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Infection is a common cause of morbidity and mortality after liver
transplantation. Risk factors relate to transplantation factors,
donor and recipient factors. Transplant factors include ischaemia-
reperfusion damage, amount of intra-operative blood transfusion,
level and type of immunosuppression, rejection, and complica-
tions, prolonged intensive care stay with dialysis or ventilation,
type of biliary drainage, repeat operations, re-transplantation,
antibiotics, antiviral regimen, and environment. Donor risk
factors include infection, prolonged intensive care stay, quality of
the donor liver (e.g. steatosis), and viral status. For the recipient
the most important are MELD score >30, malnutrition, renal
failure, acute liver failure, presence of infection or colonisation,
and immune status for viruses like cytomegalovirus. In recent
years it has become clear that genetic polymorphisms in innate
immunity, especially the lectin pathway of complement activation
and in Toll-like receptors importantly contribute to the infection
risk after liver transplantation. Therefore, the risk for infections
after liver transplantation is a multifactorial problem and all
factors need attention to reduce this risk.

� 2012 Elsevier Ltd. Open access under the Elsevier OA license.
Introduction

Orthotopic liver transplantation (OLT) has become a routine operation. One- and five-year patient
survival is around 90% and 80%, respectively. A major cause of mortality and morbidity after OLT is
infection, which occurs in up to 80% of the patients. Bacterial infections are most frequent (70%),
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followed by viral (20%) and fungal infections (8%) [1–3]. Clinical symptoms can be blurred or absent
due to immunosuppression, often leading to delayed diagnosis. Both donor and recipient factors as
well as aspects related to the transplant operation contribute to the risk of infection after OLT. Recently
genetic polymorphisms in the innate immune system, from both donor and recipient, have been
identified as important risk factors for infection after OLT. The known risk factors for infection after OLT
will be discussed.
Transplant factors

The timing of infections after OLT is shown in Table 1 [3–5], divided in early, intermediate (immune
suppression related) and late infections. Factors directly related to the OLT procedure contributing to
the risk of infection can be either surgical technical issues, but can also be preservation-related or graft-
related factors (Table 2). The rate of contaminated preservation fluid varies among centres and regions
[6]. Peri-operative antibiotics will usually treat this, but culture-guided therapy sometimes is required
[7]. Particularly the amount of intra-operative blood transfusion is related to the risk of infection
immediately after OLT, both from the abdomen and other sources [2,8]. Initial poor graft function
carries an increased infection risk. Partial hepatic necrosis, e.g. due to hepatic artery thrombosis, can
lead to abscesses and bile duct injury with bacterial cholangitis. Abdominal fluid collections can
become infected after OLT and need meticulous attentionwith imaging and diagnostic punctures. Both
anastomotic and non-anastomotic biliary strictures (NAS) increase the risk of cholangitis. These are
frequent complications and NAS more frequently occurs after non-heart-beating (NHB) donation
(¼DCD: deceased from cardiac death) [9]. Longer ischaemia times and genetic factors contribute to the
risk of NAS, and thus indirectly contribute to the risk of infection after OLT [10]. Biliary leakage can lead
to infected biloma, and this is seen more often with the use of a T-tube and bile duct ischaemia,
whether or not due to hepatic artery stenosis or thrombosis [11]. The risk of surgical site infection is
increased in the case of choledocho-jejunostomy [12]. In addition, indwelling catheters, invasive
interventions, and prolonged dialysis or ventilation increase the risk of bacterial infection [3]. The
antibiotic regimen around OLT has impact on the infection risk. Recent studies recommend oral
selective digestive decontamination (SDD) during stay in the ICU [13,14]. Studies on SDD in OLT show
a decrease in gram-negative bacterial infection, with an increased risk for gram-positive infection and
resistance and a questionable net effect [15]. Extensive use of antibiotics poses the patient at risk for
Clostridium difficile or fungal infection. Fungal prophylaxis decreases this latter risk but appears to be
only justified in high-risk patients [3]. Risk factors for invasive candidiasis apart from heavy immu-
nesuppression are prolonged or repeat operations and re-transplantation, high transfusion require-
ment, previous Candida colonisation or renal failure after OLT, and a choledocho-jejunostomy. For
Aspergillus species the risk factors are similar plus fulminant hepatic failure, CMV disease and a pro-
longed ICU-stay [3].
Table 1
Timing of different infections after liver transplantation [3,4].

First month
Surgical site, abdomen (infected ascites, abscesses, cholangitis), blood stream, urinary system, respiratory tract,
Clostridium difficile colitis, herpes, Candida.
Between one and six months after OLT
Opportunistic infections, often related to over-immunosuppression (e.g. after rejection): a.o.
CMV (especially Dþ/R� serostatus), EBV, HSV 6 and 7, Aspergillus species, Pneumocystis jirovecii,
Nocardia, tuberculosis, endemic mycoses, toxoplasma gonddi.
Bacterial cholangitis in case of biliary strictures.
Hepatitis C virus recurrence.
More than six months after OLT
Community-acquired, especially airway and urine tract in addition to opportunistic infections like varicella-zoster.
Bacterial cholangitis in case of biliary strictures.
Hepatitis C virus recurrence.
More infections in case of graft dysfunction, biliary strictures or recurrent rejection.



Table 2
Risk factors for infection after liver transplantation.

Transplant factors
Ischaemia times, ischaemia-reperfusion damage
Infected preservation fluid
Amount of intra-operative blood transfusion
Level and type of immunosuppression (e.g. anti-CD25)
Additional immunosuppression for rejection
Indwelling catheters, deep lines
Complications like primary non-function, hepatic
artery thrombosis, necrosis, biliary strictures
Prolonged ICU-stay, dialysis, prolonged ventilation
Type of biliary drainage (Roux-en-Y, T-tube)
Repeat operations and re-transplantation
Antibiotic regimen
Viral prophylaxis and monitoring
Environment (other infected patients, building activity,
hygienic measures)

Recipient
Underlying condition of the recipient, i.e. malnutrition
Co-morbidity, e.g. diabetes, obesity, COPD, renal
failure and dialysis
Colonisation with S. aureus or resistant organisms
Prolonged hospital stay and catheters before OLT
Acute liver failure
CMV-status and disease (risk for other infections)
Presence of hepatitis B or C virus or HIV
MELD score >30
Recipient age
Previous immunosuppression (autoimmune hepatitis;
re-transplantation)
Previous infection (esp. airway, urine tract)
Immune status for viruses
Male recipient receiving male donor liver
Hygienic measures
Travelling

