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Marine invertebrate oocytes establish chemoattractant gradients that guide spermatozoa towards their
source. In sea urchin spermatozoa, this relocation requires coordinated motility changes initiated by Ca2+-
driven alterations in sperm flagellar curvature. We discovered that Lytechinus pictus spermatozoa undergo
chemotaxis in response to speract, an egg-derived decapeptide previously noted to stimulate non-
chemotactic motility alterations in Strongylocentrotus purpuratus spermatozoa. Sperm of both species
responded to speract gradients with a sequence of turning episodes that correlate with transient flagellar
Ca2+ increases, yet only L. pictus spermatozoa accumulated at the gradient source. Detailed analysis of
sperm behavior revealed that L. pictus spermatozoa selectively undergo Ca2+ fluctuations while swimming
along negative speract gradients while S. purpuratus sperm generate Ca2+ fluctuations in a spatially non-
selective manner. This difference is attributed to the selective suppression of Ca2+ fluctuations of L. pictus
spermatozoa as they swim towards the source of the chemoattractant gradient. This is the first study to
compare and characterize the motility components that differ in chemotactic and non-chemotactic
spermatozoa. Tuning of Ca2+ fluctuations and associated turning episodes to the chemoattractant gradient
polarity is a central feature of sea urchin sperm chemotaxis and may be a feature of sperm chemotaxis in
general.
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Introduction

Union of the male and female gametes is a necessary condition for
the propagation of sexually reproductive species. In many species,
includingmammals, spermatozoa are guided in their journey towards
the egg or oocyte by gradients of chemical signals released by the
female gamete or its associated structures, a mechanism known as
chemotaxis (reviewed in Eisenbach and Giojalas, 2006). By effectively
increasing the size of the egg or oocyte from tens or hundreds of
micrometers to up to millimeters or more, the probabilities of
spermatozoa–egg union are enhanced (Podolsky, 2001; 2002).

Spermatozoa chemotaxis has been most widely documented in
marine invertebrates that undergo external fertilization (Miller,
1985b). Most commonly the spermatozoa redirect their swimming
paths towards the source of a chemoattractant gradient through
stereotypical sequences of turns interspersed by periods of straighter
swimming (hereafter referred to as the “turn-and-run” pattern)
(Bohmer et al., 2005; Kaupp et al., 2003). This redirection is driven by
increases in flagellar curvature during turns, and decreases in
curvature during the episodes of straighter swimming (Kaupp et al.,
2003). This phenomenon has been observed in diverse marine phyla,
although until now the only reported sea urchin to display
chemotactic spermatozoa motility is Arbacia punctulata (Bohmer
et al., 2005; Kaupp et al., 2003; Miller, 1985a; Ward et al., 1985).

Sea urchin spermatozoa motility is modulated by spermatozoa-
activating peptides (SAP), a diverse group of peptides that have
been isolated from the egg investments of a variety of sea urchin
species (Suzuki, 1995). The first characterized and most widely
studied member of the SAP family is speract (GFDLNGGGVG), from
Strongylocentrotus purpuratus sea urchin eggs (Hansbrough and
Garbers, 1981; Suzuki et al., 1981). Current models propose that
after speract binds to its receptor in the flagellum, activation of
guanylate cyclase activity increases cyclic GMP (cGMP) levels,
which hyperpolarizes the spermatozoa through opening of cGMP-
regulated K+ channels (Bonigk et al., 2009; Darszon et al., 2001,
2005; Galindo et al., 2007; Strunker et al., 2006). It is speculated that
hyperpolarization removes inactivation from voltage-gated Ca2+

channels, which subsequently open following a depolarization (Gran-
ados-Gonzalez et al., 2005; Strunker et al., 2006). This fast transient
increase in flagellar [Ca2+]i has been associated with the transient
increases in flagellar bending that prompt sea urchin spermatozoa to
undergo a turning event (Babcock et al., 1992; Bohmer et al., 2005;
Kaupp et al., 2003;Wood et al., 2003) (reviewed inDarszon et al., 2008).
Extracellular Ca2+ is required for all recorded instances of gamete
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chemotaxis and inhibition of Ca2+-permeable cation channels in
ascidian spermatozoa blocks chemotaxis (Miller, 1985a; Yoshida et al.,
2002). The absence of external Ca2+abolishes thephasic Ca2+ increases,
the turning events, and as shown in the sea urchin A. punctulata,
chemotaxis (Kaupp et al., 2003).

Speract-stimulated S. purpuratus spermatozoa redirect their
swimming paths with a stereotypical turn-and-run pattern, but
under laboratory conditions do not show chemotaxis towards speract
or egg investments (reviewed in Darszon et al., 2008). In Lytechinus
pictus sperm, speract is also reported to increase intracellular Ca2+,
cyclic nucleotide concentration and mitochondrial respiration (Bent-
ley and Garbers, 1986; Bentley et al., 1986; Nishigaki and Darszon,
2000), however motility responses have not been reported. At least
two speract isoforms have been isolated from L. pictus egg-associated
structures: GFDLTGGGVQ ([Thr5, Gln10] speract) and FDLTGGGVQ
([Des-Gly1, Thr5, Gln10] speract), which conserve the functionally
important glycine residue at position 6 found in all other reported
members of the speract-related SAPs isolated from eggs of seven
species of the Echinoida order (Suzuki, 1995). Here we characterize
the motility response of L. pictus spermatozoa to uncaged ([Ser5, NB-
Gly6] speract) (Tatsu et al., 2002), which compared to canonical
speract has a largely indistinguishable binding affinity and induced
metabolic response in S. purpuratus sperm (Tatsu et al., 2002), and
which hereon in is referred to as simply speract. We report that L.
pictus spermatozoa accumulate at the source of a speract gradient via
chemotactic redirection of their swimming paths. Interestingly, under
the same experimental condition S. purpuratus spermatozoa showed
re-localization but not chemotaxis. Thus the spermatozoa of two
phylogenetically closely-related sea urchins react to speract gradients
with turn-and-run type motility responses, yet the result is chemo-
taxis in only one of those species.

Our findings suggest that the ability of L. pictus spermatozoa to
selectively increase flagellar Ca2+ and curvature while experiencing
a negative chemoattractant gradient (and/or suppress flagellar
Ca2+ and curvature while experiencing a positive chemoattractant
gradient) is an essential component that characterizes chemotactic
motility in sea urchin spermatozoa, and possibly chemotactic
spermatozoa motility in general. Furthermore, we discovered that
this biased response was confined to a short temporal window
within the first 3–5 s after speract exposure. This initial chemotactic
phase was followed by an apparently adapted response to the
source of the concentration gradient that might promote sperma-
tozoa–egg union once spermatozoa arrive in the immediate vicinity
of the egg. This is the first study to compare and characterize the
motility components that differ in chemotactic and non-chemotac-
tic spermatozoa.
Materials and methods

Materials

Spermatozoa were obtained undiluted from S. purpuratus or L.
pictus (Marinus Inc., Long Beach, CA, USA; Pamanes S. A. de C.V.,
Ensenada, Mexico) by intracoelomic injection of 0.5 M KCl and stored
on ice until used within a day. Artificial seawater (ASW) was 950–
1000 mOsm and contained (mM): 486 NaCl, 10 KCl, 10 CaCl2, 26
MgCl2, 30 MgSO4, 2.5 NaHCO3, 10 HEPES and 1 EDTA (pH 8.0) for S.
purpuratus. For experiments with L. pictus spermatozoa, slightly
acidified ASW (pH 7.4) was used to reduce the number of
spontaneous acrosomally reacted spermatozoa. Low Ca2+ ASW was
as ASWbut pH 7.0 andwith 1 mMCaCl2, and Ca2+-free ASWwas ASW
with no added CaCl2. [Ser5; nitrobenzyl-Gly6]speract, referred to
throughout the text as ‘caged speract’, was prepared as previously
described (Tatsu et al., 2002). Fluo-4-AM and pluronic F-127 were
from Molecular Probes, Inc. (Eugene, OR, USA). PolyHEME (poly(2-
hydroxyethyl methacrylate)) and other reagents, unless indicated,
were from Sigma-Aldrich (Toluca, Edo de Mexico, Mexico).

