
 Procedia Computer Science 9 (2012) 747 – 753

1877-0509 © 2012 Published by Elsevier Ltd.
doi: 10.1016/j.procs.2012.04.080

International Conference on Computational Science, ICCS 2012

A Simple NOVCA: Near Optimal Vertex Cover Algorithm

Sanjaya Gajurel*, Roger Bielefeld
Case Western Reserve University, Cleveland, OH 44106, US

Abstract

This paper describes an extremely fast polynomial time algorithm, the Near Optimal Vertex Cover Algorithm (NOVCA) that
produces an optimal or near optimal vertex cover for any known undirected graph G (V, E). NOVCA constructs the vertex cover
by repeatedly adding, at each step, all vertices adjacent to the vertex of minimal degree; in the case of a tie, it selects the one
having the maximum sum of degrees of its neighbors. The results identifying bounds on the size of the minimum vertex cover as
well as polynomial complexity of algorithm are given with experimental verification. Future research efforts will be directed at
tuning the algorithm and providing proof for better approximation ratio with NOVCA compared to any other available vertex
cover algorithms.

Keywords: Vertex Cover Problem, Combinatorial Problem, NP-Complete Problem, Approximation Algorithm

1. Introduction

The Vertex Cover (VC) of a graph G(V,E) with vertex set V and edge set E is a subset of vertices C of V (
)VC) such that every edge of G has at least one endpoint in C. In 1972 Richard Karp [1] showed that

identification of minimal VC in a graph is an NP-complete problem.
Vertex Cover has been actively studied because of its important research and application implications. Various

algorithmic approaches have been used to tackle NP complete problems such as the VC problem. Polynomial-time
approximation algorithms for VC have been developed but do not guarantee optimality. By using the definition of
approximation ratio, VC has an approximation ratio of (n) for any input of size n. The solution C produced by
approximation algorithm is within the factor of (n) of the solution C* of an optimal algorithm i.e. C*/C (n).
Also, the approximation algorithm has approximation ratio of 2 – , where 0 < < 1. A 2-approximation [2]
algorithm has been trivially obtained and similar approximation algorithms have been discovered [3] [4] with an
achieved approximation of (2 – (ln (ln n)/2ln n)), where n is the number of vertices. Halperin [5] achieved an
approximation factor of (2 – (1 – o(1))(2ln (ln)/ ln)) with maximum degree at most . Karakostas [6] achieved
an approximation factor of (2 – (1/(log n)1/2))), the best approximation yet, by using the semidefinite programming
relaxation of VC. Evolutionary algorithms (EA) that are randomized search heuristics have also been used for

* Corresponding author. Tel.:1-216-368-5717
E-mail address: sxg125@case.edu

Available online at www.sciencedirect.com

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82301579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

748 Sanjaya Gajurel and Roger Bielefeld / Procedia Computer Science 9 (2012) 747 – 753

solving combinatorial optimization problems including VC [7] [8].
Vertex Cover problems have been solved in O (1.2738k + kn) time [9] by using a bounded search technique

where a function of a parameter restricts the search space. Abu-Khazm et al. have identified crown structure to
reduce the size of both n and k [10]. It has been known that when relevant parameters are fixed, NP-complete
problems can be solved in polynomial time. In both [10] and [11], n is the input size and k is the positive integer
parameter. Though not guaranteed to find a vertex cover, an approximation of 3/2 for almost every single graph was
obtained in [11]. According to Dinur and Safra [12], it is NP-Hard to get < 1.3606.

The paper is organized as follows: the NOVCA algorithm is described in Section 2; Section 3 provides
experimental results; Section 4 is the conclusion.

2. Near Optimal Vertex Cover Algorithm (NOVCA)

NOVCA is motivated by the fact that a vertex cover candidates are those that are adjacent to minimum degree
vertex so that its degree will be forcibly rendered to zero without choosing it. This fact has been reinforced during
tie when the vertex with neighbors having maximum degrees is preferred over other minimum vertices. Without any
optimization effort, the complexity of NOVCA is O (V2 log V); with V = n, the complexity becomes O (n2 log n)
which is polynomial. The pseudo-code of NOVCA is presented in Fig. 1. Network Bench Node Degree algorithm
[13] has been applied to determine the degree of each node. Then, the sum of the degree of adjacent nodes for each
node is calculated. Both these values are included as data structures in a node - deg[v]/adj_deg_sum[v] as showed in
Fig. 2. Initially, vertex cover set VC is empty. The vertices are chosen in increasing order of their degrees i.e. the
adjacent vertices of minimum degree vertex are included in VC first. The magic function GetMinVertex() breaks a
tie in vertex degrees choosing the adjacent vertices of the selected minimum degree vertex having maximum
adjacent sum of degrees. The idea is to forcibly render the low degree vertices to zero without choosing them.