Genetic polymorphisms in innate immunity
Lectin pathway of complement activation in donor and
donor/recipient mismatch (MBL2, ficolin2, MASP2)
Toll-like receptors in the recipient

Donor
Infection in donor
Prolonged ICU-stay
Quality of the liver graft (e.g. marginal graft)
Viral status
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Level and type of immunosuppression

Immunosuppressive treatment of rejection increases the risk of infection, including CMV reac-
tivation. If possible the level of immunesuppression, especially mycophenolate mofetil or azathioprine,
is reduced during CMV primo-infection or CMV-recurrence. During a severe infection or if EBV-DNA
becomes detectable, reduction of immunesuppression may be needed in order to control the infec-
tion, accepting the risk that later on rejection occurs requiring additional immunesuppression. Siro-
limus is associated with less cytomegalovirus infections than calcineurin inhibitors, but can – if used
early – lead to wound dehiscence and infection [16,17]. While allowing late introduction of calcineurin
inhibitors and thus sparing renal function, anti-thymocyte globulin may increase infection risk [18].
When a steroid-free regimen with anti-CD25 is compared to a regimen with prednisolone without
anti-CD25, the infection rate in the regimen with anti-CD25 (basiliximab) is lower in two studies
[19,20], similar in two [21,22] and increased in one study [23], with no differences in hepatitis C
recurrence.
Recipient factors

A poor condition of the recipient increases the risk for infection: MELD score &gt;30, ICU-stay>48 h
prior to transplantation, recipient age, re-transplantation, predicted post-transplant dialysis or prob-
ability of reoperation are risk factors for infection (Table 2) [24]. Malnutrition is also a risk factor. Co-
morbidity like cystic fibrosis or chronic bronchitis is known to increase the risk for pulmonary infec-
tion. Immunosuppression before OLT is a risk factor for infection and mortality, like – especially above
the age of 50 years – in autoimmune hepatitis [25]. A prolonged (>1week) pre-transplant hospital stay,
long-term intravenous catheters, and ascites before transplantation were found to be associated with
infection after OLT [26]. Obesity and diabetes appear to contribute to the risk of post-OLT wound
infections [17]. Gender plays a role in the susceptibility for many, but not all, infections and may be
related to the influence of sex hormones and gender differences in innate immunity [27]. Asmentioned
below, we and others showed that a male recipient of a male liver is at higher risk for bacterial
infections than the other combinations of donor and recipient sexes after OLT. If a recipient is colonised
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with MRSA or ESBL bacteria or if the recipient is infected with C. difficile, isolation measures are
important to protect the other (transplant) patients. Environmental factors like building activity in the
hospital (risk for Aspergillus fumigatus) or inadequate handwashing by personnel can also be risk
factors for transferring infections to an OLT recipient. Treatment of Staphylococcus aureus colonisation
can decrease morbidity after OLT [28,29].

Hepatitis B

In the past hepatitis B virus (HBV) present at OLT almost universally led to recurrence after OLT,
often leading to graft failure and recipient death. The long-term administration of anti-HBV immu-
noglobulins (HBIG) during and after OLT led to a substantial reduction of HBV recurrence, lamivudin
further reduced this problem, and the combination allowed OLT to be performed with <5% recurrence
[30,31]. HBV-DNA level at OLT determines the risk of recurrence evenwith prophylactic treatment [32].
The addition of adefovir dipivoxil to lamivudin allowed late withdrawal of HBIG in many patients
[33,34]. More recently, entecavir and tenofovir further reduced HBV recurrence after OLT and also
allowed treatment of lamivudin-resistant patients [35,36]. Even entecavir monotherapy was able
to prevent HBV recurrence [37]. Recipients of a donor liver with anti-HBV core protein positivity can
develop HBV after OLT if they are not immune, therefore such recipients also need HBV
prophylaxis [38].

Hepatitis C

Both in the USA and Europe hepatitis C virus (HCV)-related liver disease has become one of the
leading OLT indications. If HCV RNA is present at the time of OLT it persists after OLT. In about 60% of
patients this leads to more or less severe chronic active hepatitis. These patients can have an accel-
erated development of cirrhosis. As in HBV, patients transplanted with HCV can also develop chole-
stasis and rapid liver failure within weeks after OLT. Co-infection of HBV, HCV genotype 1, rejection
therapy, recipient age over 49 years, higher donor age, a steatotic or otherwisemarginal donor liver and
no HCV therapy were risk factors for severe recurrence in different studies [39]. No clear differences in
HCV recurrence existed between different induction immunosuppressive therapies [40]. Ideally HCV is
treated before OLT, but often this is not tolerated. Addition of telaprevir or boceprevir improves the
results of HCV treatment in patients before OLT. Studies with combinations of HCV protease and
polymerase inhibitors are underway, even without peg-interferon and ribavirin. HCV recurrence after
OLT can be treated with peg-interferon and ribavirin with a sustained overall viral response (SVR) rate
of 35%, which is lower than in non-transplant HCV patients. The interleukin-28B TT polymorphism is
associated with more severe histological HCV recurrence after OLT [41]. While the outcome of OLT for
HCV in African American patients and other races is similar [42], an African American patient with HCV
receiving a liver from a Caucasian donor also has a higher risk of severe HCV recurrence [43]. Poly-
morphisms in Toll-like receptor 3 may influence the development of rejection after OLT, when HCV is
present [44]. After OLT use of HCV protease inhibitors can lead to extreme elevations of levels of
tacrolimus and ciclosporin, and studies on combination therapy with peg-interferon, ribavirin and
a HCV protease inhibitor and regimes without interferon after OLT are awaited [45].