Loading of Ca2+ fluorescent indicator into spermatozoa

Undiluted spermatozoa were suspended in 10 volumes of low Ca2+

ASW containing 0.2% wt/vol pluronic F-127 and 20 µM of Fluo-4 AM
and incubated for 2 h at 14 °C. Spermatozoawere stored in the dark and
on ice until use. For S. purpuratus spermatozoa, after initial loading of the
Ca2+ indicator, cells were diluted with 100 volumes of low Ca2+ ASW,
centrifuged for 10 min at 1000 g and 4 °C, and resuspended in the
original volume of low Ca2+ ASW.

Fluorescence imaging of swimming spermatozoa

All coverslips were briefly immersed into a 0.05–0.1% (wt/vol)
solution of polyHEME in ethanol, hot-air blow-dried to rapidly
evaporate the solvent, and mounted on reusable chambers fitting a
TC-202 Bipolar temperature controller (Medical Systems Corp.). The
temperature plate was mounted on a microscope stage (Eclipse TE
300; Nikon) and maintained at a constant 15 °C. Aliquots of labeled
sperm were diluted in ASW and transferred to an imaging chamber
(final concentration ∼2×105 cells ml−1). Epifluorescence images
were collected with a Nikon Plan Fluor 40× 1.3 NA objective using a
Chroma filter set (ex, HQ470/40×; DC, 505DCXRU; em, HQ510LP)
and recorded on a EMCCD Andor camera (DV887, Andor iXon).
Fluorescence illumination was supplied by a Luxeon V Star
Lambertian Cyan LED part # LXHL-LE5C (Lumileds Lighting LLC,
San Jose, USA) attached to a custom-built stroboscopic control box.
The LED was mounted into a FlashCube40 assembly with dichroic
mirror M40-DC400 (Rapp Opto Electronic, Hamburg). LED output
was synchronized to the Exposure Out signal of the EMCCD camera
via the control box to produce a single 2 ms flash per individual
exposure. The camera exposure time was set equivalent to flash
duration (2 ms). Images were collected with Andor iQ 1.8 software
(Andor Bioimaging, NC) at 120 fps in full-chip mode, binning=4×4
(corresponding to 128×128 pixels that generate an observation
field of 200×200 µm; each pixel after binning has dimensions of
1.56×1.56 µm). Photolysis of caged speract was via a fiber optic
coupled Xenon UV lamp (UVICO, Rapp Opto Electronic) filtered
through a UV band-pass filter (270–400 nm) connected to the
FlashCube40 and triggered by TTL unit (Andor Bioimaging, NC)
connected to a Master 8 pulse generator (A.M.P.I., Jerusalem, Israel).
The internal diameter of the optical fiber was 4 mm.

Image processing

Sperm head trajectories and their curvatures were measured
using BohBoh software v3.29 with the ‘Tracking of Swimming Cells’
module (BohBohSoft, Tokyo, Japan) (Baba and Mogami, 1985). Path
curvature was calculated each four immediately sequential points
and filtered using a local smoothing technique with bi-square
weighting and polynomial regression (sampling proportion=0.08,
polynomial degree=10, final interval between consecutive
smoothed points=33 ms) with Sigma Plot software v9 (Systat
Software, Inc.). In preparing image stacks for analysis and movies,
the background fluorescence (F0) was removed by generating an
average pixel intensity time-projection image from the first 360
frames before uncaging which was then subtracted from each frame
of the image stack by using the ‘Image calculator’ tool of ImageJ v1.4
(National Institutes of Health, USA). For Fig. 2, maximum pixel
intensity time projections were created each 3 s from background-
subtracted images before and after theUVflash. The change in [Ca2+]i in
the overall flagellum was measured with software created by Jorge
Carneiro (source code available from the authors upon request,
manuscript in preparation). Briefly, the algorithm integrates the
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intensity of the pixels inside the flagellum (without the head pixels) in
each frame after background subtraction, stated as F (Fig. 3). Due to the
inability to measure basal [Ca2+]i in flagella, these values are an
underestimation of the true relative increase of [Ca2+]i occurring in the
flagella.

Sperm chemotaxis

Chemotactic behavior was quantified by the linear equation
chemotaxis index (LECI) using different sampling windows sizes
(3 , 6 and 9 s) before (control) and after caged speract photolysis.
LECI is a parameter derived from the negative value of the
coefficient (−A) in the linear equation (D=At+D0) of the
distance (D) to the source of chemoattractant gradient vs. time
(t), with D0 being the initial sperm position; positive LECIs indicate
movement towards the chemoattractant source (Yoshida et al.,
2002) (Fig. 5). The source of the ‘xy’ speract gradient coordinates
was estimated by identifying the centroid of the UV flash intensity
‘xy’ distribution (Fig. 1).

Analysis of the sperm direction with respect to the speract gradient at
the initiation of each Ca2+ fluctuation

For each sperm motility response to speract we determined both
the position and direction vectors with respect to the gradient
source, at the beginning of each Ca2+ fluctuation (black and red
arrow in Fig. 7, respectively) and calculated their inner product to
get the value of the α angle (see Fig. 7). Values of α from 0 to 90°
correspond to Type (−) Ca2+ fluctuations that occurred when the
spermatozoon was swimming down the chemotactic gradient
(away from the source). Values of α from 90 to 180° correspond
to Type (+) Ca2+ fluctuations that occurred when spermatozoa
were swimming up the chemotactic gradient (towards the source).
For α calculations, head trajectories were filtered with a Low Pass
Filter transform ‘LOWPASS.XFM’ (sampling interval=0.01 s, half
power point of filter=4 Hz; Sigma Plot software v9 (Systat
Software, Inc.)) to reduce high frequency noise due to flagellar
beat development. The initial positions immediately before stimu-
lation (regarding (+) and (−) positioning in the gradient) were
unbiased for all sperm subsets analyzed. For determining the UVpos
and UVneg populations of sperm, the spermatozoa position relative
to the gradient source was defined by calculating the angle ϕ. Values
of ϕ between 0 and 180° identify spermatozoa that are swimming in
Fig. 1.UV flash energy spatial distribution. A) UV light scattered at the glass–liquid interface g
maximum (red) and minimum (blue) relative light intensities was used. B) Surface plot of (
the relative light intensity distribution.
a positive gradient, and ϕ values between 180 and 360° identify
spermatozoa that are swimming in a negative gradient (Fig. 7A):

ϕðαÞ =
α + 90; α≤90Band I:P: = max
α + 90; α≥90Band I:P: = max
90−α; α≤90Band I:P: = min
450−α; α≥90Band I:P: = min

:

8>><
>>:

I.P. is the inflection point of the distance to the source of gradient of
the sperm path prior to the first Ca2+ fluctuation; max the farthest
point to the source of the gradient, andmin indicates the nearest point
to the source of the gradient. ϕ values were calculated at the
beginning of the 200 ms UV flash (ϕUV begin, Fig. S5), at the end of the
200 ms UV flash (ϕUV end, Figs. 10A, B, E, and F), or at the beginning of
the first Ca2+ fluctuation (ϕF1, Figs. 10C and G).

Statistical analyses

Data are presented from spermatozoa collected from a minimum
of three sea urchins and all error bars represent standard error of the
mean unless otherwise stated. Kolmogorov–Smirnov (differences in α
or ϕ distributions) and Student's t-test (comparison of means)
analyses were performed with GNU Octave software v3.0.1 and
Microsoft Office Excel 2007; in some cases Bonferroni's correctionwas
implemented (Fig. 6). To test the bias in the frequencies of two
mutually exclusive events, such as the percent of Ca2+ fluctuations of
Type (−) vs. Type (+), a Binomial test was performed using R
software v. 2.7.1. Data that do not show normal distribution were
analyzed with the Wilcoxon rank sum test using R software v. 2.7.1.
The statistical significance level was set at 95% or 99% as indicated in
the main text.