Declarations:

V is the set of vertices of G
E is the set of edges of G
deg[V] is an integer array indexed by V for a set
 of vertices V
sum_adj_deg[V] is an integer array indexed by V for
 a set of vertices V
VC is the set of vertices comprising a vertex cover
Qsum_adj_deg is the set of vertices having min deg[V]
 (local variable in GetMinVertex())

Functions:
Degree(v) is the degree of the vertex v V
Adj(v) gives the set of vertices that are adjacent
 to v V
GetMinVertex() identifies the next adjacent
 vertices to include in the cover

Heap_MIN(deg) returns the value of min. deg[V]
HEAP_MAX(Qsum_adj_deg) returns the vertex having max
 Qsum_adj_deg

 for each v V {
 deg[v] = Degree(v)
 }

 for each v V {

 sum_adj_deg[v] = v’ Adj(v)deg[v’]
 }

749 Sanjaya Gajurel and Roger Bielefeld / Procedia Computer Science 9 (2012) 747 – 753

 E’ = E
 VC =

 while (E’){
 vc = GetMinVertex(deg, sum_adj_deg)
 VC = VC + { Adj(vc) }
 for each v Adj(Adj(vc)){
 E' = E – { (adj(vc), v) }
 deg[v] = deg[v] – 1
 }
 V = V – { Adj(vc) }
 for each v V{
 If (Adj(v) ==) continue
 sum_adj_deg[v] = v’ Adj(v)deg[v’]
 }
 } //end while

 /// Magic Function GetMinVertex() Declarations ///

 Vertex GetMinVertex(deg, sum_adj_deg){
 Qsum_adj_deg =
 vmin_deg = HEAP_MIN(deg)
 for each v V{
 If (deg[v] == vmin_deg)
 Qsum_adj_deg = Qsum_adj_deg + {v}
 }
 return Heap_MAX(Qsum_adj_deg)
 }

Fig. 1. Pseudo-code for NOVCA; E[G]: set of edges of graph G; VC: Vertex Cover Set; Q: Priority Queue

3. Experimental Work and Results

Simulations to corroborate the theoretical results have been conducted on the CWRU High Performance
Computing Resource using compute nodes with 3.0 GHz Intel Xeon processors running Red Hat Enterprise Linux 4
and using the gcc 3.4.6 compiler. Simulations are performed in both serial and parallel environments.

Simulation results for all example graphs as described above always return optimal (minimum) vertex cover. We
have selected Complete Graph as a test graph to determine time complexity of NOVCA for two reasons:

1. Optimal vertex cover is known; n – 1; where n is the number of vertices
2. requires exhaustive search; there is an edge from each vertex to all other vertices

The shell script in Fig. 2 “graph_gen.sh” generates a complete graph of size n entered as input. This graph is then

fed to executable “vc (serial) or vc_openmp (parallel)” (C++ program compiled with g++ compiler) to get vertex
cover for that particular graph. The outputs are showed in Fig. 3.

#PBS -l walltime=36:00:00
#PBS -l nodes=1:ppn=4:quad
#PBS -N graph1000
#PBS -j oe
cd $PBS_O_WORKDIR
/usr/local/bin/pbsdcp -s vc graph_gen.sh $TMPDIR
cd $TMPDIR
sh graph_gen.sh 1000
cp gen_graph graph1000
time ./vc graph1000 #vc_openmp for parallel

750 Sanjaya Gajurel and Roger Bielefeld / Procedia Computer Science 9 (2012) 747 – 753

/usr/local/bin/pbsdcp -g '*' $PBS_O_WORKDIR
cd $PBS_O_WORKDIR

Fig. 2. The graph_gen.sh takes 1000 (number of vertices) as an input that creates a netlist in a file, graph1000, input to the executable vc;
execuatable vc will be vc_openmp and ppn = 4 respectively for parallel implementation

The cover consists of the following vertices:
 0 1 2 3 4 5 6 7
 8 9 10 11 12 13 14 15
…
…
994 995 996 997 998
There are 999 vertices in the cover.
real 0m7.161s
user 0m7.156s
sys 0m0.004s

Fig. 3. Output showing the vertices in a vertex cover, number of vertices, and execution time

We have recorded the computation time for different sizes of the graphs for both serial and parallel
implementation to elucidate the polynomial complexity of NOVCA algorithm as depicted in Fig. 4(a)(b). We used
MATLAB’s polyfit(x,y,n) command to verify polynomiality as shown in Fig. 5 and Fig 6(a)(b).

