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Phrase Structure Grammars Generating 
Context-Free Languages 

ROBERT L. CANNO~, JR. 

Department of Mathematics and Computer Science, 
University of South Carolina, Columbia, South Carolina 29208 

For a phrase structure grammar G an algebraic approach is used for repre- 
senting the structural derivations of the grammar. This representation yields 
the canonical derivations of elements of L(G). I t  is shown that if  all "right- 
canonical" derivations of all elements of L(G) are such that  the number of 
"nonrightmost" derivations between "rightmost" derivations is bounded, then 
L(G) is context-free. 

~NTRODUCTION 

In  a recent  paper,  Book (1973) remarked  that  there  is no convenient  

specification of  a s t ructural  descr ipt ion of  genera t ion  by  a context-sensi t ive  

grammar .  H e  has noted  the  use of a der ivat ion t ree as a s t ructural  descr ipt ion 

for genera t ion  by a context - f ree  g r a m m a r  and the  lack of a similar mechan i sm 

for descr ibing context-sensi t ive  generat ion.  

An  algebraic approach,  which  yields a un ique  algebraic expression over  a 

set of  symbols  f rom the  a lphabet  o f  the  grammar ,  is presented  here. T h e  

express ion yields not  only a s t ructural  descr ipt ion of  a der ivat ion bu t  also 

the  canonical  der ivat ion  associated wi th  the  descript ion.  I n  the  algebraic 

representa t ion  it is possible in one  l inear expression to observe the  contextual  

in teract ion of  symbols  as a str ing is genera ted  by the  grammar .  As an indica-  

t ion of  the  ut i l i ty  of  this approach,  i t  is used to descr ibe a condi t ion  unde r  

which  the  language genera ted  by a phrase  s t ructure  g rammar  1 will  be  

context-free.  2 

1 Aphrase structuregrammar is a system G = (VN ,  VT, P, S ) ,  where V N ~ V T ~ ~?J, 
V N is a finite set of nonterminal symbols, V r a set of terminal symbols, and V = 
V N ~ V T is the alphabet of G. For A the empty string, V + the closure of V under 
catenation, and V* = V + L3 {A}, P C V + x V* is the set of productions of G. The 
string 7raoJ derives the string ~rrco, written ~ra~o * ~rToJ, if there exists a production 
cr --~ ~ in P. The reflexive transitive closure of ~ is written as *=~. The language 
generated by G is L(G) = {x ] x E VT* , S ~ x} (cf. Hopcroft and Ullman, 1969). 

2 A phrase structure grammar is context-free if P _C VN × V*. 
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1. ALGEBRAIC PRELIMINARIES 

For a phrase structure grammar we wish to obtain the structural descrip- 
tions generated by the grammar. A number of different approaches have 
been taken both for context-free grammars (Chomsky and Schiitzenburger, 
1961; Weiss, Mag6, and Stanat, 1973; Thatcher, 1967) and phrase structure 
grammars (Griffiths, 1968; Loeckx, 1970; Eickel and Loeckx, 1972; Hart, 1974). 

As a means of demonstrating the existence of ambiguous derivations for a 
context-free grammar, Chomsky and Schtitzenberger (1961) presented a 
formal power series representation for the derivations of a context-free 
grammar. In the power series representation, each element of Vr* occurs 
with a coefficient that indicates the degree of ambiguity with which the 
grammar generates a string. Also for context-free grammars, Weiss, Mag6, 
and Stanat (1972) represented algebraically not only the existence of an element 
x in L(G) but actually the sequence(s) of derivations by which x is generated. 
Corresponding to x eL(G) is a formal sum such that each term in the formal 
sum represents a derivation sequence for x. 

In presenting a structural description of a phrase structure grammar a 
more complex representation becomes necessary. For a context-free grammar 
G, L(G) may be generated by derivations in which the leftmost terminal is 
always rewritten. For a phrase structure grammar G, i fL(G) is not context- 
free, then G cannot generate L(G) by only leftmost derivations (Evey, 1963; 
Matthews, 1963). Thus, a canonical form for derivation by a phrase structure 
grammar cannot be leftmost derivation. The definition of canonical derivation 
to be used here is one that has appeared in several equivalent forms (Griffiths, 
1968; Loeckx, 1970). I t  requires that a derivation be as near leftmost (or 
rightmost), as possible in a manner to become more explicit later. 