Results

The spermatozoa motility response to speract

We examined the swimming pattern of spermatozoa in a speract
gradient established by a 200 ms pulse of UV light whose profile was
derived from the spatial distribution of the light scattered at the glass–
liquid interface (Fig. 1). Fluo-4 loaded L. pictus and S. purpuratus
spermatozoa were placed into separate chambers filled with artificial
sea water (ASW) containing 10 nM of caged speract that has a
receptor binding affinity approximately 1400× lower than native
speract (caged speract IC50=950 nM vs. 0.66 nM for native speract).
enerated via an optical fiber coupled to a xenon lamp. A pseudo-color scale representing
A) illustrating the shape of the UV light generated gradient where the I-axis represents



Fig. 2. Typical speract-induced motility changes of L. pictus and S. purpuratus spermatozoa. A–D) L. pictus spermatozoa motility response to speract. E–H) S. purpuratus spermatozoa
motility response to speract. F–F0 time projections showing spermatozoa head fluorescence 3 s before (A, E) and 3 s (B, F), 6 s (C, G) and 9 s (D, H) after 200 ms UV photoactivation of
10 nM caged speract in ASW. The white dot shows the center of the irradiated area.
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Figs. 2A and E show thigmotactic circular swimming behavior of
unstimulated L. pictus and S. purpuratus spermatozoa at the glass–
water interface: average radius of 24.9±1.0 μm (L. pictus, 1.67 revo-
lutions s−1) and 17.8±1.0 μm (S. purpuratus, 1.45 revolutions s−1).
Only the fluorescent signal from the head could be recorded in
unstimulated spermatozoa, as found previously. After irradiation
spermatozoa of both species deviated from the path of their prior
circular trajectory through an alternating sequence of turns inter-
spersed with periods of straighter swimming, the turn-and-run
pattern (Figs. 2B and F). This stereotypical motility response is seen
in spermatozoa of diverse marine species upon exposure to
components of the homologous egg.

During the initial phase of the motility response the L. pictus
spermatozoa accumulated at the center of the irradiated area, the
zone that contains the highest concentration of speract (Fig. 2B, Movie
S1). This initial motility response lasted for ∼3 s following irradiation,
after which the spermatozoa swam in circles surrounding the center
of the field (Fig. 2C). The average radius of these circles was greater
than those observed prior to speract uncaging: 62.5±7.7 μm at 9 s
after stimulation, pb0.01, t-test (Fig. 2D). In contrast, S. purpuratus
spermatozoa did not accumulate at the center of the irradiated area,
or at any other point in the recording field (Figs. 2E–H, Movie S2),
despite undergoing a similar sequence of initial motility changes to
those seen in L. pictus spermatozoa (Fig. 2F).

Single cell speract-induced motor responses

Single cell trajectories were tracked by following the head
centroid. After uncaging speract, spermatozoa swam along their
original path for hundreds of milliseconds before initiating the switch
to the ‘turn-and-run’ pattern. This change coincided with transient
alterations to the flagellar waveform (Fig. 3). The trajectory of a L.
pictus spermatozoon is shown in Fig. 3A from 3 s before (black trace)
to 9 s after irradiation (red trace). Below, an excerpt shows the
trajectory during a single turn-and-run episode, where a black dot
indicates the beginning of the first increase in flagellar fluo-4
fluorescence (Figs. 3A and B). The average delay after the 200 ms of
UV exposure to the onset of the first Ca2+ fluctuationwas 371±81 ms
for L. pictus (n=13) and 247±27 ms (n=15) for S. purpuratus
spermatozoa. Turning episodes coincided with an increase in flagellar
fluorescence and a transient alteration in flagellar waveform
characterized by strong bending of the proximal portion and
extension of the distal portion of the flagellum (Fig. 3B). This response
was followed by a period of almost straight swimming. This behavior
is represented as changes in the local path curvature (1/r (µm−1)) of
the swimming trajectory; after stimulation, the curvature first steeply
increased and then decreased below baseline values (Fig. 3B).
Increases in [Ca2+]i and path curvature changes were not propor-
tionately related (Fig. 3B), as reported previously in S. purpuratus
spermatozoa (Darszon et al., 2008; Wood et al., 2007). We were
unable to record the complete duration of the Ca2+ fluctuations in L.
pictus spermatozoa, as during the Ca2+-decreasing phase the
spermatozoa transiently swam out of the plane of focus. Hence the
shaded yellow area in Fig. 3A marks only the recordable duration of
the Ca2+ fluctuation, and terminates once the spermatozoon
temporarily left the focus plane.

The speract-induced flagellar Ca2+ responses, and resultant
flagellar curvature alterations, of S. purpuratus spermatozoa have



Fig. 3. Single turn-and-run swimming episode of a L. pictus spermatozoon generated by a transient flagellum [Ca2+]i increase. A) Trajectory 3 s before (black trace) and 9 s after (red
trace) speract stimulation. The box shows a single turn-and-run episode followed by two circles in the 3 s immediately after speract photoactivation. B) Intra-flagellum Ca2+

dynamics (red trace) and path curvature (black trace) changes experienced after speract exposure. Panels show images of a typical transient increase in fluo-4 fluorescence in the
flagellum. A, B) A black dot was assigned at the timewhen the flagellum becomes visible and indicates the beginning of the first flagellum fluorescence increase. The yellow envelope
depicts the time interval in which the spermatozoon flagellum was visible.
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been reported previously, and the spermatozoa employed in the
current study displayed essentially identical behavior (Darszon et al.,
2008; Wood et al., 2007).

The speract-induced motor responses of L. pictus spermatozoa are
shaped by the spatial distribution of the speract gradient

We observed that L. pictus spermatozoa displayed markedly
dissimilar motility responses depending on their position relative to
the source of the speract gradient. Based on this observation we
defined two populations for further analysis: a proximal population
(Proximal P.) that were initially located greater than 40 µm distant
from the source of the speract gradient, and a central population
(Central P.) that were inside this 40 μm limit. The response of an L.
pictus spermatozoon of the Proximal P. to stimulation was typically
biphasic (Figs. 4A–C, also see Figs. S1A–C). During the first phase,
during the first 3–5 s following UV irradiation, Proximal P.
spermatozoa re-localized towards the source of the speract gradient
due to pronounced turns that occurred as the spermatozoa swim
away from the center of the field (Figs. 4A and S1A; red bar in Figs. 4B
and S1B, see also Fig. 2B). Each turn coincided with a transient
flagellar Ca2+ increase (see: i–iv, Figs. 4A–C; and i–v, Figs. S1A–C)
and was followed by a straight swimming period (Figs. 4C and S1C).
The second phase of the response could be characterized by the
general absence of turning events, and a gradual increase in the size
of the circular spermatozoa swimming trajectory (Figs. 2C–D; green
bar in Figs. 4B and S1B; Movie S2).

The motility response of the L. pictus Central P. spermatozoa in the
speract gradient was markedly different during the initial phase.
These spermatozoa do not show large lateral displacements in their
swimming trajectory, but tend to remain at the center of the imaging
field, despite initiating a sequence of Ca2+ fluctuations and coincident
turning events (compare Figs. 4D–F and A–C; also compare Figs. S1D–
F and A–C). As with the Proximal P., the initial phase of the response in
Central P. spermatozoa was followed by a secondary phase marked by
the general absence of Ca2+ fluctuations and turning events (green
bar on Figs. 4D and S1D).

Typically, S. purpuratus spermatozoa underwent a speract-induced
re-localization, driven by turn-and-run episodes that were triggered
by flagellar Ca2+ fluctuations (Figs. 4G–I). We did not observe
differences between S. purpuratus Central and Proximal populations,
nor a biased re-localization. Aswith L. pictus spermatozoa, a secondary
phase response was observed in which the ‘turn-and-run’ behavior
diminished and eventually spermatozoa resumed their circular
swimming trajectories, as before stimulation (Figs. 4G–I and 2E–H).

