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ABST RACT  

An analysis is given for the expansion (60 terms) of a gamma function ratio discussed by Stiehjes 
and others. A Stieltjes continued fraction is derived, affording lower and upper bound (but lack- 
ing a rigorous proof), along with continued fraction for the odd and even series. 

1. INTRODUCTION 

We study the ratio of gamma functions 

y(n) = ( n - l )  F(1/2n) 
, (n=2 ,3  ... .  ) 

1 

and the related function 

(1) 

f (n)  = y (n) / (1 - 1 / n), (2) 

by developing series in powers of n -1 and converting 
these (in several ways) to continued fractions (c.f.'s). 
Our interest was initiated from a study of divergent 
series occurring in statistics [2], [8], [9]. In particular, 
it was expedient to find a well-known statistic whose 
expectation,was known in closed form and for which 
a nontrivial series expansion in a .parameter could be 
developed. The second sample moment in sampling 
from a standard normal density provided an answer. 
Specifically, for the random sample (x 1, x 2 . . . . .  Xn) 
of independent and identically distributed variates 
from N(0, 1), we considei the mean value of ~ 
(i.e., Ewm2) where m 2 = 2;(xj-  ~)2/n.  Note that 
in many statistical applications it is more appro- 

priate to consider s 2 = nm2/ (n-1) ,  but for our 
X 

immediate purpose (which concerns mathematical 
properties), we prefer the second central moment 
rather than the variance. The series expansion of 
Ex/-m 2 in descending powers of n, the sample size, 
turns out to be a divergent series whose sum is y(n) 
given in (1). There is little point in studying 

Em~, s = 1, 3/2,2 . . . . .  since the expression has a 
terminating series for integer s, and for half-integers 
involves no new development over the case s = 1/2 . 
Again, our main interest is in properties of y (n), 
deduced from series and c.f.'s, for n = 2, 3 ... . .  al- 

though we may from time to time extend this do- 
main. 
the ratio y(n), or one closely related to it, has attracted 
the attention of mathematicians from time to time 
over the last century or longer (see, for example, 
Perron [7], pp. 31-6; also Mitrinovi~ [6], pp. 286-8). 
Recently, inequalities for y2(n) have been derived 
from purely statistical concepts (see, for example, 
Gurland [5], Gokhale [4], and Uppuluri [12]; also 
Gautshi [3] has derived results for n not restricted 
to integers and from a mathematical viewpoint). Of 
considerable interest from the asymptotic analysis 
approach and the use of c.f.'s are the remarks io be 
found in the works of Stieltjes written towards the 
end of the last century. In letter number 153 to 
Hermite (written around November, 1888; see [10]) 
Stieltjes roses the expressions 

r(a)r(n) =f [1-e-y].a-1 
rCa+n) d" Ly _J 

ya- le-nYdy 

(3) 
r(a)r(n-a+l)  ; a-1 a-1 = y e-nYdy 

r ( n + l )  0 
t_ 

along with power series for the first factors in the 
integrands, to obtain the series 

r ( n - a + X )  1 I I + a c l  a a n _ ~  + "1 = + a a + l  c 2 a (a+ l ) (a+2)c3+ . .  
r (n  +1) n a n n 3 j 

(4a) 
r(n) = 1__ [ 1 - a  c 1 + a ( a + l )  c 2 - a ( a + l ) ( a + 2 ) c  3 . . . .  - 
r(n + a) na L n2 n3 _I 

(4b) 

where c 1, c2, ... are polynomials in a. He remarks that 
(4b) reduces to [n(n+l ) . . .  (n + m - ~ ]  -1 when a is a 
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positive integer m, and converges for In[ > m - l ;  
in all other cases, it diverges. One cannot help but 
notice the tantalizing fact that the series parts of 
(4a) and (4b) are the same when n is replaced by 
-n. Using, at least formally, 

r(-n) = sin It(n-a) x r(n-a +1) 
r(-n+ a) sin ~rn r(n+l) 

Stieltjes produces the expression 

PC-n + a) n- sinlrn ' 