In the structural description to be presented, each production of a grammar 
will be represented by an element of the free monoid a 7/" = ~(V td V td {[, ]})*, 
catenation, A)  4 with the convention that AB ~-BA. As an example the 
production AB --+ CxDy will be represented by 

[ABCxDy] ==_ [ABy~C] ~ ~ .  

Elements of ~U will become polynomials in a semiring 5 ~(~/U) of poly- 
nomials such that (1) eac h polynomial is a formal sum (under @) of terms; 

3 A monoid f ~ / , . ,  1) is closed u n d e r  the  associative operat ion • and  has  ident i ty  1. 
~/7 = {Olv~ V}. 
a A semiring is an  algebraic sy s t em (S ,  q-, ", O) such  tha t  (S ,  q-, 0)  is a commuta t ive  

monoid ,  (S ,  ") is closed u n d e r  the  associative operat ion ', and  the  operator  • d is t r ibutes  
over q-. 
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(2) each term is of the form cp, where c is in the Boolean semiring ~6 of 
coefficients; (3) b~ + c~ = (b + c)~, (b~7) -(c~) = (bc)(~), b, c ~ ,  71, ~ ~ "///'; 
and (4) addition and multiplication of polynomials are performed in the usual 
manner consistent with (3). 

All coefficients of elements of ~(¢g') are either 1 or 0. By convention the 
terms with coefficient 0 will not be written and in the other terms the 1 will 
not explicitly appear. I f p  is a polynomial of N ( ~ )  the use of a ~ p will indicate 
that ~ is a term ofp. 

As an example the productions S -+ a, S ~ X Y ,  SX-- , -  a Y  of a grammar 
would yield the polynomial [A] + [S~] + [ S Y X ]  + [SXYd]  ~ ~(~f ' )  
associated with S. 

For G a context-free grammar and I an index set 7 for the productions of P, 
a sequence of indices from I would be sufficient for describing the canonical 
(leftmost) derivations of a word x eL(G) .  As mentioned earlier, however, 
a non-context-free grammar G cannot generate L(G) only by the use of 
leftmost derivations. Therefore, a sequence of indices from I is insufficient 
for describing generation by a phrase structure grammar. Additional informa- 
tion about the position of the string next to be rewritten must also be given. 
This paper gives an algebraic approach to describing that position and of 
observing the use of context in rewriting a symbol. 

Terms in a polynomial in ~(~/f~) will represent potential derivations from a 
grammar G. Brackets in the term will assist in determining the position of the 
left side of a production when the left side is rewritten. If, after the brackets 
are removed, the remaining term cancels in the half-group Dv s generated 
by V U V ,  then S * ~ x .  

As an example, the string 

[S[SCNA[ABq[qCeq] A[Af]]]] E ~ ( ~ )  

when debracketized yields 

SSCBAAB(lqC~qAAf i  =- ~(/fi -~ pqr ~ D v 

and will correspond to the "right canonical" derivation 

S ~ A B C  S - +  A B C  
A qC A B  --+ Aq  
Aqr qC -+ qr 

~ pqr A - +  p. 

~ = { { O ,  1 } , + , ' , O )  i s a s e m i r i n g s u c h t h a t l - k - x =  1 " 1 - -  1 , 0 " x = O - ] - O =  0 
for x ~ {0, 1 }. 

7 1  = { 0 ,  l , . . . ,  n - -  1 ) ;  P = {Po ,P l  .... ,Pn-1). 
s Dv  is the half-group { ( V  t3 ~ ' )* , . ,  A )  with the relation ~5v ~ A for all v c V. 

The  Dyck set on the alphabet V is a subhal f -group of D v  • 
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2. A STRUCTURAL DESCRIPTION AND CANONICAL FOR?¢I 

For G = <VN, V T , P , S ) ,  a phrase structure grammar, and V - =  
V~¢ u Vr the alphabet of G, let ~/W be the monoid < V u  V t3 {[, ]})*, 
catenation, A),  [ ,  ] q~ V. Define 

h: V ~  N(:~) 

such that 

1. [A] is a term in h(x) 

2. IX@] is a term in h(x) for all X ~ V such that Xa -+ ]? is in P 

3. There are no other terms in h(X). 9 

As an example, for the grammar 

a = <vN, v ~ ,  P, s>  

VN --~ { S , A , B ,  C ,D}  

Vr = {x, y, z} (1) 

P = S --+ ABCD,  A -+ x, BD --> yD, C --~ A, D -+ z}, 

the mapping h would be defined as follows: 

h: S ~-~ A + [SDCBA] 

A ~+ A + [A#] 

B ~ A + [BDDy] 

C,~-~ A + [C] 

D ~-~ A + [D%] 

x~-+ A 

y'.-+ A 

,~. r-->.. A .  