HIV

In the past patients with human immunodeficiency virus (HIV) were excluded fromOLT. Nowadays,
with the use of highly active anti-retroviral therapy (HAART) HIV replication can be suppressed, and if
CD4 lymphocyte counts are normal and no resistance to HAART exists OLT is possible in some patients
with end-stage liver disease in HIV. These patients are still more prone to infections after OLT than
other recipients and both HAART resistance and drug interactions need a lot of attention. Patients with
HIV and HBV can have an excellent outcome after OLT [46]. In a meta-analysis of liver transplant
outcomes in HIV-infected patients those with HBV had a better outcome than those without HBV,
while patients without detectable HIV-load at OLT did better than those with detectable HIV-load,
while in this study presence of HCV was not a predictor of outcome [47]. However, most authors agree
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that after OLT especially in HIV-infected patients HCV recurrence can pose a severe problem, with
a worse outcome after OLT in HCV-infected HIV-patients than in HIV-patients without HCV [48].
Herpes viruses

The donor and recipient immune status for viruses are important risk factors for viral infections.
One of the most important viral infections after OLT is cytomegalovirus (CMV) infection: if a donor is
IgG anti-CMV positive and the recipient is IgG anti-CMV negative a CMV primo-infection almost
universally occurs in the recipient. Since, especially in the acute phase after OLT, this can lead to severe
morbidity and even mortality, prophylaxis with valganciclovir is used for this donor positive/recipient
negative (Dþ/R�) CMV-status combination. Most centres use three to six months of valganciclovir
prophylaxis in this situation [49], and if the primo-infection then becomes manifest it is milder and the
recipient is out of the acute phase after OLT. In renal transplantation less CMV infection and disease
occurs if six instead of three months of valganciclovir prophylaxis is given. In the first year after OLT
frequent monitoring of CMV-DNA by PCR in blood is indicated. In case CMV-DNA becomes positive
after prophylaxis in a Dþ/R� combination (val)ganciclovir is started preemptively. In general, no
prophylaxis with (val)ganciclovir is used in IgG anti-CMV positive recipients [50], although some of
these patients may require more intensified CMV-DNA monitoring or prophylaxis.

EBV primo-infection or reactivation in the recipient is possible and can lead to post-transplant
lymphoproliferative disease (PTLD) in the OLT recipient. This can range from mononucleosis to frank
non-Hodgkin lymphoma. Treatment includes cessation of all immunosuppression except predniso-
lone, and administration of anti-CD20 in case of a B-cell PTLD. It is advisable tomonitor EBV-DNA in the
first year post-OLT, and in case of a positive and rising EBV-DNA to at least decrease the immuno-
suppression. Often EBV-DNA becomes undetectable after decreasing the amount of immunosuppres-
sion. The donor/recipient status for EBV, the amount of activated natural killer cells and certain
underlying autoimmune disorders were found to increase the risk for PTLD [51].

The degree of immunosuppression and D/R status of IgG to other viruses like HSV 1,2, 6,7,8 and VZV
determines the risk of developing disease from these viruses. Especially HSV 1 and 2 and VZV can be
treated by (val)aciclovir. Most centres do not use prophylaxis for these viruses, but they use early
treatment if required [52–55].

Donor factors

Currently infection of a donor leads to morbidity and mortality in approximately 1% of transplant
recipients. Rapid nucleic acid testing for microbial infections in the donor might lead to higher
acceptance rates of high-risk donors [56]. Especially with a longer stay of the donor in the hospital the
risk to acquire a nosocomial infection increases. Bacterial infections in the donor are often treated with
antibiotics in donor and recipient. Some unknown infections in the donor, like dengue or hepatitis E
[57], may endanger a transplant recipient. Insufficiently treated or undetected infections in the
recipient more often than donor infections lead to sepsis after OLT [58]. The quality of the graft (e.g.
steatosis, donor age) relates to graft function, ICU and hospital stay and infectious complications.
Genetic polymorphisms in the innate immune system

Since adaptive immunity is suppressed by the immunosuppressive medication, the recipient
becomes dependent on the innate immune system. This includes pattern recognition receptors (PRRs)
that recognise pathogen-associated molecular patterns (PAMPs) on microorganisms. The innate
immune system can then kill the pathogen directly in a lymphocyte-independent manner or activate
adaptive immunity. In several pathways of innate immunity single nucleotide polymorphisms (SNPs)
are known. In some other categories of immunosuppressed patients, e.g. bonemarrow recipients, some
of these polymorphisms were associated with an increased occurrence or severity of infection. This led
to the hypothesis that such SNPs might influence the risk and severity of infection after OLT.
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Toll-like receptors

Lipopolysaccharide from gram-negative bacteria is mainly recognised by Toll-like receptor 4 (TLR4).
However, in a cohort from the Mayo Clinic no significant associations were found between the TLR4
SNPs D299G and T399I and the risk and outcome of gram-negative infections after OLT [59]. Toll-like
receptor 2 (TLR2) is the major receptor for gram-positive bacterial cell wall components like pepti-
doglycan and lipoteichoic acid. The common R753Q SNP in the TLR2 gene results in defective intra-
cellular signalling and impaired cytokine secretion in response to peptidoglycan, lipopeptides, and
other known ligands. The mutation has been suggested to increase to risk of bacterial and viral
infections and was found to influence the risk for and outcome of cytomegalovirus and hepatitis C
infection after OLT [60–62]. The homozygous TLR2 Arg753Gln (R753Q) polymorphism impairs
recognition of HCV core and NS3 proteins and was shown to be associated with allograft failure and
mortality after OLT for chronic HCV [60,62]. The R753Q polymorphism also paralyses recognition by
TLR2-mediated immune signalling in cells exposed to CMV glycoprotein B [61]. Patients homozygous
or heterozygous for the TLR2 R753Q SNP had a higher CMV load and more CMV disease than OLT
recipients without this SNP [63]. Recently a PCR was developed to detect the N284I and the L412F SNPs
in the TLR3 gene that also plays a role in the defence against viruses, and clinical studies in relation to
TLR3 polymorphisms are awaited [64].

Lectin pathway of complement activation

The lectin pathway of complement activation is an evolutionary conserved defence against
microorganisms [65]. It includes mannan-binding lectin (MBL), ficolin-2 (FCN2) and MBL-associated
serine protease 2 (MASP2). These proteins are almost exclusively liver-derived and crucial effectors
of the innate immune system in the defence against pathogens. Lectins are humoural PRRs that
recognise carbohydrate-motifs on microorganisms and elicit innate immunity. These lectins cooperate
with phagocytes and other humoural factors, including complement [66,67]. Polymorphisms in the
lectin pathway determine its functional activity and are quite common. Mannan-binding lectin (MBL)
and ficolin-2 (FCN2) both can activate the MBL-associated serine protease 2 (MASP2) [68]. FCN2 has
similarities in structure and function to MBL and its preferential binding target is N-acetyl-glucos-
amine, a constituent of bacterial peptidoglycans and a major component of their cell wall [69,70].
Activated MASP activates the complement cascade and leads to opsonisation of microorganisms for
phagocytosis or leads to formation of a complement membrane-attack complex (Fig. 1), which leads to
‘holes’ in the bacterial wall resulting in death of the pathogen [71–73]. It had been shown that SNPs in
the exon1 region of the MBL gene (MBL2) interfere with the oligomerization of the protein and
polymorphisms in the promoter regions alter the rate of synthesis of the protein, leading to changes in
avidity and protein level of MBL respectively, resulting in MBL deficiency [74–76]. Ficolin-2 (FCN2)
SNPs in the carbohydrate-recognition domain encoding region are associated with decreased (FCN2-B)
or increased (FCN2-C) ligand binding of ficolin-2 compared to wild-type ficolin-2 (FCN2-A) [77].