(s) 

and points out that if n is replaced by -n in (4b), 
then (-n) a has to be replaced by na(sin 7fn)/sin ~r(n-a). 
He remarks "Existe-t-il une formule plus g~n~rale qui 
embrasse hs formules 5 (our (4b))et 5' (our (5)) en 
mSme temps ?" Only a few lines earlier in this letter 
he had remarked "J ' a i  vainement cherch~ (il y a 
quelques armies) ~ ~tablir une th~orie satisfaisante 
de ces s~ries divergentes", surely a surprising com- 
ment considering his considerable contributions to 
the subject including the Stieltjes c.f.. Aside from 
this, Stieltjes was putting his finger on the sensitive 
relation in these gamma function ratios, namely 
the continuation of the functions through the origin 
n = 0. The problem of discovering a single expression 
for (4a) and (4b) seems to be still unresolved, and a 
solution might be a source of illumination for the 
c.f.'s we derive for y(n) and f(n) in the sequel. 
Another strange aspect of the Stieltjes comments is 
that (i) he did not comment on the evident reciproc- 
ity in (4) when a = 1/2 (which is clearly closely re- 
lated to y(n}), and (ii) he returned to the subject, al- 
though not explicity saying so, in letter 299 ([10], 
March, 1891) showing among other things that 

x i  Fix ) -~2=1+ 2 ~ 1.3 

In our notation this is equivalent, in terms of (1), to 

=iX_in/i] X/{1 , 2 1.3 3.5 5.7 y(n) ) 
4n-1+ 4n + 4n + 4n +. . .  

(6) 
which incidentally provides monotonic sequences of 
bounding approximants to y(n) when 4n > 1. By 
elementary manipulation, we deduce 

ny(n)/(n-1) or f(n) is (4b) when n is replaced by n/2. 
Having given a brief historical background, we now 
describe in this note (i) an assessment of the rate of 
divergence of the series fory  (n), (ii) show that the 
coeffidents are (apart from denominators consisting 
of powers of 2) integers, (iii) describe c.f.'s for the 
even and odd parts of y(n) and f(n), and (iv) give a 
Stieltjes type c.f. for f(n) providing new tentative 
bounds. 

2. INTEGRAL REPRESENTATIONS AND SERIES 

2.1. y(n) 
From the beta-function 

ln-1 1 
(n- l )  / t 2 (1-t)--2 dt (n > 0) (9a) 

y(n) = 2~nn~ 0 

we have from the transformation t = exp (- x), 
1 

y(n)= (2m-1) f "  e-mX(l_e-X) 2 dn. 

2X/  " 0  

(m = 2 n) (gb) 

Hence, if y(n) ~ ~ es/nS, setting up a recursion for the 

coefficients in theU power series expansion of (l--c-x) -1 2, 
we fred 

2se s + (2s-3)es_1/2! + (2s-5)es_2/3! + ... + e l / s !  

= e0/(s+l)! (10) 

fors=2,3 .... ; e 0=1,e 1=1/4. 

The coefficients {es} can be generated from (10), 
and to proceed as far as 60 terms extended precision 
arithmetic is needed (Table 1). An inspection shows 
that there is a distinct sign pattern (two negatives fob 
lowed by two positives) with a marked increase in 
magnitude starting at e11. The fxrst four terms would 
scarcely suggest that %0 is of order 1049 . Note that 

y (2) ~ 1 - 0.375 - 5.46875E-02 - 8.7890625E-03 

+ 1.800537106E-03 + 1.842498778B-03 

- 5.538463578E-03-1.275569200E,03, 

the underscored term being the smallest numerically, 
so that summing to the term before the smallest (fob 
lowing the concept that in certain classical asymptotic 
series the error is less than the magnitude of the first 
term Omitted) yields y(2) = 0.5652 approx, as against 

n2y2(n) - (n-l) 2 _ n 1 1 1 I -the correct value 0.5641896. Similarly, summing to 
n2y2(n) + (n-l) 2 4n 2 + 4/3 + 4n2/5 + 4/7 ÷ 4n2/9+ ;.. the numerically smallest term yields y(2) = 0.5646, a 

(7) slightly better approximation. The corresponding 
results for n = 5 are 0.8407481, 0.8407484 (summing 

so that the left side is an odd function in n, leading to to the smallest) against 0.8407487 (true). The assess- 
y (- n) = (1 - 1/n 2) / y(n) (8) ments (knowing, a priori, the correct values) are 

acceptabh. 
which defines y(n) for negative n (complex values not It is clearly advantageous to study the even and odd 
being of especial interest at this stage). Note that parts of the series from which (Table 2) we have 

asymptotically 
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x//e2s/e2s_2[ ~ (2s -5 /2 ) / f r ,  (11a) so that corresponding to (10) we Fred for f(n) ~•bs/nS, 

x / i e2s+ l / e2s -1  i ~ 42s-1/27/n .  (llb) 
2sbs + (2s21)(2s-3)bs_1 + (2s-1)(2s-3)(2s- 5) bs_2 

• 3 !  