For %Xo~lX1 "'" o ~ X ~ - i  in :tY, Xi ~ V, 

~ e ( v  w V u { [ ,  ]})* 

~, ~: V, f3 + ( v  u { [ ,  ]})*, 

9 For a context-free grammar  in Greibach normal form, Greibach (1973) constructs 
terms in an expression such that  all terms represent productions which share the left- 
most  symbol of the right side in common, rather than the leftmost symbol of the left 
side, as given here. 
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by 
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~ : ~  ~ N ( ~ )  

8:%Xo%X1 "'" o~mX,~a~÷l 

°C 
Thus, 8 inserts h(X,e) into the string immediately to the right of Xi • This is 
done for each occurrence of a symbol from V. Clearly, 8 can be extended to 
a homomorphism 

8: ~ ( ~ )  -~ ~ ( ~ ) .  

As an example for the grammar in (1), 

a: IS] ~ IS] + [S[SDCBA]]. 

A map 

is defined by 

¢: V w  V w { [ , ] } - + D v  

A if x ~ V 
¢ : x ~ +  if x ~ { [ ,  ]}. 

Thus, ¢ erases the brackets and maps elements of V u V w {[, ]} into the 
half-group D v. r} may be extended to a homomorphism of ~(¢K) into ~(Dv). 
Moreover, for any polynomial ~ in ~ ( ~ ) ,  ~(~) allows left cancellation in D v 
of the elements of V by the elements of V. 

Continuing the example above 

¢8: [S] ~-~ S 4- DCBA, (DCBA = ABCD), 

and this polynomial represents two derivations from S: the null derivation 
S *~ S and the derivation S => ABCD. 

In like manner 

82: IS] ~-~ IS] @ [S[SDCBA]] @ [S[SD[D~] C/2./i]] 

+ [S[SDC[C]/~A]] 4- [S[SDCB[BDDy] A]] 

+ [S[SDCBA[A2]]] (2) 

¢82: [S] ~ S 4- D C B A  4- 5CBA @ DBA 4- DCDD2A 4- DCB2. (3) 
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TABLE I 

Summands in 82([,~]) and Their Associated Derivations 

257 

Summands in Associated summands Associated 
8~([,~]) in ¢8~([,g']) derivation 

[S[SD0/~A]] DOB~ci S ~- A B C D  

[3[SD[Ds]0/3A]] ~C.BA S =~ A B C D  =~ A B C z  

[S[SDC[C]B~4]] D.B.A S ~ A B C D  :* A B D  

[S[SDCB[BDD:p]A]] .DCDD~ff~ None 

[,~[SDCBzi[Ax]]] D C B ~  S ~ A B C D  ~ x B C D  

TABLE II 

Summands in a3([S]) and Their  Associated Derivations 

Summands in 
a~([S]) 

Associated summands Associated 
in d783([S]) derivation 

[S[SDO~A]] 

[,.~[SD[Ds] (~/~A]] 

[ S[  SDO[ C]D~4]] 

[ N[ S D C  ~[  B D &~]A]] 

[ S[  SDC.B..g[ A:~]]] 

[ S[  SD[ D~]~[ C]~A]] 

[S[SD[Ds] C/][BDD~]A]] 

[ S[  SD[ D£~] C/~zi[A:?]]] 

[ 3[  SDC[ C]B[ B D D:~]A ]] 

[ S[  S DC[ C ] ~ [  Ax]]] 

[,~[SDC.B[BDD:p]~[A2]]] 

S s * ~ s  

D O B A  S ~ A B C D  

~;C.B-,~ S ~ A B C D  ~ A B C z  

.DBz{ S ~ A B C D  ~ A B D  

/)CDD27/i None 

D(~B2 S ~ A B C D  ::*- xBCD 

~BA S ~ A B C D  ~ A B C z  ~ A B z  

,~CD/)~.~ INTone 

d'CB2 S ~ A B C D  ~ A B C z  ~ x B C z  

D.~A S ~ A B C D  => A B D  ~ A y D  

if)B2 S ~ A B C D  ~ A B D  ~ xBD 

~D C D D:,.,.,fi 2 None 
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The relationship between the summands in (3) and derivations for G is given 
in Table I. 

