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Abstract

In this paper we set up a representation theorem for tracial gauge norms on finite von Neumann algebras
satisfying the weak Dixmier property in terms of Ky Fan norms. Examples of tracial gauge norms on finite
von Neumann algebras satisfying the weak Dixmier property include unitarily invariant norms on finite
factors (type II1 factors and Mn(C)) and symmetric gauge norms on L∞[0,1] and C

n. As the first appli-
cation, we obtain that the class of unitarily invariant norms on a type II1 factor coincides with the class of
symmetric gauge norms on L∞[0,1] and von Neumann’s classical result [J. von Neumann, Some matrix-
inequalities and metrization of matrix-space, Tomsk. Univ. Rev. 1 (1937) 286–300] on unitarily invariant
norms on Mn(C). As the second application, Ky Fan’s dominance theorem [Ky Fan, Maximum properties
and inequalities for the eigenvalues of completely continuous operators, Proc. Natl. Acad. Sci. USA 37
(1951) 760–766] is obtained for finite von Neumann algebras satisfying the weak Dixmier property. As the
third application, some classical results in non-commutative Lp-theory (e.g., non-commutative Hölder’s in-
equality, duality and reflexivity of non-commutative Lp-spaces) are obtained for general unitarily invariant
norms on finite factors. We also investigate the extreme points of N(M), the convex compact set (in the
pointwise weak topology) of normalized unitarily invariant norms (the norm of the identity operator is 1)
on a finite factor M. We obtain all extreme points of N(M2(C)) and some extreme points of N(Mn(C))

(n � 3). For a type II1 factor M, we prove that if t (0 � t � 1) is a rational number then the Ky Fan t th
norm is an extreme point of N(M).
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1. Introduction

The unitarily invariant norms were introduced by von Neumann [21] for the purpose of
metrizing matrix spaces. Von Neumann, together with his associates, established that the class
of unitarily invariant norms of n × n complex matrices coincides with the class of symmet-
ric gauge functions of their s-numbers. These norms have now been variously generalized and
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utilized in several contexts. For example, Schatten [17,18] defined norms on two-sided ideals
of completely continuous operators on an arbitrary Hilbert space; Ky Fan [13] studied Ky Fan
norms and obtained his dominance theorem. The unitarily invariant norms play a crucial role in
the study of function spaces and group representations (see e.g. [12]) and in obtaining certain
bounds of importance in quantum field theory (see [20]). For historical perspectives and surveys
of unitarily invariant norms, see Schatten [17,18], Hewitt and Ross [9], Gohberg and Krein [7]
and Simon [20].

The theory of non-commutative Lp-spaces has been developed under the name “non-
commutative integration" beginning with pioneer work of Segal, Dixmier, and Kunze. Since
then the theory has been extensively studied, extended and applied by Nelson, Haagerup, Fack,
Kosaki, Junge, Xu, and many others. The recent survey by Pisier and Xu [15] presents a rather
complete picture on non-commutative integration and contains a lot of references. This theory
is still a very active subject of investigation. Some tools in the study of the usual commu-
tative Lp-spaces still work in the non-commutative setting. However, most of the time, new
techniques must be invented. To illustrate the difficulties one may encounter in studying the non-
commutative Lp-spaces, we mention here one basic well-known fact. Let H be a complex Hilbert
space, and let B(H) denote the algebra of all bounded linear operators on H. The basic fact states
that the usual triangle inequality for the absolute values of complex numbers is no longer valid for
the absolute values of operators, namely, in general, we do not have |S+T | � |S|+|T | for S,T ∈
B(H), where |S| = (S∗S)1/2 is the absolute value of S. Despite such difficulties, by now the
strong parallelism between non-commutative and classical Lebesgue integration is well known.

Motivated by von Neumann’s theorem and the analogies between non-commutative and clas-
sical Lp-spaces, in this paper, we will systematically study tracial gauge norms on finite von
Neumann algebras that satisfy the weak Dixmier property. Before stating the main theorem and
its consequences, we explain some of the notation and terminology that will be used throughout
the paper.

In this paper, a finite von Neumann algebra (M, τ ) means a von Neumann algebra M with
a faithful normal tracial state τ . A finite von Neumann algebra (M, τ ) is said to satisfy the
weak Dixmier property if for every positive operator T ∈ M, τ(T ) is in the operator norm
closure of the convex hull of {S ∈ M: S and T are equi-measurable, i.e., τ(Sn) = τ(T n) for all
n = 0,1,2, . . .}. Recall that finite factors satisfy the Dixmier property: if T ∈ M, then τ(T ) is
in the operator norm closure of the convex hull of {UT U∗: U ∈ M is a unitary operator} and
hence satisfy the weak Dixmier property. In Section 3.5, we prove that a finite von Neumann
algebra (M, τ ) satisfies the weak Dixmier property if and only if either (M, τ ) can be identified
as a von Neumann subalgebra of (Mn(C), τn) that contains all diagonal matrices, where τn is the
normalized trace on Mn(C), or M is diffuse. Throughout the paper, we will reserve the notation
‖ · ‖ for the operator norm on von Neumann algebras.

A tracial gauge norm ||| · ||| on a finite von Neumann algebra (M, τ ) is a norm on M sat-
isfying |||T ||| = ||||T |||| for all T ∈ M (gauge invariant) and |||S||| = |||T ||| if S and T are two
equi-measurable positive operators in M (tracial). For a finite von Neumann algebra (M, τ ),
let Aut(M, τ ) be the set of ∗-automorphisms on M that preserve the trace. A symmetric
gauge norm ||| · ||| on a finite von Neumann algebra (M, τ ) is a gauge norm on M satisfying
|||θ(T )||| = |||T ||| for all positive operators T ∈ M and θ ∈ Aut(M, τ ). A unitarily invariant norm
||| · ||| on a finite von Neumann algebra (M, τ ) is a norm on M satisfying |||UT W ||| = |||T |||
for all T ∈ M and unitary operators U,W in M. On (L∞[0,1], ∫ 1

0 dx) and (Cn, τ ), where
τ((x1, . . . , xn)) = x1+···+xn

n
, a norm is a tracial gauge norm if and only if it is a symmetric gauge

norm. A norm on a finite factor is a tracial gauge norm if and only if it is a unitarily invariant
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norm. A normalized norm is one that assigns the value 1 to the identity operator (which is also
denoted by 1).

In [5], Fack and Kosaki defined μs(T ), the generalized s-numbers of an operator T in a finite
von Neumann algebra (M, τ ) by

μs(T ) = inf
{‖T E‖: E is a projection in M with τ(1 − E) � s

}
, 0 � s � 1.

For 0 < t � 1, the Ky Fan t th norm, |||T |||(t), on a finite von Neumann algebra (M, τ ) is defined
by

|||T |||(t) = 1

t

t∫
0

μs(T )ds.

Then ||| · |||(t) is a tracial gauge norm on (M, τ ). Note that |||T |||(1) = τ(|T |) = ‖T ‖1 is the trace
norm.

Let n ∈ N, a1 � a2 � · · · � an � an+1 = 0 and f (x) = a1χ[0, 1
n
)
(x) + a2χ[ 1

n
, 2
n
)
(x) + · · · +

anχ[ n−1
n

,1](x). For T ∈ M, define |||T |||f = ∫ 1
0 f (s)μs(T ) ds. Then

|||T |||f =
n∑

k=1

k(ak − ak+1)

n
|||T |||

( k
n
)
.

Therefore, |||T |||f is a tracial gauge norm on (M, τ ). Note that if f (x) is the constant 1 function
on [0,1], then |||T |||f = |||T |||(1) = ‖T ‖1 = τ(|T |).

Let F = {f (x) = a1χ[0, 1
n
)
(x) + a2χ[ 1

n
, 2
n
)
(x) + · · · + anχ[ n−1

n
,1](x): a1 � a2 � · · · � an � 0,

a1+···+an

n
� 1, n = 1,2, . . .}. In Section 7, we prove the following representation theorem, which

is the main result of this paper.

Theorem A. Let (M, τ ) be a finite von Neumann algebra satisfying the weak Dixmier property.
If ||| · ||| is a normalized tracial gauge norm on M, then there is a subset F ′ of F containing the
constant 1 function on [0,1] such that for every T ∈ M,

|||T ||| = sup
{|||T |||f : f ∈ F ′},

where |||T |||f is defined as above.

To prove Theorem A, we firstly prove the following technical theorem in Section 4.

Theorem B. Let (M, τ ) be a finite von Neumann algebra satisfying the weak Dixmier property
and let ||| · ||| be a tracial gauge norm on M. Then M1,|||·||| = {T ∈ M: |||T ||| � 1} is closed in the
weak operator topology.

The Russo–Dye theorem [16] and the Kadison–Peterson theorem [10] on convex hulls of
unitary operators in von Neumann algebras and the idea of Dixmier’s averaging theorem [2] play
fundamental roles in the proof of Theorem B. An important consequence of Theorem B is the
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following corollary which enables us to apply the powerful techniques of normal conditional
expectations from finite von Neumann algebras to abelian von Neumann subalgebras.

Corollary 1. Let (M, τ ) be a finite von Neumann algebra satisfying the weak Dixmier property
and let ||| · ||| be a tracial gauge norm on M. If A is a separable abelian von Neumann subal-
gebra of M and EA is the normal conditional expectation from M onto A preserving τ , then
|||EA(T )||| � |||T ||| for all T ∈M.

The notion of dual norms plays a key role in the proof of Theorem A. Let ||| · ||| be a norm on
a finite von Neumann algebra (M, τ ). Then the dual norm ||| · |||# is defined by

|||T |||# = sup
{∣∣τ(T X)

∣∣: X ∈ M, |||X||| � 1
}
, T ∈ M.

In Section 5, we study the dual norms systematically. By applying Corollary 1 and careful anal-
ysis, we prove the following theorem.

Theorem C. Let (M, τ ) be a finite von Neumann algebra satisfying the weak Dixmier property
and ||| · ||| be a tracial gauge norm on M. Then ||| · |||# is also a tracial gauge norm on M and
||| · |||## = ||| · |||.

Combining Corollary 1, Theorem C and the following theorem on non-increasing rearrange-
ments of functions (see [8, 10.13] for instance), we prove Theorem A in Section 7.

Hardy–Littlewood–Pólya. Let f (x), g(x) be non-negative Lebesgue measurable functions on
[0,1] and let f ∗(x), g∗(x) be the non-increasing rearrangements of f (x), g(x), respectively,
then

∫ 1
0 f (x)g(x) dx �

∫ 1
0 f ∗(x)g∗(x) dx.

Now we state some important consequences of Theorem A. Since there is a natural one-to-one
correspondence between Ky Fan t th norms on finite von Neumann algebras (satisfying the weak
Dixmier property) and Ky Fan t th norms on (L∞[0,1], ∫ 1

0 dx) or (Cn, τ ), the first application of
Theorem A is the following.

Theorem D. Let (M, τ ) be a diffuse finite von Neumann algebra (or a von Neumann subalgebra
of Mn(C), τ = τn|M, such that M contains all diagonal matrices). Then there is a one-to-
one correspondence between tracial gauge norms on (M, τ ) and symmetric gauge norms on
(L∞[0,1], ∫ 1

0 dx) (or (Cn, τ ′), τ ′((x1, . . . , xn)) = x1+···+xn

n
, respectively). Namely:

1. If ||| · ||| is a tracial gauge norm on (M, τ ) and θ is an embedding from (L∞[0,1], ∫ 1
0 dx)

into (M, τ ) (or x1 ⊕ · · · ⊕ xn is the diagonal matrix with diagonal elements x1, . . . , xn,
respectively), then |||f (x)|||′ = |||θ(f (x))||| defines a symmetric gauge norm on (L∞[0,1],∫ 1

0 dx) (or |||(x1, . . . , xn)|||′ = |||x1 ⊕ · · · ⊕ xn||| defines a symmetric gauge norm on (Cn, τ ′),
respectively).

2. If ||| · |||′ is a symmetric gauge norm on (L∞[0,1], ∫ 1
0 dx) (or (Cn, τ ′) respectively), then

|||T ||| = |||μs(T )|||′ (or |||T ||| = |||(s1(T ), . . . , sn(T ))|||′, respectively) defines a tracial gauge
norm on (M, τ ).
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As consequences of Theorem D, we have the following corollary and von Neumann’s theo-
rem.

Corollary 2. There is a one-to-one correspondence between unitarily invariant norms on a
type II1 factor (M, τ ) and symmetric gauge norms on (L∞[0,1], ∫ 1

0 dx). Namely:

1. If ||| · ||| is a unitarily invariant norm on M and θ is an embedding from (L∞[0,1], ∫ 1
0 dx) into

(M, τ ), then |||f (x)|||′ = |||θ(f (x))||| defines a symmetric gauge norm on (L∞[0,1], ∫ 1
0 dx).

2. If ||| · |||′ is a symmetric gauge norm on (L∞[0,1], ∫ 1
0 dx), then |||T ||| = |||μs(T )|||′ defines a

unitarily invariant norm on M.

Von Neumann. There is a one-to-one correspondence between unitarily invariant norms on
Mn(C) and symmetric gauge norms on (Cn, τ ), τ((x1, . . . , xn)) = x1+···+xn

n
. Namely:

1. If ||| · ||| is a unitarily invariant norm on Mn(C), then |||(x1, . . . , xn)|||′ = |||x1 ⊕ · · · ⊕ xn|||
defines a symmetric gauge norm on (Cn, τ ).

2. If ||| · |||′ is a symmetric gauge norm on (Cn, τ ), then |||T ||| = |||(s1(T ), . . . , sn(T ))|||′ defines a
unitarily invariant norm on Mn(C).

Theorem D establishes the one-to-one correspondence between tracial gauge norms on finite
von Neumann algebras satisfying the weak Dixmier property and symmetric gauge norms on
abelian von Neumann algebras. The following theorem further establishes the one-to-one corre-
spondence between the dual norms on finite von Neumann algebras satisfying the weak Dixmier
property and the dual norms on abelian von Neumann algebras, which plays a key role in the
studying of duality and reflexivity of the completion of type II1 factors with respect to unitarily
invariant norms.

Theorem E. Let (M, τ ) be a diffuse finite von Neumann algebra (or a von Neumann subalgebra
of Mn(C), τ = τn|M, such that M contains all diagonal matrices). If ||| · ||| is a tracial gauge
norm on (M, τ ) corresponding to the symmetric gauge norm ||| · |||1 on (L∞[0,1], ∫ 1

0 dx) (or
(Cn, τ ′), respectively) as in Theorem D, then ||| · |||# on M is the tracial gauge norm correspond-
ing to the symmetric gauge norm ||| · |||#1 on (L∞[0,1], ∫ 1

0 dx) (or (Cn, τ ′), respectively) as in
Theorem D.

The second consequence of Theorem A is the following theorem.

Theorem F. Let (M, τ ) be a finite von Neumann algebra satisfying the weak Dixmier property
and S,T ∈M. If |||S|||(t) � |||T |||(t) for all Ky Fan t-th norms, 0 � t � 1, then |||S||| � |||T ||| for all
tracial gauge norms ||| · ||| on M.

As a corollary, we obtain the following

Ky Fan’s dominance theorem. (See [13].) If S,T ∈ Mn(C) and |||S|||(k/n) � |||T |||(k/n), i.e.,∑k
i=1 si(S) �

∑k
i=1 si(T ) for 1 � k � n, then |||S||| � |||T ||| for all unitarily invariant norms ||| · |||

on Mn(C).
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A unitarily invariant norm ||| · ||| on a type II1 factor M is called singular if limτ(E)→0+ |||E|||
> 0 and continuous if limτ(E)→0+ |||E||| = 0. The following theorem is proved in Section 11.

Theorem G. Let ||| · ||| be a unitarily invariant norm on M and let T be the topology induced by
||| · ||| on M1,‖·‖ = {T ∈ M: ‖T ‖ � 1}. If ||| · ||| is singular, then T is the operator norm topology
on M1,‖·‖. If ||| · ||| is continuous, then T is the measure topology (in the sense of Nelson [14])
on M1,‖·‖.

