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1. Introduction

On GL; over a fixed number field we construct a Poincaré series which, on one hand, produces
integral second moments of GL, automorphic L-functions L(% +it, f ® x) attached to newforms f on
GL,, averaged over twisting against Hecke characters x ramifying at a fixed finite place. On the other
hand, we show that the Poincaré series has an explicable spectral expansion allowing a meromorphic
continuation in an auxiliary complex parameter. Standard devices then produce an asymptotic with
power-saving error term for the integral moments of L(% +it, f ® x) over twists by x, in terms of

the finite-prime conductor of .
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It is well known that moments of zeta and L-functions capture subtle information [5,11-13,28,
31]. If one can prove even a bound for moments, it must be a sort of Lindel6f-on-average, since,
presumably, one does not disprove the corresponding Lindel6f Hypothesis [8,14-17,20,21]. However,
it is noteworthy that the proof that an asymptotic exists, and production of the leading constant
in the asymptotic, goes beyond what would follow from Lindel6f. Further, similarly, the fact that
the asymptotic has a power-saving error term does not follow from Lindel6f. Random matrix theory
(see [7]) gives a heuristic for the leading constant and other parts of asymptotics for moments, but
does not suggest proof mechanisms.

The present results demonstrate that asymptotics for integral moments, with power-saving error
terms, can be extracted by standard methods from automorphic spectral identities, and show how to
produce the relevant identities. Specifically, we produce asymptotics for integral moments for GL,
automorphic L-functions summed over GL; twists ramifying at a single, fixed finite place. The method
applies to GL over an arbitrary number field. Until the recent works [9,10], which exclusively address
t-aspect moments, there were no results on moments over arbitrary number fields. Here we use
spectral methods to address non-archimedean conductor aspect moments.

Asymptotics for integral moments, with power-saving error terms, imply corresponding subconvex-
ity bounds for the individual values in the moment, when the averaging family is not too large. The
family of GL; twists we consider here is small enough to allow us to extract a subconvexity corollary.
Until recently, there were few subconvexity results over general number fields, but this has changed in
the last few years: [6] treats totally real fields by the shifted-sums method of [29], [10] treats t-aspect
subconvexity over arbitrary number fields via integral moments by extending Good’s [18,19] spectral
idea, [27] gives a hybrid bound over arbitrary number fields (using methods involving ergodic theory
and regularization of integrals of automorphic forms), and [3] treats totally real fields by shifted sums.
Until Diaconu-Garrett’s two papers and the most recent Michel-Venkatesh paper, subconvexity was
discussed at most for totally real fields, often assuming narrow class number one.

Subconvex bounds have significant applications, such as the ternary quadratic forms problem
treated in [4] and [6] (and see the survey [22]).

More specifically, about what is done here: Diaconu-Garrett [9] over an arbitrary number field,
produced a spectral identity from which was extracted asymptotics with power-saving error term for
integral moments of L(% +it, f ® x), averaged not only over the critical line but also over twists
by unramified Hecke characters x. Here f is a newform on GL,. Further analysis of the archimedean
places gave a t-aspect subconvexity result there. In the present paper, we consider a larger family
of twisting data y, allowing arbitrary ramification of x at a single fixed finite place. Freezing the
archimedean data isolates dependence on the non-archimedean data, and we extract an asymptotic
with power-saving error in terms of the (non-archimedean) conductor of x. (See [25].)

The structure of this paper is as follows. Section 2 states the main result on asymptotics with
power-saving error term for the integral moment of L(% +it, f ® x) over x unramified except for
arbitrary ramification at a fixed finite prime. The subconvexity corollary is obtained immediately.
Section 3 computes the integral of the Poincaré series against |f|? for cuspform f, obtaining the
integral moment expansion. Section 4 determines the spectral expansion of the Poincaré series itself,
thus providing the meromorphic continuation in the auxiliary complex parameter. Section 5 verifies
the meromorphic continuation and vertical polynomial growth and obtains the asymptotics-with-error
for the integral moment. Section 6 obtains the subconvexity corollary from the asymptotic-with-error.

Remarks.

e The relative weak exponent of our present subconvexity corollary is inevitable, since proving
subconvexity by proving asymptotics with power-saving error is inefficient.

e A contrast between asymptotics for moments and subconvex bounds concerns the size of the
family of L-functions. Since asymptotics for integral moments are essentially assertions that the
corresponding Lindel6f Hypothesis is true on average, in our present state of knowledge integral
moments over smaller families of twists give more information than averages over larger families.
Thus, producing asymptotics for integral moments restricting to twisting by characters ramifying
at a single finite place, as we do here, is stronger than obtaining an asymptotic for moments
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allowing ramification at all finite places. However, asymptotics for moments over smaller families,
while giving sharper Lindel6f-on-average results, typically produce weaker subconvexity results
for individuals, exactly because they refer to smaller families of individuals.

o Not every asymptotic for integral moments (with or without power-saving error term) can give
a subconvexity corollary. P. Sarnak has called asymptotics pregnant if a power-saving error term
would give a subconvex corollary. It is easy to distinguish these cases.

e Good, Diaconu-Goldfeld, and Diaconu-Garrett all emphasized t-aspect moments (and subcon-
vexity corollaries), and no one had viewed conductor-aspect moments from a spectral-identity
viewpoint [1,2,26]. Indeed, from a neo-classical viewpoint it is less easy to see how a spectral
identity could or would produce a suitable finite-prime moment asymptotic, and part of the point
of the present paper is to make clear that, especially in an adele-group setting, a completely anal-
ogous line of argument is possible. Thus, there is some prospect of extending to larger groups this
spectral argument for asymptotics of moments.

2. The main result

In this paper we use spectral identities to obtain a moment asymptotic in the finite prime
conductor-aspect for a family of L-functions L(% +it, f ® x), where x has arbitrary ramification
at a fixed finite prime vi. The moment expansion is a sum of weighted integrals of L-functions
L(s, f ® x) of twists of f by idele class characters x. The weight functions depend on archimedean
data and data associated with the finite place vi. We make a non-trivial choice of data at v; and at
the archimedean place, and obtain asymptotics with power-saving error term for L( % +it, f® x). We
isolated the non-archimedean part by freezing the archimedean part. This yields our main theorem in
Section 5:

Main Theorem. For a cuspform f on GL,(k), where k is a number field of degree d over Q, the finite prime
conductor-aspect moment asymptotic for the twisted L-function L(% +it, f @ x) is

> / ’L(%—I—it,f@x)

2
1
"C"O(E +ito, 0, B/, X) dt <¢ T'T¢ (foralle > 0)
X qVNST —0

where gV, with N > 1, is the finite prime conductor of x and ICOO(% +it,0, B, x) refers to the archimedean
data.

We applied these ideas and methods from analytic number theory to obtain a subconvexity corol-
lary:

Example application. Fix a number field k of degree d over Q and a cuspform f on GL;(k). For a
computable constant ¢ < 1,

1 d—1+9
L(E +it, f®X) <e (qM) 7t (for all € > 0)

3. The moment expansion

In this section, the integral moment expansion is obtained by unwinding the integral representa-
tion

Pé-|f|?

ZpGp\Ga
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where Pé is a Poincaré series and f is a cuspform on GL,. We then obtain asymptotics from the
weight functions.

3.1. Unwinding to an Euler product

Define the following subgroups of G = GL;:

(GO} =) =[G )

Z = center of G, M:ZH:{(>X< O)}
0 =x

For any place v of k, let K] be the standard maximal compact subgroup. So for finite v,
K™ = GLa(0y)

and for infinite v,

Kmax _ { 02 (Vv~R)
Y Uz (v=0C
The Poincaré series Pé is of the form
Pé(g)= Y @(yg) (wheregeGy) (31)

Y EM\Gi

for suitable functions ¢ on G, defined as follows. Let
v=Q o
1%
where for finite primes v # v,

Xo,v(m) = |§|f,’ (for g =mk, m = (gg) €M, s’ €C, ke Knax)
0 (otherwise)

Yy(g) = [

For finite v = v (at which yx is allowed to be ramified)

/

~py(g) (meM,, geGy)

v

a N

Yy(mg) = ‘E

The data determining ¢, for v = vy consists of its values on N, where our simple choice is

1 x 1 (forx € 0y)
(pV (0 «1) = { 4 (3‘2)

x|, (forw’ eC, x¢oy)

For infinite v require right K,-invariance and left equivariance:

s

~py(g) (meM,, geGy)

v

_’9
Yy(mg) = Fi
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where

<1 x) A+ x?"2 (forvaR, weC)
Dv = _
01 1+xx)""  (forv~C)

The Poincaré series Pé converges absolutely and locally uniformly for %(s’) > 1, i(w) > 1 for all v|oo,
and for %(w’) > 1 (see Proposition 2.6 in [9]).