If  B is applied once more to IS'I, then 

~3: [S] ~ ~e([S]) + [S[SD[D2] O[C] BA]] 

-I- [S[SD[DS] CB[BDDy] A]] + [S[SD[DS,] C/~A[A2]]] 

+ [S[SDC[C] B[BDDy] A]] + [S[SDC[C] BA[A2]]] 

+ [S[SDCB[BDD2] A[A~]]]. (4) 

Table II shows for each term in (4) the associated term in D v and the 
associated derivation. 

Note that the left brackets of a summand in ~(¢¢/) indicate application of 
a production and that these may be interpreted from left to right. An example 
from (4) is the following: 

[S[SDC[C]B[BDD~]_d]] 

I \ \ 
S ~ ABCD ~ ABD ~ AyD 

Thus, in (5) the symbol C is erased before application of the production 
BD ~ yD. 

A problem arises with the term [S[SDC[BDDy] A]] in (2). The expression 
implies the rewriting of BD as Dy prior to the erasure of C. Incorrect use of 
context becomes apparent when the expression is mapped into D r ,  for 

¢: [S[SDCB[BDD2] A]] ~- DCDDyA. 

The presence of a nonbarred symbol in a term of a polynomial in ~(Dz) will 
indicate an invalid term in ~(¢K). This situation is remedied by erasing such 
terms from the polynomial. The mapping E will accomplish that erasure. 
Define 

such that 

¢: ~ (D v) --> ,~(D v) 

e: ~ ~+ otherwise. 

Lastly, define 

o: ~ ( ~ )  ~ ~ ( ~ )  
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such that for ~: a summand in :~($f) 

0: ~: ~-~ l~  ~) ifotherwise.E~3(~) = ¢3(~) 

The mapping 0 performs an iteration of 3 and erases from ~($U) any dement 
that does not yield a string of symbols over V after removing the brackets and 
using the left-cancellation property of the half-group Dr. This requirement 
is similar to that imposed upon a "quick-cancel" derivation of Savitch (1973). 
Thus, 

0(IS]) = IS] + [S[SDCBA]] 

0~([g]) = 0([S]) + [S[SD[D2] CBA-]] + [S[SDC[C] BA-]] 
-? [S[SDCBA[A2]]] 

0a([S]) = 02([g]) @ [SiSD[O2] CiC] BA-]] + [SiSD[D~] CBA[Ay:]] l 
q- [S[SDC[C] B[BDD~] A]] 

04([3]) = 0a([S]) -~ IS[SO[D2] C[C] BA[A2]]] 
@ [S[SDC[C] B[BDD[De] :~] A]] 

~- [S[SDC[C] B[BDD2] A[A~]]] 

05([S']) = 0'~([S]) @ [S[SDC[C] B[BDD[D2] ~] A[A2]]]. 

The new summand introduced into 05([S]) is a rightmost-except-for-context 
derivation of xyz from S, represented as follows: 

[S[SDC[C]B[BDD[D2] y]3[A~]]] 

S ~ ABCD ~ A A xyz. 

The mapping 0, when iterated, yields all the sentential forms that can be 
generated by a grammar. Moreover, the summands in ~($U) satisfy a canonical 
form for describing generation. The form may be characterized by the restric- 
tion that all derivations are rightmost except that any symbol to the right of 
any one being rewritten or used for context is allowed to remain in a sentential 
form as long and only as long it is required for context in a subsequent 
derivation. This is the definition given originally by Griffiths (1968) and in an 
equivalent form by Loeekx (1970). 

It will first be shown that iteration of 0 yields exactly the sentential forms 
which can be generated by a grammar. 
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THEOREM 1. Let G = < V : v ,  V T , P , S >  be a grammar. A string fi in 
( V  t_) g)+ is a sentential form for G i f  and only i f  there exists a summand a in 
~(¢/P) with ~(a) = fi and an integer n(n > O) such that a is a summand of 
O~([S]) for all k >~ n. 

Proof. Assume that c~ is a summand in O~([S]) for all k ~> n. The  proof is 
by induction on n. 

Basis. Let a be a summand in Ok([S']) for every k >~ 1. Then 

: 

representing the production S -+ 3. Note that 

~(~) • 3 = P 3  = A .  

