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Abstract

An edge colored graph G = (V(G), E(G)) is said rainbow connected, if any two vertices are connnected by a path whose edges

have distinct colors. The rainbow connection number of G, denoted by rc(G), is the smallest positive integer of colors needed in

order to make G rainbow connected. The vertex-colored graph G is said rainbow vertex-connected, if for every two vertices u and

v in V(G), there is a u-v path with all internal vertices have distinct color. The rainbow vertex connection number of G, denoted by

rvc(G), is the smallest number of colors needed in order to make G rainbow vertex-connected. In this paper, we determine rainbow

(vertex) connection number of pencil graphs.
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1. Introduction

Let G be a simple, finite, and connected graph, and c : E(G) −→ {1, 2, ..., k} be an edge k-coloring, for some k ∈ N.

A path P in G with an edge k-coloring is said rainbow path, if no colors repeated. The graph G is said rainbow
connected, if for any two vertices u and v in V(G) there exist a rainbow u-v path. An edge k-coloring of G is said

rainbow coloring, if G rainbow connected under c. The rainbow connection number, denoted by rc(G), is the smallest

positive integer k such that G has rainbow k-coloring. The concept of rainbow connection in graphs was introduced

by Chartrand et al[1]. Let G be a connected graph with size m and diameter diam(G), then they stated that

diam(G) ≤ rc(G) ≤ m. (1)

The concept of rainbow connection has several interesting variants, one of them is rainbow vertex-connection. It

was introduced by Krivelevich and Yuster[2]. Let c′ : V(G) −→ {1, 2, ..., k} be a vertex k-coloring, for some k ∈ N. A

path P in G with a vertex k-coloring is said rainbow vertex-path, if all internal vertices of P have distinct colors. The

graph G is said rainbow vertex-connected, if for any two vertices u and v in V(G) there is a rainbow vertex-path. The
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rainbow vertex-connection number of a graph G, denoted by rvc(G), is the smallest positive integer k such that G is

rainbow vertex connected under the c′ coloring. Krivelevich and Yuster[2] gave the lower bound for rvc(G), namely

rvc(G) ≥ diam(G) − 1. (2)

In some cases rvc(G) is not always larger than rc(G). For example (see[2]), take n vertex-disjoint triangles and

designate one vertex from each of them, create a complete graph on designated vertices. The graph has n cut vertices

and hence rvc(G) ≥ n. In fact, by coloring the cut vertices with distinct colors, we obtain rvc(G) = n. In other hand,

to determine rc(G), we just color the edges of Kn with 1, and color the edges of each triangle with 2, 3, 4. We obtain

rc(G) ≤ 4. Meanwhile, rvc(G) may also be smaller than rc(G). For example, let S n be a star graph on n + 1 vertices.

We have rc(S n) = n and rvc(S n) = 1.

There are many interesting results about rainbow connection numbers and rainbow vertex-connection numbers.

Some of them are stated by Li and Liu[3] and Estikasari and Syafrizal[4]. Li and Liu[3] determined the rainbow vertex-

connection number of cycle Cn of order n ≥ 3. Based on it, they prove that for any 2-connected graph G, rvc(G) ≤
rvc(Cn). In 2013, Estikasari and Syafrizal[4] determined the rainbow connection number for some corona graphs.

In this paper, we introduce a new cubic graph that we called a pencil graphs. We derive the rainbow (vertex)

connection number of pencil graphs. For simplifying, we define [a, b] = {x ∈ Z|a ≤ x ≤ b} and pq mod p = p, for any

two integers p and q.

2. Main Results

Definition 1. Let n be a positive integer with n ≥ 2. A pencil graph with 2n + 2 vertices, denoted by Pcn, is a graph
with the vertex set and the edge set as follows.

V(Pcn) = {ui, vi|i ∈ [0, n]}
E(Pcn) = {uiui+1, vivi+1|i ∈ [1, n − 1]} ∪ {uivi|i ∈ [0, n]} ∪ {u1u0, v1u0, unv0, vnv0}.

It is easy to check that the diameter of Pcn is diam(Pcn) = d =
⌈

n
2

⌉
+ 1, for n ≥ 2.

Theorem 2. Let n be an integer at least 2, then

rc(Pcn) =
⌈

n
2

⌉
+ 1.

Proof. By using (1), we obtain

rc(Pcn) ≥
⌈n
2

⌉
+ 1. (3)

In order to show that rc(Pcn) ≤
⌈

n
2

⌉
+ 1, we construct a coloring c : E(Pcn)→ [1, d] as follows :

c(u0u1) = d

c(uiui+1) = i mod d, i ∈ [1, n − 1]

c(v0vn) = d − 2

c(vivi+1) = i mod d, i ∈ [1, n − 1]

c(u0v0) = d − 1

c(uiv1) = d, i ∈ {0, 1}
c(uivi) = (i − 1) mod d, i ∈ [2, n − 1]

c(unvi) = d − 2, i ∈ {0, n}.

Futhermore, we can evaluate that Pcn is rainbow connected under c. Let u and v be two vertices of Pcn. It is obvious

that there exist a rainbow u − v path if u is adjacent to v. In order to show a rainbow u − v path if u is not adjacent to

v, we shall devide the proof into 14 cases as shown in Table 1.

