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Introduction: The advent of molecular typing using MIRU-VNTR mini-satellites has largely

facilitated tuberculosis (TB) molecular epidemiological studies. Apart from detecting the

chains of transmission and risk factors, these markers have also allowed to study the

phenomena of mixed strain infections versus microevolutionary events.

Methods: An initial set of Mycobacterium tuberculosis strains (n = 161) genotyped using

spoligotyping and MIRU-VNTRs in Guyana and Suriname was evaluated for indications

mixed strain infections (characterized by the detection of double alleles in 2 or more MIRU

loci) versus ‘‘in-patient’’ microevolutionary events (characterized by the detection of double

alleles in a single locus).

Results: The present study hereby reports evidence of microevolution in 3.7% (n = 6/161) of

the studied population, vs. 0.6% (n = 1/161) for mixed infection. The strains belonged to

three different spoligotyping-based lineages, namely the T (SITs 44, 53, and 1081), Haarlem

(SIT47), and EAI (SITs 72 and 349) lineages, while 1 isolate (SIT237) could not be assigned to

any lineage.

Discussion: By comparing these results on microevolutionary cases (n = 6) to 112,000 strains

present in the SITVIT2 database, evidence is presented that in 2/6 cases (each case corre-

sponding to 2 patterns due to MIRU double bands), one of the patterns corresponded to a

shared type found exclusively in Suriname or Guyana. Phylogenetic analysis showed that

no spoligotyping lineage in particular was more prone to microevolutionary events in this

study’s sample. Overall, the observations fortify the awareness regarding the existence of

microevolution and polyclonal TB infections which has important implications for patient

care.

� 2015 Asian African Society for Mycobacteriology. Production and hosting by Elsevier Ltd.

All rights reserved.
[1]. It has long been assumed that a patient is infected by a
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Tuberculosis (TB) remains a major global health problem, hav-

ing caused 9 million new cases and 1.5 million deaths in 2013
single strain of Mycobacterium tuberculosis (MTB) at a time.

Nonetheless, the advent of molecular epidemiological tech-

niques has led to increasing reports of mixed strain infections
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(patients harboring more than one MTB clone at a time) over

the past 15 years [2–6; reviewed in 7]. MIRU-VNTR typing [8,9],

widely applied in molecular epidemiologic studies, facilitates

the detection of polyclonal infections as the presence of more

than one strain in a sample is likely to lead to the detection of

multiple alleles in a number of loci. Depending on the number

of implicated loci, two distinct mechanisms are considered

responsible for the presence of such multiple alleles; ‘‘in-

patient’’ microevolution of the infecting clone in case of the

detection of double alleles in a single locus as opposed to

simultaneous infection with two distinct MTB strains when

two or more loci are concerned [2–4,10]. Microevolution can

of course affect any genotypic marker, for example, a strain

may evolve by losing a spacer of the initial spoligotype profile.

As the molecular clock of spoligotyping profiles is lower than

that of MIRU-VNTRs [11], evolutionary changes are much less

frequent in the former. Moreover, ‘‘in-patient’’ microevolution

within the DR-locus (i.e., the locus targeted by spoligotyping

technique) is not detectable unless single colonies from serial

isolates (containing the initial isolate vs. recently evolved iso-

lates) are obtained and analyzed separately. Since the present

report presents essentially MIRU-VNTR data, hereafter the

focus will be on microevolution concerning this particular

marker. Most often, studies on polyclonal and multiple strain

infections were conducted in settings with high TB burden [2–

5]. Nevertheless, they have also been observed in areas with

moderate TB incidence [6]. The present study reports evi-

dence for clonal heterogeneity and mixed-infection observed

in a recent epidemiologic study on isolates from Guyana and

Suriname [12] based on MIRU-VNTRs.

Materials and methods

Clinical isolates

The MTB bacterial isolates (n = 7) described in this study were

genotyped in the course of a recent epidemiological study on

clinical isolates (n = 161) from Guyana and Suriname [12].

They were part of a convenience sample of clinical isolates

sent to the Caribbean Epidemiology Centre (CAREC), Trinidad,

for identification and drug susceptibility testing (DST) [13].