Thus,  the sentential form 3 is represented by the term a. 

Induction. Assume a is a summand in 0k([S]), for every k / >  n -1- 1. 
Then  there is a string 3 in K + such that 

qS(a) "8 = A. 

Moreover, there is a string y in On(IS]) such that ~(7) = a. By the inductive 
assumption y represents a sentential form. Thus  there is a string ~ in V + such 
that $(~,) • ~ = A, and S *~ ~. The  string ? may be written as 

where X i e V, 0 <~ i <~ m, ix¢ ~ ( V  w {[, ]})*,/~j 5~ Iv, 0 ~<j ~< m @ 1. Now 

m l/ i-* \ m 

and thus 

= aXh(X)7,  ~, -r ~ ~ .  

But a is an element of 0(7 ) only ifq~S(7 ) is in V*. This implies that the elements 
of V that were inserted into the string 9' have been canceled by the elements of 
V which were already in the string 7- Thus,  the proper context was available 
for rewriting the sentential form represented by 7. Thus,  if a is in 0@), then 
all contextual requirements have been satisfied, so that there exists ~ in 
V + such that ~b(c 0 • ~ = A, and S *~ ~:. Thus, ~ is a sentential form. 
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To  prove the converse, assume/3 to be a sentential form for G. I t  must  be 
shown that  for some integer n there is a summand c~ in 0~([S]) such that 
~(~) •/3 = A and ~ is a summand of 07~([S]) for all k >~ n. The  proof will be 
by  induction upon the length of the derivation 

s ~  , . .~5~=5. 

Basis. If  S ~ ~, then S--~  ~ is a product ion of the grammar. Thus  
S/~ is a summand of h(S), so that [S[S/~]] is a summand of 8([S]) and 
}8([S]) = SS/~ = ft. Let t ing ~ - -  [S[Sfl]], then ~ is a summand of 01(IS]). 
Since A is a summand of h(X) for all X in V, a is then a summand of 0~([S]) 

f o r a l l k > ~  1. 

Induction. Let  y be a sentential form. There  is a sequence S ~ y,  
Y2 ~ "" ~ Y~ ~ Y of derivations for y. Assume the proposit ion true for all 
derivations of length ~< k. By the inductive assumption there is a term ~ and 
an integer n such that  ~(~) "y~ = A and ~ is a summand of 0J([S]) for all 
j ~> n. The  derivation Y1~ ~ Y may be writ ten as 

Yl~ = f *X~v = Y t*, v, a ~ V*, X ~ V, 

where X~ -+  r is a product ion from P. Since dp(~) • y~ = A, it follows that  
4({) = ~6X/2. There  is a summand [Xae] in h(X)  corresponding to the 
product ion X~--+ ¢ used to rewrite Yk as y. Thus,  for the summand ~ in 
a~([X]),  

so tha t  

~(a(g))  - ~axx~e# 
~ _ - -  

~(a(~))  . r  = ~ e ~  

~ A .  

Because A is a summand of h(X)  for all X ~ V, any summand in 0~([S]) is 
in 01~([S]) for all k >~ n. | 

Next  it  will be shown that  the algebraic representation includes not only all 
the derivations of a word in L(G)  but  also exactly the ones that  are canonical 
in the sense of Griffiths (1968). 

DEFINITION. A sequence of derivations such that  if all derivations in a 
derivation sequence are of the form ~ r ~  ~ ~rroJ = w 'a%'  ~ r r ' r%'  then 
[ c~ [ < [ ~o' I - -  IE ~' [,o is called a right-canonical derivation sequence. 

*0 ] c~ I is the  l eng th  of  the  s t r ing  a. 
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THEOREM 2. The algebraic expression ~ for a sentential form 13 represents 
the set of right-canonical derivations of 13. 

Proof. Consider a term ~X*/ in  o~ for ~:, ~, ~/~ ~///', x c V, ~/4: [p, p 6 ~/#. 
The mapping 3 when applied to this term will substitute h(X) immediately to 
the right of X. Assume moreover that ~ is the longest substring of the term 
such that no symbols in ( cancel symbols in h(X). Thus ~(~) = co, ~b(~X) = ~. 

