Asymptotic series and Stieltjes continued fractions for a gamma

function ratio

ABSTRACT

K. O. Bowman (*) and L. R. Shenton (**)

An analysis is given for the expansion (60 terms) of a gamma function ratio discussed by Stieltjes
and others. A Stieltjes continued fraction is derived, affording lower and upper bound (but lack-
ing a rigorous proof), along with continued fraction for the odd and even series.

1. INTRODUCTION

We study the ratio of gamma functions
y(@)= (n-1) "(}2n)

— , (n=2,3,...) (1)
v2n F(%—n+;—)

and the related function

f(n) =y(n)/(1-1/n), (2)

by developing series in powers of n~1land converting
these (in several ways) to continued fractions (c.f.’s).
Our interest was initiated from a study of divergent
series occurring in statistics {2], [ 8], [9]. In particular,
it was expedient to find a well-known statistic whose
expectation was known in closed form and for which
a nontrivial series expansion in a parameter could be
developed. The second sample moment in sampling
from a standard normal density provided an answer.
Specifically, for the random sample (x1,x9,...,x,)
of independent and identically distributed variates
from N(0, 1), we consider the mean value of Vmj -
(i-e., EvVimp) where mp = Z(xj-X )2/n. Note that
in many statistical applications it is more appro-

2

priate to consider s = nm,/(n-1), but for our

immediate purpose (which concerns mathematical
properties), we prefer the second central moment
rather than the variance. The series expansion of
Evmy in descending powers of n, the sample size,
turns out to be a divergent series whose sum is y(n)
given in (1). There is little point in studying

Emsz, s=1,3/2,2,..., since the expression has a
terminating series for integer s, and for half-integers
involves no new development over the case s =1/3.
Again, our main interest is in properties of y(n),
deduced from series and c.f.’s, for n=2,3,..., al-

though we may from time to time extend this do-
main.

The ratio y(n), or one closely related to it, has attracted
the attention of mathematicians from time to time
over the last century or longer (see, for example,
Perron [7], pp- 31-6; also Mitrinovit [6], pp. 286-8).
Recently, inequalities for y2(n) have been derived
from purely statistical concepts (see, for example,
Gurland {5], Gokhale [4], and Uppuluri [12]; also
Gautshi [3] has derived results for n not restricted
to integers and from a mathematical viewpoint). Of
considerable interest from the asymptotic analysis
approach and the use of c.f.’s are the remarks fo be
found in the works of Stieltjes written towards the
end of the last century. In letter number 153 to
Hermite (written around November, 1888; see [10])
Stieltjes wses the expressions

an - —1
F(@)l(n) _ l1-e y]‘a a-1 -ny
['(a+n) Of y yePdy
7 (3)

F(n+1)

_ g0 y_ a-1
F@lmn-a+1) _ f [e 1J ya_l e-nydy 7

along with power series for the first factors in the
integrands, to obtain the series

Mn-a+1) 1 [1 +acy+ala+l)cp+a@a+rl)(@a+2)cy+..
3

I'(n+1) n? n n® n
(4a)
F(n) =_1_{-1—3 ¢ +a(a+l)cop-a(a+l)(a+2)cy—... ‘
Fn+a) p2| ™ n n3 }
(4b)

where cq, ¢y, ... are polynomials in a. He remarks that
(4b) reduces to [n(n+1) ... (n +m-1)]"1 when a isa
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positive integer m, and converges for |nl > m-1;

in all other cases, it diverges. One cannot help but
notice the tantalizing fact that the series parts of

(4a) and (4b) are the same when n is replaced by

-n. Using, at least formally,

I(-n)
I'(~n+a)

_sinT(n-a)

: x L(n-a+1)
sin Tn

Tn+1)

Stieltjes produces the expression

['(-n) _1 | l+acy+alatl)cy+...
F(-n+a) 42 n n2 sinmn

()
and points out that if n is replaced by -n in (4b),

then (-n)2 has to be replaced by n?(sin #n)/sin 7(n -a).