Lemma 3.1.
[ peirede
ZaGr\Ga
is an integral of products of local factors of standard L-functions.

Proof. The Fourier expansion of a cuspform f on Gy is
flo= ) Wrég

§€Z\My

where Wy is the Whittaker function of f and Wy =@, Wy , is the factorization of Wy into local
data. So

/ Pé-|f|*dg = / 3 ewolfe) dg= / 0@|f (@) dg

ZAGi\Ga Z5Gi\Ga ¥ EMINCE Z4AMi\Ga

= / @ Y. Wr¢gf(gdg= / P(@Wr(g)f(g)dg

ZaM\Ga §€Zi\My Z5\Gy

Let C be the idele class group GL;(k)\GL1(A) and C its dual. C ~R x 60 where 60 is discrete. The
Mellin transform and inversion are

1 _
f(X)=//f(y)x‘](y)dyx(x)dx= Il / /f(y)x’ "Wyl dy X' Ix[ ds

¢ C x'€Co N(s)=oc C

With ZyM\Mp ~ C, and for finite v # vq,

P(@Wr(g)f(g)dg
Zp\Ga

= f w(g)wf(g)</ / f(m/g)x(m/)dm/dx)dg

Zp\Gp ¢ ZaMi\My

= / ( / YW (g) / > Wf(ém’g)x(m’)dm’dg)dx

& Za\Ga ZaM\M, §€4\Mi
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-/ ( [ vowio [ v—vf(m/g)x<m/)dm/dg)dx

¢ Za\Ga Zp\Mp

:/1_[</ / @v(gv)wf,v(gv)wf,v(m:/gv)Xv(m/v)dm/vdgv)dX
¢ z\Gy z)\m,

Suppress finite v # v1, invoke the v-adic Iwasawa decomposition G = MNK and write the vth local
integral as

@(mnk)W s (mnk)W y (m'mnk) x (m’) dm’ dm dn dk
Z\MNK Z\M

For simplicity, take ¢ and f to be right K{"**-invariant for finite v # v. This gives

/ @mm)W (mm)W f(m'mn) x (m") dm’ dmdn
Z\MN Z\M

Replace m’ by m'm~! to get

f / emmW p(mm)W ¢ (m'n) x (m') x ~" (m)dm’ dmdn
Z\MN Z\M

The Whittaker function has the equivariance

Werng) =y mWp(g) (neNy)

Thus,
W s (mn) = W g(mnm™"'m) =y (mnm~")W(m) (sincemnm~' e N)
and
W s (m'n) = W (m'nm="m) = (m'nm'~" )W ¢ (m')
so obtaining
emmW pmW ¢(m') x (m') x ' (m)y (mnm =)y (m'nm’ ~") dm’ dmdn
Z\MN Z\M
Let

X(m,m/):/(p(n)l//(mnm’l)lf(m’nm’_l)dn

N
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We get
/ /Xo(m)Wf(m)V_Vf(m’)x(m’)x‘l(m)X(m,m’)dm/dm
Z\M Z\M
Now
W s (mn) =y (mnm™~") - W §(m)
and

We(mn) =Wg(m) -1

by the right K-invariance of W¢. So for W(m) # 0, Y(@mnm~1)=1, and X(m,m’) =1 for m, m’ in
the support of W¢. So

/(XO-x’l)(m)Wf(m)dm- / x (M)W ¢ (m') dm’

Z\M Z\M
I 1 0 "0
= Lu(xow - x5 1912, £) - L (|y'|2. F)  (wherem= (2 7}, m'= (7
v 0 1 0 1
is a product of local factors of L-functions at finite primes v #vi. O

Thus the integral can be written as

1
0= 5— / L(xo-x'yI"™ ) - L(x |y’

x€Co R(s)=0
Koo (S, X0, ) ds (3.3)

S’ f) Ky, (W/’ le)

where

Koo (s, X0, X) = 1_[ Kv (s, xo,vs Xv)

v|oo
and
Kv(s, xo,vs Xv) = / / QDV(mvnv)Wf,v(mvnv)Wf’v(m:}nv)
ZV\MyNy Zy\M,
_1 1_
v () [l |32 %y amy)my |3 dm, dmy dny

! — / 1= 0\ — "0
/cm(w,xm://x(ynyn]x 1(y)\yy§fw(g 1)w({) 1)

ky k¥

/\Z(x (y=5))ev, (é T) dxdydy’
ky
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The non-decoupled integrals KCy (s, xo,v. Xv) and Ky, (W', xv,), which represent the weight functions,
will be subsequently computed. For %i(s’) and R (w’) sufficiently large, the integral (o) = I(s’, w') is

1 , _
I(s'\w') = 5 / Lo TS F) LB ) - Ky (W xy)
xeCos R(s)=c

Koo(s, s, w, x)ds (3.4)

where S is a finite set of places including archimedean places, and the sum is over the set 60_5

of characters ramified at the finite place vq. I(s’, w’) has meromorphic continuation to a region in

C? containing the point s’ =0, w' =1, and (0, w') is holomorphic for %(w’) > 1 except for w' =1

where it has a pole of order 1. We will find asymptotics for C,, (W', xv,) and Koo (s, s", w, x), shifting
the line of integration to MR(s) = % and setting s’ = 0. Thus for R(w’) sufficiently large

1 v 1 . 1 : —
ow) =Y 5 f Lo T F) - L F) - Koy (W o)

x<€Co —00

1

oo
=Y ! /L 1+itf®
T L7 2 ’ X
X “0

3.2. The non-decoupled integrals

2

1
"Cm(w/,Xw) ‘Koo(i +it,0,W7X>df (3.5)

Lemma 3.2. The non-decoupled integral:

g 1—|al?IBI?g—*"
g=1  (1—JaPg )1~ |BRg)(1 -aBg~")(1 —apqg™)

Ky, (W/* XV]) =

Proof. Henceforth, we will suppress the v for ease of notation. v is the standard additive charac-
ter which is trivial on the local integers o and non-trivial on @ ~'o. ) is a ramified multiplicative
character, i.e. x is non-trivial on 0*. W is a Whittaker function which is invariant on o* since it is
spherical. The spherical Whittaker function is of the form

an-H —ﬂ"'H
w(y O)Z[W’ n>0
01 0, otherwise

where o, 8 are Satake's parameters and ord(y) =n. We will first compute the integral in y and y’,
and then compute the integral in x. Now

vx(y—y)) =v(xy —xy) =vxy) - v(xy')

Thus the integrals in y and y’ are as follows:

/@(xy)x(y)|y|SW<g ?) dy-/w(xy/)x‘1(y’)IY’|]_SW({) ?) dy’
kx 38
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Consider the integral in y:
— 0
[wewxwuew (3 9) e

Let n € 0. Replace y with yn to get
— 0
/(fw(xyn)x(yn)dn>|ylsw (%’ 1) dy
kx  oX*

Consider the inner integral:

/W(xyn)x(yn)dn

Recall that y is a ramified character. Let N be the conductor of x. So x is trivial on some subgroup
1+ m" of k* and non-trivial on 1 +mN~1 where N > 1 is the smallest such an integer. A standard
computation [30] shows that

/ Y(xy)x(y)dy =0 unlessord(x) = —
k>

We claim that our inner integral is zero unless ord(xy) = —N. So ord(y) = —ord(x) — N. The integral

/W(xyn)x(yn)dn

is a Gauss sum. A Gauss sum, g(x,¥), where x is a ramified multiplicative character with conduc-

tor N, is
B _ x B q2—N

UX
The integral in y’ is:

/(fwxyt ytdt>|y| <36 O)dy, teo”

28

the conjugate of the integral in y. Thus, by replacing yn with u, and x with m, the integrals over 0>

in y and y’ are
|fo(zmne

2 2—-N
_ 4

d S B
Uw(xyn)x(yn) n q—1)72
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So the entire non-decoupled local integral becomes

1)2U' 'W< )dy f'

Recall that the integral is zero unless ord(y) = —ord(x)
q* N . / o 1 x). /
(@—1)7? 01
k ord(y)=—ord(x)—N

1-s—=(y O
yw (Y 9

ord(y’)=—ord(x)—N

¢ / 1 x /
_7((1_1)2. (] 0 1 .
k

133 (2013) 278-317 287

w5 §)ar felo 7)o

k

— N. So rewrite the integral as:

s y 0
1yl W<0 1)dy
dy’ dx

y
|y|‘W<O

dy dx

- O
N—

ord(y)=—ord(x)—N

Since ord(y) = —ord(x) — N, then y can be written as

t

, te
wNx

y:

So the entire integral is:

ﬂ/ 1oxy [ 1
q-12 ) ?\0 1) [N
k

Now y — W(g ?) is supported on o Nk*, so ord(x) <
and by a change in Haar’s measure, the integral becomes

1)2 /l ="

_a" ./|x|1—w' . ’;

Tg-1 o Nx
k*

Invert x to get

¢ ./|X|W'*1 . ‘L
q—1 wN
k)(

Replace x by @ Nx and let ord(x) = ¢ to get

1
wNx 0
0 1

0

dx

1
w(l(z% ©
0 1

—N. Then x ¢ o. Thus, we integrate over k*,

2
dx

dx
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2
dx

1-N
q “Nw' N 1 x 0
’Cv](W/,XV])ZqT].q w -q ./lxlw |X|‘W<O l>
k><

_ q . quW’ . iqffw’ . af-ﬁ-l _ ﬂf-f-] . &Z-H _ BZ-H
q-1 pors a-p a-p

_a" 1—|al’IBlPq " o
q=1  (1—laPg )1 - |BRg")(1 —aBg~")(1 —apg™)

3.3. Asymptotics
Lemma 3.3.

’

—-w

Koy (W', xvy) < (qN)

Proof.

q 1—a’1Bl*q "
g=1 (1—lalq)(1 - |BRq~")(1 -&Bg~")(1 - apq)

is independent of the conductor gV of x. O

The non-decoupled integral
Koo(s: x0: ) = [Kv (5. xov: x0) = [Kv(s. 5" w. xv)
v v

has the following asymptotic formula.
For v comple,

ICV(S, s w, Xv) _ n725/+1A(s’, w, MLMZ) . (1 _,_g% + 4t + tv)z)—w

1+ O((\/l F2+4c+6)2) )]
where A(s’, w, t1, (3) is the ratio of products of gamma functions

24W—4S’—4 F'(W+s +ipg +ipg)F(w+s —ip +ip) F(w+s" +ipy — i) L (w+s" —ipy —ift2)
2w +2s')

and ity, ¢, are the parameters of the local component x, of .
For v real,

— _1
Ko(s,s'sw, xv) = B(s, w, 1, p2) - (T4 [t +tu]) " - [1+0((1+ 1t +tv]) 2)]

where B(s’, w, (1, (42) is a similar ratio of products of gamma functions. (See Section 5 in [9].)
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4. Spectral decomposition of the Poincaré series

In this section, we spectrally decompose the Poincaré series. This is central to the ideas underlying
the integral moments of automorphic L-functions on GL, to prove the meromorphic continuation
of the Poincaré series. The decomposition consists of a leading (non-L?) term, cuspidal part and
continuous part.
4.1. The cuspidal part

Let F be a cuspform on G, generating a spherical representation locally everywhere, and suppose

F corresponds to a spherical vector everywhere locally. The Fth (cuspidal) component of the spectral
decomposition of the Poincaré series is (Pé, F) - F. So

(Pé, F) = / Pe(g) - F(g) dg = / Z o(yg) I?(g) dg
ZpGi\Ga ZaGp\Ga ¥ EMK\Ck

= / 9(@F(g)dg= / 9@ Y, WrEgdg= / P(@WE(g)dg

ZuMi\Gy, ZaM\Ga E€Zi\M Z4\Ga

= ] /wv(g)Wp,v(g)dg / Qv (©WE v, (g)dg
V<eoVAVI 7,06, 7y, \G,

T [ eeWee@d (41)
V‘OOZ.,\GV

Lemma 4.1. For v # v, the vth local factor of (Pé, F) is L, (s’ + % F).

Proof. Suppress v. By the Iwasawa decomposition and right K,-invariance, we get

@(mn)W g(mn)dmdn
Z\MN

Further, with Z\MN ~ HN and

W (mn) =y (mnm ™" )W (m)

we get
//Xo(m)<ﬁ(n)1;(mnm71)WF(m)dmdn
H N
Again, for m in the support of Wr and ne NN K
/w(n)x}(mnm’l)dn =1
N

So the integral becomes
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fm(m)WF(m)dm:/w’W(g ?) dy=(1-aq~)"'(1-Bg~)"
H k>

1 -
:Lv<s/+5,F> O

Lemma 4.2. For v = v1, the vth local factor of (Pé, F) is

1-2w/ 425’

(s 1 F @-1(@Q W,—qiaﬁ ) (s 1 F
S ? /¢! AN S ’
! 2 (1 —a-1g-"+)1 —g-lgi-w+) 2

, 1 =
—q Lv<s/+w’—5,F)

Proof. For v =v1, (Pé, F) unwinds to
//XO(m)go(n)zZ(mnm‘l)WF(m)dmdn
H N

Now

1_ (1 xy
mnm _<O 1)

//J(xy)lyls/v_\/(g (1)><P(X)dydx

k kx

So the integral becomes

We will first consider the integral in y
— J — O
JenlyFw (Y 7 ) dy
0 1
k)(

where ord(y) =n. For x € o, since  is trivial on o, the integral is

n+1 _ ﬂn+l

oo
—ns' & —s'\—1 —s\—1 1=
- —(1- 1- =L - F
D a a5 (1—aq™®) (1-pg*) v<5+2,>
For x ¢ o (i.e. for ord(x) < 0), we first evaluate
f ¥ (xy)dy
OX

Let ord(x) = m. Write

y=o't, x=w™y, t,neco”
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Then, replacing tn by u, the integral becomes

/ 7 (@™ ) du

Now

For ¢ > 0, the integrand is 1 so

/W(wzu)du =meas(0”) =1

ox

For £ = —1, ¥ is non-trivial on o and trivial on m, so

/ ¥ (@ ‘u) du = —meas(m) = _q%

1
For ¢ < —2, ¥ is non-trivial on o and on m, so
/ V() du=
0)(
So keeping in mind that ord(y) =n and ord(x) =
1 (for ord(y) > —ord(x))
/w(xy)dy /1// o™ M) du = —q% (for ord(y) = —ord(x) — 1)
0 (otherwise)

So, for x ¢ o,

7 s’ y 0 _ % y 0
[w(xy)lyl W(o l)dy— / Iyl W<0 1)cly
kX

ord(y)>—ord(x)
1 s y 0
- [ wrw <0 ; ) dy
ord(y)=—ord(x)—1
Now the whole integral is

//J(xy)lyls/w (g ?) @(x) dy dx

k k*

291
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Again, the sub-integral over x € o evaluates to

= - 1
(1—eq™) ' (1-pg™) 1=Lv(s’+5,f)

The sub-integral over x ¢ o becomes

—w s/ y 0
Ix| / Lyl W(o 1) dy dx
ord(x)<0 ord(y)>—ord(x)

1 —w' S/ y
= [ w [ wew (3 ))wa
ord(x)<0 ord(y)=—ord(x)—1

First,

—w' s/ y
f x| / Iyl W(O 1)dydx
ord(x)<0

ord(y)>—ord(x)

_l / /
= |y|SW<y ?)dydx

0
ord(x)<0 ord(y)>—ord(x)

q -1 Z m(l— W) Z ns' anJrl _ ﬂl‘l+]
q S —

n=-m o _'8
q—1 00 . B alfmqs’m ﬂlfmqs’m
=—> """ (@-p) 1[ — - —
a = —oq 1-8q
q

%.(a_ﬂ)—l[(]_aq Z -1 l W+S

(1—,31]75 i -1 l W+S

-1 1-w'+s'
=q—-(a—ﬁ)‘1[ N T
q (1—-aqg=)(A —a~lgl-w+s)

q-— 1)(q7W/ _ el

ap
(1 —ag=)1 = pg~*) (A —a~ g+

1-w'+s’
q +.