Let M be a type II1 factor and let ||| · ||| be a unitarily invariant norm on M. We denote by
M|||·||| the completion of M with respect to ||| · |||. Let M̃ be the completion of M with respect
to the measure topology in the sense of Nelson [14]. In Section 12, we prove that there is an
injective map from M|||·||| into M̃ that extends the identity map from M onto M. An element
in M̃ can be identified with a closed, densely defined operator affiliated with M (see [14]). So
generally speaking, an element in M|||·||| should be treated as an unbounded operator. We will
consider the following two questions in Section 13:

Question 1. Under what conditions is M|||·|||# the dual space of M|||·||| in the following sense: for

every φ ∈ M|||·|||#, there is a unique X ∈ M|||·|||# such that

φ(T ) = τ(T X), ∀T ∈ M|||·|||,

and ‖φ‖ = |||T |||?

Question 2. Under what conditions is M|||·||| a reflexive Banach space?

Let ||| · |||1 be the symmetric gauge norm on (L∞[0,1], ∫ 1
0 dx) corresponding to ||| · ||| on M

as in Corollary 2. Then the same questions can be asked about L∞[0,1]|||·|||1 , the completion of
L∞[0,1] with respect to ||| · |||1.

As further consequences of Theorem A, we prove the following theorems that answer the
Questions 1 and 2, respectively.

Theorem H. Let M be a type II1 factor, ||| · ||| be a unitarily invariant norm on M and
||| · |||# be the dual unitarily invariant norm on M. Let ||| · |||1 be the symmetric gauge norm on
(L∞[0,1], ∫ 1

0 dx) corresponding to ||| · ||| on M as in Corollary 2. Then the following conditions
are equivalent:

1. M|||·|||# is the dual space of M|||·||| in the sense of Question 1;
2. L∞[0,1]|||·|||#1 is the dual space of L∞[0,1]|||·|||1 in the sense of Question 1;
3. ||| · ||| is a continuous norm on M;
4. ||| · |||1 is a continuous norm on L∞[0,1].

Theorem I. Let M be a type II1 factor, ||| · ||| be a unitarily invariant norm on M and let
||| · |||# be the dual unitarily invariant norm on M. Let ||| · |||1 be the symmetric gauge norm on
(L∞[0,1], ∫ 1

0 dx) corresponding to ||| · ||| on M as in Corollary 2. Then the following conditions
are equivalent:
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1. M|||·||| is a reflexive space;
2. L∞[0,1]|||·|||1 is a reflexive space;
3. both ||| · ||| and ||| · |||# are continuous norms on M;
4. both ||| · |||1 and ||| · |||#1 are continuous norms on L∞[0,1].

A key step to proving Theorem H is based on the following fact: if ||| · ||| is a continuous
unitarily invariant norm on M and φ ∈ M|||·|||#, then the restriction of φ to M is an ultraweakly
continuous linear functional, i.e., φ is in the predual space of M. A significant advantage of
our approach is that we develop a relatively complete theory of unitarily invariant norms on
type II1 factors before handling unbounded operators. Indeed, unbounded operators are slightly
involved only in the last two sections (Sections 12 and 13). Compared with the classical methods
(e.g., [19]), which have to do a lot of subtle analysis on unbounded operators, our methods are
much simpler.

Let M be a finite factor. Recall that a norm ||| · ||| on M is called a normalized norm if
|||1||| = 1. Let N(M) be the set of normalized unitarily invariant norms on M. Then N(M) is
a convex compact set in the pointwise weak topology. Let Ne(M) be the set of extreme points
of N(M). By the Krein–Milman theorem, N(M) is the closure of the convex hull of Ne(M)

in the pointwise weak topology. So it is an interesting question of characterizing the set Ne(M).
In Section 10, we prove the following theorems.

Theorem J. Ne(M2(C)) = {max{t‖T ‖,‖T ‖1}: 1/2 � t � 1}, where ‖T ‖1 = τ2(|T |).

Theorem K. If M is a type II1 factor and t is a rational number such that 0 � t � 1, then the
Ky Fan t th norm is an extreme point of N(M).

This paper is almost self-contained and we do not assume any backgrounds on non-
commutative Lp-theory.

2. Preliminaries

2.1. Nonincreasing rearrangements of functions

Throughout this paper, we denote by m the Lebesgue measure on [0,1]. In the following,
a measurable function and a measurable set mean a Lebesgue measurable function and a
Lebesgue measurable set, respectively. For two measurable sets A and B , A = B means
m((A \ B) ∪ (B \ A)) = 0.

Let f (x) be a real measurable function on [0,1]. The non-increasing rearrangement function,
f ∗(x), of f (x) is defined by

f ∗(x) =
{

sup{y: m({f > y}) > x}, 0 � x < 1;

ess inff, x = 1.
(2.1)

We summarize some useful properties of f ∗(x) in the following proposition.

Proposition 2.1. Let f (x), g(x) be real measurable functions on [0,1]. Then we have the fol-
lowing:
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1. f ∗(x) is a non-increasing, right-continuous function on [0,1] such that f ∗(0) = ess supf ;
2. if f (x) and g(x) are bounded functions and

∫ 1
0 f n(x) dx = ∫ 1

0 gn(x) dx for all n =
0,1,2, . . . , then f ∗(x) = g∗(x);

3. f (x) and f ∗(x) are equi-measurable and
∫ 1

0 f (x)dx = ∫ 1
0 f ∗(x) dx when either integral is

well defined.

2.2. Invertible measure-preserving transformations on [0,1]
Let G = {φ: φ(x) is an invertible measure-preserving transformation on [0,1]}. It is well

known that G acts on [0,1] ergodically (see [6, pp. 3, 4], for instance), i.e., for a measurable
subset A of [0,1], φ(A) = A for all φ ∈ G implies that m(A) = 0 or m(A) = 1.

Lemma 2.2. Let A,B be two measurable subsets of [0,1] such that m(A) = m(B). Then there
is a φ ∈ G such that φ(A) = B .

Proof. We can assume that m(A) = m(B) > 0. Since G acts ergodically on [0,1], there is a
φ ∈ G such that m(φ(A)∩B) > 0. Let B1 = φ(A)∩B and A1 = φ−1(B1). Then m(A1) = m(B1)

and φ(A1) = B1. By Zorn’s lemma and maximality arguments, we prove the lemma. �
Corollary 2.3. Let A1, . . . ,An and B1, . . . ,Bn be disjoint measurable subsets of [0,1] such that
m(Ak) = m(Bk) for 1 � k � n. Then there is a φ ∈ G such that φ(Ak) = Bk for 1 � k � n.

Proof. We can assume that A1 ∪ · · · ∪ An = B1 ∪ · · · ∪ Bn = [0,1]. By Lemma 2.2, there is a
φk ∈ G such that φk(Ak) = Bk , 1 � k � n. Define φ(x) = φk(x) for x ∈ Ak . Then φ ∈ G and
φ(Ak) = Bk for 1 � k � n. �

For f (x) ∈ L∞[0,1], define τ(f ) = ∫ 1
0 f (x)dx. The following theorem is a version of the

Dixmier’s averaging theorem (see [3] or [11]) and it has a similar proof.

Theorem 2.4. Let f (x) ∈ L∞[0,1] be a real function. Then τ(f ) is in the L∞-norm closure of
the convex hull of {f · φ(x): φ ∈ G}.

We end this subsection with the following proposition.

Proposition 2.5. If φ(x) is an invertible measure-preserving transformation on [0,1], then

θ(f ) = f ◦ φ

is a ∗-automorphism of L∞[0,1] preserving τ . Conversely, if θ is a ∗-automorphism of L∞[0,1]
preserving τ , then there is an invertible measure-preserving transformation on [0,1] such that

θ(f ) = f ◦ φ

for all f (x) ∈ L∞[0,1].
Proof. The first part of the proposition is easy to see. Suppose θ is a ∗-automorphism of
L∞[0,1]. Let φ(x) = θ(f )(x), where f (x) ≡ x. Then it is easy to see the second part of the
proposition. �
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2.3. s-Numbers of operators in type II1 factors

In [5], Fack and Kosaki give a rather complete exposition of generalized s-numbers of
τ -measurable operators affiliated with semi-finite von Neumann algebras. For the sake of reader’s
convenience and our purpose, we provide sufficient details on s-numbers of bounded operators
in finite von Neumann algebras in the following. We will define s-numbers of bounded opera-
tors in finite von Neumann algebras from the point of view of non-increasing rearrangement of
functions.

The following lemma is well known. The proof is an easy exercise.

Lemma 2.6. Let (A, τ ) be a separable (i.e., with separable predual ) diffuse abelian von Neu-
mann algebra with a faithful normal trace τ on A. Then there is a ∗-isomorphism α from (A, τ )

onto (L∞[0,1], ∫ 1
0 dx) such that τ = ∫ 1

0 dx ◦ α.

Let M be a type II1 factor and let τ be the unique trace on M. For T ∈M, there is a separable
diffuse abelian von Neumann subalgebra A of M containing |T |. By Lemma 2.6, there is a ∗-iso-
morphism α from (A, τ ) onto (L∞([0,1], ∫ 1

0 dx) such that τ = ∫ 1
0 dx ◦ α. Let f (x) = α(|T |)

and f ∗(x) be the non-increasing rearrangement of f (x) (see (2.1)). Then the s-numbers of T ,
μs(T ), are defined as

μs(T ) = f ∗(s), 0 � s � 1.

Lemma 2.7. μs(T ) does not depend on A and α.

Proof. Let A1 be another separable diffuse abelian von Neumann subalgebra of M containing
|T | and let β be a ∗-isomorphism from (A1, τ ) onto (L∞[0,1], ∫ 1

0 dx) such that τ = ∫ 1
0 dx · β .

Let g(x) = β(|T |). For every number n = 0,1,2, . . . ,
∫ 1

0 f n(x) dx = τ(|T |n) = ∫ 1
0 gn(x) dx.

Since both f (x) and g(x) are bounded positive functions, by 2 of Proposition 2.1, f ∗(x) = g∗(x)

for all x ∈ [0,1]. �
Corollary 2.8. For T ∈ M and p � 0, τ(|T |p) = ∫ 1

0 μs(T )p ds.

The following lemma says that the above definition of s-numbers coincides with the definition
of s-numbers given by Fack and Kosaki. Recall that P(M) is the set of projections in M.

Lemma 2.9. For 0 � s � 1,

μs(T ) = inf
{‖T E‖: E ∈P(M), τ

(
E⊥) = s

}
.

Proof. By the polar decomposition and the definition of μs(T ), we may assume that T is pos-
itive. Let A be a separable diffuse abelian von Neumann subalgebra of M containing T and
let α be a ∗-isomorphism from (A, τ ) onto (L∞[0,1], ∫ 1

0 dx) such that τ = ∫ 1
0 dx · α. Let

f (x) = α(T ) and let f ∗(x) be the non-increasing rearrangement of f (x). Then μs(T ) = f ∗(s).
By the definition of f ∗,

m
({

f ∗ > μs(T )
}) = lim

n→∞m

({
f ∗ > μs(T ) + 1

})
� s
n
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and

m
({

f ∗ � μs(T )
})

� lim
n→∞m

({
f ∗ > μs(T ) − 1

n

})
� s.

Since f ∗ and f are equi-measurable, m({f > μs(T )}) � s and m({f � μs(T )}) � s. There-
fore, there is a measurable subset A of [0,1], {f > μs(T )} ⊂ [0,1] \ A ⊂ {f � μs(T )}, such
that m([0,1] \ A) = s and ‖f (x)χA(x)‖∞ = μs(T ) and ‖f (x)χB(x)‖∞ � μs(T ) for all B ⊂
[0,1] \ A such that m(B) > 0. Let F = α−1(χA). Then τ(F⊥) = s, ‖T F‖ = ‖α−1(f χA)‖∞ =
μs(T ) and ‖T F ′‖ � μs(T ) for all non-zero subprojections F ′ of F⊥. This proves that μs(T ) �
inf{‖T E‖: E ∈ P(M), τ (E⊥) = s}. Similarly, for every ε > 0, there is a projection Fε ∈ M
such that τ(F⊥

ε ) = s + ε, ‖T Fε‖ = μs+ε(T ) and ‖T F ′‖ � μs+ε(T ) for all non-zero subpro-
jections F ′ of F⊥

ε . Suppose E ∈ M is a projection such that τ(E⊥) = s. Then τ(E ∧ F⊥
ε ) =

τ(E) + τ(F⊥
ε ) − τ(E ∨ F⊥

ε ) = 1 + ε − τ(E ∨ F⊥) � ε > 0. Hence, ‖T E‖ � ‖T (E ∧ F⊥
ε )‖ �

μs+ε(T ). This proves that inf{‖T E‖: E ∈ P(M), τ (E⊥) = s} � μs+ε(T ). Since μs(T ) is right-
continuous, μs(T ) � inf{‖T E‖: E ∈P(M), τ (E⊥) = s}. �
Corollary 2.10. Let S,T ∈ M. Then μs(ST ) � ‖S‖μs(T ) for s ∈ [0,1].

We refer to [4,5] for other interesting properties of s-numbers of operators in type II1 factors.

2.4. s-Numbers of operators in finite von Neumann algebras

Throughout this paper, a finite von Neumann algebra (M, τ ) means a finite von Neumann
algebra M with a faithful normal tracial state τ . An embedding of a finite von Neumann algebra
(M, τ ) into another finite von Neumann algebra (M1, τ1) means a ∗-isomorphism α from M
to M1 such that τ = τ1 ◦ α. Let (L(F2), τ

′) be the free group factor with the faithful normal
trace τ ′. Then the reduced free product von Neumann algebra M1 = (M, τ ) ∗ (L(F2), τ

′) is a
type II1 factor with a (unique) faithful normal trace τ1 such that the restriction of τ1 to M is τ .
So every finite von Neumann algebra can be embedded into a type II1 factor.

Definition 2.11. Let (M, τ ) be a finite von Neumann algebra and T ∈ M. If α is an embedding
of (M, τ ) into a type II1 factor (M1, τ1), then the s-numbers of T are defined as

μs(T ) = μs

(
α(T )

)
.

Similar to the proof of Lemma 2.7, we can see that μs(T ) is well defined, i.e., does not depend
on the choice of α and M1.

Let T ∈ (Mn(C), τn), where τn is the normalized trace on Mn(C). Then |T | is unitarily equiv-
alent to a diagonal matrix with diagonal elements s1(T ) � · · · � sn(T ) � 0. In the classical
matrices theory [1,7], s1(T ), . . . , sn(T ) are also called s-numbers of T . It is easy to see that the
relation between μs(T ) and s1(T ), . . . , sn(T ) is the following

μs(T ) = s1(T )χ[0,1/n)(s) + s2(T )χ[1/n,2/n)(s) + · · · + sn(T )χ[n−1/n,1](s). (2.2)

Since no confusions will arise, we will use both s-numbers for matrices in Mn(C). We refer
to [1,7] for other interesting properties of s-numbers of matrices.

We end this section by the following definition.
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Definition 2.12. Positive operators S and T in a finite von Neumann algebra (M, τ ) are equi-
measurable if μs(S) = μs(T ) for 0 � s � 1.

By 2 of Proposition 2.1 and Corollary 2.8, positive operators S and T in a finite von Neumann
algebra (M, τ ) are equi-measurable if and only if τ(Sn) = τ(T n) for all n = 0,1,2, . . . .

3. Tracial gauge semi-norms on finite von Neumann algebras satisfying the weak Dixmier
property

3.1. Gauge semi-norms

Definition 3.1. Let (M, τ ) be a finite von Neumann algebra. A semi-norm ||| · ||| on M is called
gauge invariant if for every T ∈ M,

|||T ||| = ∣∣∣∣∣∣|T |∣∣∣∣∣∣.
Lemma 3.2. Let (M, τ ) be a finite von Neumann algebra and let ||| · ||| be a semi-norm on M.
Then the following conditions are equivalent:

1. ||| · ||| is gauge invariant;
2. ||| · ||| is left unitarily invariant, i.e., for every unitary operator U ∈M and operator T ∈M,

|||UT ||| = |||T |||;
3. for operators A,T ∈ M, |||AT ||| � ‖A‖ · |||T |||.