He remarks “Existe-t-il une formule plus générale qui
embrasse les formules 5 (our (4b)) et 5’ (our (5)) en
méme temps ?” Only a few lines earlier in this letter
he had remarked “J’ai vainement cherché (il y a
quelques années) a établir une théorie satisfaisante
de ces séries divergentes”, surely a surprising com-
ment considering his considerable contributions to
the subject including the Stieltjes c.f.. Aside from
this, Stieltjes was putting his finger on the sensitive
relation in these gamma function ratios, namely

the continuation of the functions through the origin
n= 0. The problem of discovering a single expression
for (4a) and (4b) seems to be still unresolved, and a
solution might be a source of illumination for the
c.f’s we derive for y(n) and f(n) in the sequel. -
Another strange aspect of the Stieltjes comments is
that (i) he did not comment on the evident reciproc-
ity in (4) when a = 1/2 (which is clearly closely re-
lated to y(n)),and (ii} he returned to the subject, al-
though not explicity saying so, in letter 299 ([10],
March, 1891) showing among other things that

x{ I'(x) }2=1+ 2 1.3
)

l"(x+% 8x-1 + 8x+...

In our notation this is equivalent, in terms of (1), to

) = 1_1] 1+_2 1.3 3.5 57

ve) [ n Vi +4n—1+4n +4n +4n +...
(6)

which incidentally provides monotonic sequences of

bounding approximants to y(n) when 4n> 1. By

elementary manipulation, we deduce

n?y%(n) - (n-1)2 -_n 1 1 11
n2y2(n) + (n-1)2

- (7)
so that the left side is an odd function in n, leading to
y(-n) = (1-1/n%)/y(n) (®)

which defines y(n) for negative n (complex values not
being of especial interest at this stage). Note that

sinm(n-a)

4n2 + 4/3 + 4n2/5 + 4/7 + 4n2/9+..

ny(n)/(n-1) or f(n) is (4b) when n is replaced by n/2.
Having given a brief historical background, we now
describe in this note (i) an assessment of the rate of
divergence of the series for y (n), (ii) show that the
coefficients are (apart from denominators consisting
of powers of 2) integers, (iii) describe c.f.’s for the
even and odd parts of y(n) and f(n), and (iv) give a
Stieltjes type c.f. for f(n) providing new tentative
bounds.

2. INTEGRAL REPRESENTATIONS AND SERIES

2.1. y(n)
From the beta-function
1 ln 1 _1

n 2 t 1-t) 2dt (n>0 9a
y(n) i—lm Jo (1-t) 2dt (n>0) (%)
we have from the transformation t = exp (- x),

y(n)= (2m-1) f 1-¢7%) 2 gp,

23/mn
(m=n) (9b)

Hence, if y(n) ~ %e s/ns, setting up a recursion for the

coefficients in the power series expansion of (1-¢™) 2,
we find

2se  +(2s-3)e,_1/2! +(2s-5)e,_o/3! + ...+ e /s!
=eq/(s +1)! (10)
fors=2,3,... ; ey = Ley=1/4.

The coefficients {es} can be generated from (10),
and to proceed as far as 60 terms extended precision
arithmetic is needed (Table 1). An inspection shows
that there is a distinct sign pattern (two negatives fol-
lowed by two positives) with a marked increase in
magnitude starting at e11. The first four terms would

scarcely suggest that eg, is of order 1049, Note that

¥(2) ~ 1-0.375 - 5.46875E-02 - 8.7890625E-03
+1.800537106E-03 + 1.842498778E-03

--5.538463578E-03 -1.275569200E-03,

the underscored term being the smallest numerically,
so that summing to the term before the smallest (fol-
lowing the concept that in certain classical asymptotic
series the error is less than the magnitude of the first
term omitted) yields y(2) =0.5652 approx. as against

-the correct value 0.5641896. Similarly, summing to

.the numerically smallest term yields y(2) = 0.5646, a
slightly better approximation. The corresponding
results for n=5 are 0.8407481, 0.8407484 (summing
to the smallest) against 0.8407487 (true). The assess-
ments (knowing, a priori, the correct values) are
acceptable.