All speract-induced motor responses recorded, whether from L.
pictus or S. purpuratus spermatozoa, were biphasic with the transient
turn-and-run episodes superimposed on a sustained tonic decrease in



Fig. 4. Speract photoactivation induces characteristic motility changes in single spermatozoa. Single cell trajectories 3 s before (black traces) and 3 s after (red traces) speract
stimulation of L. pictus spermatozoa from Proximal (A) or Central (D) populations; or of S. purpuratus spermatozoa (G). As no clear differences between Proximal and Central
populations were seen in S. purpuratus, only one example is presented. Inserts show motility behavior 3 s before (black) and 12–15 s after (red) stimulation. B, E, H) Spermatozoa
head distance to the source of the speract gradient vs. time calculated from trajectories of A, D and G, respectively. Color bars (red, green) indicate the primary and secondary phase
responses. C, F, I) Path curvature of the same spermatozoa shown in A, D and G; respectively. A–I) Black dots indicate spermatozoa position at the beginning of an individual Ca2+

fluctuation, roman numerals mark sequence: i–iv (A, B, C), i–xi (D, E, F), and i–v (G, H, I). For clarity in A, D and G each black dot is surrounded by a yellow circle. Other experimental
conditions as in Fig. 2. Purple bars indicate a 200 ms UV photoactivation of speract.
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curvature which was more pronounced in spermatozoa from L. pictus
(Figs. 4C, F, I and S1C and F). In zero Ca2+ ASW the speract-induced
spermatozoa motility response was monophasic, consisting solely of
the tonic curvature decrease (Fig. S2). Hence only the speract-induced
turn-and-run responses require extracellular Ca2+.

Analysis of spermatozoa chemotaxis

To ascertain whether the motility changes recorded for L. pictus
and/or S. purpuratus constitute a bona fide chemotactic response we
employed the LECI analysis originally devised for analyzing ascidian
spermatozoa motility (Yoshida et al., 2002). LECI is defined as the
negative value of the slope of a least square linear regression of the
sperm head distance to the source of the chemoattractant gradient
(D) vs. time (t) (Fig. 5A). Figs. 5B and C show the least square linear
regressions for the paths traced by L. pictus spermatozoa of Proximal
and Central populations 3 s after speract stimulation, respectively.
Several time windows (3, 6 and 9 s after speract stimulation) were
tested to find the best time interval for the assessment of a
chemotactic response (Fig. 6).

As Proximal P. L. pictus spermatozoa approached the source of the
speract gradient, D decreased with periodic oscillations during the
first 3 s after speract stimulation (Fig. 5B). This continuous decrease
gave a positive LECI (13.09±2.32 µm/s) that was significantly
different (pb0.001, t-test with Bonferroni's correction) from the
control condition (−2.18±1.25 μm/s, 3 s before stimulation), indi-
cating that the re-localization of Proximal P. L. pictus spermatozoa was
due to a chemotactic motility response (Fig. 6). LECI windows of 6 s or
9 s gave near-zero values (−0.05±1.21 µm/s (p=0.30) and−1.02±
0.88 µm/s (p=0.56), respectively) (Fig. 6). In spermatozoa of the L.
pictus Central P., LECIs (3, 6 or 9 s windows) were not significantly
different to controls (Figs. 6 and 5C). In S. purpuratus spermatozoa,
none of the conditions analyzed (Proximal or Central populations; 3,
6 or 9 s time windows) gave positive LECIs significantly different
from controls (Fig. 6). We also confirmed that the chemotactic
motility response of L. pictus spermatozoa was blocked in zero Ca2+



Fig. 5. Linear equation chemotaxis indices (LECI) quantitatively describe the
spermatozoa motility behavior in a chemoattractant gradient. Least square linear
regressions of L. pictus spermatozoa head distances to the source of the chemoattractant
gradient vs. time 3 s after speract photoactivation. A, B) Proximal P. L. pictus
spermatozoa approaching the speract gradient origin. C) Central P. L. pictus
spermatozoa demonstrating a non-biased re-localization.

Fig. 6. Speract chemotaxis is spatiotemporally restricted. LECIs calculated for L. pictus
(left panel) or S. purpuratus spermatozoa (right panel) using 3, 6 and 9 s temporal
windows (black, pale and dark gray bars, respectively). Control: Before UV
photoactivation; Proximal P: Proximal spermatozoa population: Central P: Central
spermatozoa population: Ca2+ free: L. pictus spermatozoa swimming in free Ca2+ ASW
containing 10 nM caged speract 3 s after UV irradiation (white bar). Other experimental
conditions as in Fig. 2. * Pair-wise comparisons against respective control condition
using t-test with Bonferroni's correction (pb0.001). Error bars = SE.
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ASW (Fig. 6) due to the absence of speract-induced Ca2+ fluctuations
in the sperm flagella (Fig. S2, Movie S3).

We next considered if the positive LECI calculations for Proximal P.
spermatozoa could in fact represent a selection bias for spermatozoa that
swam towards the center of the field — due to limitations in the field of
view (∼200×200 µm) Proximal P. spermatozoa that swam away from
thecenterwould rapidly exit thisfield andbe excluded from the sampled
population. To investigate this possibility we visualized the response of
speract-stimulated L. pictus spermatozoa within a larger field of view
using a 20× objective (∼400×400 μm) (Movie S4). As the UV field is
generated by projection through the back-plane of the objective, an
optical fiber of reduced terminal aperture was employed to ensure
approximate consistency between the absolute diameter and shape of
the speract gradient generated using the 20× and 40× objectives (shown
in Fig. S3B). The paths of individual spermatozoa across the entire field
are displayed in Fig. S3C. Proximal and Central P. spermatozoa were
clearly identified (Figs. S3E and F) and an unresponsive third population
was found at N170 μm from the source of the speract gradient (Distal P.,
Fig. S3D). LECIs calculated for each spermatozoon are presented in Table
S1 according to their Distal, Proximal or Central classification. Only
Proximal P. L. pictus spermatozoa gave a positive averaged LECI (µm s−1:
Distal P.=3.8±4.0, Proximal P.=16.9±4.0, Central P.=0.6±1.8).

Sperm chemotaxis is tuned by the timing of flagellar Ca2+ fluctuations

As spermatozoa swim in a speract gradient, they continuously
experience changes in the rate of stimulation due to speract binding
(the stimulus function). When a spermatozoon swims up a chemoat-
tractant gradient (towards the source) the stimulus function increases
as D decreases, and conversely, when the spermatozoon is swimming
down the gradient (away from the source), the stimulus function
decreases as D increases. There is evidence showing that the stimulus
function of A. punctulata spermatozoa and their flagellar Ca2+

fluctuations are synchronized (Bohmer et al., 2005), therefore we
decided to investigate if this synchronization determines chemotactic
behavior in sea urchin spermatozoa. The direction of individual L.
pictus or S. purpuratus spermatozoa was determined at the beginning
of each Ca2+ fluctuation by measuring the angle (α) formed between
the vectors that define sperm position (P-vector) and direction (R-
vector) in relation to the source of the speract gradient (Fig. 7A). An α
value between 0 and 90° identifies Ca2+ fluctuations initiating in a
negative speract concentration gradient (Type (−) Ca2+ fluctuation),
while α values between 90 and 180° indicates that the spermatozoon
was swimming up a positive speract concentration gradient (Type
(+) Ca2+ fluctuation); upper and lower panel of Fig. 7A, respectively.

We next examined the distribution of Type (+) and Type (−)
Ca2+ fluctuations in L. pictus spermatozoa. Our null hypothesis was
that there is no relationship between the speract stimulus function
and the position of the spermatozoa in relation to the direction of the
speract gradient, which would manifest as an equal and unbiased
distribution of Type (−) and Type (+) Ca2+ fluctuations with
respect to α values between 0 and 180°. As seen in the left panel of
Fig. 7B, L. pictus spermatozoa of the chemotactic Proximal population
display a skewed distribution of α values towards the 0–90° range,
indicating a preference to undergo Type (−) Ca2+ fluctuations
(87% Type (−) : 13% Type (+) (Fig. 8A, Movie 5). The former
distribution deviated from a theoretically expected distribution
with 50% probability for Type (−) or Type (+) Ca2+ fluctuations
(pb0.01, binomial test). We found that 81.3% of Type (−) Ca2+

fluctuations exhibited by L. pictus spermatozoa of Proximal
population occurred close to the point of maximum distance to
the source of the gradient.