MBL deficiency is associated with more and more severe infections in HIV infection, bone marrow
transplantation, pancreatic and renal transplantation, but not in several other conditions, such as
pneumococcal infections in randomly included patients, and it may confer protection against tuber-
culosis [78–80]. However, MBL deficient patients receiving a pancreas–kidney transplantation had
better outcomes because of some protection against ischaemia-reperfusion injury and rejection [81].
Two polymorphisms in the MASP2 gene lead to a functional defect in the protease [82]. One SNP leads
to the inability to activate complement [83,84], the other SNP is located in the control protein domain2
of MASP2, which is important in stabilising the structure of the serine protease domain [85], and is
essential for cleavage of complement C4 [86]. Since MBL, ficolin-2 and MASP2 are almost exclusively
produced by the liver their impact in OLT is of particular importance [87]. Our group recently showed
that polymorphisms in the lectin pathway of complement activation are important risk factors for
bacterial infection post-OLT. Transplantation of a MBL deficient donor liver into a MBL sufficient
recipient results in rapid decrease in MBL blood levels, while the functionally important MBL2 SNP in
the donor that resulted in low blood levels was also associated with bacterial infections after OLT [88].
This finding was then confirmed by others [89,90]. Since the ficolin pathway may compensate for



Fig. 1. The lectin pathway is activated when either mannose-binding lectin (MBL) or ficolin-2 binds to carbohydrate structures or
PAMPs which are present on a large number of pathogens. Upon binding, the associated serine protease MASP2 is responsible for
activation of the complement cascade. This will lead to opsonization for phagocytosis and the formation of a membrane-attack
complex, both resulting in the killing of the pathogen. Modified from: Dommett et al. Mannose-binding lectin in innate immunity:
past, present and future. Tissue Antigens (2006) 68: 193–209.
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deficiency in theMBL pathway (both activateMASP), high-resolutionmelting assayswere developed to
include all known functional SNPs in the lectin pathway of complement activation, including MBL2,
FCN2 and MASP2 [91]. Recipients receiving a donor liver with mutations in all three components, i.e.
MBL2 (XA/O or O/O), FCN2þ6359T, and MASP2þ371A, had a cumulative risk of bacterial infection of
75% as compared to only 18%with wild-type donor livers, an observation confirmed in a second cohort.
In addition a genetic (mis)match between donor and recipient conferred a two-fold higher infection
risk for each separate gene. The more SNPs leading to a deficient phenotype (with low MBL level and
low-binding ficolin levels in the recipient), the higher the risk for bacterial infection (Fig. 2). This was
Fig. 2. Cumulative incidence of clinically significant infection after orthotopic liver transplantation, according to donor lectin
pathway intergenic haplotype. Ref. [92].
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a stepwise increase in the risk with the lectin pathway gene profile of the donor and the donor–
recipient (mis)match profile independent from other risk factors gender and antibiotic schedule. In
addition, patients with the indicated lectin pathway gene polymorphisms and infection had a six-fold
higher mortality, of which 80% was infection-related [92].

The relationship between cytomegalovirus (CMV) and MBL in solid organ transplantation had
been studied mainly in kidney transplantation [78,93,94], and only in a small number of patients after
OLT [95]. We investigated the complete MBL–ficolin–MASP gene profile in relation to CMV infection
after OLT. It became clear that polymorphisms in the lectin pathway of complement activation also
increase the risk of CMV disease. Combined analysis of variant MBL2 (XA/O or O/O) and wild-type
FCN2 (FCN2-A) polymorphisms in the donor liver showed an independently associated increased
risk of CMV infection for either and both genotypes. This effect was especially strong in IgG anti-CMV
donor negative/recipient positive (D�/Rþ) patients. Moreover, a genetic donor–recipient mismatch
for MBL2 and FCN2 increased the CMV risk independently, also combined, and also particularly in
CMV D�/Rþ patients. For MBL the highest risk for CMV infection was in MBL sufficient recipients of
a MBL deficient donor liver. In addition, a FCN2-C (high-affinity) donor liver reduced the chance for
CMV infection in a FCN2-A recipient as opposed to the other FCNs genotype combinations. Again,
there was a stepwise increase in CMV infection risk with the gene profile of the donor and the
combined MBL2 and FCN2 donor-recipient mismatch profile, independent from donor–recipient CMV
serostatus, also at increasing CMV (re)infection cut-off values of CMV positivity [96]. These data
indicate that a link exists between several components of the lectin pathway of complement acti-
vation and the initial immune response to bacteria and CMV after OLT. The association of MBL2 SNPs
with CMV and with bacterial infections was similar after OLT. However, with bacterial infections an
association with FCN2-B and with MASP2 SNPs was found, while for CMV infection FCN2-C was
important and no relation with MASP2 was found [96]. This illustrates differences in innate immune
defence against bacterial and viral (CMV) pathogens after OLT [92,96]. CMV regulates immuno-
modulatory genes, that also change innate immunity in favour of CMV survival, e.g. inhibition of NF-
kB leading to decreased cytotoxicity, and inhibition of dendritic cells and their functionality [97–99].
This might also explain why CMV infection or reactivation increases the susceptibility to bacterial and
pneumocystis infection. Complement activation is potentially detrimental to the host and is kept in
place by inhibitors. CMV is able to upregulate the expression of host-encoded (surface) complement
inhibitors [100], and counteracts complement activation by incorporation of host cell-derived
complement regulatory proteins CD55 and CD59 [101]. As mentioned, TLR2 Arg753Gln gene
polymorphism is associated with CMV replication after OLT [63]. MBL is able to interact with TLR2 in
the phagosome to initiate pro-inflammatory signalling [102], and therefore SNPs in both may affect
this signalling and changed immunity against CMV after OLT. A subsequent mechanism by which
MBL could be involved in immunity against CMV is that the intracellular interaction of its isoform I-
MBL with CMV glycoproteins may disrupt CMV virion assembly or formation, restricting CMV
replication [103].