It is clearly advantageous to study the even and odd
parts of the series from which (Table 2) we have
asymptotically
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Vieyslegg_ol~(2s-5/2)/m, (11a)
Vieys  1/eq5qi~(25-1/2)/m. (11b)

Improvements on these can be found by setting for
example

(s) (s)
A — - a a
\/lezs/ezs_zl ~£2L"§/—22~[ag') + -si Fot srT
as suggested by Bender and Wu [1]. For our purpose
we only need the dominant terms, and find
ley | ~0.2116 (2/m2* 1% (s - 1/4)
(12)

legg 411 ~ 01143 (2/m?T% (s + 3/4)

1
where eg has the same sign as (—1)[ 2 °l . As for the
accuracy of (12) we have the approximants
3.91E-02, 2.94E-02, 7.76E00, 5.82E00, -1.96E09,
1.46E11, 3.44E36 and 2.58E36 for |e],
s =3, 4, 11, 12, 24, 25, 49, 50, respectively, with
reasonable agreement (Table 1). It should, of course,
be noted that there is no guarantee that (12) would
still be acceptable if we analyzed more terms (the
first million, for example), and unsuccessful attempts
using (1) or its integral representations have run up
against the problem of the definition of the function
in the neighborhood of the origin, as foreseen by
Stieltjes.
Since we shall refer to the odd and even parts of
y(n), we note the following definitions and represen-
tations.

Even part
Ve (n) =[y () +y(-n)-2}/2

= ——\/—2%7~ IO =21 (1 /coth x ~/tanh x - n/v/x }dx

(13a)
Odd part ,
Yo(n) = [y(n) - y (- n) - 2¢, /n]/ 2

-1

= J’”e—an {Vx - Vtanh x} {n + Vcoth x/x }dx.
v 2nm 0

(13b)

Since x > tanh x for x > 0, it is evident that the odd
part, as defined in (13b), is negative for n > 0.

so that corresponding to (10) we find for f(n) ~Zb/n°,

2sbs +M§ﬁ)b g+ (25-1)(25-3)(2s - 5) b,
2! s 31 S—

et (25-1)(2s-3)... 'lb - (2s-1)(2s-3)... .1
s! (s+1)!
(s=1,2,...5bg=1).

+

(15)
For example,

f(n) ~ 1 +1/(4n) + 1/(32n2) - 5/(128n3) - 21/(2048n%) + ..

and an extended tabulation (Table 3) brings out the
possibility that the general coefficient is an integer
divided by a power of 2. A heuristic approach to this
property is to consider

= exp [Y(x)-x] dx,

f(n) ~ {) = (16)
where

¥(x)=(x-x2/2)/m+ (x2/2-x3/3)/m% 4 ... .

Let

exp ¥(x)=1+kyx + kyx2/2! +...

so that after differentiation and simplification,
mk g =(s+1k-sk,_;  (s=1,2..) (17)

with kg =1, ky = 1/m. Clearly k is an integer-valued
polynomial of degree s in 1/m. But, using

J-“ eXx'dx _(2r-1)(2r-3)... 1
0 Vrx 2f

a typical term in (16) is (2r)! k. /(2°r ! r!), where the
factorial is always an integer for r a positive integer.
Hence, the asymptotic expansion of f(n) (and also that
of y(n) since eg = bg - bs_1) in descending powers of
n has coefficients which are odd integers divided by
powers of 2.

Note also from (1), (2) and (8) that

, (r=1,2,...)

£ =Vin) M(Zn)/T(Ln+ 1) (0>0) (189)

with the reciprocal relation
f(n) f(-n)= 1. (18b)

The odd and even parts are of interest as integrals.

Odd part
£o(m) = [£(n) - £(-)} /2

2.2. f(n) = 5 —
. . . =V2n/n [ e 22X Jtanh x dx (19a)
As for the integral representation for y(n) in (9b), 0
we have 1
f(n) =\/;J7j e MX(1 X 2 dx, (14)
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Even part

fe(n) = [f(n) + £(-n)]/2

=VZnTn '(o 2% /coth x dx (19b)

so that for n > 0, fo (n) and £ _(n) are positive.

3. CONTINUED FRACTIONS RELATED TO y(n)

3.1. Complete series

The Stieltjes c.f. for y(n) in (6) would scarcely be

discovered from a direct attack on the series for

y(n); however, it would appear if we searched the

Padé table derived from the series for f2(n), but it

would elude us if we studied the Padé table for
2\

y<(n).