Spermatozoa of the central population showed a diminished
preference for Type (−) Ca2+ fluctuations (63% Type (−) : 37% Type (+),



Fig. 7. L. pictus spermatozoa preferentially evoke Ca2+ fluctuations when swimming down the speract gradient. A) Speract-induced Ca2+ fluctuations were classified as Type (−) or
Type (+) according to the angle α or ϕ formed between P and R vectors (black and red arrows respectively) of the spermatozoa swimming direction in relation to the speract
gradient source. The red circle indicates the source of speract gradient and the gray shadowed arrow its direction. The roman numerals mark α or ϕ quadrants corresponding to a
negative (i–ii) or positive (iii–iv) gradient. B) Distributions of α values for L. pictus (left panel) and S. purpuratus (right panel) spermatozoa. Only L. pictus spermatozoa display a
biased distribution of α values in the 0–90° range indicating a preference to undergo Type (−) Ca2+ fluctuations.
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median=79.0°) with no significant deviation from a theoretically
expected 50%probabilitydistribution for both types of Ca2+fluctuations
(p=0.2, binomial test) (Fig. 8A). The distribution of the Proximal and
Central P. L. pictus spermatozoa α values was significantly different
(pb0.05, Kolmogorov–Smirnov test) (Fig. 7B, left panel).

The distribution of α values for S. purpuratus Proximal P. and
Central P. spermatozoa shows no preference towards the 0–90° vs.
90–180° range (median=103.4°), and there was no statistically
significant difference between the two populations (Fig. 7B, right
panel, α value median=91.9° (p=0.3, Kolmogorov–Smirnov test)).

We found a clear difference in α distribution between Proximal
populations of L. pictus and S. purpuratus spermatozoa (pb0.01,
Kolmogorov–Smirnov test) strongly suggesting that a tendency to
undergo Type (−) Ca2+ fluctuations is a requirement for the
development of a chemotactic response (Fig. 7B).

L. pictus but not S. purpuratus spermatozoa have a mechanism to block
Type (+) Ca2+ fluctuations that operates during the initial phase of the
speract response

Studieswith immobilized S. purpuratus spermatozoa show that the
frequency of the speract-induced flagellar Ca2+ fluctuations is dose-
dependent (Wood et al., 2003). We found that in the presence of a
speract gradient, the L. pictus Central P. spermatozoa generate a
greater average total number of flagellar Ca2+ fluctuations than the
Proximal P. (Fig. 8B: nCentral P.=8.8±1.4 and nProximal P.=4.1±0.7
(pb0.05, t-test)). This suggests that the number of Ca2+ fluctuations
in speract-stimulated L. pictus spermatozoa is sensitive to the absolute
initial concentration of speract and/or to the form and steepness of
the speract gradient. During UV irradiation Central P. spermatozoa
would experience a steeper temporal gradient than spermatozoa of
the Proximal P., as the step change in speract concentration is greater
at the center of the UV illumination field.

In S. purpuratus spermatozoa there was no significant difference
between the total number of Ca2+ fluctuations generated by the
proximal and central populations (Fig. 8E). Comparing between
species, the number of Ca2+ fluctuations experienced by S. purpuratus
and L. pictus Central P. spermatozoa was broadly similar (Figs. 8B and
E: p=0.38, t-test; gray bars), although their respective Proximal
populations differed significantly, with those of S. purpuratus
demonstrating a greater number of Ca2+ fluctuations (Figs. 8B and E).
This difference was largely due to a relatively low number of Type (+)
Ca2+ fluctuations in the L. pictus Proximal sperm population (Figs. 8B
and E), indicating that spermatozoa from this species have amechanism
to block Type (+) Ca2+ fluctuations (compare only Type (+) condition
between Proximal P. of L. pictus vs. S. purpuratus spermatozoa; Figs. 8B
and E, black bars).

That the L. pictus Proximal P. is the only sperm population tested
here to clearly demonstrate chemotactic motility responses strongly
suggests that an apparent preference for Type (−) Ca2+ fluctuations
over Type (+) Ca2+ fluctuations may underlie the chemotactic
mechanism. If so, as chemotactic motility changes in the L. pictus
Proximal P. are largely restricted to the initial phase of the motility
response, we examined whether the preference for Type (−) Ca2+

fluctuations was similarly temporally confined. Type (+) Ca2+

fluctuations did not appear in the L. pictus Proximal P. until ∼3 s
after the UV stimulation (Figs. 8C and 9A), which correlates with the
transition from the initial (chemotactic) phase of the response to the
secondary phase. In all other populations examined (L. pictus Central
P.; S. purpuratus Central and Proximal P. Figs. 8C, F, 9B–D, and S4) the
Type (+) Ca2+ fluctuations appeared immediately after the UV
stimulation and occurred simultaneously with Type (−) Ca2+

fluctuations. This suggests that the suppression of Type (+) Ca2+

fluctuations during the initial phase of themotility response to speract
is a distinguishing feature of chemotactic motility in sea urchin
spermatozoa.

The delay between speract binding and the onset of the first Ca2+

increase is regulated by the shape of chemoattractant gradient

We next investigated whether the mechanism to suppress Ca2+

fluctuations in a positive speract gradient in L. pictus spermatozoa is
robust enough to adapt to differing forms and durations of
chemoattractant gradient by analyzing in greater detail the behavior
of sperm during the period between the UV uncaging event and the
first Ca2+ fluctuation. In these conditions, the duration of exposure to
an ascending speract gradient in each sperm will depend on its
position at the end of the period of UV exposure. Initially, increases in
speract concentration created during the 200 ms exposure to UV light
will be sensed by all spermatozoa in the field as a positive gradient of



Fig. 8. L. pictus and S. purpuratus spermatozoa differentially regulate their Type (−) and Type (+) Ca2+ fluctuations. A, D) Percent of Ca2+ fluctuations in L. pictus (A) and S.
purpuratus (D) Proximal and Central sperm populations. B, E) Total number of Ca2+ fluctuations/spermatozoa in L. pictus (B) and S. purpuratus (E): T(−) = Type (−), T(+) = Type
(+), and All = Type (−)+Type (+). At least 9 spermatozoa from at least 3 different sperm batches were used for each condition of Proximal P. for both L. pictus or S. purpuratus
species, and at least 6 was used for Central P. conditions, Error bars= SE. C, F) Box plots showing the time dependence of Ca2+ fluctuations exhibited by Proximal (upper section) and
Central (lower section) populations of L. pictus (C) and S. purpuratus spermatozoa (F). The boundaries of the boxes indicate the 25–75th percentile range. Solid line =median value
and broken line = mean value. Error bars above and below the boxes indicate the 90th and 10th percentiles.
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speract. At the end of the 200 ms UV exposure the newly-formed
chemoattractant gradient is essentially static over the timescale of the
delay to the first Ca2+ fluctuation, and spermatozoa will find
themselves in either a newly-formed positive or negative gradient.
If the mechanism to suppress Ca2+ fluctuations in ascending
chemoattractant gradients is robust, then the two populations of
sperm (ascending gradient after UV, or UVpos, and negative gradient
after UV, or UVneg) should differ in the delay they experience before
undergoing the first Ca2+ fluctuation.

Spermatozoa of the UVneg population experience an immediate
chemoattractant gradient inversion from ascending to descending at
the end of the UV exposure, instantaneously initiating the signaling
cascade that triggers the Ca2+ fluctuation and flagellar motility
changes. Sperm of the UVpos population, however, will initially swim
within a continuing ascending speract gradient, experiencing a
relative delay before reaching the gradient inversion point at which
the chemotactic turn-promoting signaling mechanism is activated.
Thus we predict that UVpos sperm will show significantly increased
intervals between the end of the UV exposure and the initiation of the
first Ca2+ fluctuation than sperm of the UVneg population. The
consequence of such robustness in the mechanism would be to
preserve the bias in selectively generating Ca2+ fluctuations and
chemotactic turns in negative speract gradients at the first Ca2+

fluctuation; one corollary would be that in S. purpuratus sperm, such
bias should be absent, and delays to the first Ca2+ fluctuation should
not differ between UVpos and UVneg populations in this species.

