The Rainbow (Vertex) Connection Number of Pencil Graphs

Dian N.S. Simamora, A.N.M. Salman
Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia

Abstract

An edge colored graph $G=(V(G), E(G))$ is said rainbow connected, if any two vertices are connnected by a path whose edges have distinct colors. The rainbow connection number of G, denoted by $r c(G)$, is the smallest positive integer of colors needed in order to make G rainbow connected. The vertex-colored graph G is said rainbow vertex-connected, if for every two vertices u and v in $V(G)$, there is a $u-v$ path with all internal vertices have distinct color. The rainbow vertex connection number of G, denoted by $\operatorname{rvc}(G)$, is the smallest number of colors needed in order to make G rainbow vertex-connected. In this paper, we determine rainbow (vertex) connection number of pencil graphs.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Organizing Committee of ICGTIS 2015
Keywords: Pencil graph, rainbow coloring, rainbow vertex coloring.
2010 MSC: 05C40, 05C38

1. Introduction

Let G be a simple, finite, and connected graph, and $c: E(G) \longrightarrow\{1,2, \ldots, k\}$ be an edge k-coloring, for some $k \in \mathbb{N}$. A path P in G with an edge k-coloring is said rainbow path, if no colors repeated. The graph G is said rainbow connected, if for any two vertices u and v in $V(G)$ there exist a rainbow $u-v$ path. An edge k-coloring of G is said rainbow coloring, if G rainbow connected under c. The rainbow connection number, denoted by $r c(G)$, is the smallest positive integer k such that G has rainbow k-coloring. The concept of rainbow connection in graphs was introduced by Chartrand et al ${ }^{[1]}$. Let G be a connected graph with size m and diameter $\operatorname{diam}(G)$, then they stated that

$$
\begin{equation*}
\operatorname{diam}(G) \leq r c(G) \leq m \tag{1}
\end{equation*}
$$

The concept of rainbow connection has several interesting variants, one of them is rainbow vertex-connection. It was introduced by Krivelevich and Yuster ${ }^{[2]}$. Let $c^{\prime}: V(G) \longrightarrow\{1,2, \ldots, k\}$ be a vertex k-coloring, for some $k \in \mathbb{N}$. A path P in G with a vertex k-coloring is said rainbow vertex-path, if all internal vertices of P have distinct colors. The graph G is said rainbow vertex-connected, if for any two vertices u and v in $V(G)$ there is a rainbow vertex-path. The

[^0]rainbow vertex-connection number of a graph G, denoted by $r v c(G)$, is the smallest positive integer k such that G is rainbow vertex connected under the c^{\prime} coloring. Krivelevich and Yuster ${ }^{[2]}$ gave the lower bound for $r v c(G)$, namely
\[

$$
\begin{equation*}
r v c(G) \geq \operatorname{diam}(G)-1 \tag{2}
\end{equation*}
$$

\]

In some cases $r v c(G)$ is not always larger than $r c(G)$. For example (see ${ }^{[2]}$), take n vertex-disjoint triangles and designate one vertex from each of them, create a complete graph on designated vertices. The graph has n cut vertices and hence $r v c(G) \geq n$. In fact, by coloring the cut vertices with distinct colors, we obtain $r v c(G)=n$. In other hand, to determine $r c(G)$, we just color the edges of K_{n} with 1 , and color the edges of each triangle with $2,3,4$. We obtain $r c(G) \leq 4$. Meanwhile, $r v c(G)$ may also be smaller than $r c(G)$. For example, let S_{n} be a star graph on $n+1$ vertices. We have $r c\left(S_{n}\right)=n$ and $r v c\left(S_{n}\right)=1$.

There are many interesting results about rainbow connection numbers and rainbow vertex-connection numbers. Some of them are stated by Li and $\mathrm{Liu}^{[3]}$ and Estikasari and Syafriza ${ }^{[4]}$. Li and $\mathrm{Liu}^{[3]}$ determined the rainbow vertexconnection number of cycle C_{n} of order $n \geq 3$. Based on it, they prove that for any 2-connected graph $G, \operatorname{rvc}(G) \leq$ $r v c\left(C_{n}\right)$. In 2013, Estikasari and Syafrizal ${ }^{[4]}$ determined the rainbow connection number for some corona graphs.