(1—Ba=)(1 - ﬁ‘lql“”/“/)]

_ Ig—lql—w’-b-s’)

, 1-2w/+2s
1 (q—1)(@™" _qT)
= LV] S, + -, f : o T o/
2 (1_a—1ql—w+5)(]_ﬁ—lql—w+5)

For ord(y) = —ord(x) — 1, write y as

-t x
v=— (teo™)
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Then
1 —w s’ y 0
ord(x)<0 ord(y)=—ord(x)—1

|~

S

ord(x)<0

Now y — W(g ?) is supported on o Nk*. Thus, integrate over k*, and by changing to multiplicative
Haar’s measure, the integral becomes

Invert x to obtain

ord(x)>0

Replace x by @rx and with ord(x) =

1T w w'—1 s x 0

ord(x)>0

am m+1 IBm+1

—m(w'—1+s')
Zq —aTp

= qfw/ . (‘1 — ()[q]*WLS/)_1 (1 — /3(]17‘/",75/)_1 = qu/L<S, +w — %, F>

So, for v = vy, the vth local factor of (Pé, F) is
1 @@ - L
(1—-ag=)H(1 - ﬂQ‘s’) (1—aq=s)(1 = Bq=*)(1 —a~lg-w+s)(1 — g-1gl-W'+s)
1
@V (1 —ag ) (A - Bg )

_w gl
_1i (s 1 F (@—D( —T) (s 1 F
=Lv{s + 2’ + (1 —a-1gi-w+s)(1 — gp-1gl-w'+s) Lvis+ 2’

/ ] —_
—q’WLv<s/+w/—§,F> m|

For infinite v, the vth local factor of (Pé, F) is g(% +iE,y; s, w), where up to a constant, for
va R,
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¢ F(S/—FZ'I—S)F(S/+\2/V—S)F(S’$)F(S/+W2+S—l)
reHre +%)

Gy(sis w)y=m~

and at v~ C,

w 'S +1=)T (" +w—9)I(E +)I (" +w+s—1)
(W) (25’ + w)

Gv(s;s',w)=2m"

(See formulas (4.2) and (4.3) in [9].) Group the archimedean factors as

gFOCS W HQV( +iftry;s, w>

v|oo

and let all ambiguous constants be absorbed into pr. Then, for cuspforms F, the cuspidal part of the
spectral decomposition of the Poincaré series is

1 - 1 -
> (Pé,F) Zprga,c s, w) - |:Lv<s/+§,F)+L.,1 (s’+§,F)

F

1-2w/+2s'

@-D@™ - 55— 1.
Ly, s+ =,F
(1—a-lg-w+s)(1 — g1g1-W'+5) V1 ’

/ 1 —_
—q " Ly, (S/+W/—§,F)i| -F (4.2)

There is no residual spectrum since residual automorphic forms on GL(2) are associated to one-
dimensional representations which have no Whittaker models.

4.2. The leading term
Lemma 4.3. The leading term
_ -
Y= (Poo'm' s'+1,1
Ny Neo

Proof.

ol fon | [ o o]}

Na Noo Nv#vl Nv1
where an elementary computation shows

F(W—l )

o (v~R)
/(p = rey)
2r(w—-1"1 (v=0)

(See (4.16) in [9].) Now for v # vy,
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/(pvdnzfldx=1

Ny ky
and
/(p‘,ldn: / 1dx + / Ix|™W dx
NV] Xeoy X¢oy
I—1 oo yiw g—1 ¢V 1—qv
:1+—Z(qm) :1+ . 17/: T—w O
= qg 1—g=™ 1—qg7"

4.3. The continuous part

Subtract an Eisenstein series from the Poincaré series and denote the resulting function by Pé*.
This function is L% and has sufficient decay so that it can be integrated against an Eisenstein series
(see Section 4 in [9]). The continuous part of the spectral decomposition of Pé is

1 % 1
. Pé* Es ,)-Es yds (wherex =meas(J' /k*
e D [ B s (0" k)
Re(s)=1
(Pé*, Es x) = ( / Poo - Wﬁx,oo> A T1 Pv(gv) - Wf,x,v(gv)> dgy
Zoo\Goo V= Z,\Gy
where
Gv(s.s\w) ~

VT/E _ TSI (s) (V ~ R)

(000 . S, X,V T gv(s,s’,w) (v ~ (C)
Zu\Gy 27-25-1(2s)

and for finite v # v1,

e Ya 1 Ly(s"+35,xv) - Ly(s" +1 =35, xv)
-WE =oy]2 2
(pv(gv) S,X,v(gv) I V|V LV(2§7 )_(%)

Zy\Gv

—(s'+1-5) —
'|av|v(SJr S)'Xv(av)

where 0 is the idele with vth component 0, at finite place v and component 1 at archimedean places.
(See Section 4 in [9].)

Lemma 4.4. For finite v = v1,
/ Pv(gy) Wi, ,(8y)
Zy\Gy

Ly 450 L 1 =570 - TP xy)
L/2-25. 1)

/

> (g=1)g' Wt q" 3.2
LV(ZS - 1, X) ) [(17q27w/75+5/)(]7q71+575/) - 17q7w/+575/] : |av|2 5. X(Dv)

Ly(2—2s,x?)

+
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Proof. For finite v =v;,
T E s7ovigE (¥ O
/ wv(gv)-Ws,X,v(gv)szlyl w(xy)Ws,X<0 1)-ga(X)dyu!x
Zy\Gy k kx

Define an Eisenstein series by

E@= Y n(g)

AEPk\Gk

for n left Py-invariant, left My-invariant and left N-invariant. Present the vectors 7, in a different

form, namely
’ — fo = eP ke K
, - Xv d rp 0 d Vs v

Let ¢, be any Schwartz function on k‘z,, invariant under k, and put

a
Ny (pk) = ‘a

1,(8) = xv(detg)|detg[; - / XoOIEF - du(t-ez- g)dt
ky

where e; = ey y is the second basis element in k%. 1, has the same left P,-equivariance as n,:

, a x al’ a /
7’v(<0 d>g>:‘3 'Xv(a)'nv(g)

For ¢, invariant under Ky, the function 7}, is right K,-invariant.

1my,(8) =0, (1) - 1ny(g) (since ny (1) =1)
and
n’v<1>=fx§(r)|t|%s-¢v<t-ez-1)dr=;v(2s,x2,¢<0,*))
K2

(See Appendix 2 in [9].) Thus, it suffices to compute the local Mellin transform of

n(,(l)'WSEqX,V(m):/J(n)'n(,(wonm)dn
Ny

=x(y>|y|5-/J(n)/x&(tm?-¢>v<r-ez~wO-nm)dtdn

Ny kX

=X<Y>lyls-fJ(X’)fxﬁ(tm%S-¢>v<tx’,ty>dtdx’ <withm:<g ?))
ky

ky
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At finite primes, take

¢(t.X') = cho, (t) - cho, (') (chx = characteristic function of a set X)

Then

n,(1) =¢v(2s, x%, cho,) = Lv(2s, x?)

and

() Wy (3 ?) =Xyl / ¥ (x)cho, () - / Xv (Ot cho, (ty) de dx’

ky

—X(Y)Iylsmeas(ﬂv)/6h0v< )Xv(f)ltl25 "chy, (ty) dt

ky

=[oy]2 - Xyl /Chov< )Xv(t)mzs Ych,, (ty) dt

k3

. . 1
where 0, € k¥ is such that (oj)‘1 =10y - 0y. So, omitting [0,]2 for now,

//|y| ¥ (xy)WE (g 1) o) dy dx
//m v (xy) - (x(y)lyl fchov< )xv(t)m” 1chov(ty)dt>-¢(x>dydx

