the executable vc; 
execuatable vc will be vc_openmp and ppn = 4 respectively for parallel implementation 

The cover consists of the following vertices: 
  0      1      2      3      4      5      6      7 
  8      9     10     11     12     13     14     15  
… 
… 
994    995    996    997    998 
There are 999 vertices in the cover. 
real    0m7.161s 
user    0m7.156s 
sys     0m0.004s 

Fig. 3. Output showing the vertices in a vertex cover, number of vertices, and execution time 

We have recorded the computation time for different sizes of the graphs for both serial and parallel 
implementation to elucidate the polynomial complexity of NOVCA algorithm as depicted in Fig. 4(a)(b). We used 
MATLAB’s polyfit(x,y,n) command to verify polynomiality as shown in Fig. 5 and Fig 6(a)(b). 

 

 
(a) 

 

 
(b) 

Fig. 4. Computational Time of NOVCA for different sizes of complete graphs for (a) Serial and (b) Parallel 

x = [1000,2000,3000,4000,5000,6000,7000]; 
y=[7.124,129.21,437.274,1046.93,2061.037,2882.444,4666. 
  976]; % from serial implementation 
y=[7.083,65.08,238.669,589.784,971.582,1649.391,2223.02 
  0]; % from parallel implementation 
p = polyfit(x,y,2) 
p = 0.0001   -0.3592  258.4364 
x2 = 1000:500:7000; 
y2 = polyval(p,x2); 
plot(x,y,'o',x2,y2) 
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Fig. 5. MATLAB commands used for output data (computation time) from simulation for both serial and parallel implementation 

 
(a) 

(b) 

Fig. 6. MATLAB plot using polyfit with n=2; (a) Serial and (b) Parallel 

NOVCA has approximation ratio smaller than 1.3606 for all available bench mark (Table 1[14]; not showed all 
of the instances) graphs.  For some instances like c-fat, Johnson, and random graphs NOVCA provides optimal 
cover. Noticeably, the execution time of NOVCA for any instance is remarkable. NOVCA has been found to 
perform very well compared to other available algorithms. For the instances where it provides near optimal 
solutions, it outperforms other algorithms in terms of execution time. We have compared NOVCA with COVER 
[15]. COVER is a stochastic local search algorithm for k-vertex cover. It constructs the initial candidate solution C 
greedily. When the several vertices satisfy the criterion for inclusion in C, COVER selects one of them randomly 
with uniform probabilities. The COVER algorithm terminates when either the vertex cover is found or max number 
of steps (MAX_ITERATIONS), has been reached. NOVCA, on the other hand doesn’t have any randomness 
element and terminates when there are no more vertices in V. So, it has only one run unlike average execution time 
calculated using random seeds in different runs in COVER. Though COVER is found to obtain better vertex cover 
in most of the instances of the benchmarks, NOVCA is very simple and it outperforms COVER in execution time. 
In case of MANN_a81 where both NOVCA and COVER return the same value 2225, NOVCA is 20 times faster. 
Also, for the challenge instances of frb100-40 [14], NOVCA is off by just 17 vertices (NOVCA returns 3917 
vertices whereas the optimal vertex cover is 3900), but the execution time is just remarkable; only 2013.667 sec. 
The challenge is stated as “Based on theoretical analysis and experimental results of smaller instances, I conjecture 
that in the next 20 years or more (from 2005), these two benchmarks cannot be solved on a PC (or alike) in a 
reasonable time (e.g. 1 day) [14].” 
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Table 1. NOVCA Performance Comparison between NOVCA and COVER on DIMACS and BHOSLIB benchmarks |V|: number of vertices; 
|C*|: optimal cover; NOVCA |C|: cover returned by NOVCA; COVER |C|avg: Cover returned by COVER; NOVCA Time (sec): Execution time 
for NOVCA; COVER Timeavg: Average execution time for COVER 

Instances  |V| |C*| NOVCA
|C| 

NOVCA 
|C|/|C*| 

NOVCA 
Time (sec) 

COVER
|C|avg 

COVER 
Timeavg(sec) 

frb59-26-1 
frb59-26-2 
frb100-40 
broc200_1 
broc800_4 
C2000.9 
c-fat200-5 
c-fat500-10 
gen200_p0.9_44 
hamming10-2 
hamming10-4 
johnson16-2-4 
johnson32-2-4 
keller4 
keller5 
MANN_a27 
MANN_a81 
p_hat500-1 
p_hat1500-3 
san200_0.7_1 
san1000 
sanr200_0.7 
sanr400_0.7 
graph50-10 
graph100-10 
graph200-05 
graph250-05 
graph500-05 

 

1534 
1534 
4000 
200 
800 

2000 
200 
500 
200 

1024 
1024 
120 
496 
171 
776 
378 

3321 
500 

1500 
200 

1000 
200 
400 
50 
100 
200 
250 
500 

 

1475 
1475 
3900 
179 
774 

1922 
142 
374 
156 
512 
984 
112 
480 
160 
749 
252 

2221 
491 

1406 
170 
985 
183 
379 
35 
70 
150 
200 
290 

 

1485 
1484 
3917 
181 
782 

1932 
142 
374 
163 
512 
988 
112 
480 
164 
761 
253 

2225 
492 

1414 
183 
991 
185 
382 
35 
70 
150 
200 
290 

 

1.007 
1.006 
1.004 
1.011 
1.010 
1.005 

1 
1 

1.045 
1 

1.004 
1 
1 

1.025 
1.016 
1.004 
1.002 
1.002 
1.006 
1.077 
1.006 
1.011 
1.008 

1 
1 
1 
1 
1 
 

80.258 
79.297 

2013.667 
0.115 
10.832 
207.060 
0.092 
2.117 
0.092 
10.297 
21.505 
0.076 
2.273 
0.007 
9.125 
0.493 

773.963 
2.683 
74.991 
0.117 
22.901 
0.857 
1.030 
0.006 
0.034 
0.114 
0.300 
1.604 

 

1477 
1478 

- 
179 
775 
1922 
142 
374 
156 
512 
986 
112 
480 
160 
749 
252 
2225 
491 
450 
170 
989 
183 
380 
35 
70 

150 
200 
290 

18611.3 
18589.5 

- 
768.2 
4051.2 
21489.7 
1549.1 
4401.2 
1543.6 
2412.2 
3457.6 
297.9 
2351.9 
985.7 
2364.9 
756.3 

15672.1 
1810.2 
1298.9 
713.7 
4972.8 
788.2 
2112.5 
124.5 
205.3 
854.1 
988.5 
2255.2 

        
 

4. Conclusion 

NOVCA algorithm provides optimal or near optimal vertex cover for known benchmark graphs. The 
experimental results depict that the algorithm is extremely fast compared to other available algorithms such as 
COVER. In future, we will present mathematical proofs and show that approximation ratio is very close to 1 in 
general. Further research will be conducted to obtain the exact relationship for approximation ratio. The CWRU 
High Performance Computing resources will be considered for parallel computation for complex example graphs to 
reduce execution time. 
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