Improvements on these can be found by setting for 
example 

x/ie2s/e2s 2 [~(2s -5 /2 )  a(0s) + __ +...+ 
- Ir s 

as suggested by Bender and Wu [1]. For our purpose 
we only need the dominant terms, and find 

le2s[ ~ 0.2116 (2/¢f) 2s r2(s- 1/4) 
(12) 

le2s +11 ~ 0.1143 42/~r)2Sl"2 4 s + 3/4) 

4_1)[½ s] where e s has the same sign as . As for the 
accuracy of (12) we have the approximants 
3.91E-02, 2.94E-02, 7.76E00, 5.821/00, 1.96E09, 
1.46Ell, 3.44E36 and 2.58E36 for [esl, 
s = 3, 4, 11, 12, 24, 25, 49, 50, respectively, with 
reasonable agreement (Table 1). It should, of course, 
he noted that there is no guarantee that (12) would 
st@l be acceptable if we analyzed more terms (the 
first million, for example), and unsuccessful attempts 
using (1) or its integral representations have run up 
against the problem of the definition of the function 
in the neighborhood of the origin, as foreseen by 
Stieltjes. 
Since we shall refer to the odd and even parts of 
y(n), we note the following definitions and represen- 
tations. 

Even part 

Ye(n) = [ y 4  n ) + y 4 - n ) - 2 ] / 2  

_ i f'e-2nx { n ~ - ~ -  n/,/~}dx 
24TEE "0 

(13a) 

Odd part 

Y0 (n) = [Y4 n) - Y 4- n) - 2e 1 / n] / 2 

+ ... + (2s-1)(2s-3) . . . .  1 bl = (2s-1)(2s-3) . . . .  1 
s! ( s+ l ) !  

(s=1,2 .... ; b 0 = l  ). (15) 

For example, 

f(n) ~ i + 1/(4n) + 1/(32n 2) - 5/(128n 3) - 21/(2048n 4) + .. 

and an extended tabulation (Table 3) brings out the 
possibility that the general coefficient is an integer 
divided by a power of 2. A heuristic approach to this 
property is to consider 

: e x p  [~(x)-x] dx, 
f(n) 0 x/-~- (16) 

where 

4 x) = (x-  x2/2) /m + .(x2 / 2 - x 3 / 3 ) / m  2 + . . . .  

Let 

exp ~(x)-- 1+ kix  + k2x2/2! + . . .  

so that after differentiation and simplification, 

mks+l=(S+l)ks-sks_ 1 (s=1,2 .... ) (17) 

with k 0 = 1, k I = l/m. Clearly k s is an integer-valued 
polynomial of degree s in l/m. But, using 

e-x xr dx (r= 1,2 .... ) __ 42r~  1) 4 2 r ~ 3 )  . . .  1 

0 ~ 2r ' 

a typical term in (16) is (2r) J kr/(2rr ! r!), where the 
factorial is always an integer for r a positive integer. 
Hence, the asymptotic expansion of f(n) 4and also that 
of y(n) since e s = b s - bs_l) in descending powers of 
n has coefficients which are odd integers divided by 
powers of 2. 
Note also from 41), (2) and (8) that 

f4n)= (N(i/~n~n) p(21----n)/r(+n++) (n>0)(18a) 

- 1  

24Tff : • e  -2nx (x/x-- ~ x) {n + ~ ) d x .  

413b) 

with the reciprocal relation 

f(n) f(-n)= 1. (18b) 

The odd and even parts are of interest as integrals. 

Since x > tanh x for x > 0, it is evident that the odd 
part, as defined in (13b), is negative for n > 0. 