Genotyping and database comparison

The initial set of strains (n = 161) was subjected to standard

spoligotyping [14] and 15-loci MIRU-VNTR typing [9] in the fol-

lowing order: MIRU-4, MIRU-10, MIRU-16, MIRU-26, MIRU-31,

MIRU-40, ETR-A, ETR-C, QUB-11b, QUB-26, QUB-4156, Mtub04,

Mtub21, Mtub30, and Mtub39. The results from each of the 15

loci were combined to create a 15-digit allelic profile, and a

cluster was defined as two or more strains sharing identical

spoligotypes and 15-loci MIRU patterns. The obtained profiles

were compared with SITVIT2, a proprietary database of

the Pasteur Institute of Guadeloupe which is an updated

version of SpolDB4 [15] and SITVITWEB [16], and assigned to

a SIT (spoligo-international-type) and/or 15-MIT (15-loci

MIRU-international-type) respectively, if they matched at least

one other profile in the database or classified as an orphan

(no match found).
From the initially published study [12], strains for which

multiple bands were repeatedly obtained for P1 locus were

excluded from epidemiological analysis (n = 7), and were fur-

ther investigated in the present study to elucidate the phe-

nomena of polyclonal infections versus microevolutionary

events identified by MIRU-VNTRs. For this purpose, all poly-

merase chain reactions (PCRs) were repeated twice to confirm

the presence of multiple alleles in a given MIRU locus.

Phylogenetical analysis

Major phylogenetic clades were assigned according to the sig-

natures provided in the database defining 62 genetic lin-

eages/sublineages. These include various MTB complex

members, as well as rules defining major lineages/sublin-

eages for MTB sensu-stricto, namely: Beijing clade, the

Central Asian (CAS) clade and 2 sublineages, the East

African-Indian (EAI) clade and 9 sublineages, the Haarlem

(H) clade and 3 sublineages (including H3/Ural-1 and

H4/Ural-2 sublineages), the Latin American-Mediterranean

(LAM) clade, its 12 sublineages (note that sublineages LAM7-

TUR and LAM10-CAM are now referred to as Turkey and

Cameroon lineages), the ancestral ‘‘Manu’’ family and 3 sub-

lineages, the S clade, the IS6110-low-banding X clade and 3

sublineages, and an ill-defined T clade with 5 sublineages.

BioNumerics v6.6 (Applied Maths NV, Sint-Martens-Latem,

Belgium) was used to construct a minimum spanning tree

(MST) based on spoligotypes and 15-loci MIRU VNTR profiles

and nodes differing in a maximum of two genotypic markers

(i.e., VNTR locus or spoligo-spacer) were grouped in order to

highlight single locus variants (SLVs) and double locus variants

(DLVs).

Results

The results obtained along with schematic representation of

microevolution and polyclonal infection, the mechanisms

involved, and genotyping results are summarized in Table 1

and Figs. 1 and 2. As listed in Table 1, 7 patient isolates

(n = 5 from Suriname and n = 2 from Guyana) repeatedly dis-

played multiple alleles in one or more MIRU locus. As

schematically illustrated in Fig. 1, they were considered sug-

gestive of microevolution if a single locus (n = 6 strains) was

implicated, and mixed infection if several loci were con-

cerned (n = 1 strain). Given that the original epidemiological

study [12] covered n = 154 isolates with unambiguous profiles,

the rate of patients harboring clonal subpopulations was 3.7%

(n = 6/161) in the studied population, and 0.6% (n = 1/161)

showing evidence of mixed strain infection. Their genotypic

profiles and basic demographic data are shown in Table 1;

the strains belonged to three different spoligotyping-based

lineages, namely the T (SITs 44, 53, and 1081), Haarlem

(SIT47), and EAI (SITs 72 and 349) lineages. One isolate

(SIT237) could not be assigned to any lineage. The patients’

mean age was 48 years, ranging from 14 to 83 years. With

the exception of the youngest patient (a female), all other

patients were male. All strains were pan-susceptible.

In n = 6/7 samples double alleles were detected in a single

locus. In accordance with current conventions [2–5,10], these



Table 1 – Isolates showing multiple alleles for one or more VNTR loci.