Defining the c.f. for y(n) by

na.o 31

y(n) = (ap=1) (20)

n+b; - n+by- ...
and evaluating ag, by (s =1 to 30), it turns out that
the a’s are negative (excepting ag), by > 0, by to bg
are negative and alternate in sign thereafter. It will
be seen (Table 4) that the sequence {-a.} is steadily
increasing, the more so for larger s, whereas {byg}
for s > 5 also increases at a much slower rate. The
odd sequence {-bjg, 1} also increases slowly and
may well be bounded by 2. If this is the case, then
for n > 2 all the computed partial numerators and
denominators are positive and successive convergents
will provide increasing (even) and decreasing (odd)
sequences bounding the true value (assuming the
pattern exhibited in the table holds for additional
terms). As a numerical illustration, when n = 2, the
26th to 30th convergents are : 0.56418796,
0.56419528, 0.56418831, 0.56419454, and
0.56418856, underscored digits showing discrepancies
from the true value 0.56418958. The rate of “con-
vergence” is anythinf but spectacular and in fact
the error of the 30th approximant is 1.0E-06 as
compared to 2.7E-08 for the corresponding term of
Stieltjes square root form given in (6).

Is the situation improved by using the reciprocal
relation y(n)y(-n) = (1-1/n2) ? By an equivalence
transformation in (20), we can see that for n > 2,
under the assumptions made for the c.f. for y(n),
that upper and lower bounds will become available
for y(2), for example, using y(-2). The 29th and
30th approximants to -

¥(=2) = (3/4)/7 = 1.329340388179 are
1.32934039414 and 1.32934038672 leading to ap-

proximants to y(2) with error in the region of at
most 2. 0E-09, showing an improvement on the
previous two assessments.

3.2. Odd and even parts
The c.i.’s for Yo(n) and y(n) defined in (13) are of

Stieltjes type. In fact

* * * * *
npm=_F0 P11 P2 93
n2 +t1 + 241 + 2 4+,
(pg = 0.0703125) (22a)
() “Po P31 q91 P2 4
y n=-— —_— —— —— —
¢ n2 t 1o+ 241 & 2 4.
(pg = 0-21875) (22b)

where the partial numerators (as far as the computa-
tions go) are positive (Table 5). Hence, since

y(n) = ey + €1/n + y4(n) + y(n)
(eg=1, eg =-3/4) (23)

it follows that using the Stieltjes odd (even) approxi-
mants from (22a) and (22b) in (23) will lead to ap-
proximants to y(n) less (greater) than the true value.
For example, the 28th and 29th approximants to
y(2) = 0.5641895835 are

¥28(2) = 1 - 0.75/2 - 0.053234993 ~ 0.007575335
= 0.56418967,

¥29(2) = 1 - 0.75/2 - 0.053235032 - 0.007575461
= 0.56418951.

It will be seen from Table 5 that there are the
asymptotes ’

P:"SZ , q:~s(s-1),
- ) (24)
ps ~ s{s-1), g ~ 5% .

Can it be proved from the integral forms in (13)
that the c.f’s in (22) are convergent for n > 0, for
example, and have the asymptotes (24) ?

4. CONTINUED FRACTIONS FOR f(n)
4.1. Complete series
Stieltjes c.f. has been computed and takes the form

nlf@my=1 L4 18 P2 Pp P3 P3 P4 P4
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25

where (25)
py =1.3750000000  p; =7.32438017 -01
|p4 =2.9327941100  pg =1.37362135 00
pg = 44611641400  p, =2.02809281 00
pg = 59709526500  pg = 2.69058071 00
pyg= 74677266300  p;; = 3.35872173 00
p1p = 89546698100  p,;=4.03118846 00
P14 = 1.0433801001  p;=4.70713644 00
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pyg = 119064989 01
pyg = 1-33737577 01
pag = 148363244 01
pyy = 1:62947783 01
pyg = 177495811 01
pog = 1:92011091 01
pog = 2-06496781 01
P30 = 220955700 01

py7 = 5.38598397 00
P1g = 6.06730750 00
py1 = 6.75078574 00
py3=7-43616714 00
pys = 8.12324957 00
Py = 8.81186645 00
Pyg = 9.50187496 00

As might be expected, the even and odd sequences
of partial numerators belong to different classes but
both increase. The fact that the partial numerators

in (25) are in pairs is noteworthy. Numerical studies
[n=1(1)5] bring out a periodicity of four with re-
spect to increasing and decreasing sequences; for ex-
ample, the 3(4)57 approximants exceed the true
value whereas the 5(4)55 approximants are deficient.
To understand this property, a contraction process
applied to (25) gives

2 2
fm)=1+__1  4P1P2  4°PoP3
4:1—51 + 4n + 4n + ...