A possible clinical application of our findings could be to screen for recipient and donor MBL2, FCN2
andMASP2 risk alleles. Subsequently one could intensify the antibiotic strategy or antiviral prophylaxis
and more closely monitor high-risk patients. It is unknown if supplementation of recombinant MBL or
ficolinwill decrease the infection risk post-OLT. It has been shown that recovery of opsonic activity lags
behind recovery of MBL serum levels [104]. A study with recombinant MBL in OLT was terminated by
the sponsor, as yet for unclear reasons.

It has become clear that certain innate genetic profiles of donor and recipient are important risk
factors for infections after OLT [105]. Indeed, as shown, they seemmore important than some clinical or
environmental factors. Other disturbances in innate immunity may also play a role. This may include
changes in – for instance – other Toll-like receptors, Nod-receptors, or RIG-1 like receptors [106].
Recognition of PAMPs by PRRs triggers a cascade of downstream signalling leading to an array of anti-
microbial immune responses by cytokines, chemokines and type I interferons, and these responses
may also be changed due to polymorphisms in some recipients [106]. Crosstalk between innate and
adaptive immunity may also be affected. More investigation into this area is urgently needed. If the
genetic make-up of donor and recipient is known this may lead to more personalised prophylaxis
around OLT.



Practice points

� Many transplantation-related, recipient and donor factors are involved in the risk for infec-
tion after liver transplantation.

� Genetic polymorphisms in innate immunity, e.g. in recipient toll-like receptors, and in both
the donor and recipient lectin pathway of complement activation have an important impact
on the infection risk in the liver transplant recipient.

Research agenda

� The influence of polymorphisms in the innate immune system on the infection risk after liver
transplantation needs to be further elucidated

� Prospective controlled studies are needed to investigate the role of intensified monitoring
and anti-microbial prophylaxis in recipients at high-risk for infectious complications.

B. van Hoek et al. / Best Practice & Research Clinical Gastroenterology 26 (2012) 61–72 69
Conflicts of interest

The authors have no conflicts of interest.

Acknowledgements

The work was supported by MD Clinical Research Trainee (AGIKO) ZonMw (The Netherlands
Organisation for Health Research and Development) grant 40-00703-98-10578, the Dutch Digestive
Foundation (W007-18) and the Foundation Prof. A.A.H. Kassenaar Fund from the Leiden University
Medical Center.

References

[1] Saner FH, Olde Damink SW, Pavlakovic G, van den Broek MA, Rath PM, Sotiropoulos GC, et al. Pulmonary and blood
stream infections in adult living donor and cadaveric liver transplant patients. Transplantation 2008;85:1564–8.

[2] Vera A, Contreras F, Guevara F. Incidence and risk factors for infections after liver transplant: single-center experience
at the University Hospital Fundacion Santa Fe de Bogota, Colombia. Transpl Infect Dis 2011;13:608–15.

*[3] Romero FA, Razonable RR. Infections in liver transplant recipients. World J Hepatol 2011;3:83–92.
*[4] Fishman JA. Infection in solid-organ transplant recipients. N Engl J Med 2007;357:2601–14.
*[5] Fishman JA, Issa NC. Infection in organ transplantation: risk factors and evolving patterns of infection. Infect Dis Clin

North Am 2010;24:273–83.
[6] Janny S, Bert F, Dondero F, Durand F, Guerrini P, Merckx P, et al. Microbiological findings of culture-positive preser-

vation fluid in liver transplantation. Transpl Infect Dis 2011;13:9–14.
[7] Matignon M, Botterel F, Audard V, Dunogue B, Dahan K, Lang P, et al. Outcome of renal transplantation in eight

patients with Candida sp. contamination of preservation fluid. Am J Transplant 2008;8:697–700.
[8] Benson AB, Burton Jr JR, Austin GL, Biggins SW, Zimmerman MA, Kam I, et al. Differential effects of plasma and red

blood cell transfusions on acute lung injury and infection risk following liver transplantation. Liver Transpl 2011;17:
149–58.

[9] Dubbeld J, Hoekstra H, Farid W, Ringers J, Porte RJ, Metselaar HJ, et al. Similar liver transplantation survival with
selected cardiac death donors and brain death donors. Br J Surg 2010;97:744–53.

[10] ten HoveWR, Korkmaz KS, Op den Dries S, de Rooij BJ, van Hoek B, Porte RJ, et al. Matrix metalloproteinase 2 genotype
is associated with nonanastomotic biliary strictures after orthotopic liver transplantation. Liver Int 2011;31:1110–7.

[11] Said A, Safdar N, Lucey MR, Knechtle SJ, D’Alessandro A, Musat A, et al. Infected bilomas in liver transplant recipients,
incidence, risk factors and implications for prevention. Am J Transplant 2004;4:574–82.

[12] Asensio A, Ramos A, Cuervas-Mons V, Cordero E, Sanchez-Turrion V, Blanes M, et al. Effect of antibiotic prophylaxis on
the risk of surgical site infection in orthotopic liver transplant. Liver Transpl 2008;14:799–805.

[13] de Smet AM, Kluytmans JA, Cooper BS, Mascini EM, Benus RF, van der Werf TS, et al. Decontamination of the digestive
tract and oropharynx in ICU patients. N Engl J Med 2009;360:20–31.

[14] de Smet AM, Kluytmans JA, Blok HE, Mascini EM, Benus RF, Bernards AT, et al. Selective digestive tract decontami-
nation and selective oropharyngeal decontamination and antibiotic resistance in patients in intensive-care units: an
open-label, clustered group-randomised, crossover study. Lancet Infect Dis 2011;11:372–80.



B. van Hoek et al. / Best Practice & Research Clinical Gastroenterology 26 (2012) 61–7270
[15] Safdar N, Said A, Lucey MR. The role of selective digestive decontamination for reducing infection in patients
undergoing liver transplantation: a systematic review and meta-analysis. Liver Transpl 2004;10:817–27.

[16] Demopoulos L, Polinsky M, Steele G, Mines D, Blum M, Caulfield M, et al. Reduced risk of cytomegalovirus infection in
solid organ transplant recipients treated with sirolimus: a pooled analysis of clinical trials. Transplant Proc 2008;40:
1407–10.