So, we conclude that c is a rainbow coloring. We obtain
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Table 1. u − v rainbow path in Pcn

Case u v Condition Rainbow path

1 u0 ui i ∈ [1, d] u0, u1, u2, ..., ui
2 u0 ui i ∈ [d + 1, n] u0, v0, un, un−1, ..., ui
3 u0 v j j ∈ [1, d] u0, v1, v2, ..., v j
4 u0 v j j ∈ [d + 1, n] u0, v0, vn, vn−1..., v j
5 ui u j i < j, i ∈ [1, n − 1], and j ≤ d + i ui, ui+1, ui+2..., u j
6 ui u j i < j, i ∈ [1, n − 1], and j > d + i ui, ui−1, ..., u0, v0, un, un−1, ..., u j
7 vi v j i < j, i ∈ [1, n − 1], and j ≤ d + i vi, vi+1, vi+2..., v j
8 vi v j i < j, i ∈ [1, n − 1], and j > d + i vi, vi−1, ..., u0, v0, vn, vn−1, ..., v j
9 v0 ui i ∈ [1, d − 1] v0, u0, u1, u2, ..., ui
10 v0 ui i ∈ [d, n] v0, un, un−1, ..., ui
11 v0 vi i ∈ [1, d − 1] v0, u0, v1, v2, ..., vi
12 v0 vi i ∈ [d, n] v0, vn, vn−1, ..., ui
13 ui v j i < j

i ∈ [2, n] and j ≤ d + i − 1 ui, vi, vi+1, ..., v j
i ∈ [2, n] and j > d + i − 1 ui, ui−1, ..., u0, v0, vn, vn−1..., v j

14 ui v j i > j and

(i ∈ [1, d − 1] or

i ∈ [d, n] and j ∈ [d − 1, n]) ui, ui−1, ui−2, ..., u j, v j
i > j, i ∈ [d, n], and j ∈ [1, d − 1] ui, ui+1, ..., un, v0, u0, v1, v2..., v j

rc(Pcn) ≤
⌈n
2

⌉
+ 1. (4)

From equation (3) and (4), we have rc(Pcn) =
⌈

n
2

⌉
+ 1.

Theorem 3. Let n be a positive integer at least 2, then

rvc(Pcn) =

⎧⎪⎪⎨⎪⎪⎩
⌈

n
2

⌉
if n ≤ 7,⌈

n
2

⌉
+ 1 otherwise.

Proof. We devide a proof into two cases.

Case 1. n ≤ 7

Based on equation (2), we have rvc(Pcn) ≥ (d − 1). We may define a rainbow vertex (d − 1)-coloring on Pcn as shown

in Fig 2. It is not difficult to verify that all graphs are rainbow-vertex connected.

Case2. n ≥ 8

By using (2), we obtain

rvc(Pcn) ≥
⌈n
2

⌉
.

Suppose that b is an r-vertex coloring, where r =
⌈

n
2

⌉
. In what follows, we describe a coloring on Pcn by b. First,

color the inner vertices of the vr−2 − un path. Without loss of generality, color the vertices as follows :

e(u0) = 1

e(v0) = 2

e(vi) = i + 2, i ∈ [1, r − 2].

Let P a subgraph of Pcn whose the vertex set is V(P) = {vi|i ∈ [1, n]} and the edge set E(P) = {vivi+1|i ∈ [1, n − 1]}.
In fact, for every two vertices with distance less than d − 2 in P may not be colored with a same color. Consequently,

vr−1 and vr must be colored with 1, 2 or 3. Secondly, color vr−1 by one of the three colors, so that the color can not be

used to color vertices vr, vr+1, ..., vn−2. Since the vr−1 − vn−1 path has length d − 2, vn−1 must be colored with 1,2 or 3.

Therefore, the v2 − vr+4 path or the v1 − vr+3 path are not rainbow vertex-path. This is due to a path which connect v2

and vr+4 or v1 and vr+3, should have u0, v0, v1 and vn as its inner vertices, whilst vn−1 should have a same color with

u0, v0 or v1. Since Pcn is not rainbow vertex-connected under b, we obtain
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Fig. 1. A rainbow vertex
⌈

n
2

⌉
-coloring on Pcn, for n ∈ [2, 7]

rvc(Pcn) ≥
⌈n
2

⌉
+ 1. (5)

Now, we need to prove that rvc(Pcn) ≤
⌈

n
2

⌉
+ 1. We construct a vertex coloring c′ : V(Pcn)→ [1, d] as follows :

c′(u0) = d − 1

c′(ui) = i mod d, i ∈ [1, n]

c′(v0) = d

c′(vi) = i mod d, i ∈ [1, n].

In order to prove that Pcn is rainbow-vertex connected under c′, we devide the proof into 14 subcases. The subcases

almost similar with cases in the proof of Theorem 2.2. So, we obtain

rc(Pcn) ≤
⌈n
2

⌉
+ 1. (6)

From equation (5) and (6), we get rvc(Pcn) =
⌈

n
2

⌉
+ 1.

We conclude,

rvc(Pcn) =

⎧⎪⎪⎨⎪⎪⎩
⌈

n
2

⌉
if n ≤ 7,⌈

n
2

⌉
+ 1 otherwise.

For illustration, we give a rainbow 6-coloring on Pc10 and a rainbow vertex 6-coloring on Pc10 in Fig 2 (a) and Fig

2 (b), respectively.
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Fig. 2. (a) A rainbow 6-coloring on Pc10; (b) A rainbow vertex 6-coloring on Pc10.
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