Firstly, we determined the direction of individual L. pictus or S.
purpuratus spermatozoa at the end of UV irradiation using the ϕ



Fig. 9. Time dependence of the frequency of flagellar Ca2+ fluctuations. Number of Ca2+ fluctuations s−1 experienced after speract photoactivation of (A, B) L. pictus or (C, D) S.
purpuratus spermatozoa. Proximal and Central populations are indicated, (A, C) and (B, D) respectively. Black bars: Type (−) Ca2+ fluctuations. Gray bars: Type (+) Ca2+

fluctuations. Experimental conditions as in Fig. 2. Error bars = SE.
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angle (Fig. 7A), and correlated this value with the delay time
required for the onset of the first Ca2+ fluctuation (Figs. 10A and
E). Values of ϕUVend between 0 and 180° identify UVneg sperma-
tozoa, and ϕUVend values between 180 and 360° identify UVpos

spermatozoa. L. pictus Proximal P. spermatozoa of the UVpos

population significantly increased the average delay to the onset
of the first Ca2+ fluctuation (410±43 ms) compared to UVneg

spermatozoa (162±10 ms); pb0.001, Wilcoxon rank sum test
(Figs. 10A and B). Average delays to the first Ca2+ fluctuation in
Central P. L. pictus spermatozoa of both UVpos and UVneg

populations were similar to those of Proximal P. L. pictus UVneg

spermatozoa (171±28 ms, 135±12 ms, respectively; p=0.4, Wil-
coxon rank sum test). In S. purpuratus sperm, average delay times
for the onset of the first Ca2+ fluctuation of spermatozoa of UVpos

and UVneg populations did not significantly differ; 388±36 ms vs.
383±43 ms, p=0.9, t-test (Fig. 10F).

As predicted, these data show that there was a relatively extended
delay to the first Ca2+ fluctuation in L. pictus spermatozoa of Proximal
P. that fell into a positive speract gradient at the end of the period of
UV exposure, whichwas absent in L. pictus sperm of the Central P., and
S purpuratus sperm under the same conditions.

But what of the functional consequences for chemotaxis of such an
extended delay in UVpos L. pictus sperm? We next examined whether
this exaggerated delay was sufficient to retard the chemotactic turn
until the sperm had entered the negative speract gradient. The
position of individual L. pictus or S. purpuratus spermatozoa of
Proximal P. at the beginning of the first Ca2+ fluctuation, relative to
the direction of the speract gradient, was determined as before, but
using the ϕF1 angle (Fig. 7B), with Type (−) Ca2+ fluctuations and
Type (+) Ca2+ fluctuations defined as previously (Fig. 7B). The
distribution of the positions of L. pictus spermatozoa at the onset of the
first Ca2+ fluctuations was skewed towards Type (−) Ca2+ fluctua-
tions (66% Type (−) : 34% Type (+) pb0.05, binomial test) (Fig. 10C),
whereas S. purpuratus spermatozoa show no significant deviation
from a theoretically expected 50% probability distribution for both
types of Ca2+ fluctuations (36% Type (−) : 64% Type (+), p=0.07,
binomial test) (Fig. 10G). The initial positions immediately before
stimulation (regarding (+) and (−) positioning in the gradient) were
unbiased for all sperm subsets analyzed (Fig. S5). The data support the
idea that the functional consequence of the extended delay seen in
UVpos spermatozoa of the L. pictus Proximal P. spermatozoa is to
promote Type (−) Ca2+ fluctuations, which are a characteristic
feature of chemotactic motility changes in L. pictus sperm.

There is evidence showing that the delay to initiate the Ca2+

increase in A. punctulata spermatozoa decreases from approximately
600 ms to 200 ms as the chemoattractant concentration increases
from 10−13 to 10−9 M. No further increase in delay is seen at higher
concentrations of chemoattractant (Kaupp et al., 2003). Fig. 10D
shows that in UVpos (but not UVneg) L. pictus spermatozoa the delay
varies according the proximity to the source of speract gradient (and
thus absolute speract concentration). Under the same experimental
conditions no S. purpuratus spermatozoa of either UVpos or UVneg

showed a correlation between the delay times for the onset of the first
Ca2+ increase and distance from the center of the UV field, indicating a
diminished capability to detect the shape of speract gradient imposed
(Fig. 10H).

Discussion

We have discovered that stimulation by a near-instantaneously
generated gradient of the peptide speract induces chemotactic
motility responses in sea urchin spermatozoa of L. pictus but not in
spermatozoa of S. purpuratus. In both species the presence of a speract
gradient triggers a train of Ca2+ fluctuations in sperm flagella that are



Fig. 10. L. pictus, but not S. purpuratus, spermatozoa retard the onset of the first Ca2+ fluctuation until reaching a descending phase of speract gradient. A, E) Relationship between
spermatozoa position at the end of the 200 ms UV flash (ϕUV end) and the delay time for the onset of the first Ca2+ fluctuation. B, F) Averaged delay for the onset of the first Ca2+

fluctuation of all spermatozoa that fall in a descending (left panel) or ascending (right panel) speract gradient at the end of the period of UV exposure. C, G) Distributions of ϕ values
of the onset of the first Ca2+ fluctuation (ϕF1) for L. pictus (C) and S. purpuratus (G) spermatozoa. D, H) Dependence of the delay time for the onset of the first Ca2+ fluctuation with
the distance to the source of speract gradient that fall in an ascending (dots) or descending (crosses) speract gradient at the end of the period of UV exposure for L. pictus (D) and S.
purpuratus (H) spermatozoa. A–C) L. pictus spermatozoa of proximal population. E–G) S. purpuratus spermatozoa of proximal population.
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associated with stereotypical turn-and-run episodes that drive re-
localization (Darszon et al., 2008; Kaupp et al., 2007). Ample evidence
exists that the Ca2+-dependent turning episodes are essential
elements of a chemotactic motility response, most notably the
inviolable requirement for extracellular Ca2+ in all chemotactic
spermatozoa studied, from bracken to mammals (Brokaw, 1974;
Eisenbach and Giojalas, 2006; Miller, 1985a). The motility response
patterns of the two species shared certain similarities, as each species
showed a generally biphasic response to speract gradient exposure.
The first phase spanned the first 3–5 s of exposure, andwasmarked by
the generation of Ca2+ fluctuations and turn-and-run episodes. A
second phase then followed, marked by larger diameter circular
swimming trajectories, and by the general absence of Ca2+ fluctua-
tions and turn-and-run motility alterations. The principal difference
between L. pictus and S. purpuratus species was in the functional
consequence of these sperm motility responses; only in the case L.
pictus spermatozoa did they lead to chemotactic accumulation of
spermatozoa at the source of the speract gradient, and of these, only of
sperm of a proximal population located more than ∼40 µm distant
from the center. Thus the Ca2+-dependent turning episodes and the
interspersed periods of straighter swimming trajectories are neces-
sary but not sufficient for chemotaxis, and the ability to undergo
chemotaxis must lie in more subtle aspects of the timing of the turn-
and-run pattern. Exploiting our ability to compare directly the
motility responses of the two sea urchin species, we set out to
uncover the basis for the differential responses to the same stimulus.

Spatial and temporal regulation of chemotactic turns

Our findings show that within the chemotactic window approx-
imately 80% of all Ca2+ fluctuations of the Proximal P. L. pictus
spermatozoa occur while swimming down a negative speract gradient
(defined as Type (−)), (Fig. 7B, left panel, and 10C). In contrast, S.
purpuratus non-chemotactic spermatozoa generate Ca2+ fluctuations
in both descending and ascending speract gradients. This suggests
that Ca2+ fluctuations that occur in an ascending chemoattractant
gradient (defined as Type (+)) do not favor chemotaxis, and
conversely, selectively undergoing Type (−) Ca2+ fluctuations is a
feature of chemotactic motility responses. Consistent with this
observation, the periodic changes in chemoattractant concentration
and Ca2+ fluctuations were shown to be synchronized in A. punctulata
spermatozoa (Bohmer et al., 2005). Also a recent study demonstrated
that Ciona intestinalis spermatozoa evoke Ca2+ fluctuations as the
spermatozoa encounter chemoattractant gradient minima (Shiba
et al., 2008). However, in neither of these studies was a synthesis of
both the spatial and temporal aspects of chemotactic motility
regulation presented.