[17] Mehrabi A, Fonouni H, Wente M, Sadeghi M, Eisenbach C, Encke J, et al. Wound complications following kidney and
liver transplantation. Clin Transplant 2006;20(Suppl. 17):97–110.

[18] Issa NC, Fishman JA. Infectious complications of antilymphocyte therapies in solid organ transplantation. Clin Infect
Dis 2009;48:772–86.

[19] Llado L, Fabregat J, Castellote J, Ramos E, Xiol X, Torras J, et al. Impact of immunosuppression without steroids on
rejection and hepatitis C virus evolution after liver transplantation: results of a prospective randomized study. Liver
Transpl 2008;14:1752–60.

[20] Spada M, Petz W, Bertani A, Riva S, Sonzogni A, Giovannelli M, et al. Randomized trial of basiliximab induction versus
steroid therapy in pediatric liver allograft recipients under tacrolimus immunosuppression. Am J Transplant 2006;6:
1913–21.

[21] Lupo L, Panzera P, Tandoi F, Carbotta G, Giannelli G, Santantonio T, et al. Basiliximab versus steroids in double therapy
immunosuppression in liver transplantation: a prospective randomized clinical trial. Transplantation 2008;86:925–31.

[22] Neuhaus P, Clavien PA, Kittur D, Salizzoni M, Rimola A, Abeywickrama K, et al. Improved treatment response with
basiliximab immunoprophylaxis after liver transplantation: results from a double-blind randomized placebo-
controlled trial. Liver Transpl 2002;8:132–42.

[23] Pelletier SJ, Vanderwall K, DebRoy MA, Englesbe MJ, Sung RS, Magee JC, et al. Preliminary analysis of early outcomes
of a prospective, randomized trial of complete steroid avoidance in liver transplantation. Transplant Proc 2005;37:
1214–6.

[24] Sun HY, Cacciarelli TV, Singh N. Identifying a targeted population at high risk for infections after liver transplantation
in the MELD era. Clin Transplant 2011;25:420–5.

[25] Schramm C, Bubenheim M, Adam R, Karam V, Buckles J, O’Grady JG, et al. Primary liver transplantation for autoim-
mune hepatitis; a comparative analysis of the European Liver Transplant Registry. Liver Transpl 2010;16:461–9.

[26] Nafady-Hego H, Elgendy H, Moghazy WE, Fukuda K, Uemoto S. Pattern of bacterial and fungal infections in the first 3
months after pediatric living donor liver transplantation: an 11-year single-center experience. Liver Transpl 2011;17:
976–84.

[27] McClelland EE, Smith JM. Gender specific differences in the immune response to infection. Arch Immunol Ther Exp
(Warsz) 2011;59:203–13.

[28] Takatsuki M, Eguchi S, Yamanouchi K, Hidaka M, Soyama A, Miyazaki K, et al. The outcomes of methicillin-resistant
Staphylococcus aureus infection after living donor liver transplantation in a Japanese center. J Hepatobiliary Pan-
creat Sci 2010;17:839–43.

[29] Singh N, Squier C, Wannstedt C, Keyes L, Wagener MM, Cacciarelli TV. Impact of an aggressive infection control
strategy on endemic Staphylococcus aureus infection in liver transplant recipients. Infect Control Hosp Epidemiol
2006;27:122–6.

[30] Samuel D, Muller R, Alexander G, Fassati L, Ducot B, Benhamou JP, et al. Liver transplantation in European patients
with the hepatitis B surface antigen. N Engl J Med 1993;329:1842–7.

[31] Gane EJ, Angus PW, Strasser S, Crawford DH, Ring J, Jeffrey GP, et al. Lamivudine plus low-dose hepatitis B immu-
noglobulin to prevent recurrent hepatitis B following liver transplantation. Gastroenterology 2007;132:931–7.

[32] Campos-Varela I, Castells L, Buti M, Vargas V, Bilbao I, Rodriguez-Frias F, et al. Does pre-liver transplant HBV DNA level
affect HBV recurrence or survival in liver transplant recipients receiving HBIg and nucleos(t)ide analogues? Ann
Hepatol 2011;10:180–7.

[33] Katz LH, Tur-Kaspa R, Guy DG, Paul M. Lamivudine or adefovir dipivoxil alone or combined with immunoglobulin for
preventing hepatitis B recurrence after liver transplantation. Cochrane Database Syst Rev 2010;7:CD006005.

[34] Angus PW, Patterson SJ, Strasser SI, McCaughan GW, Gane E. A randomized study of adefovir dipivoxil in place of HBIG
in combination with lamivudine as post-liver transplantation hepatitis B prophylaxis. Hepatology 2008;48:1460–6.

[35] Jimenez-Perez M, Saez-Gomez AB, Mongil PL, Lozano-Rey JM, de lC- L, Rodrigo-Lopez JM. Efficacy and safety of
entecavir and/or tenofovir for prophylaxis and treatment of hepatitis B recurrence post-liver transplant. Transplant
Proc 2010;42:3167–8.

[36] Karlas T, Hartmann J, Weimann A, Maier M, Bartels M, Jonas S, et al. Prevention of lamivudine-resistant hepatitis B
recurrence after liver transplantation with entecavir plus tenofovir combination therapy and perioperative hepatitis B
immunoglobulin only. Transpl Infect Dis 2011;13:299–302.

[37] Fung J, Cheung C, Chan SC, Yuen MF, Chok KS, Sharr W, et al. Entecavir monotherapy is effective in suppressing
hepatitis B virus after liver transplantation. Gastroenterology 2011;141:1212–9.

[38] Scuderi V, Ceriello A, Santaniello W, Aragiusto G, Romano M, Migliaccio C, et al. Hepatitis B prophylaxis in hepatitis B-
negative recipients transplanted with donor grafts positive for hepatitis B core antibodies. Transplant Proc 2011;43:
271–3.

*[39] Berenguer M, Crippin J, Gish R, Bass N, Bostrom A, Netto G, et al. A model to predict severe HCV-related disease
following liver transplantation. Hepatology 2003;38:34–41.

[40] Kim RD, Mizuno S, Sorensen JB, Schwartz JJ, Fujita S. Impact of calcineurin inhibitors on hepatitis C recurrence after
liver transplantation. Dig Dis Sci 2012;57:568–72.