In this paper, we introduce a new cubic graph that we called a pencil graphs. We derive the rainbow (vertex) connection number of pencil graphs. For simplifying, we define $[a, b]=\{x \in \mathbb{Z} \mid a \leq x \leq b\}$ and $p q \bmod p=p$, for any two integers p and q.

2. Main Results

Definition 1. Let n be a positive integer with $n \geq 2$. A pencil graph with $2 n+2$ vertices, denoted by $P c_{n}$, is a graph with the vertex set and the edge set as follows.

$$
\begin{aligned}
& V\left(P c_{n}\right)=\left\{u_{i}, v_{i} \mid i \in[0, n]\right\} \\
& E\left(P c_{n}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1} \mid i \in[1, n-1]\right\} \cup\left\{u_{i} v_{i} \mid i \in[0, n]\right\} \cup\left\{u_{1} u_{0}, v_{1} u_{0}, u_{n} v_{0}, v_{n} v_{0}\right\} .
\end{aligned}
$$

It is easy to check that the diameter of $P c_{n}$ is $\operatorname{diam}\left(P c_{n}\right)=d=\left\lceil\frac{n}{2}\right\rceil+1$, for $n \geq 2$.
Theorem 2. Let n be an integer at least 2, then

$$
r c\left(P c_{n}\right)=\left\lceil\frac{n}{2}\right\rceil+1
$$

Proof. By using (1), we obtain

$$
\begin{equation*}
r c\left(P c_{n}\right) \geq\left\lceil\frac{n}{2}\right\rceil+1 \tag{3}
\end{equation*}
$$

In order to show that $r c\left(P c_{n}\right) \leq\left\lceil\frac{n}{2}\right\rceil+1$, we construct a coloring $c: E\left(P c_{n}\right) \rightarrow[1, d]$ as follows :

$$
\begin{aligned}
c\left(u_{0} u_{1}\right) & =d \\
c\left(u_{i} u_{i+1}\right) & =i \bmod d, i \in[1, n-1] \\
c\left(v_{0} v_{n}\right) & =d-2 \\
c\left(v_{i} v_{i+1}\right) & =i \bmod d, i \in[1, n-1] \\
c\left(u_{0} v_{0}\right) & =d-1 \\
c\left(u_{i} v_{1}\right) & =d, i \in\{0,1\} \\
c\left(u_{i} v_{i}\right) & =(i-1) \bmod d, i \in[2, n-1] \\
c\left(u_{n} v_{i}\right) & =d-2, i \in\{0, n\} .
\end{aligned}
$$

Futhermore, we can evaluate that $P c_{n}$ is rainbow connected under c. Let u and v be two vertices of $P c_{n}$. It is obvious that there exist a rainbow $u-v$ path if u is adjacent to v. In order to show a rainbow $u-v$ path if u is not adjacent to v, we shall devide the proof into 14 cases as shown in Table 1.