As spermatozoa swim in a chemoattractant gradient they
continuously sample the concentration field. The rate of binding of
chemoattractant is a stochastic process that depends on sperm
velocity and the direction of movement relative to the chemoattrac-
tant gradient. It was proposed that sperm [Ca2+]i may increase when
bound chemoattractants dissociate from the receptors once the
spermatozoon enters a negative gradient (Miller, 1985a). This
seems unlikely for speract since it is not expected to rapidly dissociate
from its receptor (koff∼10−4 to 10−6 s−1), therefore, receptor
occupancy is essentially unaltered while spermatozoa swim down-
gradient (Nishigaki and Darszon, 2000; Nishigaki et al., 2001). The
latter observation indicates that marine spermatozoa register relative,
and not absolute, changes in chemoattractant concentrations, as has
been previously suggested (Bohmer et al., 2005; Kaupp et al., 2003;
Nishigaki et al., 2001; Shiba et al., 2008). It follows that spermatozoa
experience the greatest relative change in chemoattractant concen-
trations at the points of transition between positive and negative
speract gradients, which for a sperm swimming in a circular trajectory
in a stationary gradient occur at the position closest to (positive to
negative) and furthest from (negative to positive) the gradient source.
Given the tendency for sperm undergoing chemotaxis to favor Type
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(−) Ca2+ fluctuations, it is likely that the spermatozoa are sensitive to
the positive-to-negative gradient inflection which when crossed,
initiates the sequence of signaling events that produces the flagellar
Ca2+ fluctuation and chemotactic turning event.

To test this idea, we examined the relationship between the
position of the Ca2+ fluctuation (and chemotactic turn) and the
preceding gradient inflection. We found that preference to undergo
Type (−) Ca2+ fluctuations of L. pictus spermatozoa is due to their
ability to suppress Ca2+ fluctuations while swimming along an
ascending chemoattractant gradient (Figs. 10A and C). This tendency
was best illustrated by examining the behavior of spermatozoa of the
L. pictus spermatozoa Proximal P. immediately after the period of UV
illumination. We found that spermatozoa which enter a positive
speract gradient (UVpos) will retard the onset of their first Ca2+

fluctuation approximately 400 ms, whereas for spermatozoa that
enter a descending gradient (UVneg) this delay is reduced to ∼200 ms
(see Figs. 10A and B). This extended delay in the UVpos population
probably represents the time required for the spermatozoa to reach
the point of transition between ascending and descending speract
gradients; in UVneg sperm this point is reached immediately upon
termination of the UV flash. The residual ∼200 ms interval in the
UVneg population delay is probably close to theminimum time needed
for the signal transduction events that lead to opening of the Ca2+

entry pathway (Kaupp et al., 2003; Nishigaki et al., 2004, 2001), which
could comprise a cycle of hyperpolarization/depolarization leading to
opening of Cav channels (Strunker et al., 2006).

For all subsequent Ca2+ fluctuations occurring after the first, the
maximum decrease in the rate of speract binding occurs when they
traverse from a positive to a negative gradient. For Proximal P. L. pictus
spermatozoa during the 3 s chemotactic window the average delay
from crossing this gradient inflection prior to each Ca2+ fluctuation
was 220±32 ms, similar to the value recorded for the same population
of sperm that fall in the UVneg population at the first Ca2+ fluctuation,
and to the minimum post-stimulation delay reported in previous
studies in spermatozoa of other sea urchin species (Kaupp et al., 2003;
Nishigaki et al., 2004, 2001; Strunker et al., 2006). As a typical L. pictus
spermatozoon swimming at 265 µm s−1 with a circular trajectory of
25 µm average radius and a circumference of 157 µm travels 1.69 revo-
lutions s−1, this delay would locate the chemotactic turns to a point
close to the furthest distance from the source of the gradient. We
observed just such a spatial distribution, with 81.3% of all measured
Type (−) Ca2+ fluctuations of the Proximal P. L. pictus spermatozoa
experienced during the “chemotactic window” occurring close to the
point of maximum distance to the source of the gradient.

We therefore propose that the ability to selectively inhibit flagellar
Ca2+ increases while experiencing an ascending chemoattractant
gradient is an essential component that characterizes chemotaxis in
sea urchin spermatozoa, and possibly chemotactic sperm motility in
general.

A model for the molecular mechanism of sperm chemotaxis

In 1994, Cook et al. proposed that shallow or decreasing
chemoattractant gradients elevate [Ca2+]i to generate chemotactic
turns, yet sufficiently steep increasing gradients maintain [Ca2+]i low
and swimming trajectories linear until the egg is reached (Cook et al.,
1994). At the heart of the model lies a negative-feedback loop, in
which SAP receptor binding activates guanylyl cyclase to elevate
cGMP, which leads to a hyperpolarization of membrane potential due
to cGMP-mediated activation of sperm K+ channels (Bonigk et al.,
2009; Galindo et al., 2000, 2007; Strunker et al., 2006). Subsequent
inactivation of guanylyl cyclase and reduced cGMP levels terminate
the hyperpolarizing conditions, leading to repolarization of mem-
brane potential and opening of T-type Cav channels. In this model,
chemotaxis results from the interchange of hyperpolarized and
depolarized membrane potential; in steeply increasing gradients of
egg peptide, continuous de novo activation of chemoattractant
receptors maintains membrane hyperpolarization, suppressing Ca2+

entry and favoring straighter swimming trajectories. Upon entry into
a negative SAP gradient, receptor activation falls, hyperpolarization
transitions into depolarization and Ca2+ entry triggers a chemotactic
turn. Elements of this proposed regulatory mechanism have been
thrown into doubt by more recent single cell measurements which
demonstrate that the straighter swimming episodes that intersperse
the Ca2+ fluctuations often coincide with periods of elevated [Ca2+]i
(Bohmer et al., 2005; Shiba et al., 2008; Wood et al., 2005).
Nevertheless, only minor conceptual adjustments are required to
adapt this prior model to the results presented in this study. We
propose that for L. pictus sperm undergoing chemotaxis, continuous
activation of speract receptors in positive gradients leads to extended
hyperpolarization of the membrane potential which accounts for the
observed suppression of Type (+) Ca2+ fluctuations. Interestingly it
has been shown that a cyclic nucleotide gated K+ (CNGK) channel
localized to the flagella of A. punctulata sperm shows slow inactivation
kinetics (Bonigk et al., 2009), a property compatible with the
generation of extended periods of hyperpolarized membrane poten-
tial. The hyperpolarization reverses once sperm enter a negative
speract gradient, which after a typical ∼200 ms delay leads to
generation of a chemotactic turn that optimally reorients the sperm
into swimming oncemore towards the source of the gradient. At some
point during the subsequent straighter swimming phase in the
positive speract gradient a hyperpolarized membrane potential is
reestablished and extended by continuous speract receptor recruit-
ment, which once again reverts to depolarized membrane potentials
as sperm leave the positive gradient. This sets up a sequence of
chemotactic turns, triggered by cycles of hyperpolarized/depolarized
membrane potential that serve as the primary translators of the state
of the extracellular chemoattractant gradient.

SAP receptor densities: a role in chemotactic motility regulation?

Sea urchin spermatozoa evolved high receptor densities, presum-
ably to maximize the probability of binding once a chemoattractant
molecule encounters the flagellum. It has been shown that A.
punctulata spermatozoa are exquisitely sensitive, responding to
femtomolar concentrations of resact (Kaupp et al., 2007; Kaupp
et al., 2003). A density of ∼14,000 resact receptors per A. punctulata
spermatozoon has been calculated but it has been suggested that this
could be underestimation of their true abundance (Kaupp et al.,
2007). Previous calculations indicate that L. pictus spermatozoa have a
three-fold greater number of receptors for speract than S. purpuratus
spermatozoa (6.3±0.5×104/cell vs. 2.0±0.9×104/cell), although
the kon and koff values are similar in the two species (Nishigaki and
Darszon, 2000; Nishigaki et al., 2001). The density of receptors may
regulate the sensitivity to changes in binding rate and influence the
delay times to increase flagellar Ca2+. Possibly the lack of such
significant bias in S. purpuratus spermatozoa is due to their lower
speract receptor density which could explain their reduced sensitivity
to this ligand (10−12–10−6 M (Babcock et al., 1992)). Further studies
are required to explore if the number of receptor sites are related to
differences in navigation strategies employed by L. pictus and S.
purpuratus spermatozoa.