[41] Charlton MR, Thompson A, Veldt BJ, Watt K, Tillmann H, Poterucha JJ, et al. Interleukin-28B polymorphisms are
associated with histological recurrence and treatment response following liver transplantation in patients with
hepatitis C virus infection. Hepatology 2011;53:317–24.

[42] Hong JC, Kosari K, Benjamin E, Duffy JP, Ghobrial RM, Farmer DG, et al. Does race influence outcomes after primary
liver transplantation? A 23-year experience with 2,700 patients. J Am Coll Surg 2008;206:1009–16.



B. van Hoek et al. / Best Practice & Research Clinical Gastroenterology 26 (2012) 61–72 71
[43] Moeller M, Zalawadia A, Alrayes A, Divine G, Brown K, Moonka D. The impact of donor race on recurrent hepatitis C
after liver transplantation. Transplant Proc 2010;42:4175–7.

[44] Mensa L, Crespo G, Gastinger MJ, Kabat J, Perez-Del-Pulgar S, Miquel R, et al. Hepatitis C virus receptors claudin-1 and
occludin after liver transplantation and influence on early viral kinetics. Hepatology 2011;53:1436–45.

[45] Charlton M. Telaprevir, boceprevir, cytochrome P450 and immunosuppressive agents – a potentially lethal cocktail.
Hepatology 2011;54:3–5.

[46] Coffin CS, Stock PG, Dove LM, Berg CL, Nissen NN, Curry MP, et al. Virologic and clinical outcomes of hepatitis B virus
infection in HIV-HBV coinfected transplant recipients. Am J Transplant 2010;10:1268–75.

[47] Cooper C, Kanters S, Klein M, Chaudhury P, Marotta P, Wong P, et al. Liver transplant outcomes in HIV-infected
patients: a systematic review and meta-analysis with synthetic cohort. AIDS 2011;25:777–86.

[48] Joshi D, O’Grady J, Taylor C, Heaton N, Agarwal K. Liver transplantation in human immunodeficiency virus-positive
patients. Liver Transpl 2011;17:881–90.

[49] Lee SO, Razonable RR. Current concepts on cytomegalovirus infection after liver transplantation. World J Hepatol
2010;2:325–36.

*[50] Eid AJ, Razonable RR. New developments in the management of cytomegalovirus infection after solid organ trans-
plantation. Drugs 2010;70:965–81.

[51] Shpilberg O, Wilson J, Whiteside TL, Herberman RB. Pre-transplant immunological profile and risk factor analysis of
post-transplant lymphoproliferative disease development: the results of a nested matched case-control study. The
University of Pittsburgh PTLD Study Group. Leuk Lymphoma 1999;36:109–21.

[52] Razonable RR. Rare, unusual and less common virus infection after organ transplantation. Curr Opin Organ Transplant
2011;16:580–7.

[53] Razonable RR, Zerr DM. HHV-6, HHV-7 and HHV-8 in solid organ transplant recipients. Am J Transplant 2009;9(Suppl.
4):S97–100.

[54] Anton A, Cervera C, Pumarola T, Moreno A, Benito N, Linares L, et al. Human herpesvirus 7 primary infection in kidney
transplant recipients. Transplantation 2008;85:298–302.

[55] Herrero JI, Quiroga J, Sangro B, Pardo F, Rotellar F, varez-Cienfuegos J, et al. Herpes zoster after liver transplantation:
incidence, risk factors, and complications. Liver Transpl 2004;10:1140–3.

[56] Kucirka LM, Singer AL, Segev DL. High infectious risk donors: what are the risks and when are they too high? Curr
Opin Organ Transplant 2011;16:256–61.

[57] Schlosser B, Stein A, Neuhaus R, Pahl S, Ramez B, Kruger DH, et al. Liver transplant from a donor with occult HEV
infection induced chronic hepatitis and cirrhosis in the recipient. J Hepatol 2012;56:500–2.

[58] Franco-Paredes C, Jacob JT, Hidron A, Rodriguez-Morales AJ, Kuhar D, Caliendo AM. Transplantation and tropical
infectious diseases. Int J Infect Dis 2010;14:e189–96.

*[59] Lee SO, Brown RA, Kang SH, Abdel Massih RC, Razonable RR. Toll-like receptor 4 polymorphisms and the risk of gram-
negative bacterial infections after liver transplantation. Transplantation 2011;92:690–6.

[60] Brown RA, Gralewski JH, Eid AJ, Knoll BM, Finberg RW, Razonable RR. R753Q single-nucleotide polymorphism impairs
toll-like receptor 2 recognition of hepatitis C virus core and nonstructural 3 proteins. Transplantation 2010;89:811–5.

[61] Brown RA, Gralewski JH, Razonable RR. The R753Q polymorphism abrogates toll-like receptor 2 signaling in response
to human cytomegalovirus. Clin Infect Dis 2009;49:e96–9.

*[62] Eid AJ, Brown RA, Paya CV, Razonable RR. Association between toll-like receptor polymorphisms and the outcome of
liver transplantation for chronic hepatitis C virus. Transplantation 2007;84:511–6.

*[63] Kijpittayarit S, Eid AJ, Brown RA, Paya CV, Razonable RR. Relationship between toll-like receptor 2 polymorphism and
cytomegalovirus disease after liver transplantation. Clin Infect Dis 2007;44:1315–20.

[64] Brown RA, Razonable RR. A real-time PCR assay for the simultaneous detection of functional N284I and L412F
polymorphisms in the human toll-like receptor 3 gene. J Mol Diagn 2010;12:493–7.

[65] Bergman IM. Toll-like receptors (TLRs) and mannan-binding lectin (MBL): on constant alert in a hostile environment.
Ups J Med Sci 2011;116:90–9.

[66] Endo Y, Matsushita M, Fujita T. The role of ficolins in the lectin pathway of innate immunity. Int J Biochem Cell Biol
2011;43:705–12.

[67] Ip WK, Takahashi K, Ezekowitz RA, Stuart LM. Mannose-binding lectin and innate immunity. Immunol Rev 2009;230:
9–21.

[68] Thiel S, Vorup-Jensen T, Stover CM, Schwaeble W, Laursen SB, Poulsen K, et al. A second serine protease associated
with mannan-binding lectin that activates complement. Nature 1997;386:506–10.

[69] Matsushita M, Fujita T. Ficolins and the lectin complement pathway. Immunol Rev 2001;180:78–85.
[70] Lynch NJ, Roscher S, Hartung T, Morath S, Matsushita M, Maennel DN, et al. L-ficolin specifically binds to lipoteichoic

acid, a cell wall constituent of Gram-positive bacteria, and activates the lectin pathway of complement. J Immunol
2004;172:1198–202.