Proof. “3 ⇒ 2” and “2 ⇒ 1” are easy to see. We only prove “1 ⇒ 3.” We need to prove that
if ‖A‖ < 1, then |||AT ||| � |||T |||. Since ‖A‖ < 1, there are unitary operators U1, . . . ,Uk such
that A = U1+···+Uk

k
(see [10,16]). Since |U1T | = · · · = |UkT | = |T |, |||AT ||| = |||U1T +···+UkT

k
||| �

|||U1T |||+···+|||UkT |||
k

� |||T |||. �
Corollary 3.3. Let (M, τ ) be a finite von Neumann algebra and let ||| · ||| be a gauge invariant
semi-norm on M such that |||T V ||| = |||T ||| for every unitary operator V ∈ M and operator
T ∈ M. If 0 � S � T , then |||S||| � |||T |||.
Proof. Since 0 � S � T , there is an operator A ∈M such that S = AT A∗ and ‖A‖ � 1. Similar
to the proof of Lemma 3.2, |||S||| = |||AT A∗||| � ‖A‖ · |||T ||| · ‖A∗‖ � |||T |||. �
Definition 3.4. A normalized semi-norm on a finite von Neumann algebra (M, τ ) is a semi-norm
||| · ||| such that |||1||| = 1.

By Lemma 3.2, we have the following corollary.

Corollary 3.5. Let (M, τ ) be a finite von Neumann algebra and let ||| · ||| be a normalized gauge
semi-norm on M. Then for every T ∈M,

|||T ||| � ‖T ‖.

A simple operator in a finite von Neumann algebra (M, τ ) is an operator T = a1E1 + · · · +
anEn, where E1, . . . ,En are projections in M such that E1 + · · · + En = 1.
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Corollary 3.6. Let (M, τ ) be a finite von Neumann algebra, ||| · |||1 and ||| · |||2 be two gauge
invariant semi-norms on M. Then ||| · |||1 = ||| · |||2 on M if |||T |||1 = |||T |||2 for all positive simple
operators T ∈ M.

Proof. Without loss of generality, assume |||1|||1 = |||1|||2 = 1. Let T ∈ M be a positive op-
erator. By the spectral decomposition theorem, there is a sequence of positive simple op-
erators Tn ∈ M such that limn→∞ ‖T − Tn‖ = 0. By Corollary 3.5, limn→∞ |||T − Tn|||1 =
limn→∞ |||T − Tn|||2 = 0. By the assumption of the corollary, |||Tn|||1 = |||Tn|||2. Hence,
|||T |||1 = |||T |||2. Since both ||| · |||1 and ||| · |||2 are gauge invariant, ||| · |||1 = ||| · |||2. �
3.2. Tracial gauge semi-norms

Definition 3.7. Let (M, τ ) be a finite von Neumann algebra. A semi-norm ||| · ||| on M is called
tracial if |||S||| = |||T ||| for every two equi-measurable positive operators S, T in M. A semi-norm
||| · ||| on M is called a tracial gauge semi-norm if it is both tracial and gauge invariant.

Since for a positive operator T in a finite von Neumann algebra (M, τ ), ‖T ‖ =
limn→∞(τ (T n))

1
n , the operator norm ‖ · ‖ is a tracial gauge norm on (M, τ ). Another less

obvious example of a tracial gauge norm on (M, τ ) is the non-commutative L1-norm: ‖T ‖1 =
τ(|T |) = ∫ 1

0 μs(T )ds. The less obvious part is to show that ‖ · ‖1 satisfies the triangle inequality.
The following lemma overcomes this difficulty.

Lemma 3.8. ‖A‖1 = sup{|τ(UA)|: U ∈ U(M)}, where U(M) is the set of unitary operators
in M.

Proof. By the polar decomposition theorem, there is a unitary operator V ∈ M such that A =
V |A|. By the Schwarz inequality, |τ(UA)| = |τ(UV |A|)| = |τ(UV |A|1/2|A|1/2)| � τ(|A|)1/2 ·
τ(|A|)1/2 = τ(|A|). Hence ‖A‖1 � sup{|τ(UA)|: U ∈ U(M)}. Let U = V ∗, we obtain ‖A‖1 �
sup{|τ(UA)|: U ∈ U(M)}. �
Corollary 3.9. ‖A + B‖1 � ‖A‖1 + ‖B‖1.

Lemma 3.10. Let (M, τ ) be a finite von Neumann algebra and let ||| · ||| be a gauge invariant
semi-norm on M. Then ||| · ||| is tracial if |||S||| = |||T ||| for every two equi-measurable positive
simple operators S,T in M.

Proof. We can assume that |||1||| = 1. Let A,B be two equi-measurable positive operators
in M. By the spectral decomposition theorem, there are two sequences of positive simple
operators An, Bn in M such that An and Bn are equi-measurable and limn→∞ ‖A − An‖ =
limn→∞ ‖B −Bn‖ = 0. By Corollary 3.5, limn→∞ |||A−An||| = limn→∞ |||B −Bn||| = 0. By the
assumption of the lemma, |||An||| = |||Bn|||. Hence, |||A||| = |||B|||. �
3.3. Symmetric gauge semi-norms

Definition 3.11. Let (M, τ ) be a finite von Neumann algebra and let Aut(M, τ ) be the set of
∗-automorphisms on M preserving τ . A semi-norm ||| · ||| on M is called symmetric if∣∣∣∣∣∣θ(T )

∣∣∣∣∣∣ = |||T |||, ∀T ∈ M, θ ∈ Aut(M, τ ).
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A semi-norm ||| · ||| on M is called a symmetric gauge semi-norm if it is both symmetric and
gauge invariant.

Example 3.12. Let M = C
n and τ(T ) = x1+···+xn

n
, where T = (x1, . . . , xn) ∈ C

n. Then
Aut(M, τ ) is the set of permutations on {1, . . . , n}. So a semi-norm ||| · ||| on M is a symmetric
gauge semi-norm if and only if for every (x1, . . . , xn) ∈ C

n and a permutation π on {1, . . . , n},
∣∣∣∣∣∣(x1, . . . , xn)

∣∣∣∣∣∣ = ∣∣∣∣∣∣(|x1|, . . . , |xn|
)∣∣∣∣∣∣,

and

∣∣∣∣∣∣(x1, . . . , xn)
∣∣∣∣∣∣ = ∣∣∣∣∣∣(xπ(1), . . . , xπ(n))

∣∣∣∣∣∣.
Lemma 3.13. Let (M, τ ) be a finite von Neumann algebra and let ||| · ||| be a semi-norm on M.
If ||| · ||| is tracial gauge invariant, then ||| · ||| is symmetric gauge invariant.

Proof. Let θ ∈ Aut(M, τ ) and T ∈ M. We need to prove that |||θ(T )||| = |||T |||. Since |θ(T )| =
θ(|T |) and ||| · ||| is gauge invariant, we can assume that T is positive. Since θ ∈ Aut(M, τ ),
T and θ(T ) are equi-measurable. Hence, |||T ||| = |||θ(T )|||. �
Example 3.14. Let M = C ⊕ M2(C) and τ(a ⊕ B) = a

2 + τ2(B)
2 , where τ2 is the normalized

trace on M2(C). Define |||a ⊕ B||| = |a|/2 + τ2(|B|). Then ||| · ||| is a symmetric gauge norm but
not a tracial gauge norm. Note that 1 ⊕ 0 and 0 ⊕ 1 are equi-measurable, but 1/2 = |||1 ⊕ 0||| �=
|||0 ⊕ 1||| = 1.

Aut(M, τ ) acts on M ergodically if θ(T ) = T for all θ ∈ Aut(M, τ ) implies T = λ1.

Lemma 3.15. Let (M, τ ) be a finite von Neumann algebra and let ||| · ||| be a semi-norm on M.
If Aut(M, τ ) acts on M ergodically, then the following are equivalent:

1. ||| · ||| is a tracial gauge semi-norm;
2. ||| · ||| is a symmetric gauge semi-norm.

Proof. “1 ⇒ 2” by Lemma 3.13. We need to prove “2 ⇒ 1.” By Corollary 3.6, we need to
prove |||S||| = |||T ||| for two equi-measurable simple operators S,T in M. Similar to the proof of
Corollary 2.3, there is a θ ∈ Aut(M, τ ) such that S = θ(T ). Hence |||S||| = |||T |||. �
Corollary 3.16. A semi-norm on (L∞[0,1], ∫ 1

0 dx) or (Cn, τ ) is a tracial gauge norm if and
only if it is a symmetric gauge norm, where τ((x1, . . . , xn)) = x1+···+xn

n
.

3.4. Unitarily invariant semi-norms

Definition 3.17. Let (M, τ ) be a von Neumann algebra. A semi-norm ||| · ||| on M is unitarily
invariant if |||UT V ||| = |||T ||| for all T ∈M and unitary operators U,V ∈M.
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Proposition 3.18. Let ||| · ||| be a semi-norm on M. Then the following statements are equivalent:

1. ||| · ||| is unitarily invariant;
2. ||| · ||| is gauge invariant and unitarily conjugate invariant, i.e., |||UT U∗||| = |||T ||| for all

T ∈M and unitary operators U ∈ M;
3. ||| · ||| is left-unitarily invariant and |||T ||| = |||T ∗||| for every T ∈M;
4. for all operators T ,A,B ∈ M, |||AT B||| � ‖A‖ · |||T ||| · ‖B‖.

Proof. “1 ⇒ 4” is similar to the proof of Lemma 3.2. “4 ⇒ 3,” “3 ⇒ 2,” and “2 ⇒ 1” are
routine. �

For a unitary operator U ∈ M, let θ(T ) = UT U∗. Then θ ∈ Aut(M, τ ). By Proposition 3.18,
we have the following.

Corollary 3.19. Let (M, τ ) be a finite von Neumann algebra and let ||| · ||| be a symmetric, gauge
invariant semi-norm on M. Then ||| · ||| is a unitarily invariant semi-norm on M.

Example 3.20. Let M = C
n, n � 2 and τ((x1, . . . , xn)) = x1+···+xn

n
. Define |||(x1, . . . , xn)||| =

|x1|. Then ||| · ||| is a unitarily invariant semi-norm but not a symmetric gauge semi-norm on M.

Lemma 3.21. Let (M, τ ) be a finite factor and ||| · ||| be a semi-norm on M. Then the following
conditions are equivalent:

1. ||| · ||| is a tracial gauge semi-norm;
2. ||| · ||| is a symmetric gauge semi-norm;
3. ||| · ||| is a unitarily invariant semi-norm.

Proof. “1 ⇒ 2” by Lemma 3.13 and “2 ⇒ 3” by Corollary 3.19. We need to prove “3 ⇒ 1.” By
Corollary 3.6, we need to prove |||S||| = |||T ||| for two equi-measurable positive simple operators
S,T ∈ M. Suppose S = a1E1 + · · · + anEn and T = a1F1 + · · · + anFn, where E1 + · · · +
En = 1 and F1 + · · · + Fn = 1 and τ(Ek) = τ(Fk) for 1 � k � n. Since M is a factor, there is
a unitary operator U ∈ M such that Ek = UFkU

∗ for 1 � k � n. Therefore, S = UT U∗ and
|||S||| = |||T |||. �
3.5. Weak Dixmier property

Definition 3.22. A finite von Neumann algebra (M, τ ) satisfies the weak Dixmier property if
for every positive operator T ∈ M, τ(T ) is in the operator norm closure of the convex hull of
{S ∈ M: S and T are equi-measurable}.

A finite factor (M, τ ) satisfies the Dixmier property (see [2,11]): for every operator T ∈ M,
τ(T ) is in the operator norm closure of the convex hull of {UT U∗: U ∈ U(M)}. Hence finite
factors satisfy the weak Dixmier property. In the following, we will characterize finite von Neu-
mann algebras satisfying the weak Dixmier property.

There is a central projection P in a finite von Neumann algebra (M, τ ) such that PM is
of type I and (1 − P)M is of type II. A type II von Neumann algebra is diffuse, i.e, there are
no non-zero minimal projections in the von Neumann algebra. Furthermore, there are central
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projections P1, . . . ,Pn, . . . in M, such that P1 + · · · + Pn + · · · = P and PnM = An ⊗ Mn(C),
An is abelian. We can decompose An into an atomic part Aa

n and a diffuse part Ac
n, i.e., there is

a projection Qn in An, Aa
n = QnAn, such that Qn = En1 + En2 + · · · , where Enk is a minimal

projection in Aa
n and τ(Enk) > 0, and Ac

n = (1 −Qn)An is diffuse. Let Ma = ∑
⊕ Aa

n ⊗Mn(C)

and Mc = ∑
⊕ Ac

n ⊗ Mn(C) ⊕ (1 − P)M. Then M = Ma ⊕ Mc. We call Ma the atomic
part of M and Mc the diffuse part of M. A finite von Neumann algebra (M, τ ) is atomic if
M = Ma and is diffuse if M = Mc.

Lemma 3.23. Let (M, τ ) be a finite-dimensional von Neumann algebra such that for every two
non-zero minimal projections E,F ∈M, τ(E) = τ(F ). Then (M, τ ) satisfies the weak Dixmier
property.

Proof. Since M is finite-dimensional, M ∼= Mk1(C) ⊕ · · · ⊕ Mkr (C). Since τ(E) = τ(F ) for
every two non-zero minimal projections E,F ∈M, (M, τ ) can be embedded into (Mn(C), τn),
where n = k1 + · · · + kr . So we can assume that (M, τ ) is a von Neumann subalgebra of
(Mn(C), τn) such that M contains all diagonal matrices a1E1 + · · · + anEn. Now for every pos-
itive operator T ∈M, there is a unitary operator U ∈M such that UT U∗ = a1E1 + · · ·+ anEn,

a1, . . . , an � 0 and τ(T ) = a1+···+an

n
. Then τ(T ) =

∑
π (aπ(1)E1+···+aπ(n)En)

n! . �
Lemma 3.24. Let (M, τ ) be a diffuse finite von Neumann algebra. Then (M, τ ) satisfies the
weak Dixmier property.

Proof. Let A be a separable diffuse abelian von Neumann subalgebra of M. By Lemma 2.6,
there is a ∗-isomorphism α from (A, τ ) onto (L∞[0,1], ∫ 1

0 dx) such that
∫ 1

0 dx · α = τ .
For a positive operator T ∈ M, there is an operator S ∈ A such that α(S) = μs(T ). Hence
τ(T ) = τ(S) = ∫ 1

0 μs(T )ds. By Theorem 2.4, for any ε > 0, there are S1, . . . , Sn in A such that

S,S1, . . . , Sn are equi-measurable and ‖τ(S) − S1+···+Sn

n
‖ < ε. Hence (M, τ ) satisfies the weak

Dixmier property. �
Lemma 3.25. Let (M, τ ) be an atomic finite von Neumann algebra with two minimal projections
E and F in M such that τ(E) �= τ(F ). Then (M, τ ) does not satisfy the weak Dixmier property.

Proof. Since (M, τ ) is an atomic finite von Neumann algebra, M ∼= Mk1(C) ⊕ Mk2(C) ⊕ · · · .
Let Eij be minimal projections in Mki

such that
∑

Eij = 1. Without loss of generality, assume
that τ(E11) > τ(E21) � τ(E31) � · · · . Let

T =
⎛⎜⎝ 1

. . .

1

⎞⎟⎠
k1

⊕ A,

where

A =
⎛⎜⎝

1
2

. . .

( 1 )k2

⎞⎟⎠ ⊕
⎛⎜⎝ ( 1

2 )k2+1

. . .

( 1 )k2+k3

⎞⎟⎠ ⊕ · · · .

2 2
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If T1 ∈ M and T are equi-measurable, then

T1 =
⎛⎜⎝ 1

. . .

1

⎞⎟⎠
k1

⊕ A1,

where A and A1 are equi-measurable. Hence, if τ(T ) is in the operator norm closure of the con-
vex hull of {S ∈M: S and T are equi-measurable}, then τ(T ) = 1. This is a contradiction. �

Let (M, τ ) be a finite von Neumann algebra and let E ∈ M be a non-zero projection. The
induced finite von Neumann algebra (ME, τE) is the von Neumann algebra ME = EME with
a faithful normal trace τE(ET E) = τ(ET E)

τ(E)
. The proof of the following lemma is similar to the

proof of Lemma 3.25.

Lemma 3.26. Let (M, τ ) be a finite von Neumann algebra such that Ma �= 0 and Mc �= 0. Then
M does not satisfy the weak Dixmier property.