Now consider a second application of 3 (under the assumption that the 
term ~gXh(X)~ 7 represents a valid derivation sequence). Thus, it may be 
assumed that ~Xh(X)r  1 = ~'~'Y~' with ~', ~', ~' E ~f', Y ~ V, ~/:/: [P, P ~ ~Y', 
and ~' satisfying the same condition with respect to h(Y) as satisfied by 
with respect to h(X). Application of 3 yields se'~l'Yh(Y)~l '. For this term, 
~(~') = o5' and ~(~'F) = ~'. 

The requirement that the derivation be canonical is thus ]q~(~)l < 
1 ~(~')[ -[- [ ~(~'Y)]. This is equivalent to t ~ [ < f ~' ] + [ f 'Y]  since ~ only 
serves to erase pairs of symbols. If  I ~: 1 ) [ ~' I _c I ~'Y [, then _~ is already 
present as a symbol in s e. Thus, 3 must also have substituted h(X) at the 
right of )£, and such a term must also be present in ~. Any substitution to 
the left of Y which is valid implies application of the production represented 
by h(X) prior to application of the production represented by h(Y). Thus, it is 
impossible for any term in ~ to represent a derivation which is not right- 
canonical. I 

The algebraic representation has thus yielded an expression that gives the 
set of right-canonical derivations for any sentential form that may be derived 
from a phrase structure grammar. 

3. GRAMMARS GENERATING ONLY CONTEXT-FREE LANGUAGES 

The use of context in generation of a non-context-free language is not well 
understood. Book (1973) discusses a number of such efforts. They can be 
classified as studies of the use of context for "passing messages," restrictions 
upon the form of an arbitrary grammar, or restrictions upon the manner in 
which the rewriting rules of a grammar may be applied. New results in this 
paper fall into the first category. 

Evey (1963) and Matthews (1963) showed that if the condition that 
a derivation be "rightmost" ("leftmost") is relaxed to the extent that produc- 
tions of the grammar may be applied within some fixed distance of the right- 
most (leffmost) nonterminal symbol in a sentential form, then the grammar 
still generates a context-free language. A result given here for a grammar is 
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that  if in a r ight-canonical  derivation sequence the number  of "nonr ightmost"  
derivations performed between "r ightmost"  derivations is less than some 
positive integer k, then L(G) is context-free. 

DEFINITION. Let  G = ( V x ,  V r ,  P,  S )  be a grammar.  Let  % a term in a 
polynomial  in .~(~¢f'), represent a sentential form for G. Let  y represent an 
occurrence of a symbol £ in ~, ~ e V. For  the set of natural numbers  N, a 
function d: V--~ N is defined such that if y represents the occurrence of a 

symbol ~ in =, ~ e V, then 

d(y)  = 0 if the occurrence of ~ represented by y is not canceled 

in 4(~) 
= 2-}- the number  of symbols separating the occurrence of 

represented by y and the occurrence of the symbol 
which cancels it in ~(~). 

For  x, a symbol in ~, £ ~ V, the scope of ~ in ~ is 

p~(g) -~ max{d(y) [Y represents an occurrence of the symbol X in ~}. 

The  scope of ~ in G is 

pa(~) = max{p~(X-) I x- a symbol in ~, £ e V}. 

The  scope of G is 

p(G) ~ max{pa(~ ) [ ~ a summand in ~ ( # ~ )  representing a sentential form}. 

T h e  scope of a grammar is the maximum number  of symbols separating the 
occurrence of a symbol x and the symbol that cancels it in a term representing 
a scntential form of the grammar.  This  maximum is over all terms repre- 
senting sentential forms of G. 

LEMMA 1. Let n be a positive integer. Let ~ be a term of a polynomial in 
~ ( ~ )  representing a sentential form for G. I f  pa(a) = 2n, then for any symbol 
from V involved in any application of a rewriting rule of G, the distance of that 
symbol from the rightmost symbol ever again to be rewritten or used for context 
in the application of a rewriting rule is less than or equal to n --  1. 

Proof. By induction on n. 

Basis. For  n -= 1, c~ is of the form 

• " X X ' "  X X ' "  X X ' "  X E V. 

643/29/3-6 
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I f  ~ had this form, then all rules of G would be of the form X--+ ~:. The 
grammar would be context-free, and the canonical derivation would always 
rewrite the rightmost symbol. Thus, the distance of the symbol being rewritten 
from the rightmost symbol would be zero. 

Induction. Assume the lemma true for n = k. Thus pa(~) = 2k. Consider 
a substring of ~ of the form 

" " Z " "  Z - - '  
. 