(P =1/8) (26)

which clearly leads to bounding sequences since the
p’s are positive. The resemblance to the Stieltjes form

(6), namely

f2(n)=1 + 2 1-3 .
4n-1 + 4n +...

is remarkable. Can one conclude that

f(n)=1+ S (27a)
4n——21— + n\l!l(nz)
2(n) =1 2 : 27b
=1+ 4n-1+ ¥, (n2) (270)
where
¥, (n2)= [ 4950 (i=1,2)

0 t+_—n2

are Stieltjes transforms, with a consequent relation
between ¥ and ¥, ?

As numerical illustrations, the 55th and 57th con-
vergents of (25) yield 1.253198 < f(1) < 1.253417
for /m[2 = 1.253314, whereas the same convergents
for f(2) = 2/v/m = 1.128379167 are 1.12837910 and
1.12837922.

Lastly, we remark that there is no clear conclusion
possible with respect to the even convergents of (25),
for the contracted form now becomes

2 2
1/32 P2 P3

f(n)= =

" n-1/4 + n-p,+py+n-p3+py+n-py+ p3+...L'

(28)

in which it seems likely that the pattern of signs of the
partial denominators for any n > 0 will sooner or later
change, since py > py, _1-

4.2. 0dd and even parts

There are Stieltjes type c.f.’s for the odd and even
parts of f(n) [see (19a), (19b) and (Table 6)]

* *

. PI U
f (n)=0:25n 1 (29a)
0 n® 4+ 1 + n% +...

2
fm=n P 91
€ 2 2

n“ - 1+ n° +.. (29b)

where, apart from py, the p’s and ¢’s are positive and
increase with s. The first c.f. (29a) corresponds to an

infinite integral involving v/tanh x; Stieltjes ([11],

p- 383, (15)) gives a corresponding c.f. for one involv-
ing tanh x. The second (29b) corresponds to an in-

finite integral involving v/ coth x.

5. CONCLUDING REMARKS

A number of outstanding problems are posed in this
note.

(i) Can analytical expressions be found for the coef-
ficients in y(n), similar to (11a), (11b) ? Will
these expressions hold, failing analytic methods,
if the numerical analysis is carried further ?

(ii) Related to (1) is the problem of discovering a
single expression for y(n) valid in a neighborhood

of the origin (n = 0).

Can convergence regions be established for the

c.f.’s corresponding to y(n), f(n), and their odd

and even parts ?

(iv) Recalling the findings of the studies by Gurland
[5], Gokhale [4], Uppuluri [12], and Gautshi
[3], similar tentative inequalities can be set up
from (20), (22), (25), and (26). For example,

for m > -—:1)-—— , from (26)

(i)

Ql<22<M<u2<u1
I‘(m+;—)

where

uy = (16m + 1) / (16m -1),

o1 = [(16m)% + 16m + 11}/ [(16m)2 - 16m + 11],
_ 11(16m)> + 11(16m)2 + 830(16m) + 709
 11(16m)3 - 11(16m)2 + 830(16m) - 709

__709(16m)*+ 709(16m)>+ 150969(16m)?+ 143170(16m) + 10721

709(16m)*-709(16m)3 + 150969(16m)2-143170(16m) + 107218

Are these valid ?

Journal of Computational and Applied Mathematics, volume 4, no 2, 1978.

109



In any event, whether these problems can be solved or
not, the series for y(n) and f(n) provide proving
grounds for new and old techniques of summation.

TABLE 1.

Coefficients of Terms of Powers of n”! in E/mz.