Proof. Let P be the central projection such that Ma = PM and Mc = (1 − P)M. Let A
be a separable diffuse abelian von Neumann subalgebra of (Mc, τ1−P ). By Lemma 2.6, there
is a positive operator A in Mc such that μs(A) = 1−s

2 with respect to (Mc, τ1−P ). Consider
T = P + A(1 − P). Then

μs(T ) =
{

1, 0 � s < τ(P );
1−s

2τ(1−P)
� 1

2 , τ (P ) � s � 1

with respect to (M, τ ). If T1 ∈ M and T are equi-measurable, then T1 = P + A1 such that A1
and A are equi-measurable. Hence, if τ(T ) is in the operator norm closure of the convex hull of
{S ∈ M: S and T are equi-measurable}, then τ(T ) = 1. This is a contradiction. �

Summarizing Lemmas 3.23–3.26, we can characterize finite von Neumann algebras satisfying
the weak Dixmier property as the following theorem.

Theorem 3.27. Let (M, τ ) be a finite von Neumann algebra. Then M satisfies the weak Dixmier
property if and only if M satisfies one of the following conditions:

1. M is finite-dimensional (hence atomic) and for every two non-zero minimal projections
E,F ∈ M, τ(E) = τ(F ), or equivalently, (M, τ ) can be identified as a von Neumann sub-
algebra of (Mn(C), τn) that contains all diagonal matrices;

2. M is diffuse.

Corollary 3.28. Let (M, τ ) be a finite von Neumann algebra satisfying the weak Dixmier prop-
erty and E ∈ M be a non-zero projection. Then (ME, τE) also satisfies the weak Dixmier
property.

The following example shows that we cannot replace the weak Dixmier property by the
following condition: τ(T ) is in the operator norm closure of the convex hull of {θ(T ):
θ ∈ Aut(M, τ )}.
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Example 3.29. (C ⊕ M2(C), τ ), τ(a ⊕ B) = 1
3a + 2

3τ2(B), satisfies the weak Dixmier property.
On the other hand, let T = 1⊕2 ∈ C⊕M2(C). Then for every θ ∈ Aut(M, τ ), θ(T ) = T . Hence,
τ(T ) is not in the operator norm closure of the convex hull of {θ(T ): θ ∈ Aut(M, τ )}.

3.6. A comparison theorem

The following theorem is the main result of this section.

Theorem 3.30. Let (M, τ ) be a finite von Neumann algebra satisfying the weak Dixmier prop-
erty. If ||| · ||| is a normalized tracial gauge semi-norm on M, then for all T ∈ M,

‖T ‖1 � |||T ||| � ‖T ‖.

In particular, every tracial gauge semi-norm on M is a norm.

Proof. By Corollary 3.5, |||T ||| � ‖T ‖ for every T ∈ M. To prove ‖T ‖1 � |||T |||, we can assume
T � 0. Let ε > 0. Since (M, τ ) satisfies the weak Dixmier property, there are S1, . . . , Sk in
M such that T ,S1, . . . , Sk are equi-measurable and ‖τ(T ) − S1+···+Sk

k
‖ < ε. By Corollary 3.5,

|||τ(T ) − S1+···+Sk

k
||| � ‖τ(T ) − S1+···+Sk

k
‖ < ε. Hence ‖T ‖1 = |τ(T )| � |||S1+···+Sk

k
||| + ε �

|||S1|||+···+|||Sk |||
k

+ ε = |||T ||| + ε. �
By Theorem 3.30 and Lemma 3.21, we have the following corollary.

Corollary 3.31. Let (M, τ ) be a finite factor and let ||| · ||| be a normalized unitarily invariant
norm on M. Then

‖T ‖1 � |||T ||| � ‖T ‖, ∀T ∈M.

In particular, every unitarily invariant semi-norm on a finite factor is a norm.

By Theorem 3.30 and Lemma 3.15, we have the following corollary.

Corollary 3.32. Let ||| · ||| be a normalized symmetric gauge semi-norm on (L∞[0,1], ∫ 1
0 dx)

(or (Cn, τ ), where τ((x1, . . . , xn)) = x1+···+xn

n
). Then

‖T ‖1 � |||T ||| � ‖T ‖, ∀T ∈ L∞[0,1] (
or C

n
)
.

In particular, every symmetric gauge semi-norm on (L∞[0,1], ∫ 1
0 dx) (or (Cn, τ ), respectively)

is a norm.

4. Proof of Theorem B

To prove Theorem B, we need the following lemmas.

Lemma 4.1. Let E1, . . . ,En be projections in M such that E1 +· · ·+En = 1 and T ∈M. Then
S = E1T E1 + · · · + EnT En is in the convex hull of {UT U∗: U ∈ U(M)}.
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Proof. Let T = (Tij ) be the matrix with respect to the decomposition 1 = E1 + · · · + En. Let
U = −E1 + E2 + · · · + En. Then simple computation shows that

1

2

(
UT U∗ + T

) =

⎛⎜⎜⎜⎝
T11 0 · · · 0
0 T22 · · · T2n

...
...

. . .
...

0 Tn2 · · · Tnn

⎞⎟⎟⎟⎠ = E1T E1 + (1 − E1)T (1 − E1).

By induction, S = E1T E1 + · · · + EnT En is in the convex hull of {UT U∗: U ∈ U(M)}. �
Corollary 4.2. Let (M, τ ) be a finite von Neumann algebra and let ||| · ||| be a unitarily invariant
norm on M. Let E1, . . . ,En be projections in M such that E1 + · · · + En = 1 and T ∈ M and
S = E1T E1 + · · · + EnT En. Then |||S||| � |||T |||.

Recall that for a (non-zero) finite projection E in M, τE(ET E) = τ(ET E)
τ(E)

is the induced trace
on ME = EME.

Lemma 4.3. Let (M, τ ) be a finite von Neumann algebra satisfying the weak Dixmier property
and ||| · ||| be a tracial gauge norm on M. Suppose T ,E1, . . . ,En ∈M, T � 0, E1 +· · ·+En = 1.
Then |||T ||| � |||τE1(E1T E1)E1 + · · · + τEn(EnT En)En|||.

Proof. We may assume that |||1||| = 1. Since M satisfies the weak Dixmier property, by Corol-
lary 3.28, (MEi

, τEi
) also satisfies the weak Dixmier property, 1 � i � n. Let ε > 0. There are

operators Si1, . . . , Sik in MEi
such that EiT Ei, Si1, . . . , Sik are equi-measurable and∥∥∥∥Si1 + · · · + Sik

k
− τEi

(EiT Ei)Ei

∥∥∥∥ < ε.

Let Sj = S1jE1 + · · · + SnjEn, 1 � j � k. Then T ,S1, . . . , Sn are equi-measurable and∥∥∥∥S1 + · · · + Sk

k
− (

τE1(E1T E1)E1 + · · · + τEn(EnT En)En

)∥∥∥∥ < ε.

By Corollary 3.5,

|||S1 + · · · + Sk

k
− (

τE1(E1T E1)E1 + · · · + τEn(EnT En)En

)||| < ε.

Hence, |||τE1(E1T E1)E1 +· · ·+τEn(EnT En)En||| � |||T |||+ε. Since ε > 0 is arbitrary, we obtain
the lemma. �
Corollary 4.4. Let (M, τ ) be a finite von Neumann algebra satisfying the weak Dixmier property
and let ||| · ||| be a tracial gauge norm on M. If A is a finite-dimensional abelian von Neumann
subalgebra of M and EA is the normal conditional expectation from M onto A preserving τ ,
then for every T ∈ M, |||EA(T )||| � |||T |||.
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Proof. Let A = {E1, . . . ,En}′′ such that E1 + · · · + En = 1. Then for every T ∈M,

EA(T ) = τE1(E1T E1)E1 + · · · + τEn(EnT En)En.

By Corollary 4.2 and Lemma 4.3, |||EA(T )||| � |||T |||. �
Proof of Theorem B. By Lemma 3.13 and Corollary 3.19, ||| · ||| is unitarily invariant. Sup-
pose Tα is a net in M1,|||·||| such that limα Tα = T in the weak operator topology. Let T =
U |T | be the polar decomposition of T . Then limα U∗Tα = |T | in the weak operator topol-
ogy. Since ||| · ||| is unitarily invariant, |||UTα||| � 1 and ||||T |||| = |||T |||. So we may assume
that T � 0 and Tα = T ∗

α . By the spectral decomposition theorem and Corollary 3.5, to prove
|||T ||| � 1, we need to prove |||S||| � 1 for every positive simple operator S such that S � T .
Let S = a1E1 + · · · + anEn and ε > 0. Since limα Tα = T � S, limα EiTαEi = EiT Ei � aiEi

for 1 � i � n. Hence, limα τEi
(Ei(Tα + ε)Ei) � ai + ε > ai . So there is a β such that

τE1(E1(Tβ + ε)E1)E1 + · · · + τEn(En(Tβ + ε)En)En � S. By Lemma 4.3 and Corollary 3.3,
1 + ε � |||Tβ + ε||| � |||τ(E1(Tβ + ε)E1)E1 + · · · + τ(En(Tβ + ε)En)En||| � |||S|||. Since ε > 0 is
arbitrary, |||S||| � 1. �
Proof of Corollary 1. Since A is a separable abelian von Neumann algebra, there is a sequence
of finite-dimensional abelian von Neumann subalgebras An such that A1 ⊂ A2 ⊂ · · · ⊂ A and
A is the closure of

⋃
n An in the strong operator topology. Let EAn

be the normal conditional
expectation from M onto An preserving τ . Then for every T ∈ M, EA(T ) = limn→∞ EAn

(T )

in the strong operator topology. By Theorem B and Corollary 4.4, |||EA(T )||| � |||T |||. �
In the following we give some other useful corollaries of Theorem B.

Corollary 4.5. Let (M, τ ) be a finite von Neumann algebra satisfying the weak Dixmier property
and let ||| · ||| be a tracial gauge norm on M. Suppose 0 � T1 � T2 � · · · � T in M such that
limn→∞ Tn = T in the weak operator topology. Then limn→∞ |||Tn||| = |||T |||.

Proof. By Corollary 3.3, |||T1||| � |||T2||| � · · · � |||T |||. Hence, limn→∞ |||Tn||| � |||T |||. By Theo-
rem B, limn→∞ |||Tn||| � |||T |||. �
Corollary 4.6. Let (M, τ ) be a finite von Neumann algebra satisfying the weak Dixmier property
and ||| · |||1 and ||| · |||2 be two tracial gauge norms on M. Then ||| · |||1 = ||| · |||2 on M if |||T |||1 =
|||T |||2 for every operator T = a1E1 + · · · + anEn in M such that a1, . . . , an � 0 and τ(E1) =
· · · = τ(En) = 1

n
, n = 1,2, . . . .

Proof. We need only to prove |||T |||1 = |||T |||2 for every positive operator T in M. By Theo-
rem 3.27, M is either a finite-dimensional von Neumann algebra such that τ(E) = τ(F ) for
arbitrary two non-zero minimal projections in M or M is diffuse. If M is a finite-dimensional
von Neumann algebra such that τ(E) = τ(F ) for arbitrary two non-zero minimal projections
in M, then the corollary is obvious. If M is diffuse, by the spectral decomposition theorem,
there is a sequence of operators Tn ∈ M satisfying the following conditions:

1. 0 � T1 � T2 � · · · � T ,
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2. Tn = an1En1 + · · · + annEnn, an1, . . . , ann � 0 and τ(En1) = · · · = τ(Enn) = 1
n

,
3. limn→∞ Tn = T in the weak operator topology.

By the assumption of the corollary, |||Tn|||1 = |||Tn|||2. By Corollary 4.5, |||T |||1 = |||T |||2. �
Corollary 4.7. Let M be a type II1 factor and ||| · |||1 and ||| · |||2 be two unitarily invariant norms
on M. Then ||| · |||1 = ||| · |||2 on M if ||| · |||1 = ||| · |||2 on all type In subfactors of M, n = 1,2, . . . .

5. Ky Fan norms on finite von Neumann algebras

Let (M, τ ) be a finite von Neumann algebra and 0 � t � 1. For T ∈ M, define the Ky Fan
t th norm by

|||T |||(t)
{‖T ‖, t = 0;

1
t

∫ t

0 μs(T )ds, 0 < t � 1.

Let M1 = (M, τ ) ∗ (LF2, τ
′) be the reduced free product von Neumann algebra of M and

the free group factor LF2 . Then M1 is a type II1 factor with a faithful normal trace τ1 such that
the restriction of τ1 to M is τ . Recall that U(M1) is the set of unitary operators in M1 and
P(M1) is the set of projections in M1.

Lemma 5.1. For 0 < t � 1, t |||T |||(t) = sup{|τ1(UT E)|: U ∈ U(M1), E ∈P(M1), τ1(E) = t}.

Proof. We may assume that T is a positive operator. Let A be a separable diffuse abelian von
Neumann subalgebra of M1 containing T and let α be a ∗-isomorphism from (A, τ1) onto
(L∞[0,1], ∫ 1

0 dx) such that τ1 = ∫ 1
0 dx ·α. Let f (x) = α(T ) and let f ∗(x) be the non-increasing

rearrangement of f (x). Then μs(T ) = f ∗(s). By the definition of f ∗(see (2.1)),

m
({

f ∗ > f ∗(t)
}) = lim

n→∞m

({
f ∗ > f ∗(t) + 1

n

})
� t

and

m
({

f ∗ � f ∗(t)
})

� lim
n→∞m

({
f ∗ > f ∗(t) − 1

n

})
� t.

Since f ∗ and f are equi-measurable, m({f > f ∗(t)}) � t and m({f � f ∗(t)}) � t . Therefore,
there is a measurable subset A of [0,1], {f > f ∗(t)} ⊂ A ⊂ {f � f ∗(t)}, such that m(A) = t .
Since f (x) and f ∗(x) are equimeasurable,

∫
A

f (s) ds = ∫ t

0 f ∗(s) ds. Let E′ = α−1(χA).
Then τ1(E

′) = t and τ1(T E′) = ∫
A

f (s) ds = ∫ t

0 f ∗(s) ds = t |||T |||(t). Hence, t |||T |||(t) �
sup{|τ1(UT E)|: U ∈ U(M), E ∈P(M1), τ1(E) = t}.

We need to prove that if E is a projection in M1, τ1(E) = t , and U ∈ U(M1), then t |||T |||(t) �
|τ1(UT E)|. By the Schwarz inequality, |τ1(UT E)| = τ1(EUT 1/2T 1/2E) � τ1(U

∗EUT )1/2 ×
τ1(ET )1/2. By Corollary 2.8, τ1(ET ) = ∫ 1

0 μs(ET )ds. By Corollary 2.10, μs(ET ) �
min{μs(T ),μs(E)‖T ‖}. Note that μs(E) = 0 for s � τ1(E) = t . Hence, τ1(ET ) �

∫ t

0 μs(T )ds

= t |||T |||t . Similarly, τ1(U
∗EUT ) � t |||T |||t . So |τ1(UT E)| � t |||T |||t . This proves that t |||T |||(t) �

sup{|τ1(UT E)|: U ∈ U(M1), E ∈P(M1), τ1(E) = t}. �
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Theorem 5.2. For 0 � t � 1, ||| · |||(t) is a normalized tracial gauge norm on (M, τ ).

Proof. We only prove the triangle inequality, since the other parts are obvious. We may as-
sume that 0 < t � 1. Let S,T ∈ M. By Lemma 5.1, t |||S + T |||(t) = sup{|τ1(U(S + T )E)|: U ∈
U(M1), E ∈ P(M1), τ1(E) = t} � sup{|τ1(USE)|: U ∈ U(M1), E ∈ P(M1), τ1(E) = t} +
sup{|τ1(UT E)|: U ∈ U(M1), E ∈P(M1), τ1(E) = t} = t |||S|||(t) + t |||T |||(t). �
Proposition 5.3. Let (M, τ ) be a finite von Neumann algebra and T ∈ (M, τ ). Then |||T |||(t) is
a non-increasing continuous function on [0,1].

Proof. Let 0 < t1 < t2 � 1.

|||T |||(t1) − |||T |||(t2) = 1

t1

t1∫
0

μs(T )ds − 1

t2

t2∫
0

μs(T )ds

=
1
t1

∫ t1
0 μs(T )ds − 1

t2−t1

∫ t2
t1

μs(T )ds

t2(t2 − t1)
� 0.