Odd part 

fo 4n) = [f4n) - f(-  n)] / 2 

2.2. f(n) 

As for the integral representation for y(n) in (9b), 
we have 1 

f(n) = qm--~j" e - r a x ( 1 - e  -x) dx,  (14) 

=X/2nhr : e -2nx x/tanhx dx (19a) 
0 
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Even part 

re(n) = [f(n) + f ( - n ) ] / 2  

= V~"~'~ ~ e- 2 n x Ve~'~-~ x dx 

so that for n > O, fO (n) and re(n) are positive. 

(19b) 

3. CONTINUED FRACTIONS RELATED TO y(n) 

3.1. Complete series 

The Stieltjes c.f. for y(n) in (6) would scarcely be 
discovered from a direct attack on the series for 
y(n); however, it would appear if we searched the 
Pad~ table derived from the series for f2(n), but it 
would elude us if we studied the Pad~ table for 
y2(n) .  
Defining the c.f. for y(n) by 

y ( n ) -  ha0 al  
n + b  1 -  n + b  2 -  ... (a0 =1)  (20) 

and evaluating as, b s (s = 1 to 30), it turns out that 
the a's are negative (excepting a0), b I > 0, b 2 to b 9 
are negative and alternate in sign thereafter. It will 
be seen (Table 4) that the sequence ( -as)  is steadily 
increasing, the more so for larger s, whereas {b2s) 
for s ~ 5 also increases at a much slower rate. The 
odd sequence {- b2s + 1 ) also increases slowly and 
may well be bounded by 2. If this is the case, then 
for n ~ 2 all the computed partial numerators and 
denominators are positive and successive convergerrts 
will provide increasing (even) and decreasing (odd) 
sequences bounding the true value (assuming the 
pattern exhibited in the table holds for additional 
terms). As a numerical illustration, when n = 2, the 
26th to 30th convergents are : 0.5641879__66, 
0.56419528, 0.5641883__1, 0.56419454, and 
0.5641885___6, underscored digits showing discrepancies 
from the true value 0.56418958. The rate of  "con- 
vergence" is anythin~ but spectacular and in fact 
the error of the 30tl~ approximant is 1.0E- 06 as 
compared to 2.7E-08 for the corresponding term of  
Stieltjes square root form given in (6). 
Is the situation improved by using the reciprocal 
relation y(n)y(-n) = (1-1 /n  2) ? By an equivalence 
transformation in (20), we can see that for n ~ 2, 
under the assumptions made for the c.f. for y(n), 
that upper and lower bounds will become available 
for y(2), for example, using y(-2). The 29 th and 
30tli approximants to 

y(-2) = (3/4)~/7r = 1.329340388179 are 
1.32934039414 and 1.32934038672 leading to ap- 
proximants to y(2) with error in the region of at 
most 2. 0E-09,  showing an improvement on the 
previous two assessments. 

3.2 .  Odd and even parts 

The c.£'s for Y0(n) and Ye(n) defined in (13) are of 

Stieltjes type. In fact 

nY0(n) = -P0 Pl q l .  P2 q2 

n 2 + 1 + n 2 + 1 + n 2 + - . - ,  

(p~ = 0.0703125) (22a) 

-Po Pl ql P2 q2 
Ye(n) - 

n 2 + 1 + n 2 + 1 + n 2 + ... 

(Po = 0.21875) (22b) 

where the partial numerators (as far as the computa- 
tions go) are positive (Table 5). Hence, since 

y(n) = e 0 -~ e 1 /n  + Y0(n) + Ye(n) 

(e 0 =  1, e 1 : - 3 / 4 )  (23) 

it follows that using the Stieltjes odd (even) approxi- 
mants from (22a) and (22b) in (23) will lead to ap- 
proximants to y(n) less (greater~ than the true value. 
For example, the 28th and 29 t approximants to 
y(2) = 0.5641895835 are 

Y28(2) = 1 - 0.75/2 - 0.053234993 - 0.007575335 

= 0.56418967, 

Y29(2) = 1 - 0.75/2 - 0.053235032 - 0.007575461 
= 0.56418951. 