Population Sampled, N(0,1)

REFERENCES
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2. BOWMAN, K. O. and SHENTON, L. R. : “A new algorithm
for summing divergent series : Part 2, A two-component
Borel summability model”, Journal of Computational and
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S e, s e
0 0 woooooot;ooooooo 01 ; 0 55615631;4197839 15 3. GAUTSHL, W. : “Inequalitics for gamma and incomplete
1 -0.7500000000000000 00 3 0 6561036165808380 17 gamma functions”, J. Math. Phys., Vol. 38 (1959), 77-81.
2 -0.2187500000000000 00 32 0.4903294437166505 17
3 -g. ;ggggggggooooog -g} gi g.sg%g%ggﬁ;ggg }g 4. GOKHALE, D. V. : “On an equality for gamma functions”,
5 0.5895996093750000 -01 35 _0.7492645185553590 21 Skandinavisk Aktuarietidskrift, Vol. 45 (1962), 213-15.
6  -0.3544616699218750 -01 36 0.5604012017898723 21
7 -0.1632728576660156 00 37 0.9563445097595795 23
8 0.1101402044296265 00 38 -0.7155002382831404 23
9 0.8957180678844452 00 39 -0.1362142738068739 26 TABLE 3. Coefficients in Series for y(n) and f(n)
10 -0.6334559656679630 00 40  0.1019363302629313 26
11 -0.8045845820568602 01 4 0.2152690534739988 28 :
12 0.5819407935196068 01 42 -0.1611322438038073 28 vy —f)
13 0.1067670059217926 03 43 -0.3755419264931757 30 *
14 -0.7814824188229068 02 44 0.2811514913009373 30 - S ofs) N
15 -0.1959839821832750 04 45 0.7198315371443462 32 0 1 o .
16 0.1444461086177711 04 46  -0.5389928207672613 32 7 3 2 ]
17 0.4751954396992378 05 47 -0.1509589401875378 35 2 37 5 1
18 -0.3517534368957456 05 48 0.1130503806626766 35 3 -9 7 -5
19 -0.1470431744280302 07 49 0.3450331550664175 37 1 59 1 -2]
20 0.1091602568267512 07 50  -0.2584208385470577 37 5 483 13 399
21 0.565365049170379 08 51  -0.8564346854071110 39 6 -2323 16 869
22 -0.4205587430749474 08 52 0.6415168872472400 39 7 -42801 18 -39325
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24 0.1969850019470220 10 54 -0.1723830088467729 42 " el z zmrees
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NOTE: Reduced to 16 digits from the original 70-digit output. (e, = Ns/2°(s), b, = ";/2“5))
TABLE 2. Analysis of Coefficients in y(n)
s -e, /e €25 r. = (2s -é)/ﬂ s e /e €25+1 r! = (2s-%)/w
2s' ~2s-2 . S 2 2s+1/"2s-1 == s
25-2 €25-1
1 0.2188 0.4677 - 1 0.0938 0.3062 0.4775
2 0.1317 0.3629 0.4775 2 0.8385 0.9157 0.1141
3 1.2304 1.1092 1.114 3 2.7692 1.6641 1.7507
4 3.1073 1.7627 1.7507 4 5.4860 2.3422 2.3873
5 5.7514 2.3982 2.3873 5 8.9826 2.9971° 3.0239
6 9,1869 3.0310 3.0239 6 13.2698 3.6428 3.6606
7 13.4289 3.6645 3.6606 7 18.3562 4.2844 4,2972
8 18.4836 4.2993 4,2972 8 24.2466 4.9241 4.9338
9 24.3519 4.9348 4,9338 9 30.9437 5.5627 5.5704
10 31.0332 5.5707 5.5704 10 38.4489 6.2007 6.2070
n 38.5267 6.2070 6.2070 n 46.7630 6.8384 6.8437
12 46.8320 6.8434 6.8437 12 55.8866 7.4757 7.4803
13 55.9485 7.4799 7.4803 13 65.8199 8.1129 8.1169
14 65.8761 8.1164 8.1169 14 76.5631 8.7500 8.7535