Since μs(T ) is right-continuous, |||T |||(t) is a non-increasing continuous function on [0,1]. �
Example 5.4. The Ky Fan k

n
th norm of a matrix T ∈ (Mn(C), τn) is

|||T |||(
k
n

) = s1(T ) + · · · + sk(T )

k
, 1 � k � n.

6. Dual norms of tracial gauge norms on finite von Neumann algebras satisfying the weak
Dixmier property

6.1. Dual norms

Let ||| · ||| be a norm on a finite von Neumann algebra (M, τ ). For T ∈M, define

|||T |||#M = sup
{∣∣τ(T X)

∣∣: X ∈ M, |||X||| � 1
}
.

When no confusion arises, we simply write ||| · |||# instead of ||| · |||#M.

Lemma 6.1. ||| · |||# is a norm on M.

Proof. If T �= 0, |||T |||# � τ(T T ∗)/|||T ∗||| > 0. It is easy to see that |||λT |||# = |λ| · |||T |||# and
|||T1 + T2|||# � |||T1|||# + |||T2|||#. �
Definition 6.2. ||| · |||# is called the dual norm of ||| · ||| on M with respect to τ .

The next lemma follows directly from the definition of dual norm.
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Lemma 6.3. Let ||| · ||| be a norm on a finite von Neumann algebra (M, τ ) and let ||| · |||# be the
dual norm on M. Then for S,T ∈ M, |τ(ST )| � |||S||| · |||T |||#.

The following corollary is a generalization of Hölder’s inequality for bounded operators in
finite von Neumann algebras.

Corollary 6.4. Let (M, τ ) be a finite von Neumann algebra and let ||| · ||| be a gauge norm on
M. Then for S,T ∈M, ‖ST ‖1 � |||S||| · |||T |||#.

Proof. By Lemma 3.8, ‖ST ‖1 = sup{|τ(UST )|: U ∈ U(M)}. By Lemmas 6.3 and 3.2,
|τ(UST )| � |||US||| · |||T |||# = |||S||| · |||T |||#. �
Proposition 6.5. If ||| · ||| is a unitarily invariant norm on a finite von Neumann algebra (M, τ ),
then ||| · |||# is also a unitarily invariant norm on M.

Proof. Let U be a unitary operator. Then |||UT |||# = sup{|τ(UT X)|: X ∈ M, |||X||| � 1} =
sup{|τ(T XU)|: X ∈ M, |||X||| � 1} = sup{|τ(T X)|: X ∈ M, |||X||| � 1} = |||T ||| and |||T U |||# =
sup{|τ(T UX)|: X ∈ M, |||X||| � 1} = sup{|τ(T X)|: X ∈M, |||X||| � 1} = |||T |||. �
Proposition 6.6. If ||| · ||| is a symmetric gauge norm on a finite von Neumann algebra (M, τ ),
then ||| · |||# is also a symmetric gauge norm on (M, τ ).

Proof. Let θ ∈ Aut(M, τ ). Then |||θ(T )|||# = sup{|τ(θ(T )X)|: X ∈ M, |||X||| � 1} =
sup{|τ(θ(T θ−1(X)))|: X ∈ M, |||X||| � 1} = sup{|τ(T θ−1(X))|: X ∈ M, |||X||| � 1} =
sup{|τ(T X)|: X ∈ M, |||X||| � 1} = |||T |||. �
Lemma 6.7. Let (M, τ ) be a finite von Neumann algebra satisfying the weak Dixmier property
and let ||| · ||| be a tracial gauge norm on M. If T ∈M is a positive operator, then

|||T |||# = sup
{
τ(T X): X ∈M, X � 0, XT = T X, |||X||| � 1

}
.

Proof. Let A be a separable abelian von Neumann subalgebra of M containing T and let EA
be the normal conditional expectation from M onto A preserving τ . For every Y ∈ M such that
|||Y ||| � 1, let X = EA(Y ). By Corollary 1, ||||X|||| = |||X||| � |||Y ||| � 1. Furthermore, |τ(T Y )| =
|τ(EA(T Y ))| = |τ(T EA(Y ))| = |τ(T X)| � τ(T |X|). Hence,

|||T |||# = sup
{
τ(T X): X ∈M, X � 0, XT = T X, |||X||| � 1

}
. �

Lemma 6.8. Let (M, τ ) be a finite von Neumann algebra satisfying the weak Dixmier property
and let ||| · ||| be a tracial gauge norm on M. Suppose T = a1E1 +· · ·+anEn is a positive simple
operator in M. Then

|||T ||| = sup
{
τ(T X): X = b1E1 + · · · + bnEn � 0 and |||X|||# � 1

}
= sup

{
n∑

k=1

akbkτ (Ek): X = b1E1 + · · · + bnEn � 0 and |||X|||# � 1

}
.
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Proof. By Lemma 6.7, |||T |||# = sup{|τ(T X)|: X ∈ M, X � 0, XT = T X, |||X||| � 1}. Let
A = {E1, . . . ,En}′′ and let EA be the normal conditional expectation from M onto A pre-
serving τ . Then S = EA(X) = τE1(E1XE1)E1 + · · · + τEn(EnXEn)En is a positive operator,
τ(T X) = τ(EA(T X)) = τ(T EA(X)) = τ(T S), and |||S||| � |||X||| by Corollary 4.4. Combining
the definition of dual norm, this proves the lemma. �
Corollary 6.9. Let (M, τ ) be a finite von Neumann algebra satisfying the weak Dixmier property
and let ||| · ||| be a tracial gauge norm on M. Suppose S,T are equi-measurable, positive simple
operators in M. Then |||S|||# = |||T |||#.

Theorem 6.10. Let (M, τ ) be a finite von Neumann algebra satisfying the weak Dixmier property
and let ||| · ||| be a tracial gauge norm on M. Then ||| · |||# is also a tracial gauge norm on M.
Furthermore, if |||1||| = 1, then |||1|||# = 1.

Proof. By Lemma 3.13, ||| · ||| is a symmetric gauge norm on M. By Proposition 6.6, Corol-
lary 6.9 and Lemma 3.10, ||| · |||# is a tracial gauge norm on M. Note that |||1||| = 1, hence,
|||1|||# � τ(1 · 1) = 1. On the other hand, by Theorem 3.30, |||1|||# = sup{|τ(X)|: X ∈ M,
|||X||| � 1} � sup{|||X|||: X ∈ M, |||X||| � 1} � 1. �
Corollary 6.11. Let (M, τ ) be a finite von Neumann algebra satisfying the weak Dixmier prop-
erty and let ||| · ||| be a tracial gauge norm on M. If N is a von Neumann subalgebra of M
satisfying the weak Dixmier property, then ||| · |||#N is the restriction of ||| · |||#M to N .

Proof. Let ||| · |||1 = ||| · |||#N and let ||| · |||2 be the restriction of ||| · |||#M to N . By Theorem 6.10,
both ||| · |||1 and ||| · |||2 are tracial gauge norms on N . By Lemma 3.6, to prove ||| · |||1 = ||| · |||2,
we need to prove |||T |||1 = |||T |||2 for every positive simple operator T ∈ N . Let A be a finite-
dimensional abelian von Neumann subalgebra of N containing T . By Lemma 6.8, |||T |||#M =
|||T |||#N = |||T |||#A. So |||T |||1 = |||T |||2. �
6.2. Dual norms of Ky Fan norms

For (x1, . . . , xn) ∈ C
n, τ(x) = x1+···+xn

n
defines a trace on C

n. For 1 � k � n, the Ky Fan
k
n

th norm on (Cn, τ ) is |||(x1, . . . , xn)|||( k
n
)
= x∗

1 +···+x∗
k

k
, where (x∗

1 , . . . , x∗
n) is the decreasing rear-

rangement of (|x1|, . . . , |xn|). Let � = {(x1, . . . , xn) ∈ C
n: x1 � x2 � xk = xk+1 = · · · = xn � 0,

x1+···+xk

k
� 1} and E be the set of extreme points of �.

The proof of the following lemma is an easy exercise.

Lemma 6.12. E consists of k + 1 points: (k,0, . . .), ( k
2 , k

2 ,0, . . .), . . . , ( k
k−1 , . . . , k

k−1 ,0, . . .),

(1,1, . . . ,1) and (0,0, . . . ,0).

The following lemma is well known. For a proof we refer to [8, 10.2].

Lemma 6.13. Let s1 � s2 � · · · � sn � 0 and t1, . . . , tn � 0. If t∗1 � t∗2 � · · · � t∗n is the decreas-
ing rearrangement of t1, . . . , tn, then s1t

∗
1 + · · · + snt

∗
n � s1t1 + · · · + sntn.
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Lemma 6.14. For T ∈ (Mn(C), τn),

|||T |||#
( k

n
)
= max

{
k

n
‖T ‖,‖T ‖1

}
.

Proof. Let |||T |||1 = |||T |||#
( k

n
)

and |||T |||2 = max{ k
n
‖T ‖,‖T ‖1}. Then both ||| · |||1 and ||| · |||2 are

unitarily invariant norms on Mn(C). To prove ||| · |||1 = ||| · |||2, we need only to prove |||T |||1 =
|||T |||2 for every positive matrix T in Mn(C). We can assume that

T =
⎛⎜⎝ s1

. . .

sn

⎞⎟⎠ ,

where s1, . . . , sn are s-numbers of T such that s1 � s2 � · · · � sn. By Lemmas 6.8 and 6.13,

|||T |||1 = sup

{∑n
i=1 si ti

n
: (t1, . . . , tn) ∈ �

}
= sup

{∑n
i=1 si ti

n
: (t1, . . . , tn) ∈ E

}
.

Note that ‖T ‖ = s1 � s2 � · · · � sn � 0. By Lemma 6.12 and simple computations, |||T |||1 =
max{ k

n
‖T ‖,‖T ‖1} = |||T |||2. �

The next lemma simply follows from the definition of dual norms.

Lemma 6.15. Let (M, τ ) be a finite von Neumann algebra and ||| · |||, ||| · |||1, ||| · |||2 be norms on
M such that

|||T |||1 � |||T ||| � |||T |||2, ∀T ∈M.

Then

|||T |||#2 � |||T |||# � |||T |||#1, ∀T ∈M.

Corollary 6.16. Let (M, τ ) be a finite von Neumann algebra and ||| · |||1, ||| · |||2 be equivalent
norms on M. Then ||| · |||#1 and ||| · |||#2 are equivalent norms on M.

Theorem 6.17. Let M be a type II1 factor and 0 � t � 1. Then

|||T |||#(t) = max{t‖T ‖,‖T ‖1}, ∀T ∈ M.

Proof. Firstly, we assume t = k
n

is a rational number. Let Nr be a type Irn subfactor of M.
Then the restriction of ||| · |||(t) to Nr is ||| · |||

( rk
rn

)
. By Lemma 6.14 and Corollary 6.11, |||T |||#(t) =

max{t‖T ‖,‖T ‖1} for T ∈ Nr . By Corollary 4.7, |||T |||#
(t)

= max{t‖T ‖,‖T ‖1} for all T ∈ M.
Now assume t is an irrational number. Let t1, t2 be two rational numbers such that t1 < t < t2.
By Lemma 6.15, for every T ∈ M,

max
{
t2‖T ‖,‖T ‖1

}
� |||T |||#(t) � max

{
t1‖T ‖,‖T ‖1

}
.

Since t1 � t � t2 are arbitrary, |||T |||# = max{t‖T ‖,‖T ‖1}. �
(t)
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6.3. Proof of Theorem C

Lemma 6.18. Let n ∈ N and τ be an arbitrary faithful state on C
n. If ||| · ||| is a norm on (Cn, τ )

and ||| · |||# is the dual norm with respect to τ , then ||| · |||## = ||| · |||.
Proof. By Lemma 6.3, |||T |||## = sup{|τ(T X)|: X ∈ Cn, |||X|||# � 1} � |||T |||. We need to prove
|||T ||| � |||T |||##. By the Hahn–Banach theorem, there is a continuous linear functional φ on C

n

with respect to the topology induced by ||| · ||| on C
n such that |||T ||| = φ(T ) and ‖φ‖ = 1. Since

all norms on C
n induce the same topology, there is an element Y ∈ C

n such that φ(S) = τ(SY )

for all S ∈ C
n. By the definition of dual norm, |||Y |||# = ‖φ‖ = 1. By Lemma 6.3, |||T ||| = φ(T ) =

τ(T Y ) � |||T |||##. �
Proof of Theorem C. By Theorem 6.10, both ||| · |||## and ||| · ||| are tracial gauge norms on
M. By Corollary 3.6, to prove ||| · |||## = ||| · |||, we need to prove that |||T ||| = |||T |||## for every
positive simple operator T ∈M. Let A be the abelian von Neumann subalgebra generated by T .
By Corollary 6.11 and Lemma 6.18, |||T |||##

M = |||T |||##
A = |||T |||. �

7. Proof of Theorem A

Let (M, τ ) be a finite von Neumann algebra.

Lemma 7.1. Let n ∈ N, a1 � a2 � · · · � an � an+1 = 0 and f (x) = a1χ[0, 1
n
)
(x)+a2χ[ 1

n
, 2
n
)
(x)+

· · · + anχ[ n−1
n

,1](x). For T ∈ M, define

|||T |||f =
1∫

0

f (s)μs(T ) ds. (7.1)

Then

|||T |||f =
n∑

k=1

k(ak − ak+1)

n
|||T |||(

k
n

). (7.2)

Proof. Since t |||T |||(t) = ∫ t

0 μs(T )ds, summation by parts shows that

|||T |||f =
1∫

0

f (s)μs(T ) dt = a1

1
n∫

0

μs(T )ds + a2

2
n∫

1
n

μs(T ) ds + · · · + an

1∫
n−1
n

μs(T ) ds

=
n∑

k=1

k(ak − ak+1)

n
|||T |||(

k
n

). �

Corollary 7.2. The norm ||| · |||f defined as above is a tracial gauge norm on M and |||1|||f =∫ 1
0 f (x)dx = a1+···+an

n
.

Lemma 7.3. Let (M, τ ) be a finite von Neumann algebra satisfying the weak Dixmier property
and let {||| · |||α} be a set of tracial gauge norms on (M, τ ) such that |||1|||α � 1 for all α. For
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every T ∈M, define

|||T ||| = sup
α

|||T |||α.

Then ||| · ||| � ∨
α ||| · |||α is also a tracial gauge norm on (M, τ ).

Proof. By Corollary 3.5, |||T ||| � ‖T ‖ is well defined. It is easy to check that ||| · ||| is a tracial
gauge norm on (M, τ ). �
Proof of Theorem A. Let

F ′ =
{
μs(X): X ∈M, |||X|||# � 1, X = b1F1 + · · · + bkFk � 0,

where F1 + · · · + Fk = 1 and τ(F1) = · · · = τ(Fk) = 1

k
, k = 1,2, . . .

}
.

For every positive operator X ∈ M such that |||X|||# � 1,
∫ 1

0 μs(X)ds = τ(X) = ‖X‖1 �
|||X|||# � 1 by Theorem 3.30. Hence F ′ ⊂ F and μs(1) = χ[0,1](s) ∈ F ′ by Theorem 6.10. For
T ∈M, define

|||T |||′ = sup
{|||T |||f : f ∈F ′}.

By Corollary 7.2, ||| · |||′ is a tracial gauge norm on M. To prove that ||| · |||′ = ||| · |||, by Corollary 4.6,
we need prove that |||T |||′ = |||T ||| for every positive operator T ∈ M such that T = a1E1 + · · · +
anEn and τ(E1) = · · · = τ(En) = 1

n
.

By Lemma 6.8 and Theorem C,

|||T ||| = sup

{
1

n

n∑
k=1

akbk: X = b1E1 + · · · + bnEn � 0 and |||X|||# � 1

}
.

Note that if X = b1E1 + · · · + bnEn is a positive simple operator in M and |||X|||# � 1,
then μs(X) ∈ F ′ and |||T |||μs(X) = ∫ 1

0 μs(X)μs(T )ds = 1
n

∑n
k=1 a∗

k b∗
k , where {a∗

k } and {b∗
k }

are non-increasing rearrangements of {ak} and {bk}, respectively. By Lemma 6.13, |||T ||| �
sup{|||T |||f : f ∈ F ′} = |||T |||′.