Origin Age/ 
Sex DST* HIV** SIT*** Clade VNTR profile MIT15 Conclusion 

SUR 38/M S + 44 T5 1'/231/2523/4 2/3 
4/5/63522222/3 NA 

Mixed 
infection/ 

contamination 
SUR 83/M S NA 47 H1 2425332/334732343 Orphan Clonal variant 

SUR 48/M S – 53 T1 231532/3342522222 Orphan Clonal variant 

GUY 54/M S NA 72 EAI1-
SOM 5432537254126/924 Orphan/ 

MIT872 Clonal variant 

SUR 43/M S – 237 Unknown 243233343/4732343 Orphan Clonal variant 

GUY 14/M S NA 349 EAI1-
SOM 5432539274128/C26 Orphan/ 

MIT876 Clonal variant 

SUR 56/M S – 1081 T 2436/831336833442 Orphan Clonal variant 

* DST (drug-susceptibility testing): S, pansusceptible.

** HIV serology: (+) positive, (�) negative, NA, not available.

*** Note that strains with SIT44 and SIT47 further showed a third, unspecific band for the multiple allele loci, observed

right above the larger of the two specific amplification products.
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samples were therefore classified as clonal variants of the

same strain. The respective patients correspond to what is

depicted as an index case for the establishment of a new

SLV in a given population in Fig. 1A (i.e., patient harboring

stain A and A1). On the other hand, a single isolate

(SIT44/T5) showed multiple alleles in six loci indicating a

simultaneous infection with two different MTB strains (strain

A + strain B), classified as polyclonal infection (Fig. 1B).

In parallel, it was also checked to see if any of the two

MIRU profiles detected in each of the patients harboring

microevolved strains (Table 1, except SIT44/T5) corresponded

to profiles that had been observed before by comparing to

112,000 strains present in SITVIT2 database. In case one of

the detected profiles matched a 15-MIT profile detected

earlier in the region, one could tentatively assume that this

profile corresponded to the original infecting strain, while

the other profile represents the newly evolved variant.

Interestingly, one of the VNTR profiles detected in a patient

harboring the microevolved strain (SIT72/EAI1-SOM) matched

only 2 strains (Fig. 2, shown by red arrow), being exclusively

reported in Guyana (a previous study [12]). Interestingly, a

third strain in the same study represented a SLV of this same

15-MIT pattern, indicating that strains belonging to the clonal

group SIT72/EAI1-SOM/15-MIT872 have been implicated in

microevolutionary events in the past. Likewise, the profile of

another microevolved strain (SIT349/EAI1-SOM) matched

exclusively 2 strains reported in Suriname (a previous study

[12]), belonging to the clonal group SIT349/EAI1-SOM/

15-MIT876 (Fig. 2, shown by blue arrow). The fact that these

profiles (i.e., 15-MIT872 and 15-MIT876, Table 1) correspond

to patterns actively circulating in the region (Fig. 2) suggests

that the patient initially contracted the strains with a

shared-type pattern which later evolved to give an orphan

pattern. The profiles detected in the 4 other patients

(Table 1) were exclusively orphan patterns. Note that Fig. 2

illustrates the population structure of the global sample stud-

ied (n = 154 strains from Guyana and Suriname), excluding

the 7 strains showing multiple copies in one or more MIRU

loci (Table 1). In the MST shown, various lineages are shown
by different colors, and profiles differing by a change in 1

marker (SLV), vs. 2 markers (DLV) are shown by bold vs. thin

connecting lines, globally highlighted by a gray background.
Discussion

In this study, 5 loci have been implicated in in-patient

microevolution events, namely Mtub 21 (VNTR 1955, changing

twice) and MIRU 26 (VNTR 2996), MIRU 40 (VNTR 802), ETR A

(VNTR 2165) and QUB 11b (VNTR 2163b) all changing once.

These loci were found to be among the 7 most variable loci

of the MIRU-typing scheme in a large-scale evaluation con-

ducted by Supply et al. [9]. These authors furthermore

reported the observation of changes in MIRU 40 and QUB

11b, in a series of epidemiologically linked isolates.

In order to verify, if there is a particular group of spoligotyp-

ing profiles more prone to microevolution in the 15 VNTR loci

than others, a spoligoforest (http://www.emi.unsw.edu.au/

spolTools/) was constructed using the spoligotypes of all

n = 161 clinical isolates from Guyana and Suriname, and spolig-

otypes observed in microevolved isolates were marked. The

visual assessment showed that spoligotypes of microevolved

strains were scattered over different branches of the spoligo-

forest without any obvious branch preferences. It was, there-

fore, concluded that no spoligotyping lineage is particularly

prone to be involved in microevolution in this sample (data

not shown). Regarding other potential predisposing factors

for in-patient microevolution, diagnostic delay has been

reported in connection with patients harboring clonal variants

in a study conducted in Spain [6]. However, seeing as similar

mutation rates have been observed during latency, active dis-

ease and in logarithmically growing cultures in a recent study

[17], the time passed since the primo infection might be more

influential than the lapse of time between disease outbreak

and diagnosis.