It will be seen from Table 5 that there are the 
asymptotes 

i *  s2 * 
Ps~  ' q s ~ S ( S - 1 ) '  

- Ps ~ s ( s - 1 ) ,  qs ~ 82" (24) 

Can it be proved from the integral forms in (13) 
that the c.f.'s in (22) are convergent for n > 0, for 
example, and have the asymptotes (24) ? 

4. CONTINUED FRACTIONS FOR f(n) 

4.1. Complete series 

Stieltjes c.£ has been computed and takes the form 

1 1/4 1/8 P2 P2 P3 P3 P4 P4 
n - l f ( n ) = ' - n - 1  + n  - 1 +  n l + n -  I + n 

where (25) 

P2 = 1.37500000 00 P3 - 7.32438017 -01 

P4 = 2.93279411 00 P5 = 1.37362135 00 

P6 = 4.46116414 00 p 7 ' =  2.02809281 00 

P8  = 5.97095265 00 P9 = 2.69058071 00 

P10 = 7.46772663 00 P l l  = 3.35872173 00 

P12 = 8.95466981 00 P13 = 4.03118846 00 

P14 = 1.04338010 01 P15 = 4.70713644 00 
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P16 = 1.19064989 01 P17 = 5.38598397 00 

P18 = 1.33737577 01 P19 = 6.06730750 00 

P20 = 1.48363244 01 P21 = 6.75078574 00 

P22 = 1.62947783 01 P23 = 7.43616714 00 

P24 = 1.77495811 01 P25 = 8.12324957 00 

P26 = 1.92011091 01 P27 = 8.81186645 00 

P28 ~ 2.06496781 01 P29 = 9.50187496 00 

P30 = 2.20955700 01 

As might be expected, the even and odd sequences 
of partial numerators belong to different classes but  
both increase. The fact that the partial numerators 
in (25) are in pairs is noteworthy. Numerical studies 
[n= 1 (1) 5] bring out a periodicity of  four with re- 
spect to increasing and decreasing sequences; for ex- 
ample, the 3 (4) 57 approximants exceed the true 
value whereas the 5 (4)55 approximants are deficient. 
To understand this property, a contraction process 
applied to (25) gives 

f(n) = 1 + 1 42p1P2 42p2P3 
1 4 n -  ~- + 4n 3,_ 4n 3, ... 

(P1 = 1/8) (26) 

which dearly leads to bounding sequences since the 
p's are positive. The resemblance to the Stieltjes form 
(6), namely 

f2(n) = 1 + 2 1.3 
4 n - 1  + 4n + . . .  

is remarkable. Can one conclude that 

f(n) = 1 + 1 (278) 
4n - 1  + n .~1(n2 ) 

f2(n) = 1 + 2 , (27b) 
• 4 n -  1 + n ~  2 (n 2) 

where 

~ i (n  2) = ; d°i( t)  (i = 1, 2) 

0 t + n  2 

are Stieltjes transforms, with a consequent relation 
between ~1  and ~ 2  ? 
As numerical illustrations, the 55 th and 57 th con- 
vergents of  (25) yield 1.25319.__8 < f(1) < 1.25341__7 
for ~ = 1.253314, whereas the same convergents 
for f(2) = 2/x/~ = 1.128379167 are 1.12837910 and 
1.12837922__. 
Lastly, we remark that there is no clear conclusion 
possible with respect to the even convergents o f  (25), 
for the contracted form now becomes 

2 2 
f ( n ) -  n 1/32 P2 P3 

n -  1/4 + n -P2  + Pl  + n -P3  + P2 + n -P4  + P3 + 

(28) 

~2 = 

in which it seems likely that the pattern of  signs o f  the 
partial denominators for any n > 0 will sooner or later 
change, since P2s > P2s-1"  

4.2 .  Odd and even parts 

There are Stieltjes type c.f.'s for the odd and even 
parts o f f ( n )  [see (19a), (19b) and (Table 6)] 

0.25 n Pl q l  (29a) 
f 0 ( n ) =  n2 + 1 + n - ~  + . . .  

f~ (n) = 

n 2 Pl  ql  

n 2- 1 + n 2 +... (29b) 

where, apart from Pl '  the p's and q's are positive and 
increase wi th  s. The ftrst c.f. (29a) corresponds to an 
infinite integral involving ~ x; Stieltjes ([11], 
p. 383, (15)) gives a corresponding c.f. for one involv- 
ing tanh x. The second (29b) corresponds to an in- 
f'mite integral involving x/coth x. 