Physiological context

Many marine animals produce vast numbers of gametes to
contend with the enormous dilution that occurs with external
fertilization in the sea. Other factors that increase fertilization
probabilities include the temporal and spatial coordination of male
and female gamete spawning, a relatively large oocyte (Podolsky,
2001), and the release of chemoattractants by the oocyte and/or its
accessory structures (Miller, 1985a). There is evidence that the
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limiting distance over which chemotaxis functions in marine species
is within approximately 1 mm radial distance from the oocytes
(Miller, 1985a; Ward et al., 1985; Yoshida et al., 1993). Within our
experimental system the chemotactic response of L. pictus sperma-
tozoawas confined to the limits of ∼40–200 µm from the source of the
speract gradient (Figs. 2, 4, S1 and S3), however this finding is
somewhat artificial given the spatial limitations imposed on the
speract gradient by the optical pathway employed to deliver the UV
light pulse.

Although we could not directly determine the shape or magnitude
of the speract gradient created within our experimental assay we can
infer the speract concentration ranges that L. pictus spermatozoa were
exposed based on phenomenological responses. Experimental and
simulation data suggest that a chemoattractant concentration range of
10−9±102 M is optimal for chemotaxis. Outside of this range, lower
concentrations of chemoattractant are sub-optimal, whereas higher
concentrations probably trigger adaptation mechanisms within
intracellular signal transduction pathways that diminish chemoat-
tractant-induced motility responses (Bohmer et al., 2005; Friedrich
and Jülicher, 2008; Kaupp et al., 2003; Ward et al., 1985). At
approximately 200 µm from the center of the UV illumination field
we observed an outer limit for induced motility responses. This
represents the absolute speract sensitivity limit for L. pictus
spermatozoa that, from comparison to previous results, represents a
speract concentration threshold below ∼10−11–10−12 M (Nishigaki
and Darszon, 2000). L. pictus sperm inside this outer limit could be
divided into two populations, proximal and central, according to their
motility responses. It is possible that this proximal population, that
undergoes chemotaxis, experiences speract concentrations in the
range of 10−9–10−11 M predicted to be optimal for chemotactic
motility. Once these Proximal P. spermatozoa pass within an inner
limit of ∼40 µm from the source of the gradient they largely cease to
generate Ca2+ fluctuations and chemotactic turns, reverting to low-
curvature circular trajectories that often encircle the source of the
speract gradient. The second population (Central P.) encompasses
spermatozoa that are within the ∼40 μm limit at the moment of
speract gradient generation. These spermatozoa initially generate Ca2+

fluctuations and undergo turning events of increased frequency
compared to the proximal population. Another key difference to the
proximal population response is the distribution of the Ca2+

fluctuations relative to the direction of the speract gradient; unlike
the proximal population that shows a clear bias towards Type (−)
fluctuations, in the central population this bias is much less evident.
Spermatozoa of the central population eventually switch to a
motility pattern similar to that of newly arrived spermatozoa of
the proximal population, namely low-curvature circular trajectories.
It is possible that ∼40 µm inner limit represents the transition to
speract concentrations of 10−9–10−8 M, a range predicted to be
sub-optimal for chemotaxis due to adaptation of intracellular
signaling mechanisms. Another possibility is that the relative
steepness of the speract gradient is diminished in the center of the
field, such that the central population indiscriminately initiate Type
(−) and Type (+) Ca2+ fluctuations, whereas the steeper gradient
present around the proximal population favors the bias towards the
Type (−) Ca2+ fluctuations that drive chemotaxis in this population.
We wish to note that the absolute concentration ranges mentioned
are likely to vary for individual species and we mention them for
comparative and illustrative, not definitive, purposes.

The accumulation of sperm at the source of the speract gradient
is therefore dependent on two interacting parameters. The first is
the relatively shallow chemoattractant gradient present, or con-
centrations of speract above the optimal range for chemotaxis,
which promotes the generation of both Type (−) and Type (+) Ca2
+

fluctuations with shorter straight swimming periods (an
unfavorable combination for large lateral re-localization) that serves
to trap the spermatozoa at the source of the gradient; the second is
a temporal adaptation mechanism that imposes a limit on the
generation of Ca2+ fluctuations, hence spermatozoa that do arrive at
the source of the gradient soon lose the ability to generate the
turning events that could promote their exit from the zone. The
consequence is more locally confined motility patterns (seen in the
central population, and the secondary phase of the response for the
proximal population) that probably maximizes the likelihood of
spermatozoa–egg union once spermatozoa arrive at source of the
speract gradient (that is to say, in close vicinity of the oocyte).
Whether this secondary motility phase is relevant in a physiological
context is open to question. The ultimate source of the chemoat-
tractant gradient is the egg, and once a sperm encounters its target
it will become enveloped in the egg investments. Nevertheless, sea
urchin sperm–egg encounters naturally occur in the open ocean,
where chemoattractant gradients will readily become deformed and
fragmented by the chaotic hydrodynamic forces operating. This will
place environmentally-determined limits on the precision of sperm
guidance mechanisms, for which the observed second-phase
motility pattern may represent an adapted response.

The extensive limitations of the experimental model in
reproducing the natural conditions encountered during sea urchin
fertilization must also be taken into account when considering why
chemotaxis has not been observed in S. purpuratus sperm. It is
possible that limiting factors in the experimental design, such as
the two dimensional constraint on sperm motility or the fixed
speract gradient form, mask an ability of S. purpuratus sperm to
redirect their trajectory towards a chemoattractant source. Even so,
it is worth speculating why S. purpuratus spermatozoa might not
have evolved a chemotactic mechanism for egg localization as part
of their reproductive strategy. As already mentioned, sea urchin
gametes normally encounter one another in a turbulent ocean, and
the reproductive strategies of individual species are evolutionarily
honed by the hydrodynamic properties of their environment
(Riffell et al., 2004). In a natural habitat, chemical gradients are
shaped by eddies, convection, and drifting of eggs rather than by
homogeneous diffusion of chemoattractants. It has been shown
that the laminar shear acting on the oocyte is of primary
importance in determining whether chemotaxis is a viable strategy
to enhance reproductive success in marine animals. As laminar
shear values increase, chemoattractant plumes contract and
fragment, to the eventual extent that information on the location
of the oocyte is effectively lost (Riffell and Zimmer, 2007). In the
case of the red abalone (Haliotis rufescens), whose spermatozoa
undergo chemotaxis, the fertilization efficiency peaked sharply at
levels of laminar shear similar to those found in its natural
environment (Riffell and Zimmer, 2007). This suggests a natural
physical limit on the degree of laminar shear compatible with long-
range gamete communication, and we would not expect to
encounter chemotaxis in spermatozoa of organisms that live in
environments that habitually experience laminar shear levels above
this permissive limit. The fertilization success of S. purpuratus
gametes also varies according the degree of laminar shear
experienced (Mead and Denny, 1995). We are currently examining
such factors as a means to understand the presence or absence of
chemotaxis as a strategy for enhancing reproductive success for
individual species of sea urchin.

Our results advance our understanding of the mechanisms of
chemotaxis in sea urchin spermatozoa, a model organism for studying
signaling and regulation of the eukaryotic flagellum. Although
arguably best characterized in marine organisms, spermatozoa
chemotaxis has been observed in diverse taxa from bracken
spermatozoa to various invertebrate and vertebrate organisms.
Given the great degree of structural conservation of the flagella
throughout evolution, these observations may be of relevance to
spermatozoa guidance mechanisms, and control of flagellar and
ciliary beating, in general.
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