(a)

(b)

Fig. 4. Computational Time of NOVCA for different sizes of complete graphs for (a) Serial and (b) Parallel

x = [1000,2000,3000,4000,5000,6000,7000];
y=[7.124,129.21,437.274,1046.93,2061.037,2882.444,4666.
 976]; % from serial implementation
y=[7.083,65.08,238.669,589.784,971.582,1649.391,2223.02
 0]; % from parallel implementation
p = polyfit(x,y,2)
p = 0.0001 -0.3592 258.4364
x2 = 1000:500:7000;
y2 = polyval(p,x2);
plot(x,y,'o',x2,y2)

751 Sanjaya Gajurel and Roger Bielefeld / Procedia Computer Science 9 (2012) 747 – 753

Fig. 5. MATLAB commands used for output data (computation time) from simulation for both serial and parallel implementation

(a)

(b)

Fig. 6. MATLAB plot using polyfit with n=2; (a) Serial and (b) Parallel

NOVCA has approximation ratio smaller than 1.3606 for all available bench mark (Table 1[14]; not showed all
of the instances) graphs. For some instances like c-fat, Johnson, and random graphs NOVCA provides optimal
cover. Noticeably, the execution time of NOVCA for any instance is remarkable. NOVCA has been found to
perform very well compared to other available algorithms. For the instances where it provides near optimal
solutions, it outperforms other algorithms in terms of execution time. We have compared NOVCA with COVER
[15]. COVER is a stochastic local search algorithm for k-vertex cover. It constructs the initial candidate solution C
greedily. When the several vertices satisfy the criterion for inclusion in C, COVER selects one of them randomly
with uniform probabilities. The COVER algorithm terminates when either the vertex cover is found or max number
of steps (MAX_ITERATIONS), has been reached. NOVCA, on the other hand doesn’t have any randomness
element and terminates when there are no more vertices in V. So, it has only one run unlike average execution time
calculated using random seeds in different runs in COVER. Though COVER is found to obtain better vertex cover
in most of the instances of the benchmarks, NOVCA is very simple and it outperforms COVER in execution time.
In case of MANN_a81 where both NOVCA and COVER return the same value 2225, NOVCA is 20 times faster.
Also, for the challenge instances of frb100-40 [14], NOVCA is off by just 17 vertices (NOVCA returns 3917
vertices whereas the optimal vertex cover is 3900), but the execution time is just remarkable; only 2013.667 sec.
The challenge is stated as “Based on theoretical analysis and experimental results of smaller instances, I conjecture
that in the next 20 years or more (from 2005), these two benchmarks cannot be solved on a PC (or alike) in a
reasonable time (e.g. 1 day) [14].”

752 Sanjaya Gajurel and Roger Bielefeld / Procedia Computer Science 9 (2012) 747 – 753

Table 1. NOVCA Performance Comparison between NOVCA and COVER on DIMACS and BHOSLIB benchmarks |V|: number of vertices;
|C*|: optimal cover; NOVCA |C|: cover returned by NOVCA; COVER |C|avg: Cover returned by COVER; NOVCA Time (sec): Execution time
for NOVCA; COVER Timeavg: Average execution time for COVER

Instances |V| |C*| NOVCA
|C|

NOVCA
|C|/|C*|

NOVCA
Time (sec)

COVER
|C|avg

COVER
Timeavg(sec)

frb59-26-1
frb59-26-2
frb100-40
broc200_1
broc800_4
C2000.9
c-fat200-5
c-fat500-10
gen200_p0.9_44
hamming10-2
hamming10-4
johnson16-2-4
johnson32-2-4
keller4
keller5
MANN_a27
MANN_a81
p_hat500-1
p_hat1500-3
san200_0.7_1
san1000
sanr200_0.7
sanr400_0.7
graph50-10
graph100-10
graph200-05
graph250-05
graph500-05