15 76.6146 8.7530 8.7535 15 88.1164 9.3870 9.3901
16 88.1640 9. 3896 9.3901 16 100.4799 10.0240, 10.0268
17 100.5241 10.0262 10.0268 17 113.6537 10.6608 10.6634
18 113.6949 10.6628 10.6634 18 127.6378 11.2977 11.3000
19 127.6764 11.2994 11.3000 19 142.4322 11.9345 11.9366
20 142.4686 11.9360 11.9366 20 158.0371 12.5713 12.5732
21 158.0715 12.5726 12.5732 21 174.4524 13.2080 13.2099
22 174.4849 13.2093 13.2099 22 191.6781 13.8448 13.8465
23 191.7090 13.8459 13.8465 23 209.7143 14.4815 14.4831
24 209.7438 12.4825 14.4831 24 228.5609 15.1182 16.1197
25 228.5891 15.1192 15.1197 25 248.2181 15.7549 15.7563
26 2482450 15.7558 15.7563 26 268.6857 16.3916 16.3930
27 268.7116 16.3924 16.3930 27 289,9639 17.0283 17.0296
28 289.9887 17.0291 17.0296 28 312.0526 17.6650 17.6662
29 312.0764 17.6657 17.6662 29 334.9518 18.3017 18.3028
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TABLE 4. J Fraction fer y(n) TABLE 5. Stieltjes c.f.’'s for the Odd and Even Parts of y(n)
YoM PALY
s -a b
s s = B, q £ 9
1 0.7813 0.7500 ? Somie 00 s.oa0s6s2s 00 210mies 90 4l sesasere oo
2 0.0656 ~1.0500 3 8.94478582 00 1.18352963 01 6.05008488 00 9.20293048 00
3 1.7536 -0.6900 S o 01 zarmieds o1 Noares ol bossesems o
4 2.2140 -0.2439 § 36075727 01 41717990 01  2.99100704 O1  5.eskossts o1
5 5. 7605 20,8169 7 491109503 01  5.56730188 01  4.18664726 01  4.93839383 01
6.1982 -0.1366 S SMinze 01 acearses 01 rivmsiers ol o ieries o1
g 11.9196 -0.9090 10 1.0022419 02  1.09561041 02  8.97415795 01  1.00507895 02
. . 1 1.21260700 02  1.31524843 02  1.0970142¢ 02  1.21547817 02
8 12.0411 -0.0507 12 1.44296720 02  1.55489103 02  1.31661856 02  1.44587177 02
9 20.2186 -0.9895 13 1.69332298 02  1.81453783 02  1.55622813 02  1.69626033 02
10 19.7538 0.0266 14 1.96367456 02  1.81369003 02  1.81584244 02  1.96134692. 02
}]2 gggzgg -2)833475 (see (22a), (22b))
13 43.2053 -1.1338
14 40.8156 0.1671
15 57.8821 -1.2008 )
16 54.1742 0.2329 TABLE 6. Stieltjes Type c.f.'s for the Odd and Even Parts of f(n)
17 74.6758 -1.2654
18 69.4226 0.2966 _fn) S X () I
19 . 93.5832 -1.3281 s o o b N
20 86.5636 , 0.3584 - M “ s
21 114.6015 -1.3891 P Zounee Ao o omen b oue ©
22 105.5997 0.4187 I eoims o s.o0erl 00 g:wu 00  6.46798952 00
23 137.7283 -1.4487 S 1.99426176 01  2.52975272 O1 X 0 07 2z o
24 126.5330 0.4777 2. 98962052 : Tl B zoemssa o
% . 162.9616 R 7 LTmUSI 01 om0 IS o 4oreers o
26 149, 3652 0.5356 g ;%’% g} gﬂ;}g:: g} :-Wm775 0 5.68547973 01
27 190.2994 -1.5644 o et o Yokl @ S:Sfé‘,‘.’;: O 33000099 01
28 174.0982 0.5924 12 130639867 02 144596238 05 120111602 02 1.3nisoks o
29 219.7401 -1.6208 13 1.55599565 02  1.69638327 02  1.43041333 02  1.57212534 02
0.6483 14 1.81559800 02  1.96677866 02  1.67971588 02  1.83282247 02
15 2.09520638 02 1.34902211 02
NOTE: Reduced to 4 decimal places (see (200), (290))

from the original 70-digit out.
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