Consider the integrals in y and t. Replace y by % and then t by % to get
f T (xyt) - x DY cho, () - chayo, (6) - X (O drdy
k> kx
First consider the integral in y:
f Y (xty) - X MY cho, (y) dy
k><
For x € 0%, ¢ is trivial on o, so we get

/X(JOIYIHS /Chavov(t) X O de

0x kx

=Ly, (545, X) Lo, (S +1=5,%) - 100719 x 0y)
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For x ¢ 0™,
1 (ord(y) > —ord(x) — ord(t))
/ ¥ (xty)dy = —aig (ord(y) = —ord(x) — ord(t) — 1)
ox 0 (otherwise)
So

/ Fxty) - x DIy cho, (1) dy

k>

= / b (xty) - x (0y[S dy

/ 1 /
= / XDy dy — o1 f X1y dy
ord(y)>—ord(x)—ord(t) ord(y)=—ord(x)—ord(t)—1

The entire integral in ¢ and y is:

/qo(X)/chavav(t)~X(t)ltls/“‘sdt

X¢o k>
/ 1 /
XD dy — =1 / XDy dy}
ord(y)>—ord(x)—ord(t) ord(y)=—ord(x)—ord(t)—1
First take
[ o [t xorE @[ iy ayay
X¢o k> ord(y)>—ord(x)—ord(t)
q—1 - 1-w' > +s
- —-w _n\S+s — /11—
=—> @) " > @M '/Chavov(f)')((f)|f|s+] Sdt
q m=1 n=—m-r X

(where ord(t) =r and x (y) is omitted for now)

- f cho, o, (6) - TOIE]S 1 dt
kX

q-1 i @ ™)m - (@)™ (@)t
- q = 1—q—6+)

(q _ 1)q17W/+S+S/
= q(1 _ ql—w’+s+s’)(] _ q—s—s’

3 f cho, oy (6) - TOIEF 51175 de
kX

(q _ l)qfw/+s+3’ _
= 1—w/+s+s “s—s'y Ly, (1=2s, %)
(1 —qg'=wHstsH(1 —¢q )
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Next we take

1 _ i /
_—q—] / w(x)/Chbvov(t)~X(t)|t|5+l Sdt - / X(y)|y|5+s dde
*o ke ord(y)=—ord(x)—ord(t)—1

Since ord(y) = —ord(x) — ord(t) — 1, y can be written as y = ﬁ So the entire integral becomes an
integral in t and x as follows:

1 _ i /
_—q 3 f (p(X)/Chavov (t) - X(t)|t|5 +1 Sdt - / X(y)|y|s+s dydx
#¢o kx ord(y)=—ord(x)—ord(t)—1
1 -1 , ) 1 s+
= [t [ oo, @ OIS S|
=1 q wxt
X¢o k*
= _qs+s’71 / |X|1*W’7S*S’ / Chavgv (t) . X(t)|t|]725 dt dx
[x[>1 kX
'—1 - 1-w' —s—s' o qs+s’—l .q]—w’—s_s/ B
= _q5+S - Z (qm) . LV] (1 — 25, X) = — 1 rEvv— A LV] (1 _ 25’ X)
m=1 q
= _L Ly, (1 —=2s,X%)
o 1-— ql—w’—s—s/ Vi » X

Adding up we get

B q-— ])qfw’+s+s’ qfw’
Lvl(]—ZS,X)' 1—w' 0 e N 1—w/ —s—s’
(‘l_q +S+S)(1_q S S) 1_q W' —Ss—¢§

Thus at finite primes v = v1, the integral evaluates to:

Ly (545, %) Loy (S +1=5.%) - [0y, T 1% 0y)

B = 1)q—w’+s+s’ qgv 129
+ LV] (1 - 25’ X) : |:(1 — q]iw/+s+s/)(1 — qisis/) - 1_ qlfw/fsfs’ : |DV1 | X (DV1)

Then dividing through by 7/, and putting back the measure constant |DV|%, we get for v =vq,

|av|%~//|y|s/$(xy>W£X(g ?)-w(x)dydx

kx k

_ / 1
Ly 45 0 Ly 1 =5,30 - [0V oy |27 x (0)

Ly(2s, x?)
e T @-Dg+st+ ™ iy 1=(1=25) 1 (L
+Lv(1 25,)() [(17q1,w/+5+57)(17q,5,5r) ]7q1,wr,5,s/] |DV| |DV|2 X(DV)
Ly(2s, x?)

Replacing s by 1 —s and x by x we get
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outt - [ [ oW, (3 7) veoavax
k

138

Ly 50 Ly 15,0 [0 x (@)

Ly(2—2s5,%?)
_ 1yl s s’ v’ 3_
Ly (25— 1. %) - [ et mamreeey — 1o |- 012725 X 0y)
+ q )(1—q ) q O
Ly(2 25, x?)

So the spectral decomposition of the Poincaré series is:

¢ 1_q7W/ 0 / / 1 ’ 1 -
Pe=</(Doo)'WJES/-H,]+2F:,0FQFOQ(S,W)'|:LV<S +E,F + Ly (s +§,F

12w’ 425

(Q—l)(q_wl—qT) , 01 - W , L1 -
(_l _a_lql_w/+sr)(_l _ ‘3_1q1_w/+$/) N LV] (S + 57 F) _q LV1 <S + w — Ey F>i| . F

1 T E
rawd [ ([ o)

X R(s)=1 Zeo\boo

(L 50 Lo + 15,30 1D 7 0y)
Ly(2—2s5,%2)

LG s 0 L s ) 0,76+ 1 0y)
L, (225 x2)

_ (qil)ql—w/—s-%—s’ q—w’ 3_5
Ly(2s—1, X) ' [(1_qZ—w’—ers’)(l_q—lJrs—s/) - 1_q—w’+s—s’] “[ov]2 5 X(DV)>

Ly(2—2s, x?)

-Es yds (4.3)

_I_

From the spectral decomposition, the Poincaré series has meromorphic continuation to a region in C?
containing s’ =0, w’ =1 (see Section 4 in [9]). As a function of w’, for s’ =0, it is holomorphic in
the half-plane R(w') = % ([24] and [23]), except for w' =1 where it has a pole of order 1.

5. Preliminaries to subconvexity

Fix a non-archimedean place v1, and take 1 < B’ < 2. At the archimedean place, fix t = to. Define

2

/

- 1
'(qN) Y -ICOO(E +ito,0,ﬁ/,x)dt (5.1)

zw)= Y 7 ‘L(% vit, f ®x>

)(Eéoys —00

This is a modified function obtained from (3.5) by taking the asymptotic formula for ICy, (W', xy,) in
Lemma 3.3. Z(w’) is absolutely convergent for %(w’) > 1 (see Section 5 in [9]). In this section, we
will obtain the moment asymptotic, and prove the meromorphic continuation and polynomial growth
of Z(w’). This will enable us to obtain subconvexity bounds in the finite prime conductor-aspect.
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5.1. Meromorphic continuation of Z(w')

Theorem 5.1. The function

5 Jiewrer)

XECO —00

(@)™ 'K“’(% +ito, 0, 8, x) dr

where the sum is over a set 60 s of characters ramified at the finite prlme vq with conductor gV, and 1 <
B <2, R(w') > 1, has analytic continuation to the half-plane R(w') > except for w' =1 where it has a
pole of order 1.