The transmission of microevolved strains may entrain the

appearance SLVs in a series of epidemiologically linked cases

(Fig. 1, transmission of A1 strains; [9]). However, these events

http://www.emi.unsw.edu.au/spolTools/
http://www.emi.unsw.edu.au/spolTools/


Fig. 1 – Microevolution (A) and polyclonal infection (B): schematic representation of involved mechanisms and genotyping

results.
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are rare, and the detection of SLVs usually indicates epidemi-

ologic unrelatedness [18,19]. Nevertheless, the presence of

SLVs in a given strain population is an echo of past evolution-

ary events, and the abundance of closely related patterns sug-

gests that the clones in question and their ancestors have

been circulating in the region for a long time and/or subject

to heavy active transmission, which permitted the accumula-

tion of numerous changes to the original genotype. To check

for such traces in this study population, an MST was con-

structed based on spoligotypes and 15-loci MIRU profiles

(Fig. 2), and nodes that differed in a maximum of two geno-

typic markers were grouped. While most groups contain only

two nodes, the two most frequent spoligotypes of the T family

(SIT53 and SIT131) stand out as they group a number of SLVs

(marked by bold connecting lines) around a central MIRU-

pattern. In order to evaluate the genetic diversity of both

SITs on a global level, available data were extracted from
SITVIT2, and the number of distinct MIRU15 profiles (shared

and orphan) was determined. The same assessment was car-

ried out for a ubiquitous pattern SIT50/H3 in SITVIT2, acting

as a control. Interestingly, the diversity of VNTR profiles

observed among SIT53 strains is considerably higher than

that observed for the two other patterns (SIT50, SIT131).

This observation is probably due to a higher ongoing evolu-

tion of SIT53; indeed, in the SITVIT2 database, as much as

47.6% (n = 325) of SIT53 strains with 15-loci MIRU data

(n = 683) are recorded as orphan vs. only 29% (n = 171) of the

SIT50 strains with 15-loci MIRU data (n = 589). Future studies

should elucidate if this is simply due to the widespread occur-

rence and transmission of SIT53/T1, or if they are more prone

to genetic diversification. It is also possible that the two go

hand-in-hand, since subtle differences in the infectivity of

microevolved MTB variants co-infecting the same patient

have been observed [20], and microevolution has been linked



Fig. 2 – MST of isolates from patients from Guyana and Suriname harboring monoclonal M. tuberculosis infections: profiles

differing by a change in one marker (bold connecting line) or two markers are depicted on gray background (when applicable,

SIT and MIT15 are specified).
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to differences in gene expression between clonal variants [21].

Thus, predisposition for evolution of SIT53/T1 strains may

have favored their ubiquitous spread in all human popula-

tions and macro-regions [16]. Finally, the last isolate showed

multiple alleles in 6 loci indicating a simultaneous infection

with two different MTB strains. This isolate displayed

SIT44/T5, a profile that can emerge as a result of almost

11,000 possible combinations of spoligotypes [22].

Little is known about predisposing factors or patient char-

acteristics associated with mixed strain infections as the

number of patients found to harbor such infections is usually

too low to allow for meaningful statistical analysis. In this

sense, the present study is no exception and did not allow

for drawing any statistically meaningful conclusions. On the

same lines, it could not conclude if HIV infection increased

the vulnerability for mixed strain infections as suggested in

a previous study from Kampala, Uganda [2], even though

the only patient harboring a mixed-strain infection in this

study was HIV+ (Table 1).

It has been previously argued that mixed infections, par-

ticularly in cases where co-infecting strains display different

drug susceptibility patterns (i.e., heteroresistance), have a

negative impact on treatment outcome [7]. However, the
single case of mixed infection represented by SIT44/T5 in

the present study was pansusceptible, not allowing for a

conclusion on this particular aspect.

Conclusions

Overall, the observations in the present study fortify the

awareness regarding the existence of clonally complex TB

infections that has been growing in recent years. The

realization that polyclonal infections constitute a reality has

important implications for patient care considering the

potential occurrence of heteroresistance [7]. Further research

is needed to better document the frequency of mixed

infections and their relevance for disease progression and

treatment outcome in affected patients, as well as their

implication for vaccine development.