So, we conclude that c is a rainbow coloring. We obtain

Table 1. $u-v$ rainbow path in $P c_{n}$

Case	u	v	Condition	Rainbow path
1	u_{0}	u_{i}	$i \in[1, d]$	$u_{0}, u_{1}, u_{2}, \ldots, u_{i}$
2	u_{0}	u_{i}	$i \in[d+1, n]$	$u_{0}, v_{0}, u_{n}, u_{n-1}, \ldots, u_{i}$
3	u_{0}	v_{j}	$j \in[1, d]$	$u_{0}, v_{1}, v_{2}, \ldots, v_{j}$
4	u_{0}	v_{j}	$j \in[d+1, n]$	$u_{0}, v_{0}, v_{n}, v_{n-1} \ldots, v_{j}$
5	u_{i}	u_{j}	$i<j, i \in[1, n-1]$, and $j \leq d+i$	$u_{i}, u_{i+1}, u_{i+2} \ldots, u_{j}$
6	u_{i}	u_{j}	$i<j, i \in[1, n-1]$, and $j>d+i$	$u_{i}, u_{i-1}, \ldots, u_{0}, v_{0}, u_{n}, u_{n-1}, \ldots, u_{j}$
7	v_{i}	v_{j}	$i<j, i \in[1, n-1]$, and $j \leq d+i$	$v_{i}, v_{i+1}, v_{i+2} \ldots, v_{j}$
8	v_{i}	v_{j}	$i<j, i \in[1, n-1]$, and $j>d+i$	$v_{i}, v_{i-1}, \ldots, u_{0}, v_{0}, v_{n}, v_{n-1}, \ldots, v_{j}$
9	v_{0}	u_{i}	$i \in[1, d-1]$	$v_{0}, u_{0}, u_{1}, u_{2}, \ldots, u_{i}$
10	v_{0}	u_{i}	$i \in[d, n]$	$v_{0}, u_{n}, u_{n-1}, \ldots, u_{i}$
11	v_{0}	v_{i}	$i \in[1, d-1]$	$v_{0}, u_{0}, v_{1}, v_{2}, \ldots, v_{i}$
12	v_{0}	v_{i}	$i \in[d, n]$	$v_{0}, v_{n}, v_{n-1}, \ldots, u_{i}$
13	u_{i}	v_{j}	$\begin{aligned} & i<j \\ & i \in[2, n] \text { and } j \leq d+i-1 \\ & i \in[2, n] \text { and } j>d+i-1 \end{aligned}$	$\begin{aligned} & u_{i}, v_{i}, v_{i+1}, \ldots, v_{j} \\ & u_{i}, u_{i-1}, \ldots, u_{0}, v_{0}, v_{n}, v_{n-1} \ldots, v_{j} \end{aligned}$
14	u_{i}	v_{j}	$\begin{aligned} & i>j \text { and } \\ & (i \in[1, d-1] \text { or } \\ & i \in[d, n] \text { and } j \in[d-1, n]) \\ & i>j, i \in[d, n], \text { and } j \in[1, d-1] \end{aligned}$	$\begin{aligned} & u_{i}, u_{i-1}, u_{i-2}, \ldots, u_{j}, v_{j} \\ & u_{i}, u_{i+1}, \ldots, u_{n}, v_{0}, u_{0}, v_{1}, v_{2} \ldots, v_{j} \end{aligned}$

$$
\begin{equation*}
r c\left(P c_{n}\right) \leq\left\lceil\frac{n}{2}\right\rceil+1 \tag{4}
\end{equation*}
$$

From equation (3) and (4), we have $r c\left(P c_{n}\right)=\left\lceil\frac{n}{2}\right\rceil+1$.
Theorem 3. Let n be a positive integer at least 2, then

$$
r v c\left(P c_{n}\right)=\left\{\begin{array}{c}
{\left[\frac{n}{2}\right] \quad \text { if } n \leq 7} \\
{\left[\frac{n}{2}\right\rceil+1 \text { otherwise }}
\end{array}\right.
$$

Proof. We devide a proof into two cases.
Case 1. $n \leq 7$
Based on equation (2), we have $r v c\left(P c_{n}\right) \geq(d-1)$. We may define a rainbow vertex $(d-1)$-coloring on $P c_{n}$ as shown in Fig 2. It is not difficult to verify that all graphs are rainbow-vertex connected.

Case2. $n \geq 8$
By using (2), we obtain

$$
r v c\left(P c_{n}\right) \geq\left\lceil\frac{n}{2}\right\rceil
$$

Suppose that b is an r-vertex coloring, where $r=\left\lceil\frac{n}{2}\right\rceil$. In what follows, we describe a coloring on $P c_{n}$ by b. First, color the inner vertices of the $v_{r-2}-u_{n}$ path. Without loss of generality, color the vertices as follows :

$$
\begin{aligned}
e\left(u_{0}\right) & =1 \\
e\left(v_{0}\right) & =2 \\
e\left(v_{i}\right) & =i+2, i \in[1, r-2]
\end{aligned}
$$