18'

Proof. Let w' =§ + in. Split Z into Z; and Z; as follows:

Z(W') = Z1(w') + Za(w) (5.2)
Choose a positive constant C and define
2

(W)= Y ]O‘L<;+it,f®x>

x€Co.s: gN&KC =00

—w 1
(") "Coo(5+ito,0,ﬁ’,x>dt (5.3)

We first show that Z{(w’) has analytic continuation by showing that it is holomorphic for § > 0. Now

2

awe X[ (ienrox)

XV« C "o

—w 1
: |(qN) v ‘ : "Coo(§+it0,0,ﬂ,, X>|dt

Koo(3 +1ito, 0, B/, x) is positive (see Section 4 in [10]). So

|Z1(w')] < /’ < +it, f®x>

’ (qN)78 : ICOO(% + itO! 07 ﬂ/7 X) dt

X: q”<<C
Since
(@) <pc (@)
then
_g 1
x:qgN«C
1
< Z /‘( +1tf®x> (qM)” /coo< +ito, 0, B/, X)dt:Z(,B’) (5.4)
x€Co,s —00

which is convergent for R(w’) > £. Thus, Z1(w’) is holomorphic for R(w’) =8 > 0 (in particular for
RW) > 1 ) Now we prove that Zz(w ) has analytic continuation. Consider
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I(s',w', B') Z /L(s fOX)-L(E+1=s,f®X) Ky (W, xv,)

XECOS —00
Koo(s,s', ', x)dt (5.5)
2
1(0,w', B') Z 27”/’ ( +lff®X> Ky (W, Xvy)
x€Cos —00
-ICOOGHtO,O, ﬂ’,x)dt (5.6)

is holomorphic for R(w’) > % except at w’ =1 where there is a pole of order 1. In the region of
absolute convergence for %(w’) =§ > 1, write

1(0,w', 8') =11 (0, W', B') + 12 (0, W', B') (5.7)
where
1 [ /1 2
L(0, W', §) /’L(——Ht,f@x) K (W 10,)
27 2
x:qN«C —00
1. ,
Kool 5 +it0. 0. 8", X dt (5.8)
Now

_W’
10.w.8)=1(0.w.8)+ > 3 /‘ ( +ltf®)() -’ (qV)
x:qV>C —o0
1
'Icoo<§ +itp, 0, B', X) de (5.9)
where the constant
1 —1al?1812g—2"
- 1 lef”1B1%q _ (510)

a—1 (1—lalPg")A - B2~ A —apg=") (A —apg="")
is obtained from Lemma 3.2. So
100,w', ) =110, w', B') + C"- Zo(w) (5.11)

Thus, to show that Z,(w’) has analytic continuation, it suffices to show that I1(0, w’, 8) is absolutely
convergent for R(w') > 1.

2

10w, ) = Zzﬂl/‘(-i—ltf@)()

x:gNkC —00

1
vy (W, xv,) - ICOO< +ito, 0, 8/, X)
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oo
1 1
— [ |5 +it
< > Zm./‘(zw,f@x)
X

1gNk(C S

2

—w 1
| (a") W\-/coo<§+iro,0,ﬂﬁx>dt

oo
2
1 1 N\—B T . ’
& Z ﬁ/‘L(EJrzt,febx> (q%) -lcoo<§+zto,0,ﬂ,x)df
x:qgN<C —00
S 2
<2 L/ L5+t fox )| (@) " ke 5 +it0.0.8.  )de
o 2T 2
x€Cos —00
:Z(ﬂ/) (512)

which is convergent for R(w’) > %. Thus Z(w’) is absolutely convergent for f(w’) > %, proving the
theorem. O

5.2. Polynomial growth of Z(w')

Theorem 5.2. For every fixed small positive €, the generating function

2

/

: (qN)7W . ICOO(% + ith 07 /3/’ X) dt

zZ(w') = Z 7’L<%+it,f®x>

x€Co,s —00

has polynomial growth in the conductor gV for % + € <R(W') < 1+ €. That is, for a computable y > 0

independent of p', on the vertical line R(w') = 11 + ¢,

Z(w') e (@)
Before giving details of the proof, we find it useful to first present the main ideas of our argument.

Idea of the proof. From the definition of I(s’, w’, 8’) in (5.5) split I = I + I, with
L0, w,B)=C"Zy(w)=C[Z(W) - Z1(w)]

where €’ is a constant obtained in (5.10). Z{(w’) has polynomial growth in the conductor gV so
it suffices to show that I(0, w’, 8’) has polynomial growth. Using the spectral decomposition of the
Poincaré series, we rewrite I(w’), define an auxiliary function I1"**(w’) and show that I(w’) — I"™**(w")
extends holomorphically to the vertical strip —e < R(w’) <1+ €. We then prove that ["*(w’) has
polynomial growth in % +€ <RW) < 1+¢€, and apply the Phragmen-Lindel6f principle to prove
polynomial growth of I;(w’) — I%¥(w’) within the strip.

Proof of Theorem 5.2. From (5.2), (5.7) and (5.11), deduce that
L(0,w', ') =C'[Z(W') — Z1(w')] (513)

with Z(w) and Z(w’) defined in (5.1) and (5.3). Z{(w’) has polynomial growth in gV. Thus, the
polynomial bound of Z(w’) will be deduced from that of I5(0, w’, 8). In the spectral decomposition
of Pé, set s’ =0 and obtain
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L 1—q " _ , 1 - 1 -
Pezsl/lglo(/9%0)'m'Eerl,]‘f‘;PFng(ﬁ)-[Lv(E,F>+Lv1<§,F)

’ 1-2w’
@-D@" -5 12\ o (2w —1 -
+ Tigi—w —iowy vl F)—a T Ly JE)|-F
A —a~lg"=")HA - p~1q'=") 2 2

X(@v) wE
+;4ni/< f < / Peo WS%OO)

R)=3 Zoo\Goo

— _(s—1 — —(s—1
(LvGo0 Ly =530 0u[772 Ly (5,00 Ly (1 =530 - [0y, 772
Lv(2—-2s5.%2) Ly, (225, %%

/

_ _1yq1-w s
Ly,(2s—1,%) - [-—4=1)4

(- Z—W’—S)(]_ s=1y - ]_q_,‘:/vurs] . |DV1 |272S
+ = e 2‘75 3 . ) - Es y ds (5.14)
Vi - )

We write
I(W/) = Ising(W,) + Icusp(W/) + Icont(W/) (5.15)
where
1—q -w 2
Ismg —sl/l_l‘)l‘lo< (poo> 1 —q1 i (Es’+1,1» [f] )
Noo
/ 1-2w'
1 = q-D@" - qw) 1
Teusp(w prgpm [2Lv(2 F) TR Py T -u(z, F)

_ q—w/Lv<2W2— 1 7 F)] ) (F, |f|2>

1
/ Z)T(Ov) ok 2Ly (s, x) - Ly(1—s, %) - [0y "¢ 2)
Iconl'(w ) = AT / ( / Yoo Wl e300 ) LG -2 Xz)
X ;

5]\‘(5):% Zo\Goo

Ly(2s—1,5) - [—g=ha' " 0,372
O 10 g — ) | >.<Esx |£12)ds

Ly(2—2s, x%)

+

Then define the auxiliary function 1%*(w’) by

1% (w ZPFQFOC [ (; F) +M?UX(W/)] (F. 1)

X (@) £ 2L(s, %) L1 =5, 3) - [o] ¢~
+;4ﬂw / ( / poor W”X‘”) 1225, %)

R(s)=1 Zoo\Goo

L2s —1,%) - M3X(w') - [o] 2725

2
L(2 —2s, x2) (Es.x. | f1°)ds (5.16)
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where M{**(w’) and M5**(w’) are defined by
M (W) = Mi(w)) - (@) and MEH(w') = Ma(w) - (")

where y > 0 is independent of g’. Mi(w’) and My (w’) are expressions in Icysp(W’) and Icone(W')
given by:

, 1-2w/
@-D@ " -5 1 - C 2w =1 -
My (w') = of -L(—,F)—q""’L( Wz ,F)

(1—a~lg=")(1 - p~Tg'=") "\2
and
1 1-w'—s —-w’
Ma(w) = @=1yqg 9
(1 _ q2—w —5)(1 _ qs—l) 1— q—w +s
Define

(See Proposition 3.6 in [10].)

H(w') = lim / Ll il (Eg 11, 1FP)
§—0 - q1 w LD

Noo

+ > PrGr. (B) - [Mi (W) = M§(W)] - (F, 1 £ 1)

X(0) E
g ([ eewigs)

R(s)=1 Zeo\boo

L@2s = 1,3 [Ma(w)) — ME*(w')] - ol i~
L2 —2s, x2)

(Es.x, | f1%)ds (5.17)
Proposition 5.3. For € sufficiently small,

H(w') =1(w') = 1™(w')
restricted to % <M(wW') <1+ ¢, extends holomorphically to the whole vertical strip —e < R(w') <1 +e€.