2ksymbols 

The symbol Z represents the rightmost symbol ever again to be involved in 
the application of a rewriting rule of G. A production of the form 

would be represented by 

Y1 "'" Yk-1 z---~ 

ZF~_I "'" FlY1 "'" Y~_IZ~ 

2k symbols 

Clearly the distance between ]11 and Z is k - -  1. 
If  two additional symbols are added, then in the worst case the substring of 

a would be of the form 

ZFk_I "'" Y1WWY1 "'" Y~-IZ~, 

and the distance between W and Z would be k. 
Thus, distance is bounded by scope. | 

THEOREM 3. Let G = (VN,  VT, P, S )  be a grammar. I f  there exists a 
positive integer h such that for all right-canonical derivations of elements of 
L(G), p(G) < k, then L(G) is context-free. 

Proof. For an arbitrary grammar G, if the distance of the symbols being 
rewritten is a bounded distance from the rightmost symbol ever again to be 
rewritten, then L(G) is context-free (Evey, 1963; Matthews, 1963). By 
Lemma 1, bounded scope implies that any symbol involved in a step of a 
derivation is a bounded distance from the rightmost symbol ever again to be 
rewritten. Thus, L(G) is context-free. | 

The above condition is sufficient but not necessary. As an example consider 
the grammar. 
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G = (VN , Vr , P, S )  

vN = {s, x ,  g} 

vT = {4 

P = {S  ---* e, S ---* X Y ,  X Y  -+ X Y Y ,  X ~ c, c Y  ---* cc}. 

The  scope of G is unbounded,  y e t L ( G )  = {e ~ ] n ~> 1}. 
As a corollary to Theorem 3, it can now be shown that if the number  of 

"nonr ightmost"  derivations between "r ightmost"  derivations is bounded 
then the right-canonical  derivations of G generate a context-free language. 

DEFINITION. Let  G = ( V u ,  VT,  P, S )  be a grammar.  Let  w ~ L ( G ) .  
In  a right-canonical derivation 

for w, a step in the derivation o~ ~ / 3  is rightmost if c~ - -  ~TaO, [3 = ~170, ~7, 
0 a V*, a, 7 ~ V+; and there does not exist a symbol z a V in the string 0 
that  is either rewrit ten or used as context in any later application of a rewriting 
rule. A derivation in the sequence S *~ w is nonrightmost if it is not rightmost.  

COROLLARY. Let G = ( V w ,  V r ,  P, S )  be a grammar. I f  there exists a 
positive integer k such that for each w e L( G) and each right-canonical derivation 
for w the number of nonrightmost derivations occurring between rightmost 
derivations is less than k, then L( G) is context-free. 

Proof. In  the algebraic representation for a fight-canonical derivation 
any symbol X which is rewrkten or used for context appears as -" X ~ "- X ' " .  
Any  symbol to the right of X involved in a later rewriting would appear as 

. . . Y . . . X - . . . X . . . Y .  

T h e  expression can be broken up into sections, each of which represents a 
re turn  to the r ightmost  symbol of the sentential form 

. . . ] Y . . . Y I . . . ] 2 . . . z l . . . .  

I f  each of these "sections" has bounded scope then the scope of the grammar 
is bounded.  

Assume that  the number  of symbols used to represent any derivation of G 
is no more than j .  By hypothesis the number  of nonrightmost  derivations 
between r ightmost  derivations is no more than h. Thus,  each "sect ion" 
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contains no more t han j (k  q- 1) symbols, and p(G) <~j(k -~-1). HenceL(G)  is 
context-free. | 

Theorem 3 and Lemma 1 give yet  another means of studying the manner  in 
which information is passed around in the sentential forms of a derivation 
sequence. The  restriction to the right-canonical form of any derivation serves, 
of course, to l imit  the distance of the symbols being rewrit ten from the 
leftmost or r ightmost symbols ever again to be involved in a derivation. 
Still, it is now clear that  there cannot be arbitrariIy many nonrightmost  
derivations between r ightmost  derivations if the right-canonical derivations 
of a g rammar  are to generate a context-free language. 

Whether  an arbitrary number  of steps of a derivation may "interact"  
(Book, 1973) is still not known. I t  is hoped that  the algebraic representation 
given here will provide a basis for further investigation of that question. 

s s 

X X X X X X 

(a) (b) 

FIG. l. Syntactical graphs for two canonical derivations of xxxxx. 
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