We need to prove |||T ||| � |||T |||′. Let X = b1F1 + · · · + bkFk be a positive operator in M such
that F1 +· · ·+Fk = 1, τ(F1) = · · · = τ(Fk) = 1

k
and |||X|||# � 1. We need only prove that |||T ||| �

|||T |||μs(X). Since (M, τ ) satisfies the weak Dixmier property, by Theorem 3.27, (M, τ ) is either
a von Neumann subalgebra of (Mn(C), τn) that contains all diagonal matrices or M is a diffuse
von Neumann algebra. In either case, we may assume that T = ã1Ẽ1 + · · · + ãr Ẽr and X =
b̃1F̃1 +· · ·+ b̃r F̃r , where Ẽ1 +· · ·+Ẽr = F̃1 +· · ·+F̃r = 1 and τ(Ẽi) = τ(F̃i) = 1

r
for 1 � i � r ,

ã1 � · · · � ãr � 0 and b̃1 � · · · � b̃r � 0. Let Y = b̃1Ẽ1 +· · ·+ b̃r Ẽr . Then X and Y are two equi-
measurable operators in M and μs(X) = μs(Y ). By Theorem 6.10, |||Y |||# � 1. By Lemma 6.3,

|||T ||| � τ(T Y ) = 1

r

r∑
i=1

ãi b̃i =
1∫
μs(Y )μs(T ) ds =

1∫
μs(X)μs(T )ds = |||T |||μs(X). �
0 0
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Combining Theorem A and Lemma 3.21, we obtain the following corollary.

Corollary 7.4. Let (M, τ ) be a finite factor and let ||| · ||| be a normalized unitarily invariant
norm on M. Then there is a subset F ′ of F containing the constant 1 function on [0,1] such
that for all T ∈M, |||T ||| = sup{|||T |||f : f ∈F ′}.

Combining Theorem A and Lemma 3.15 we obtain the following corollary.

Corollary 7.5. Let ||| · ||| be a normalized symmetric gauge norm on (L∞[0,1], ∫ 1
0 dx). Then there

is a subset F ′ of F containing the constant 1 function on [0,1] such that for all T ∈ L∞[0,1],
|||T ||| = sup{|||T |||f : f ∈ F ′}.

8. Proof of Theorems D and E

Lemma 8.1. Let θ1, θ2 be two embeddings from (L∞[0,1], ∫ 1
0 dx) into a finite von Neumann

algebra (M, τ ). If ||| · ||| is a tracial gauge norm on M, then |||θ1(f )||| = |||θ2(f )||| for every
f ∈ L∞[0,1].

Proof. If f ∈ L∞[0,1] is a positive function, then θ1(f ) and θ2(f ) are equi-measurable opera-
tors in M. Hence |||θ1(f )||| = |||θ2(f )|||. �
Proof of Theorem D. We prove Theorem D for diffuse finite von Neumann algebras. The proof
of the atomic case is similar. We may assume that the norms on M or L∞[0,1] are normalized.
By the definition of Ky Fan norms, there is a one-to-one correspondence between Ky Fan t th
norms on (M, τ ) and Ky Fan t th norms on (L∞[0,1], ∫ 1

0 dx) as in Theorem D. By Lemma 7.1,
Theorems 3.27 and A, there is a one-to-one correspondence between normalized tracial norms
on (M, τ ) and normalized symmetric gauge norms on (L∞[0,1], ∫ 1

0 dx) as in Theorem D. �
Example 8.2. For 1 � p � ∞, the Lp-norm on L∞[0,1] defined by

∥∥f (x)
∥∥

p
=

{
(
∫ 1

0 |f (x)|p dx)1/p, 1 � p < ∞;

ess sup |f |, p = ∞

is a normalized symmetric gauge norm on (L∞[0,1], ∫ 1
0 dx). By Corollaries 2 and 2.8, the in-

duced norm

‖T ‖p =
{

(τ (|T |p))1/p = (
∫ 1

0 |μs(T )|p ds)1/p, 1 � p < ∞;

‖T ‖, p = ∞
is a normalized unitarily invariant norm on a type II1 factor M. The norms {‖ · ‖p: 1 � p � ∞}
are called Lp-norms on M.

Corollary 8.3. Let (M, τ ) be a finite von Neumann algebra satisfying the weak Dixmier property
and let ||| · ||| be a tracial gauge norm on (M, τ ). If (M, τ ) can be embedded into a finite factor
(M1, τ1), then there is a unitarily invariant norm ||| · |||1 on (M1, τ1) such that ||| · ||| is the
restriction of ||| · |||1 to (M, τ ).
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The following example shows that without the weak Dixmier property, Corollary 8.3 may
fail.

Example 8.4. On (C2, τ ), τ((x, y)) = 1
3x + 2

3y, let |||(x, y)||| = 2
3 |x| + 1

3 |y|. It is easy to see
that ||| · ||| is a tracial gauge norm on (C2, τ ). Let M1 be the reduced free product of (C2, τ )

with the free group factor L(F2). Then M1 is a type II1 factor with a faithful normal trace τ1
such that the restriction of τ1 to C

2 is τ . Suppose ||| · |||1 is a unitarily invariant norm on M1
such that the restriction of ||| · |||1 to C2 is ||| · |||. Let E = (1,0) and F = (0,1) in C2. Then
τ1(E) = τ(E) < τ(F ) = τ1(F ). So there is a unitary operator U in M1 such that UEU∗ � F .
By Corollary 3.3, 2

3 = |||E||| = |||E|||1 = |||UEU∗|||1 � |||F |||1 = |||F ||| = 1
3 . This is a contradic-

tion.

Proof of Theorem E. Let ||| · |||2 be the tracial gauge norm on M corresponding to the symmetric
gauge norm ||| · |||#1 on (L∞[0,1], ∫ 1

0 dx) as in Theorem D. By Lemma 4.6, to prove ||| · |||2 = ||| · |||#
on M, we need to prove |||T |||2 = |||T |||# for every positive simple operator T = a1E1 + · · · +
anEn in M such that τ(E1) = · · · = τ(En) = 1

n
. We may assume that a1 � · · · � an � 0. Then

μs(T ) = a1χ[0, 1
n
)
(s) + · · · + anχ[ n−1

n
,1](s). By Lemma 6.8,

|||T |||# = sup

{
1

n

n∑
k=1

akbk: X = b1E1 + · · · + bnEn � 0 and |||X|||# � 1

}
.

By Lemma 6.13,

|||T |||# = sup

{
1

n

n∑
k=1

akbk: X = b1E1 + · · · + bnEn � 0, b1 � · · · � bn � 0, |||X||| � 1

}
.

By Theorem D and Lemma 6.8,

|||T |||2 = ∣∣∣∣∣∣μs(T )
∣∣∣∣∣∣# = sup

{
1

n

n∑
k=1

akbk: g(s) = b1χ[0, 1
n
)
(s) + · · · + bnχ[ n−1

n
,1](s) � 0,

∣∣∣∣∣∣g(s)
∣∣∣∣∣∣ � 1

}
.

By Lemma 6.13,

|||T |||2 = ∣∣∣∣∣∣μs(T )
∣∣∣∣∣∣# = sup

{
1

n

n∑
k=1

akbk: g(s) = b1χ[0, 1
n
)
(s) + · · · + bnχ[ n−1

n
,1](s) � 0,

b1 � · · · � bn � 0,
∣∣∣∣∣∣g(s)

∣∣∣∣∣∣ � 1

}
.

Note that if b1 � · · · � bn � 0, then μs(b1E1 + · · · + bnEn) = b1χ[0, 1
n
)
(s) + · · · + bnχ[ n−1

n
,1](s).

Since ||| · ||| is the tracial gauge norm on (M, τ ) corresponding to the symmetric gauge norm ||| · |||1
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on (L∞[0,1], ∫ 1
0 dx) as in Theorem D, |||b1E1 + · · · + bnEn||| � 1 if and only if |||b1χ[0, 1

n
)
(s) +

· · · + bnχ[ n−1
n

,1](s)|||1 � 1. Therefore, |||T |||2 = |||T |||#. �
Example 8.5. If p = 1, let q = ∞. If 1 < p < ∞, let q = p

p−1 . Then the Lq -norm on L∞[0,1] is
the dual norm of the Lp-norm on L∞[0,1]. By Theorem E, the Lq -norm on a type II1 factor M
is the dual norm of the Lp-norm on M.

9. Proof of Theorem F

Proof of Theorem F. Let ||| · ||| be a tracial gauge norm on M. By Lemma 7.1, |||S|||f � |||T |||f
for every f ∈F . By Theorem A, |||S||| � |||T |||. �
Corollary 9.1. Let M be a type II1 factor and S,T ∈ M. If |||S|||(t) � |||T |||(t) for all Ky Fan t th
norms, 0 � t � 1, then |||S||| � |||T ||| for all unitarily invariant norms ||| · ||| on M.

By Corollary 9.1, we obtain Ky Fan’s dominance theorem [13].

Ky Fan’s dominance theorem. If S,T ∈ Mn(C) and |||S|||(k/n) � |||T |||(k/n), i.e.,
∑k

i=1 si(S) �∑k
i=1 si(T ) for 1 � k � n, then |||S||| � |||T ||| for all unitarily invariant norms ||| · ||| on Mn(C).

10. Extreme points of normalized unitarily invariant norms on finite factors

In this section, we assume that M is a finite factor with the unique tracial state τ .

10.1. N(M)

Let N(M) be the set of normalized unitarily invariant norms on M. It is easy to see that
N(M) is a convex set. Let F(M) be the set of complex functions defined on M. Then F(M) is
a locally convex space such that a neighborhood of f ∈ F(M) is

N(f,T1, . . . , Tn, ε) = {
g ∈ F(M):

∣∣g(Ti) − f (Ti)
∣∣ < ε

}
.

In this topology, fα → f means limα fα(T ) = f (T ) for every T ∈ M. We call this topology the
pointwise weak topology.

Lemma 10.1. N(M) ⊆ F(M) is a compact convex subset in the pointwise weak topology.

Proof. It is clear that N(M) is a convex subset of F(M). Suppose ||| · |||α ∈ F(M) and f (T ) =
limα |||T |||α for every T ∈ M. It is easy to check that f (T ) defines a unitarily invariant semi-norm
on M such that f (1) = 1. By Corollary 3.31, f (T ) is a norm and f ∈ N(M). �

Let Ne(M) be the subset of extreme points of N(M). By the Krein–Milman theorem, the
closure of the convex hull of Ne(M) is N(M) in the pointwise weak topology. It is an interesting
question of characterizing Ne(M). In the following, we will provide some results on Ne(M).
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10.2. Ne(Mn(C))

For n � 2, let 1 ⊕ s2 ⊕ · · · ⊕ sn be the matrix⎛⎜⎜⎜⎝
1

s2
. . .

sn

⎞⎟⎟⎟⎠ ∈ Mn(C).

Let ||| · ||| be a normalized unitarily invariant norm on Mn(C). For 0 � sn � · · · � s2 � 1, define

f (s2, . . . , sn) = f|||·|||(s2, . . . , sn) = |||1 ⊕ s2 ⊕ · · · ⊕ sn|||. (10.1)

In the following, let Ωn−1 = {(s2, . . . , sn): 0 � sn � · · · � s2 � 1}.
By [7, Lemma 3.2] and Corollary 3.31, we have the following lemma.

Lemma 10.2. Let f (s2, . . . , sn) be a function defined on Ωn−1. In order that f (s2, . . . , sn) =
f|||·|||(s2, . . . , sn) for some ||| · ||| ∈ N(Mn(C)), it is necessary and sufficient that the following
conditions are satisfied:

1. f (s2, . . . , sn) > 0 for all (s2, . . . , sn) ∈ Ωn−1 and f (1, . . . ,1) = 1;
2. f (s2, . . . , sn) is a convex function on Ωn−1;
3. for 0 � sn � sn−1 � · · · � s1, 0 � tn � tn−1 � · · · � t1, if

∑k
i=1 si �

∑k
i=1 ti for 1 � k � n,

then s1 · f ( s2
s1

, . . . , sn
s1

) � t1 · f ( t2
t1

, . . . , tn
t1

).

If f (s2, . . . , sn) satisfies the above conditions, then f satisfies

1 + s2 + · · · + sn

n
� f (s2, . . . , sn) � 1

for all (s2, . . . , sn) ∈ Ωn−1.

Let ||| · |||1, ||| · |||2 ∈ N(Mn(C)). If |||S|||1 = |||S|||2 for all S = 1 ⊕ s2 ⊕ · · · ⊕ sn, (s2, . . . , sn) ∈
Ωn−1, then |||T |||1 = |||T |||2 for every matrix T ∈ Mn(C). This implies the following lemma.

Lemma 10.3. Let ||| · |||1, ||| · |||2 ∈ N(Mn(C)). Then ||| · |||1 = ||| · |||2 if and only if f|||·|||1(s2, . . . , sn) =
f|||·|||2(s2, . . . , sn) for all (s2, . . . , sn) ∈ Ωn−1.

Let 1 � m � n. Suppose ||| · ||| is a normalized unitarily invariant norm on Mm(C) and
g(s2, . . . , sm) = g|||·|||(s2, . . . , sm) is the function on Ωm−1 induced by ||| · ||| (see (10.1)). Define
f (s2, . . . , sn) on Ωn−1 by

f (s2, . . . , sn) = g(s2, . . . , sm), (s2, . . . , sn) ∈ Ωn−1.

It is easy to check that f (s2, . . . , sn) is a function on Ωn−1 satisfying Lemma 10.2. By Lem-
mas 10.2 and 10.3, there is a unique normalized unitarily invariant norm ||| · |||1 ∈ N(Mn(C))

such that f (s2, . . . , sn) = f|||·|||1(s2, . . . , sn) = g(s2, . . . , sm) for all (s1, . . . , sn) ∈ Ωn−1. (This fact
can also be obtained by Corollary 7.4 and Lemma 10.3.) ||| · |||1 is called the induced norm of ||| · |||.
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Conversely, suppose ||| · |||1 is a normalized unitarily invariant norm on Mn(C) and
f (s2, . . . , sn) = f|||·|||1(s2, . . . , sn) is the function on Ωn−1 induced by ||| · |||1. If f (s2, . . . , sn) =
g(s2, . . . , sm) for all (s2, . . . , sn) ∈ Ωn−1, then g(s2, . . . , sm) satisfies Lemma 10.2. Hence, there
is a unique normalized unitarily invariant norm ||| · ||| on Mm(C) such that g(s2, . . . , sm) =
g|||·|||(s2, . . . , sm) for all (s2, . . . , sm) ∈ Ωm−1. ||| · ||| is called the reduced norm of ||| · |||1.

Proposition 10.4. For 1 � k � n, the Ky Fan k
n

th norm (see Example 5.4) on Mn(C) is an
extreme point of N(Mn(C)).

Proof. Suppose 0 < α < 1 and ||| · |||1, ||| · |||2 ∈ N(Mn(C)) satisfy ||| · |||
( k

n
)

= α||| · |||1 +
(1 − α)||| · |||2. Let f (s2, . . . , sn) = f|||·|||

( k
n )

(s2, . . . , sn), f1(s2, . . . , sn) = f|||·|||1(s2, . . . , sn) and

f2(s2, . . . , sn) = f|||·|||2(s2, . . . , sn) for (s2, . . . , sn) ∈ Ωn−1. Then f (s2, . . . , sn−1) =
αf1(s2, . . . , sn−1) + (1 − α)f2(s2, . . . , sn−1).

Since f (s2, . . . , sn) = 1+s2+···+sk
k

, ∂f
∂sk+1

= · · · = ∂f
∂sn

= 0. Since f1(s2, . . . , sn), f2(s2, . . . , sn)

are convex functions on Ωn−1, ∂fi

∂sj
� 0 for i = 1,2 and k+1 � j � n. Since f = αf1 +(1−α)f2,

∂fi

∂sj
= 0 for i = 1,2 and k + 1 � j � n. This implies that fi(s2, . . . , sn) = gi(s2, . . . , sk) for all

(s2, . . . , sn) ∈ Ωn−1 and i = 1,2.
By the discussions above the proposition, there are normalized unitarily invariant norms ||| · |||1,

||| · |||2 on Mk(C) such that gi(s2, . . . , sk) = (gi)|||·|||i (s2, . . . , sk) for all (s2, . . . , sk) ∈ Ωk−1 and
i = 1,2. By Lemma 10.2,

gi(s2, . . . , sk) � 1 + s2 + · · · + sk

k

for all (s2, . . . , sk) ∈ Ωk−1 and i = 1,2. Since f = αf1 + (1 − α)f2,

1 + s2 + · · · + sk

k
= αg1(s2, . . . , sk) + (1 − α)g2(s2, . . . , sk).