5. CONCLUDING REMARKS 

A number of  outstanding problems are posed in this 
note. 

(i) Can analytical expressions be found for the coef- 
ficients in y(n), similar to (11a), (11b) ? Will 
these expressions hold, f ,  iling analytic methods, 
if the numerical analysis is carried further ? 

(ii) Related to (1) is the problem of  discovering a 
single expression for y(n) valid in a neighborhood 
of  the origin (n = 0). 

(iii) Can convergence regions be established for the 
c.f.'s corresponding to y(n), f(n), and their odd 
and even parts ? 

(iv) Rec~!!~ng the Findings of  the studies by Gurland 
[5] ,.Gokhale [4], Uppuluri [12], and Gautshi 
[3], similar tentative inequalities can be set up 
from (20), (22), (25), and (26). For example, 

1 from (26) for m > -~- ,  

°1 < ~2 < ~ l~ (m) < u2 < Ul 
1 r (m + ~-) 

where 

u I = (16m + 1) / ( 1 6 m - 1 ) ,  

~1 = [(16m)2 + 16m + 11] / [(16m) 2 - 16m + 11], 

11(16m) 3 + 11(16m) 2 + 830(16m) + 709 
u 2 = 

11(16m) 3 - 11(16m) 2 + 830(16m) - 709 

709(16m)4+ 709(16m)3+ 150969(16m)2+ 143170(16m)+ 10721 

709(16m)4-709(16m)3+ 150969(16m)2-143170(16m) + 107218' 

Are these valid ? 
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In any event, whether these problems can be solved or 
not ,  the series for y(n) and f(n) provide proving 
grounds for new and old techniques of summation. 

TABLE 1. 

Coefficients of Terms of Powers of n "1 in Even 2, 

Population Sampled, N(O,1) 

ec s ec 

0 0.1000000000000000 01 30 -0.5561563144197839 15 
1 - 0 . 7 5 ~  00 31 -0.6561036165408340 17 
2 -0.2187500000000000 O0 32 0.4903294437166505 17 
3 -0.7031250000000000 -01 33 0.6592523246557520 19 
4 0.2880859375000000 -01 34 -0.4928991304269]93 19 
5 0.5895996093750000 -01 35 -0.7492645185553590 21 
6 -0.3544616699218750 -01 36 0.5604012017898723 21 
7 -0.163272857(~560156 00 37 0.9563445097595795 23 
8 0.1101402044296265 00 38 -0.7155002382831404 23 
9 0.8957180678844452 O0 39 -0.136214273806873g 26 

10 -0.6334559656679630 O0 40 0.1019363302629313 26 
11 -0.8045845820568602 01 41 0.2152690534739988 28 
12 0.5819407935196068 01 42 -0.1611322438038073 28 
13 0.1067670059217926 03 43 -0.3755419264931757 30 
14 -0.7814824188229068 02 44 0.2811514913009373 30 
15 -0.1959839821832750 04 45 0.7198315371443462 32 
16 0.H~E1086177711 04 46 -0.5389928207672613 32 
17 0.4751954396992378 05 47 -0.1509589401875378 35 
18 -0.3517534368957456 05 48 0.1130503806626766 35 
19 -0.1470431744280302 07 49 0.3450331550664175 37 
20 0.1091602568267512 07 50 -0.2584208385470577 37 
21 0.5653650491703796 08 51 -0.8564346854071110 39 
22 -0.4205587430749474 08 52 0.6415168872472400 39 
23 -0.2643818606156279 10 53 0.2301117860638066 42 
24 0.1969559019470220 10 54 -0.1723830088467729 42 
25 0.1477539850916502 12 55 -0.6672411131174865 44 
26 -0.1101938612757657 12 56 0.4998912531874082 44 
27 -0.9725147345571507 13 57 0.2082143106603326 47 
28 0.72591412445039853 13 58 -0.1560042793970636 47 
29 0.7445873515644643 15 59 -0.6974175373234660 49 