Let P a subgraph of $P c_{n}$ whose the vertex set is $V(P)=\left\{v_{i} \mid i \in[1, n]\right\}$ and the edge set $E(P)=\left\{v_{i} v_{i+1} \mid i \in[1, n-1]\right\}$. In fact, for every two vertices with distance less than $d-2$ in P may not be colored with a same color. Consequently, v_{r-1} and v_{r} must be colored with 1,2 or 3 . Secondly, color v_{r-1} by one of the three colors, so that the color can not be used to color vertices $v_{r}, v_{r+1}, \ldots, v_{n-2}$. Since the $v_{r-1}-v_{n-1}$ path has length $d-2, v_{n-1}$ must be colored with 1,2 or 3 . Therefore, the $v_{2}-v_{r+4}$ path or the $v_{1}-v_{r+3}$ path are not rainbow vertex-path. This is due to a path which connect v_{2} and v_{r+4} or v_{1} and v_{r+3}, should have u_{0}, v_{0}, v_{1} and v_{n} as its inner vertices, whilst v_{n-1} should have a same color with u_{0}, v_{0} or v_{1}. Since $P c_{n}$ is not rainbow vertex-connected under b, we obtain

Pc_{4}

Pc_{7}

Fig. 1. A rainbow vertex $\left\lceil\frac{n}{2}\right\rceil$-coloring on $P c_{n}$, for $n \in[2,7]$

$$
\begin{equation*}
r v c\left(P c_{n}\right) \geq\left\lceil\frac{n}{2}\right\rceil+1 \tag{5}
\end{equation*}
$$

Now, we need to prove that $r v c\left(P c_{n}\right) \leq\left\lceil\frac{n}{2}\right\rceil+1$. We construct a vertex coloring $c^{\prime}: V\left(P c_{n}\right) \rightarrow[1, d]$ as follows :

$$
\begin{aligned}
c^{\prime}\left(u_{0}\right) & =d-1 \\
c^{\prime}\left(u_{i}\right) & =i \bmod d, i \in[1, n] \\
c^{\prime}\left(v_{0}\right) & =d \\
c^{\prime}\left(v_{i}\right) & =i \bmod d, i \in[1, n] .
\end{aligned}
$$

In order to prove that $P c_{n}$ is rainbow-vertex connected under c^{\prime}, we devide the proof into 14 subcases. The subcases almost similar with cases in the proof of Theorem 2.2. So, we obtain

$$
\begin{equation*}
r c\left(P c_{n}\right) \leq\left\lceil\frac{n}{2}\right\rceil+1 \tag{6}
\end{equation*}
$$

From equation (5) and (6), we get $r v c\left(P c_{n}\right)=\left\lceil\frac{n}{2}\right\rceil+1$.
We conclude,

$$
r v c\left(P c_{n}\right)=\left\{\begin{array}{cc}
\left\lceil\frac{n}{2}\right\rceil \quad \text { if } n \leq 7 \\
\left\lceil\frac{n}{2}\right\rceil+1 & \text { otherwise }
\end{array}\right.
$$

For illustration, we give a rainbow 6-coloring on $P c_{10}$ and a rainbow vertex 6-coloring on $P c_{10}$ in Fig 2 (a) and Fig 2 (b), respectively.

Fig. 2. (a) A rainbow 6-coloring on $P c_{10}$; (b) A rainbow vertex 6-coloring on $P c_{10}$.

References

1. Chartrand G, Jhons L, McKeon KA, Zhang P. Rainbow connection in graphs. Math. Bohem 2008;133:85-98.
2. Krivelevich M, Yuster R. The rainbow connection of a graph is (at most) reciprocal to its minimum degree three. J. Graph Theory 2009;63(3):185-191.
3. Li X, Liu S. Rainbow vertex-connection number of 2-connected graphs. arxiv:1110.5770v1[math.CO]2011.
4. Estetikasari D, Syafrizal Sy. On the rainbow connection for some corona graphs. Applied Mathematical Sciences Vol.7 2013;100: 4975-4980.

[^0]: E-mail address: dnnovita@aol.com, salman@math.itb.ac.id