This implies that g1(s2, . . . , sk) = g2(s2, . . . , sk) = 1+s2+···+sk
k

. So f = f1 = f2. �
The proof of the following proposition is similar to that of Proposition 10.4.

Proposition 10.5. Let 1 � m � n and ||| · ||| be a normalized unitarily invariant norm on Mm(C).
If ||| · ||| is an extreme point of N(Mm(C)), then the induced norm ||| · |||1 on Mn(C) is also an
extreme point of N(Mn(C)).

Question. For n � 3, find all extreme points of N(Mn(C)).

10.3. Ne(M2(C))

In this subsection, we will prove Theorem J. We need the following auxiliary results. The
following lemma is a corollary of Lemma 10.2 in the case n = 2.
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Lemma 10.6. Let f (s) be a function on [0,1]. If there is a normalized unitarily invariant norm
||| · ||| on M2(C) such that f (s) = f|||·|||(s) = |||1 ⊕ s|||, then f (s) is an increasing convex function
on [0,1] satisfying

1 + s

2
� f (s) � 1, ∀s ∈ [0,1].

Corollary 10.7. For 0 � a � b � 1, we have

0 � f ′(a−) � f ′(a+) � f ′(b−) � f ′(b+) � f ′(1−) � 1

2
.

Proof. Since f (s) is an increasing convex function, 0 � f ′(a−) � f ′(a+) � f ′(b−) �
f ′(b+) � f ′(1−). By Lemma 10.6,

f ′(1−) = lim
h→0+

f (1) − f (1 − h)

h
� lim

h→0+
1 − (2 − h)/2

h
= 1

2
. �

For 1
2 � t � 1, define ||| · |||〈t〉 = max{t‖T ‖,‖T ‖1}.

Lemma 10.8. For 1/2 � t � 1, ||| · |||〈t〉 is an extreme point of N(M2(C)).

Proof. Suppose 0 < α < 1 and ||| · |||1, ||| · |||2 ∈ N(M2(C)) such that ||| · |||〈t〉 = α||| · |||1 +
(1 − α)||| · |||2. Let f (s) = f|||·|||〈t〉(s), f1(s) = f|||·|||1(s) and f2(s) = f|||·|||2(s). Then f (s) =
αf1(s) + (1 − α)f2(s). Note that

f (s) =
{

t 0 � s � 2t−1
2 ;

s+1
2

2t−1
2 � s � 1.

Hence, f ′(s) = 0 if 0 � s < 2t−1
2 and f ′(s) = 1

2 if 2t−1
2 < s � 1. By Corollary 10.7, f ′

1(s) =
f ′

2(s) = 0 if 0 � s < 2t−1
2 and f ′

1(s) = f ′
2(s) = 1

2 if 2t−1
2 < s � 1. Since f (s), f1(s), f2(s) are

convex functions and hence continuous and f (1) = f1(1) = f2(1) = 1, f (s) = f1(s) = f2(s) for
all 0 � s � 1. This implies that ||| · |||〈t〉 = ||| · |||1 = ||| · |||2. �
Lemma 10.9. The mapping: t → ||| · |||〈t〉 is continuous with respect to the usual topology on
[1/2,1] and the pointwise weak topology on N(M2(C)). In particular, {||| · |||〈t〉: 1/2 � t � 1} is
compact in the pointwise weak topology.

Proof. For every 0 � s � 1, |||1 ⊕ s|||〈t〉 = max{t, 1+s
2 } is a continuous function on [0,1]. Hence,

the mapping: t → ||| · |||〈t〉 is continuous with respect to the usual topology on [1/2,1] and the
pointwise weak topology on N(M2(C)). �
Lemma 10.10. The set

S =
{

||| · |||: ||| · ||| =
1∫

1/2

||| · |||〈t〉dμ(t), μ is a regular Borel probability measure on [1/2,1]
}

is a convex compact subset of N(M2(C)) in the pointwise weak topology.
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Proof. Suppose {||| · |||α} is a net in S such that ||| · |||α → ||| · ||| ∈ N(M2(C)) in the pointwise weak
topology. Let μα be the regular Borel probability measure on [1/2,1] corresponding to ||| · |||α .
Then there is a subnet of μα that converges weakly to a regular Borel probability measure μ on
[1/2,1], i.e., for every continuous function φ(t) on [1/2,1],

lim
α

1∫
1/2

φ(t) dμαβ (t) =
1∫

1/2

φ(t) dμ(t).

In particular, for every T ∈ M2(C), we have

|||T ||| = lim
αβ

|||T |||αβ = lim
αβ

1∫
1/2

|||T |||〈t〉 dμαβ (t) =
1∫

1/2

|||T |||〈t〉 dμ(t).

Hence ||| · ||| ∈ S . �
Lemma 10.11. Let f (s) be a convex, increasing function on [0,1] such that

1 + s

2
� f (s) � 1, ∀s ∈ [0,1].

Then there is an element ||| · ||| ∈ S such that f (s) = |||1 ⊕ s|||.

Proof. We can approximate f uniformly by piecewise linear functions satisfying the conditions
of the lemma. By Lemma 10.10, we may assume that f (s) is a piecewise linear function. Further-
more, we may assume that 0 = a0 < a1 < a2 < · · · < an = 1 and f (s) is linear on [ai, ai+1] for
0 � i � n−1. Let f ′(s) = αi/2 on [ai, ai+1]. By Corollary 10.7, 0 = α0 � α1 � · · · � αn−1 � 1.
Let g(s) = (1 − αn−1)‖1 ⊕ s‖ + (αn−1 − αn−2)|||1 ⊕ s|||〈αn−1〉 + · · · + (α1 − α0)|||1 ⊕ s|||〈α1〉 +
α0‖1 ⊕ s‖1. Then g(1) = f (1) = 1 and g′(s) = αi/2 on [ai, ai+1]. So g′(s) = f ′(s) except
s = αi for 1 � i � n. Hence f (s) = g(s) for all 0 � s � 1. �
Proof of Theorem J. By Lemma 10.8, {||| · |||〈t〉: 1/2 � t � 1} are extreme points of N(M).
By Lemmas 10.10, 10.11 and 10.3, the closure of the convex hull of {||| · |||〈t〉: 1/2 � t � 1} in
the pointwise weak topology is N(M2(C)). By Lemmas 10.8, 10.9 and by [11, Theorem 1.4.5],
Ne(M2(C)) = {||| · |||〈t〉: 1/2 � t � 1}. �
Corollary 10.12. Let f (s) be a function on [0,1]. Then the following conditions are equivalent:

1. f (s) = f|||·|||(s) = |||1 ⊕ s||| for some normalized unitarily invariant norm ||| · ||| on M2(C);
2. f (s) is an increasing convex function on [0,1] such that 1+s

2 � f (s) � 1 for all s ∈ [0,1];
3. f (s) is an increasing convex function on [0,1] such that f (1) = 1 and f ′(1−) � 1

2 .

In the following, we will show how to write the Lp-norms on M2(C) in terms of extreme
points of N(M2(C)). Recall that for 1 � p < ∞, the Lp-norm of 1 ⊕ s is

‖1 ⊕ s‖p =
(

1 + sp
)1/p

.

2
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Let fp(s) = f‖·‖p (s) = ( 1+sp

2 )1/p , 0 � s � 1. Then fp(1) = 1 and

f ′
p(s) = sp−1

2

(
1 + sp

2

)1/p−1

,

f ′
p(0) = 0, f ′

p(1) = 1
2 .

Lemma 10.13. For 1 < p < ∞ and 0 � s � 1,

fp(s) =
1∫

1/2

|||1 ⊕ s|||〈t〉4f ′′
p (2t − 1) dt.

Proof.

1∫
1/2

|||1 ⊕ s|||〈t〉4f ′′
p (2t − 1) dt

=
1∫

0

|||1 ⊕ s|||〈 x+1
2 〉2f ′′

p (x) dx

=
s∫

0

1 + s

2
2f ′′

p (x) dx +
1∫

s

1 + x

2
2f ′′

p (x) dx

= (1 + s)f ′(s) − (1 + s)f ′(0) + 2f ′(1) − (1 + s)f ′(s) −
1∫

s

f ′
p(x) dx

= 1 − fp(1) + fp(s) = fp(s). �
Corollary 10.14. For 1 < p < ∞ and T ∈ M2(C),

‖T ‖p =
1∫

1/2

|||T |||〈t〉4f ′′
p (2t − 1) dt.

10.4. Proof of Theorem K

Lemma 10.15. Let M be a type II1 factor and let ||| · ||| be a normalized unitarily invariant norm
on M. Suppose N1 ⊂ N2 ⊂ · · · is a sequence of type Inr subfactors of M such that Nr

∼= Mnr (C)

and limr→∞ nr = ∞. If the restriction of ||| · ||| to Nr is an extreme point of N(Nr ) for all
r = 1,2, . . . , then ||| · ||| is an extreme point of N(M).

Proof. Suppose 0 < α < 1 and ||| · |||1, ||| · |||2 ∈ N(M) such that ||| · ||| = α||| · |||1 + (1 − α)||| · |||2
on M. Then for every r = 1,2, . . . , ||| · ||| = α||| · |||1 + (1 − α)||| · |||2 on Nr . By the assumption of



J. Fang et al. / Journal of Functional Analysis 255 (2008) 142–183 177
the lemma, ||| · ||| = ||| · |||1 = ||| · |||2 on Nr . By Corollary 4.7, ||| · ||| = ||| · |||1 = ||| · |||2 on M. So ||| · |||
is an extreme point of N(M). �
Proof of Theorem K. By the assumption of the theorem, t = k

n
is a rational number. Then we

can construct a sequence of type Irn subfactor Mrn of M such that Mn ⊆ M2n ⊆ · · · . Then the
restriction of || · |||(t) on Mrn is || · |||

( rk
rn

)
. By Proposition 10.4, the restriction of || · |||(t) on Mrn is

an extreme point of N(Mrn(C)). By Lemma 10.15, || · |||(t) is an extreme point of N(M). �
Remark 10.16. Here we point out other interesting examples of extreme points of N(M). For
0 � t � 1, recall that || · |||(t) is the t th Ky Fan norm on M. For any non-negative function c(t) on
[0,1] such that ‖c(t)‖∞ = 1 and T ∈ M, define

‖T |||[c(t)] = ∥∥c(t)‖T |||(t)
∥∥∞.

Then it is easy to see that || · |||[c(t)] is a normalized unitarily invariant norm on M. It can be
proved that if c(t) is a simple function or if tc(t) is a simple function, then || · |||[c(t)] is an extreme
point of N(M).

11. Proof of Theorem G

In this section, we assume that M is a type II1 factor with the unique tracial state τ and ||| · |||
is a unitarily invariant norm on M. For two projections E,F in M, τ(E) � τ(F ) if and only
if there is a unitary operator U ∈ M such that UEU∗ � F . By Corollary 3.3, if τ(E) � τ(F ),
|||E||| � |||F |||. So we can define

r
(||| · |||) = lim

τ(E)→0+ |||E|||.

Definition 11.1. A unitarily invariant norm ||| · ||| on M is singular if r(||| · |||) > 0 and continuous
if r(||| · |||) = 0.

Example 11.2. The operator norm is singular since r(‖ · ‖) = limτ(E)→0+ ‖E‖ = 1. If 0 < t � 1,
the Ky Fan t th norm ||| · |||(t) is continuous since r(||| · |||(1)) = r(‖ · ‖1) = limτ(E)→0+ τ(E) = 0
and r(||| · |||(t)) � 1

t
· r(||| · |||(1)) = 0. If 1 � p < ∞, it is easy to see that the Lp-norm on M is

also continuous.

Lemma 11.3. If ||| · ||| is singular, then ||| · ||| is equivalent to the operator norm ‖ · ‖. Indeed, for
every T ∈ M, we have

r
(||| · |||)‖T ‖ � |||T ||| � |||1||| · ‖T ‖.

Proof. By Lemma 3.2, |||T ||| � |||1||| ·‖T ‖. We need to prove r(||| · |||)‖T ‖ � |||T |||. We may assume
that T > 0. For any ε > 0, let E = χ[‖T ‖−ε,‖T ‖](T ) > 0. Then T � (‖T ‖−ε)E. By Corollary 3.3
and Lemma 3.2, |||T ||| � |||(‖T ‖ − ε)E||| � (‖T ‖ − ε) · |||E||| � (‖T ‖ − ε)r(||| · |||). Since ε > 0 is
arbitrary, r(||| · |||)‖T ‖ � |||T |||. �
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Recall that a neighborhood N(ε, δ) of 0 ∈M in the measure topology (see [14]) is

N(ε, δ) = {
T ∈ M, there is a projection E ∈ M such that τ(E) < δ and

∥∥T E⊥∥∥ < ε
}

Proof of Theorem G. By Lemma 11.3, if ||| · ||| is singular, then T is the operator topology
on M1,‖·‖. Suppose ||| · ||| is continuous. For ε, δ > 0 and T ∈ M such that ‖T ‖ � 1 and
|||T ||| < εδ, by Corollary 3.31, τ(χ[ε,1](|T |) � ‖T ‖1

ε
� |||T |||

ε
< δ and ‖T · χ[0,ε)(|T |)‖ < ε. This

implies that {T ∈ M1,‖·‖: |||T ||| < εδ} ⊆ N(ε, δ). Conversely, let ω > 0. Since r(||| · |||) = 0,
there is an ε, 0 < ε < ω/2, such that if τ(E) < ε then |||E||| < ω/2. For every T ∈ N(ε,ω/2)

and ‖T ‖ � 1, choose E ∈ M such that τ(E) < ε and ‖T E⊥‖ < ω/2. By Proposition 3.18
and Corollary 3.5, |||T ||| � |||T E||| + |||T E⊥||| < ‖T ‖ · |||E||| + ‖T E⊥‖ < ω/2 + ω/2 = ω. Hence
{T ∈ N(ε,ω/2): ‖T ‖ � 1} ⊆ {T ∈ M: |||T ||| < ω}. �
Corollary 11.4. Topologies induced by the Lp-norms, 1 � p < ∞, on the unit ball of a type II1
factor are the same.

12. Completion of type II1 factors with respect to unitarily invariant norms

In this section, we assume that M is a type II1 factor with the unique tracial state τ and ||| · ||| is
a unitarily invariant norm on M. The completion of M with respect to ||| · ||| is denoted by M|||·|||.
We will use the traditional notation Lp(M, τ ) to denote the completion of M with respect to
the Lp-norm defined as in Example 11.2. Note that L∞(M, τ ) = M. Let M̃ be the completion
of M in the measure topology in the sense of [14].

12.1. Embedding of M|||·||| into M̃

Lemma 12.1. Let ||| · ||| be a continuous unitarily invariant norm on M and T ∈ M. For every
ε > 0, there is a δ > 0 such that if τ(E) < δ, then |||T E||| < ε.

Proof. Since ||| · ||| is continuous, limτ(E)→0 |||E||| = 0. Hence, for every ε > 0, there is a δ > 0
such that if τ(E) < δ, then |||E||| < ε

1+‖T ‖ . By Proposition 3.18, |||T E||| � ‖T ‖ · |||E||| < ε. �
Lemma 12.2. Let ||| · ||| be a continuous unitarily invariant norm on M and let {Tn} in M be a
Cauchy sequence with respect to ||| · |||. For every ε > 0, there is a δ > 0 such that if τ(E) < δ,
then |||TnE||| < ε for all n.

Proof. Since {Tn} is a Cauchy sequence with respect to ||| · |||, there is an N such that for all
n � N , |||Tn − TN ||| < ε/2. By Lemma 12.1, there is a δ1 such that if τ(E) < δ1 then |||TNE||| <

ε/2. By Proposition 3.18, for n � N , |||TnE||| � |||(Tn −TN)E|||+|||TNE||| < |||(Tn −TN)||| ·‖E‖+
ε/2 < ε. A simple argument shows that we can choose 0 < δ < δ1 such that if τ(E) < δ then
|||TnE||| < ε for all n. �

The following proposition generalizes Theorem 5 of [14].