NOTE: Reduced to 16 dtgfts from the ortginal 70-digit output. 
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TABLE 4. J Fraction for y(n) 

s -a s b s s 

1 
1 0.7813 0.7500 2 
2 0.0656 -1.0500 3 4 
3 1.7536 -0.6900 5 
4 2.2140 -0.2439 6 7 5 5.7605 -0.8169 8 
6 6.1982 -0.1366 9 
7 11.9196 -0.9090 lo 11 
8 12.0411 -0.0507 12 
9 20.2186 -0.9895 13 

14 
I0 19.7538 0.0266 
11 30.6492 -1.0637 
12 29.3435 0.0986 (see 
13 43.2053 -1.1338 
14 40.8156 0.1671 
15 57.8821 -1,2008 
16 54.1742 0.2329 
17 74.6758 -1.2654 
18 69.4226 0.2966 
19 ,  93.5832 -1.3281 s 
20 86.5636 , 0.3584 
21 114.6015 -1.3891 1 2 
22 105.5997 0.4187 3 
23 137.7283 -1.4487 4 

5 
24 126.5330 0.4777 s 
2 5  162:9616 -1.5071 7 
26 149.3652 0.5356 s 9 
27 190.2994 -1.5644 lo 
28 174.0982 0.5924 11 12 
29 219.7401 -1.6208 13 

0.6483 14 
15 

NOTE: Reduced to  4 d e c t m l  places 
from the o r i g i n a l  7 0 - d i g i t  out .  

TABLE 5. St te l t jes c . f . ' s  for the Odd a~l Even Parts of y(n) 

Yo (n) Ya(n) 

P~ q; % qs 
S.38541~7 -01 1.93067417 O0 1.31596429 -01 1.09870611 OO 
3.89678156 O0 5.88056825 O0 2.10181904 O0 4.15252975 OO 
8.94478582 O0 1.18352963 O1 6.05008488 O0 9.20293048 O0 
1.59090141 01 1.97925819 01 1.20013848 01 1.52506931 01 
2.50310506 Ol 2.97515640 O1 1.99548759 01 2.52965089 01 
3.60715727 01 4.17117990 O1 2.99100214 01 3.63408246 01 
4.91109503 01 5.5£730188 O1 4.18664726 01 4.93839383 01 
6.41494145 01 7.16350449 O1 5.58239900 O1 6.44260590 01 
8.11871230 01 8.95977503 O1 7.17824019 O1 8.14673394 O1 
1.00224190 02 1.095£1041 02 8.97415795 01 1.00507895 02 
1.21260700 02 1.31524843 02 1.09701424 02 1.21547817 02 
1.44296720 02 1.55489103 02 1.31~:~1856 02 1.44587177 02 
1.69332298 02 1~81453783 02 1.55622813 02 1.69626033 02 
1.96367456 02 1.81369003 02 1.81584244 02 1.96134692. 02 

(22a), (225)) 

TABLE 6. St te l t jes Type c . f . ' s  for the Odd and Even Parts of f (n) 

fo(n) f_(n) 

P~ q~ Ps % 
1.5£250000-01 1.09062500 O0 0.03125000 O0 0.35937500 O0 
2.09571096 O0 4.14821091 O0 0.88111413 O0 2.38052330 O0 
6.04144385 O0 9.20087291 O0 3.78874594 O0 6.467~Jr~ O0 
1.19908144 O1 1.62504700 O1 8.TOSm1M O0 1.25497392 01 
1.99426176 O1 2.52979272 Ol 1.56266510 01 2.0~85522 01 
2.gW62052 01 3.63437732 01 2.45494291 01 3.07063781 01 
4.18511813 O1 4.93883431 01 3.5473m26 01 4.27804954 O1 
5.58072827 01 6.44318659 01 4.83996075 01 5.68547973 01 
7.17643232 01 8.14745066 01 6.33263784 01 7.29278835 01 
8.97221654 O1 1.00516389 02 8.02540408 01 9.10000993 01 
1.09U0704 O~ 1.21557608 02 9.91824789 01 1.11071555 02 
1.31639a7 02 1.44SM238 02 1.29111602 02 1.33142340 02 
1.55r~J56S 02 1.£~J638327 02 1.43041333 02 1.57212534 02 
1.81559m0 02 1.9~778~ 02 1.67971588 02 1.83282247 02 
2.09520638 02 1.94902211 02 

(see (29a), (2~ ) )  

L 
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