Proof. The first term in H(w’) is holomorphic in the strip —e <R(w’) <1+ ¢, except at w' =0, 1
where there are poles.

Mi(w') = M (W) = Ma (w') = M (w') - (%) = M (w)[1 = (a")"]

Similarly

Ma(w') = MG (w') = Mo (w)[1 = (a")]
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Since both M7 (w’) and M;(w’) are holomorphic in the strip, then H(w’) is also holomorphic in the
strip. O

Proposition 5.4. Fix a small positive €. For }—; +e<RW)<1+¢€ 0rR(W) = —¢,
Iaux(wx) Lep (qN)V
Proof. All other terms in 1%*(w’) defined in (5.16) are independent of the conductor gV. O
Recall we are trying to prove a polynomial bound for I (w’) in the conductor gV. Now
L(w') = L(w) — I"*(w') + 1"*(w') (5.18)

We have proven a polynomial bound for 1%*(w’), so we now prove a polynomial bound for I,(w’) —
IauX(W/).

H(w') = I1 (w) = I(w') = 1"™™(w") (5.19)

Thus it suffices to prove a polynomial bound for H(w’) — I{(w’) on the line R(w') = }—é + €. From
(5.12) recall that

L(w)<Z(B)<oo
So I1(w’) is holomorphic throughout the strip. Thus H(w’) — I{(w’) is also holomorphic throughout

the strip. For R(w’) = 1+ ¢, since I™*(w’) « (@V)?, for y > 0, Z(w') = 0(1) and Z;(w') already has
polynomial growth in gV, we conclude that

HW) — 1 (W) = I (w) — 1" (w)
has polynomial growth in gV for ®R(w’) =1 + €. Now assume %(w') = —e.

H(w') — I (w') = I(w) — 1**(W') = I; (W)
Again, 19*(w’) has polynomial growth for (W) = —¢, and I;(w’) < Z(B’). The spectral expansion
of I(w’) and I1(w’) shows that I(w’) and I1(w’) also have polynomial growth for %(w’) = —e¢. Thus
HW’) — I(w’) has polynomial growth in gV for %(w’) = —e. We now apply Phragmen-Lindeléf and
conclude that I (w’) — I*(w’) has polynomial growth in gV within the strip % +e<RW) < 1+¢,

and hence, so has I(w’). O

5.3. The moment asymptotic

Main Theorem. For a cuspform f on GL,(k), where k is a number field of degree d over Q, the finite prime
conductor-aspect moment asymptotic for the twisted L-function L(% +it, f R x) is

£ [irmron

2
1
. ICOO<§ +it, 0, B/, X) dt < T (foralle > 0)
X aVN<T-"0

where gV, with N > 1, is the finite prime conductor of x and ICOO(% +it,0, B/, x) refers to the archimedean
data.
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Proof. From the definition of Z(w’) in (5.3), set w’ =1+ ¢, then for arbitrary T > 1

£ [ifinren

2
1
-Koo<§+ito,0,/3/,x> T« O (5.20)
1N <T-"00

6. Subconvexity bounds

Our goal is to break convexity in the finite prime conductor-aspect for a family of L-functions
L(% +it, f ® x), where x has arbitrary ramification at a fixed finite prime v4. For a cuspform f on

GL;(k), the finite prime conductor-aspect convexity bound for the twisted L-function L( % +it, f® x)
is

1
L(i +it, f® x) < "G+ (forall e > 0) (6.1)

where gV with N > 1 is the conductor of x allowed to be ramified at the finite place vi, and d is the
degree of the number field k over Q. We will break convexity at the finite place v; by decreasing the
exponent, proving:

Example application. Fix a number field k of degree d over Q and a cuspform f on GL;(k). For a
computable constant ¥ < 1,

1 d—1+v
L(f +it, f®x> <Le (qN) 7t (for all € > 0)

Proof. Fix a non-archimedean place vq, take 1 < 8’ <2 and fix t =tg such that 0 <t < 1 in the
non-decoupled integral at the archimedean places. Z(w’) has analytic continuation to R(w’) > %
with a pole of order 1 at w’ =1, and has polynomial growth on every vertical strip inside }—é +€e<
R(w') <1+ €. Choose T3 < 8o < 1. For 89 < M(w') <1+ ¢, and by Phragmen-Lindel6f, Z (8o + in)
has polynomial growth of exponent less than % (see Section 4 in [10]). Consider the rectangle R with
vertices at §o — iS, B’ —1iS, B’ +iS, 8o +iS. Recall Perron’s formula: for g’ > 1,

P

1 xW 1 (forx>1) 8 . 1
— Z_dw= +x7 0g/( miny1, ——
i ) w 0 (forx<1) S|log x|

B'—iS

Applying Perron’s formula to the integral
pAs
1 Z(w"x
—— ¥ dw/
2mi w’
B/—is
gives
B'+iS ,
1 Z(w)x" ,
— ——dw
2mi w’
B/—iS

o0
1 1
% o)
X —co

B+iS

2 Nyw’
1
( / wdw/)'lcoo(—‘FitO,OnB/vX)dt
w’ 2

B—is
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Z‘ ( +ztf®x)

where the error term E(x, S) is

2
1
1 .ICOO<§ +itg, 0, B/, X) dt+E(x,S)

x:qN<x

2 x\F 1 ,
: q_N Koo §+1f0,0,ﬂ,X

. 1
'mm{ " STlos >|} -

Ex,S) <<Zf ‘L(%—Ht,f@x)
X —co

Theorem 6.1.
lim E(x,S)=0 (forx>0)
S—oo

Proof. We first show that

B/+iS o B'—is
Z(w')x
Zwx™ dw'=0 and lim

S—o0 w’ S—o00 w’
So+iS 80—iS

Let w'=§+iS. Then
Z(w') < S" (form < % and |w'| = V62 +S2 < 5)

Thus the integrals above approach 0 as S — oo.
Consider the sets:

1 1 1 1
A={N; ———— d B={N; ————
[ Silog ()] f} an { Silog( )] ~ f}

On A,

o0 '8/
E(x, S)<<LSZ / ‘L( + it, f®)(>| (q%) -Koo(%+ito,0,ﬁ/,x>dt
X

o0
xP' 1 2 _p 1 xP
= L(=+it, f® AN ¢ (—+it,0, ’ )dt:—
ﬁZX:/‘(Z fx) (@) | 5 Tito. 0.8 x 7
—0Q

where Z(8') is independent of S. So

lim E(x,S) =
S—o0
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On B, ICOO(% +it,0, 8, x) can be estimated by the analytic conductor:

Q.o =[] +1t+el)- [T+ +4ct+t,)?)

va~R vaC

Break up E(x, S) into two sums over g <log$ and g > logs$. Since Z(w’) converges absolutely for
N(w') > 1, the second sum over gV > log S approaches 0. So consider

X\ 1 ) , 1
S JGreren) () e (yeros ) mnft g

x:qN<logS _

Now in B,

o0

> 1< logSk, k>0
gN<logS —o0

The convexity bound in the non-archimedean aspect gives
1 1
L<§ it f@x) < (@)} < (logs)}
Fix x =1 and choose 0 <ty < 1 for v|oco. Then
1 . ,
’Coo §+lt0’0’137x <<1

Also

1 1 1 _
_ >
Slogl ~ 5 JSllog(n)

=

o
-

N

R}

N
x

o
-

This restricts N to a set of measure < % So in the second case
lim E(x,S)=0 O
S—o0
By Cauchy’s theorem,
1 Z(w)xW'

2mi w’
R

dw’ =xP(logx)
Indeed, Z(w’) has a pole of order 1 at w’ =1, so by the residue theorem:

-l Z yW' w’
— / ﬂ dw’ = Resy/—1 (Z(W,) . X_)