Proposition 12.3. Let M be a type II1 factor and let ||| · ||| be a unitarily invariant norm on M.
There is an injective map from M|||·||| to M̃ that extends the identity map from M to M.
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Proof. If ||| · ||| is singular, by Lemma 11.3, M|||·||| = M. So we will assume that ||| · ||| is contin-
uous. If {Tn} in M is a Cauchy sequence with respect to ||| · |||, then {Tn} is a Cauchy sequence

in the L1-norm by Corollary 3.31. For every δ > 0 and T ∈ M, τ(χ(δ,∞)(|T |) � τ(|T |)
δ

. Hence,
if {Tn} is a Cauchy sequence in M in the L1-norm, then {Tn} is a Cauchy sequence in the
measure topology. So there is a natural map Φ from M|||·||| to M̃ that extends the identity map
from M to M. To prove that Φ is injective, we need to prove that if {Tn} in M is a Cauchy
sequence with respect to ||| · ||| and Tn → 0 in the measure topology, then limn→∞ |||Tn||| = 0.
Let ε > 0. By Lemma 12.2, there is a δ > 0 such that if τ(E) < δ then |||TnE||| < ε/2 for
all n. Since Tn → 0 in the measure topology, there are N and δ1, 0 < δ1 < δ, such that for
all n � N , there is a projection En such that τ(En) < δ1 and ‖TnE

⊥
n ‖ < ε/2. By Corollary 3.31,

|||Tn||| � |||TnE
⊥
n ||| + |||TnEn||| < ‖TnE

⊥
n ‖ + ε/2 < ε. This proves that limn→∞ |||Tn||| = 0 and

hence Φ is an injective map from M|||·||| to M̃ that extends the identity map from M to M. �
By the proof of Proposition 12.3, we have the following.

Corollary 12.4. There is an injective map from M|||·||| to L1(M, τ ) that extends the identity map
from M to M.

By Proposition 12.3, we will consider M|||·||| as a subset of M̃. The following corollary is very
useful.

Corollary 12.5. Let M be a type II1 factor and let ||| · ||| be a unitarily invariant norm on M.
If {Tn} ⊂ M is a Cauchy sequence with respect to ||| · ||| and limn→∞ Tn = T in the measure
topology, then T ∈ M|||·||| and limn→∞ Tn = T in the topology induced by ||| · |||.

Corollary 12.6. M|||·||| is a linear subspace of M̃ satisfying the following conditions:

1. if T ∈ M|||·|||, then T ∗ ∈ M|||·|||;
2. T ∈ M|||·||| if and only if |T | ∈ M|||·|||;
3. if T ∈ M|||·||| and A,B ∈ M, then AT B ∈ M|||·||| and |||AT B||| � ‖A‖ · |||T ||| · ‖B‖.

In particular, ||| · ||| can be extended to a unitarily invariant norm, also denoted by ||| · |||, on M|||·|||.

12.2. M̃ and L1(M, τ )

The following theorem is due to Nelson [14].

Theorem 12.7. (See Nelson [14].) M̃ is a ∗-algebra and T ∈ M̃ if and only if T is a closed,
densely defined operator affiliated with M. Furthermore, if T ∈ M̃ is a positive operator, then
limn→∞ χ[0,n](T ) = T in the measure topology.

In the following, we define s-numbers for unbounded operators in M̃ as in [5].

Definition 12.8. For T ∈ M̃ and 0 � s � 1, define the sth numbers of T by

μs(T ) = inf
{‖T E‖: E ∈ M is a projection such that τ

(
E⊥) = s

}
.
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Theorem 12.9. (See Fack and Kosaki [5].) Let T and Tn be a sequence of operators in M̃ such
that limn→∞ Tn = T in the measure topology. Then for almost all s ∈ [0,1], limn→∞ μs(Tn) =
μs(T ).

Let {Tn} be a sequence of operators in M such that T = limn→∞ Tn in the L1-norm. By
Lemma 3.8, {τ(Tn)} is a Cauchy sequence in C. Define τ(T ) = limn→∞ τ(Tn). It is obvious that
τ(T ) does not depend on the sequence {Tn}. In this way, τ is extended to a linear functional on
L1(M, τ ).

Lemma 12.10. Let ||| · ||| be a normalized unitarily invariant norm on a type II1 factor M. If
T ∈ M|||·||| and X ∈ M, then T X ∈ L1(M, τ ).

Proof. By the proof of Proposition 12.3, limn→∞ Tn = T in the measure topology. Hence
limn→∞ TnX = T X in the measure topology (see [14, Theorem 1]). By Corollary 6.4, ‖TnX −
TmX‖1 � |||Tn −Tm||| · |||X|||#. So {TnX} is a Cauchy sequence in the L1-norm. By Corollary 12.5,
T X ∈ L1(M, τ ) and limn→∞ TnX = T X in the L1-norm. �
12.3. Elements in M|||·|||

Lemma 12.11. For all T ∈ M|||·|||,

|||T ||| = sup
{∣∣τ(T X)

∣∣: X ∈M, |||X|||# � 1
}
.

Proof. Let {Tn} be a sequence of operators in M such that limn→∞ Tn = T with respect
to ||| · |||. By Corollary 6.4, if X ∈ M and |||X|||# � 1, then |τ(T X)| = limn→∞ |τ(TnX)| �
limn→∞ |||Tn||| = |||T |||. Therefore, |||T ||| � sup{|τ(T X)|: X ∈M, |||X|||# � 1}.

We need to prove that |||T ||| � sup{|τ(T X)|: X ∈ M, |||X|||# � 1}. Let ε > 0. Since
limn→∞ Tn = T with respect to ||| · |||, there is an N such that |||T − TN ||| < ε/3. For TN , there
is an X ∈ M, |||X|||# � 1, such that |||TN ||| � |τ(TNX)| + ε/3. By the proof of Lemma 12.10 and
Corollary 6.4,

∣∣τ(T X) − τ(TNX)
∣∣ = lim

n→∞
∣∣τ(TnX) − τ(TNX)

∣∣
� lim

n→∞|||Tn − TN ||| · |||X|||# � |||T − TN ||| < ε/3.

So |τ(T X)| � |τ(TNX)|− |τ((TN −T )X)| � |||TN |||− ε/3 − ε/3 � |||T |||− ε. Therefore, |||T ||| �
sup{|τ(T X)|: X ∈ M, |||X|||# � 1}. �

The following theorem generalizes Theorem A. Its proof is based on Lemma 12.11 and is
similar to the proof of Theorem A. So we omit the proof.

Theorem 12.12. If ||| · ||| is a unitarily invariant norm on a type II1 factor M, then there is a
subset F ′ of F containing the constant 1 function on [0,1] such that for all T ∈ M|||·|||,

|||T ||| = sup
{|||T |||f : f ∈F ′},
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where |||T |||f is defined in Lemma 7.1 by Eq. (3) or by Eq. (4) and F = {f (x) = a1χ[0, 1
n
)
(x) +

a2χ[ 1
n
, 2
n
)
(x) + · · · + anχ[ n−1

n
,1](x): a1 � a2 � · · · � an � 0, a1+···+an

n
� 1, n = 1,2, . . .}.

Combining Theorems 12.12 and 12.9, we have the following corollary.

Corollary 12.13. Let ||| · ||| be a unitarily invariant norm on a type II1 factor M and let ||| · |||′
be the corresponding symmetric gauge norm on (L∞[0,1], ∫ 1

0 dx) as in Corollary 2. If T ∈ M̃,
then T ∈ M|||·||| if and only if μs(T ) ∈ L∞[0,∞)|||·|||′ . In this case, |||T ||| = |||μs(T )|||′.
Example 12.14. Let T ∈ M̃ and 1 � p � ∞. Then T ∈ Lp(M, τ ) if and only if μs(T ) ∈
Lp([0,1]). In this case, ‖T ‖p = (

∫ 1
0 μs(T )p ds)1/p = (

∫ ∞
0 λp dμ|T |(λ))1/p .

12.4. A generalization of Hölder’s inequality

Lemma 12.15. Let ||| · ||| be a unitarily invariant norm on a finite factor M and let T ∈ M|||·||| be
a positive operator. Then limn→∞ χ[0,n](T ) = T with respect to ||| · |||.
Proof. If ||| · ||| is singular, then T ∈ M by Lemma 11.3 and the lemma is obvious. We may
assume that ||| · ||| is continuous. Let Tn = χ[0,n](T )) and ε > 0. By Lemma 12.2, there is a
δ > 0 such that if τ(E) < δ then |||T E||| < ε. There is an N such that μs([N,∞)) < δ. So for
m > n � N , |||Tm − Tn||| = |||T · χ(m,n](T )||| < ε. This implies that {Tn} is a Cauchy sequence
of M with respect to ||| · |||. Since limn→∞ Tn = T in the measure topology, by Corollary 12.5,
limn→∞ Tn = T in the topology induced by ||| · |||. �

The following theorem is a generalization of Hölder’s inequality.

Theorem 12.16. Let ||| · ||| be a normalized unitarily invariant norm on a finite factor M. If T ∈
M|||·||| and S ∈ M|||·|||# , then T S ∈ L1(M, τ ) and ‖T S‖1 � |||T ||| · |||S|||#.

Proof. By the polar decomposition and Corollary 12.6, we may assume that S and T are pos-
itive operators. Let Tn = χ[0,n](T ) and Sn = χ[0,n](S). By Lemma 12.15, limn→∞ |||T − Tn||| =
limn→∞ |||S −Sn|||# = 0. Let K be a positive number such that |||Tn||| � K and |||Sn|||# � K for all
n and ε > 0. Then there is an N such that for all m > n � N , |||Tm − Tn||| < ε/(2K) and |||Sm −
Sn|||# < ε/(2K). By Corollary 6.4, ‖TmSm − TnSn‖1 � ‖(Tm − Tn)Sm‖1 + ‖Tn(Sm − Sn)‖1 �
|||Tm − Tn||| · |||Sm|||# + |||Tn||| · |||Sm − Sn|||# < ε. This implies that {TnSn} is a Cauchy sequence
in M with respect to ‖ · ‖1. Since limn→∞ TnSn = T S in the measure topology, by Proposi-
tion 12.3, limn→∞ TnSn = T S in ‖ · ‖1. By Corollary 6.4, ‖TnSn‖1 � |||Tn||| · |||Sn|||# for every n.
Hence, ‖T S‖1 � |||T ||| · |||S|||#. �

Combining Example 8.5 and Theorem 12.16, we obtain the non-commutative Hölder’s in-
equality.

Corollary 12.17. Let M be a finite factor with the faithful normal tracial state τ . If T ∈
Lp(M, τ ) and S ∈ Lq(M, τ ), then T S ∈ L1(M, τ ) and

‖T S‖1 � ‖T ‖p · ‖S‖q,

where 1 � p,q � ∞ and 1 + 1 = 1.

p q
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13. Proof of Theorems H and I

In this section, we assume that M is a type II1 factor with the unique tracial state τ , ||| · |||
is a unitarily invariant norm on M and ||| · |||# is the dual unitarily invariant norm on M (see
Definition 6.2). Let ||| · |||1 be the corresponding symmetric gauge norm on (L∞[0,1], ∫ 1

0 dx) as

in Theorem D and ||| · |||#1 be the dual norm on (L∞[0,1], ∫ 1
0 dx).

Lemma 13.1. If M|||·|||# is the dual space of M|||·||| in the sense of Question 1, then L∞[0,1]|||·|||#1
is the dual space of L∞[0,1]|||·|||1 in the sense of Question 1.

Proof. By Corollary 2 and Lemma 2.6, there is a separable diffuse abelian von Neumann sub-
algebra A of M and a ∗-isomorphism α from A onto L∞[0,1] such that τ = ∫ 1

0 dx ◦ α and
|||α(T )|||1 = |||T ||| for each T ∈A. By Theorem E, |||α(T )|||#1 = |||T |||# for each T ∈ A. So we need
only prove that A|||·|||# is the dual space of A|||·||| in the sense of Question 1. Let φ ∈ A|||·|||#. By
the Hahn–Banach extension theorem, φ can be extended to a bounded linear functional ψ on
M|||·||| such that ‖ψ‖ = ‖φ‖. By the assumption of the lemma, there is an operator X ∈ M#|||·|||
such that ψ(S) = τ(SX) for all S ∈ M|||·||| and ‖ψ‖ = |||X|||#. Let X = U |X| be the polar de-
composition of X and Xn = U · χ[0,n](|X|). By Lemma 12.15, limn→∞ Xn = X with respect to
the norm ||| · |||#. Let Yn = EA(Xn) for n = 1,2, . . . . By Corollary 1, {Yn} is a Cauchy sequence
in A with respect to the norm ||| · |||# and |||Yn|||# � |||Xn|||#. Let Y = limn→∞ Yn with respect

to the norm ||| · |||#. Then Y ∈ A#|||·||| and |||Y |||# � |||X|||# = ‖ψ‖ = ‖φ‖. For T ∈ A|||·|||, φ(T ) =
ψ(T ) = τ(T X) = limn→∞ τ(T Xn) = limn→∞ τ(EA(T Xn)) = limn→∞ τ(T Yn) = τ(T Y ). By
Lemma 12.11, ‖φ‖ = |||Y |||#. �

Recall that ||| · ||| is a singular norm on M if limτ(E)→0+ |||E||| > 0 and is a continuous norm
on M if limτ(E)→0+ |||E||| = 0 (see Section 11).

Corollary 13.2. If ||| · ||| is a singular unitarily invariant norm on M, then M|||·|||# is not the dual

space of M|||·||| in the sense of Question 1.

Proof. Since ||| · ||| is a singular norm on M, by Lemma 11.3, ||| · ||| is equivalent to the operator
norm on M and M|||·||| = M. By Corollary 6.16 and Theorem 6.17, ||| · |||# is equivalent to the
L1-norm on M. So ||| · |||1 is equivalent to the L∞-norm on L∞[0,1] and ||| · |||#1 is equivalent
to the L1-norm on L∞[0,1] by Theorem E. Note that L∞[0,1]|||·|||1 = L∞[0,1] is not separable
with respect to ||| · |||1 but L∞[0,1]|||·|||#1 is separable with respect to ||| · |||#1. So L∞[0,1]|||·|||#1 is not

the dual space of L∞[0,1]|||·|||1 in the sense of Question 1. By Lemma 13.1, M|||·|||# is not the dual

space of M|||·||| in the sense of Question 1. �
Lemma 13.3. If ||| · ||| is a continuous unitarily invariant norm on M, then M|||·|||# is the dual

space of M|||·||| in the sense of Question 1.

Proof. We may assume that |||1||| = 1. By Theorem 12.16, M|||·|||# is a subspace of the dual

space of M|||·||| in the sense of Question 1. Let φ be a linear functional in the dual space of
M|||·|||. Then for every T ∈ M|||·|||, |φ(T )| � ‖φ‖ · |||T |||. By Corollary 3.31, for every T ∈ M,
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|φ(T )| � ‖φ‖ · ‖T ‖. So φ is a bounded linear functional on M. Since ||| · ||| is a continuous norm
on M, limτ(E)→0 |||E||| = 0. Hence, limτ(E)→0 φ(E) = 0. This implies that φ is an ultraweakly
continuous linear functional on M and hence in the predual space of M. So there is an operator
X ∈ L1(M, τ ) such that for all T ∈ M, φ(T ) = τ(T X). By Lemma 12.11, |||X|||# = ‖φ‖ < ∞.
This implies that X ∈ M|||·|||# . So φ(T ) = τ(T X) for all T ∈ M|||·||| and ‖φ‖ = |||X|||#. This proves
the lemma. �
Proof of Theorems H and I. Combining Lemmas 13.1, 13.3 and Theorem A gives the proof of
Theorems H and I. �
Example 13.4. If 1 � p < ∞ and 1

p
+ 1

q
= 1, then Lq(M, τ ) is the dual space of Lp(M, τ ).

L1(M, τ ) is not the dual space of M.

Example 13.5. For 1 < p < ∞, Lp(M, τ ) is a reflexive space. L1(M, τ ) and M are not reflex-
ive spaces. By Theorem 6.17, for 0 � t � 1, M|||·|||(t) is not a reflexive space.
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