1534
1534
4000
200
800

2000
200
500
200

1024
1024
120
496
171
776
378

3321
500

1500
200

1000
200
400
50
100
200
250
500

1475
1475
3900
179
774

1922
142
374
156
512
984
112
480
160
749
252

2221
491

1406
170
985
183
379
35
70
150
200
290

1485
1484
3917
181
782

1932
142
374
163
512
988
112
480
164
761
253

2225
492

1414
183
991
185
382
35
70
150
200
290

1.007
1.006
1.004
1.011
1.010
1.005

1
1

1.045
1

1.004
1
1

1.025
1.016
1.004
1.002
1.002
1.006
1.077
1.006
1.011
1.008

1
1
1
1
1

80.258
79.297

2013.667
0.115
10.832
207.060
0.092
2.117
0.092
10.297
21.505
0.076
2.273
0.007
9.125
0.493

773.963
2.683
74.991
0.117
22.901
0.857
1.030
0.006
0.034
0.114
0.300
1.604

1477
1478

-
179
775
1922
142
374
156
512
986
112
480
160
749
252
2225
491
450
170
989
183
380
35
70

150
200
290

18611.3
18589.5

-
768.2
4051.2
21489.7
1549.1
4401.2
1543.6
2412.2
3457.6
297.9
2351.9
985.7
2364.9
756.3

15672.1
1810.2
1298.9
713.7
4972.8
788.2
2112.5
124.5
205.3
854.1
988.5
2255.2

4. Conclusion

NOVCA algorithm provides optimal or near optimal vertex cover for known benchmark graphs. The
experimental results depict that the algorithm is extremely fast compared to other available algorithms such as
COVER. In future, we will present mathematical proofs and show that approximation ratio is very close to 1 in
general. Further research will be conducted to obtain the exact relationship for approximation ratio. The CWRU
High Performance Computing resources will be considered for parallel computation for complex example graphs to
reduce execution time.

Acknowledgement

 I would like to thank Geeta Dahal and Pujan Joshi for suggesting counter examples to early versions of the
algorithm.

753 Sanjaya Gajurel and Roger Bielefeld / Procedia Computer Science 9 (2012) 747 – 753

References

1. R. Karp.: Reducibility among combinatorial problems. in R. E. Miller and J. W. Thatcher (eds.) Complexity of Computer
Computations, Plenum Press, NY, pp. 85-103

2. T. Cormen, C. Leiserson, R. Rivest: Introduction to Algorithms, The MIT Press (2001)
3. R. Bar-Yehuda and S. Even: A local-ratio theorem for approximating the weighted vertex cover problem. Annals of Discrete

Mathematics, 25, pp. 27-45 (1985)
4. B. Monien. and E. Speckenmeyer: Ramsey numbers and an approximation algorithm for the vertex cover problem. Acta Informatica,

22, pp. 115-123 (1985)
5. E. Halperin: Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. SIAM J. on Computing,

31(5), pp. 1608-1623 (2002). Also in Proc. of 11th SODA, pp. 329-337 (2000)
6. G. Karakostas: A better approximation ratio for the vertex cover problem, ICALP (2005)
7. G. Rudolph: Finite Markov chain results in evolutionary computation: A tour d’horizon, Fundamenta Informaticae, vol. 35, no. 1–4,

pp. 67-89 (1998)
8. P. Oliveto, J. He, X. Yao: Evolutionary algorithms and the Vertex Cover problem, IEEE Congress (2007)
9. J. Chen, I. Kanj and G. Xia: Simplicity Is Beauty: Improved Upper Bounds for Vertex Cover. Technical report, Texas A&M

University (2005)
10. F. Abu-Khazm, M. Fellows, M. Langston, and W. Suters: Crown Structures for Vertex Cover Kernelization, Theory Comput. Systems

41, 411--430 (2007)
11. E. Asgeirsson and C. Stein: Vertex Cover Approximation on Random Graphs”, WEA 2007, LNCS 4525, pp. 285–296, 2007
12. I. Dinur and S. Safra. The importance of being biased. Technical Report TR01-104, ECCC, Dec. 2001.
13. Network Bench Node Degree, http://nwb.slis.indiana.edu/
14. Vertex Cover Benchmark Instances (DIMACS and BHOSLIB), http://www.cs.hbg.psu.edu/benchmarks/vertex_cover.html
15. S. Richter, M. Helmert, and C. Gretton: A Stochastic Local Search Approach to Vertex Cover, In Proceedings of the 30th German

Conference of Artificial Intelligence (KI), 2007, pp 412-426.