Nonetheless, it is important to keep in mind that

MIRU-VNTRs analyze only a very small part of the mycobac-

terial genome and therefore might underestimate the extent

of heterogeneity within a patient or population. As whole

genome sequencing (WGS) is becoming more accessible,

studies using this technique are expected to provide a more

accurate assessment (reviewed in [23]).
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[21] L. Pérez-Lago, Y. Navarro, M. Herranz, E. Bouza, D. Garcı́a-de-
Viedma, Differences in gene expression between clonal
variants of Mycobacterium tuberculosis emerging as a result of
microevolution, Int. J. Med. Microbiol. 303 (2013) 674–677,
http://dx.doi.org/10.1016/j.ijmm.2013.09.010.

[22] L.C. Lazzarini, J. Rosenfeld, R.C. Huard, V. Hill, J.R. Lapa e
Silva, et al, Mycobacterium tuberculosis spoligotypes that may
derive from mixed strain infections are revealed by a novel
computational approach, Infect. Genet. Evol. 12 (2012) 798–
806, http://dx.doi.org/10.1016/j.meegid.2011.08.028.

[23] C. Ford, K. Yusim, T. Ioerger, S. Feng, M. Chase, M. Greene,
et al, Mycobacterium tuberculosis – heterogeneity revealed
through whole genome sequencing, Tuberculosis (Edinb.) 92
(2012) 194–201, http://dx.doi.org/10.1016/j.tube.2011.11.003.

http://apps.who.int/iris/bitstream/10665/137094/1/9789241564809_eng.pdf
http://apps.who.int/iris/bitstream/10665/137094/1/9789241564809_eng.pdf
http://dx.doi.org/10.1186/1471-2334-10-349
http://dx.doi.org/10.1186/1471-2334-10-177
http://dx.doi.org/10.1128/JCM.01378-10
http://dx.doi.org/10.1128/JCM.01378-10
http://dx.doi.org/10.1186/1465-9921-7-99
http://dx.doi.org/10.1128/JCM.05203-11
http://dx.doi.org/10.1128/JCM.05203-11
http://dx.doi.org/10.1128/CMR.00021-12
http://refhub.elsevier.com/S2212-5531(15)00082-5/h0040
http://refhub.elsevier.com/S2212-5531(15)00082-5/h0040
http://refhub.elsevier.com/S2212-5531(15)00082-5/h0040
http://dx.doi.org/10.1128/JCM.01392-06
http://dx.doi.org/10.1128/JCM.01392-06
http://dx.doi.org/10.1186/1471-2180-7-73
http://dx.doi.org/10.1016/j.meegid.2010.06.016
http://dx.doi.org/10.1016/j.meegid.2010.06.016
http://dx.doi.org/10.1016/j.meegid.2014.12.015
http://dx.doi.org/10.1155/2014/718496
http://dx.doi.org/10.1155/2014/718496
http://refhub.elsevier.com/S2212-5531(15)00082-5/h0070
http://refhub.elsevier.com/S2212-5531(15)00082-5/h0070
http://refhub.elsevier.com/S2212-5531(15)00082-5/h0070
http://refhub.elsevier.com/S2212-5531(15)00082-5/h0070
http://dx.doi.org/10.1186/1471-2180-6-23
http://dx.doi.org/10.1016/j.meegid.2012.02.004
http://dx.doi.org/10.1016/j.meegid.2012.02.004
http://dx.doi.org/10.1038/ng.811
http://dx.doi.org/10.1038/ng.811
http://dx.doi.org/10.1128/JCM.01393-06
http://dx.doi.org/10.1128/JCM.01393-06
http://dx.doi.org/10.1128/JCM.02089-07
http://dx.doi.org/10.1016/j.ijmm.2013.10.002
http://dx.doi.org/10.1016/j.ijmm.2013.09.010
http://dx.doi.org/10.1016/j.meegid.2011.08.028
http://dx.doi.org/10.1016/j.tube.2011.11.003

	Mycobacterium tuberculosis polyclonal infections and microevolution identified by MIRU-VNTRs  in an epidemiological study
	Introduction
	Materials and methods
	Clinical isolates
	Genotyping and database comparison
	Phylogenetical analysis

	Results
	Discussion
	Conclusions
	Conflict of interest
	Acknowledgments
	References