2mi w’ w’
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Consider the Laurent expansion

and

0 1 n n
/ / w' —1)"log" x
KV = xeW fl)logX:XE :(#

n!
n=0

Then the coefficient of (w’ — 1)~ in the product Z(w’) - ’%, is xP(logx), where P(logx) is a polyno-
mial in logx. So

, Zw) W ; ﬁ’+isZ( ) W . 60+iSZ( ) "
w')x w')x w')x
—,/7dw’= — / — — dw — — f —— _dw’ =xP(logx)
2mi w’ 2mi w’ 2mi w’
R B—iS So—iS
Now Perron’s formula showed that
1 ﬂ/+iOOZ( /) W (o)} ] 2 1
w')x
— — _adw'= Ll = +it, Kool = +ito, 0, 8/, dt
2mi / w’ 2 /‘ <2+ f®X> °°<2+ 0P X

B—ico aV<x “oo

Thus as S — oo,

2
1
Koo <§ +itg, 0, B, X) dt

T 1
£ [}3enron)
V<X —o0o

1 50+iOOZ Now!
w'x
=xP(logx) + — / ZwWOx™ dw’ (6.2)
2mi w’
50—{00
Theorem 6.2.
8p+ioco o
1 Z(wx 20p+1 11
— —  _dw «x 3 -logx [— <8 <1
2mi / w’ < & <18< 0= )
8071‘00
Proof. By the choice of &g,
Zw')  Z(So+in)
w o So+in
is a square integrable function on R. Let
So+ioco ow!
1 Z(w")x
E(x)=— / de/ (6.3)
2mi w’

So—iOO
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Lemma 6.3.

X

/ [E©)|*de <« x%0t!
0

Proof. Let x =e 27! and again w' =38 +in. So

o0

E(eonu) _ L / Z(3 +in) . e~ 2mu(Sotin) | idn
2mi S0 +1in
—00
1 r Z(6 in)
— —2mwiun Le—2mudo g h — o+1n
o= [ e fay e o dy (w ere = =30
—00
Now
o
fay= / F(me™ > dy
—00
Thus
e27‘ru80 .27 - E(e—Zﬂu) — }‘(u)
Using Plancherel’s theorem:
o0 o0
2 2
/ |Fw]| du= / |f|”dn <1
—00 —00
So
o0
1> 472 / 2740 . E (=27 |2 du
—00
Replace e~ 27U by y to get
4
15 5 [y gL =2n [y e ay
2w y
0 0

X

X
> /y‘(z‘s"*”-IE(y)Izdy>x‘(25°+”/IE(y)|2dy for0<y <x
0 0

Thus

X
/IE(y)Izdy<<x23°“, 0<s<1 O
0
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We now prove Theorem 6.2, that

28p+1
E(x) «x 3 -logx

For x < y, {N: gV <x} € {N: ¢V < y}. From (6.2),

2
1
./@(5 +ito,0,ﬁ’,x>dt

11
EW) —E® =Y /’L<§+it,f®x)

vy “

o 2
— Z / ‘L<l+it,f®x> ']Coo(l“l‘itOsOvﬁ/’X)dt
qV<x “o 2 2
— (yP(logy) — xP(logx)) (6.4)

Since Koo (3 +ito, 0, B/, ) is positive,

E(y) — E(x) > —(yP(log y) — xP(logx)) (6.5)

Fix x > 3.
(a) Replace y with x+u for 0 <u <x:

E(x) <EX+u)+ (x+u)Plog(x+ u) — xP(logx)

Now P is a linear polynomial, so rewrite

(x+u)Plog(x + u) — xP(logx) = (x + u)[Alog(x +u) + B] — x| Alogx + B]

X+u

=Ax(log >+Aulog(x+u)+Bu

P
= Ax(log(l + %)) + Aulog(x + u) + Bu

Since log(1+ %) < % <1, then

Ax(log(l + ;)) + Aulog(x + u) + Bu < Ax - % + Aulog(x + u) + Bu

= Au + Bu + Aulog(x +u)
< Dulogx + Au(logx +log2) sinceu <x

Thus

E(x) <E(x+u)+ Culogx forsome constant C

(b) Replace x with x —u and y with x for 0 <u < x. Then

E(X) > E(x—u) — Culogx
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Let 0 < H < x. Integrate the inequalities over 0 < u < H:

H H H
C
fE(x)du</(E(X+u)+Culogx)du=H~E(x)g/E(x+u)du+5H210gx
0 0 0
and
i C
H-E(x))fE(x—u)du—EHzlogx
0
So
i C 7 C
/E(x—u)du—EHzlogxgH-E(x)ng(x+u)du+5Hzlogx
0 0

Change variables and replace % with C to get

1 X ] x+H
I / E(t)dt—CHlogxgE(x)gﬁ / E(t)dt 4+ CHlogx
x—H X

For E(x) > 0, apply the second inequality, otherwise apply the first one. So for E(x) > 0,

1 Xx+H 2
E(x)? <<ﬁ(/ E(t)dt) + C*H?log?x

X
Apply Cauchy-Schwarz:

1 x+H xt+H
EC’ < 5 / ()] de - [ 1dt + H? log? x
X X
1 e 1
=4 / |E(t)|2dt+H210g2x<<ﬁ-xz‘s"“—i—Hzlogx

X

since

X
/|E(t)|2dt<<x2‘3°Jrl and H<x
0

We want & - x?%0+1 = H2, 5o take

313

(6.6)
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Then

25p+1

E(x) <« Hlogx =x S -logx O
Let us now use the results obtained above to break convexity. Choose H such that

25p+1 250+1

X3 «H<«x 3 (6.7)

Let

NOEDY /‘( +ltf®x>

gN<x =

=xP(logx) + O(x

) =xP(logx) + E(x) (6.8)

Now for H > 0, {N: gV <x} c {N: gV <x+ H} and ICOO(% +ito, 0, B, x) is positive. So for trivial x,

l_[ICV< +ito, 0, B/, 1>dt (6.9)

v|oo

Sx+H+1)—Sx > /’ ( +it, f®x)

x<qN<x+H

Now
SX+H+1)—Sx) = (x+H+1)P(log(X+H + l)) —xP(logx) + E(xx+ H+1) — E(x) (6.10)

From (6.7) and Theorem 6.2,

Ex+H+1)—E(x) <X s logx (6.11)

and
(x+H+1)P(log(x+ H + 1)) — xP(logx) < C(H + 1) logx

So

SKHH+D —S® <X 5 -logx (612)
and

3 f‘L( +ltf®x> ]_[/cv< +ito, 0, B, 1>dt<<x 7 logx
x<qN<xHH oo vico

Now

Q. F <</cv( +it, 0, w, x) < Q(x,0H™"  (for v|oo)
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where

Q.o =[] +It+t0)- [T+ +4c+1)%)

v~R va~C

For trivial x, t, =1, = 0. Also recalling for v|oo, fix 0 <t < 1. Then

1 /
/cv(E +ito, 0, 8, 1) > (1)~@-18

So
Tl 2 1
259+1
X75 logx>» Z /‘L<5+it,f®x> -]_[Kv<5+ito,0,ﬂ’,1>dt
x<gN<x+H Zo v]oo
1 2 ,
> ) <2+it,f®x> ()@ dr
x<gN<x+H
1 2 d—1)p’
> > L<§+it,f®x> (@) a
XN <xt-H
1 2 ,
> L<§+it,f®x> (x4 H)~@-DP (6.13)
x<gN<x+-H
Then

+1

2
1 ;2
L §+it,f®x>‘ dt < (x+ H)@DF . x=5 logx

2

x<gN<x+H

260+1 | ¢ €
“5+3 .logx wheref/ =1+ ——

Cl 1+
<X 2d—2

230+1

g X417 e (6.14)

A pointwise estimate is then obtained from the short-interval integral estimate using Cauchy’s the-
orem and the functional equation of L(s, f). This is a standard argument analogous to that in [18]
applied to GL»(Q) in which case, an asymptotic result was obtained for individual L-functions, rather
than a sum. In our present case, we adapt this for general number fields. Thus, this short-interval
moment bound implies the pointwise bound

250+1

te d—1+9 +e

<e (@) (foralle >0) O

1
L<§ +it, f®x> <@
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