[71] Jack DL, Turner MW. Anti-microbial activities of mannose-binding lectin. Biochem Soc Trans 2003;31(Pt 4):753–7.
[72] Kilpatrick DC. Introduction to mannan-binding lectin. Biochem Soc Trans 2003;31(Pt 4):745–7.
[73] Nauta AJ, Castellano G, Xu W, Woltman AM, Borrias MC, Daha MR, et al. Opsonization with C1q and mannose-binding

lectin targets apoptotic cells to dendritic cells. J Immunol 2004;173:3044–50.
[74] Madsen HO, Garred P, Thiel S, Kurtzhals JA, Lamm LU, Ryder LP, et al. Interplay between promoter and structural gene

variants control basal serum level of mannan-binding protein. J Immunol 1995;155:3013–20.
[75] Larsen F, Madsen HO, Sim RB, Koch C, Garred P. Disease-associated mutations in human mannose-binding lectin

compromise oligomerization and activity of the final protein. J Biol Chem 2004;279:21302–11.
[76] Munthe-Fog L, Hummelshoj T, Hansen BE, Koch C, Madsen HO, Skjodt K, et al. The impact of FCN2 polymorphisms and

haplotypes on the ficolin-2 serum levels. Scand J Immunol 2007;65:383–92.
[77] Hummelshoj T, Munthe-Fog L, Madsen HO, Fujita T, Matsushita M, Garred P. Polymorphisms in the FCN2 gene

determine serum variation and function of ficolin-2. Hum Mol Genet 2005;14:1651–8.



B. van Hoek et al. / Best Practice & Research Clinical Gastroenterology 26 (2012) 61–7272
[78] Verschuren JJ, Roos A, Schaapherder AF, Mallat MJ, Daha MR, de Fijter JW, et al. Infectious complications after
simultaneous pancreas–kidney transplantation: a role for the lectin pathway of complement activation. Trans-
plantation 2008;85:75–80.

[79] Kronborg G, Weis N, Madsen HO, Pedersen SS, Wejse C, Nielsen H, et al. Variant mannose-binding lectin alleles are not
associated with susceptibility to or outcome of invasive pneumococcal infection in randomly included patients. J
Infect Dis 2002;185:1517–20.

[80] Garcia-Laorden MI, Pena MJ, Caminero JA, Garcia-Saavedra A, Campos-Herrero MI, Caballero A, et al. Influence of
mannose-binding lectin on HIV infection and tuberculosis in a Western-European population. Mol Immunol 2006;43:
2143–50.

[81] Berger SP, Roos A, Mallat MJ, Schaapherder AF, Doxiadis II, van Kooten C, et al. Low pretransplantation mannose-
binding lectin levels predict superior patient and graft survival after simultaneous pancreas–kidney trans-
plantation. J Am Soc Nephrol 2007;18:2416–22.

[82] Thiel S, Steffensen R, Christensen IJ, Ip WK, Lau YL, Reason IJ, et al. Deficiency of mannan-binding lectin associated
serine protease-2 due to missense polymorphisms. Genes Immun 2007;8:154–63.

[83] Stengaard-Pedersen K, Thiel S, Gadjeva M, Moller-Kristensen M, Sorensen R, Jensen LT, et al. Inherited deficiency of
mannan-binding lectin-associated serine protease 2. N Engl J Med 2003;349:554–60.

[84] Sorensen R, Thiel S, Jensenius JC. Mannan-binding-lectin-associated serine proteases, characteristics and disease
associations. Springer Semin Immunopathol 2005;27:299–319.

[85] Harmat V, Gal P, Kardos J, Szilagyi K, Ambrus G, Vegh B, et al. The structure of MBL-associated serine protease-2
reveals that identical substrate specificities of C1s and MASP-2 are realized through different sets of enzyme–
substrate interactions. J Mol Biol 2004;342:1533–46.

[86] Ambrus G, Gal P, Kojima M, Szilagyi K, Balczer J, Antal J, et al. Natural substrates and inhibitors of mannan-binding
lectin-associated serine protease-1 and -2: a study on recombinant catalytic fragments. J Immunol 2003;170(3):
1374–82.

[87] Holmskov U, Thiel S, Jensenius JC. Collections and ficolins: humoral lectins of the innate immune defense. Annu Rev
Immunol 2003;21:547–78.

[88] Bouwman LH, Roos A, Terpstra OT, de Knijff P, van Hoek B, Verspaget HW, et al. Mannose binding lectin gene poly-
morphisms confer a major risk for severe infections after liver transplantation. Gastroenterology 2005;129:408–14.

[89] Cervera C, Balderramo D, Suarez B, Prieto J, Fuster F, Linares L, et al. Donor mannose-binding lectin gene poly-
morphisms influence the outcome of liver transplantation. Liver Transpl 2009;15:1217–24.

[90] Worthley DL, Johnson DF, Eisen DP, Dean MM, Heatley SL, Tung JP, et al. Donor mannose-binding lectin deficiency
increases the likelihood of clinically significant infection after liver transplantation. Clin Infect Dis 2009;48:410–7.

[91] Vossen RH, van Duijn M, Daha MR, den Dunnen JT, Roos A. High-throughput genotyping of mannose-binding lectin
variants using high-resolution DNA-melting analysis. Hum Mutat 2010;31:E1286–93.

*[92] de Rooij BJ, van Hoek B, ten HoveWR, Roos A, Bouwman LH, Schaapherder AF, et al. Lectin complement pathway gene
profile of donor and recipient determine the risk of bacterial infections after orthotopic liver transplantation. Hep-
atology 2010;52:1100–10.

[93] Cervera C, Lozano F, Saval N, Gimferrer I, Ibanez A, Suarez B, et al. The influence of innate immunity gene receptors
polymorphisms in renal transplant infections. Transplantation 2007;83:1493–500.

[94] Berger SP, Roos A, Mallat MJ, Fujita T, de Fijter JW, Daha MR. Association between mannose-binding lectin levels and
graft survival in kidney transplantation. Am J Transplant 2005;5:1361–6.

[95] Cervera C, Lozano F, Linares L, Anton A, Balderramo D, Suarez B, et al. Influence of mannose-binding lectin gene
polymorphisms on the invasiveness of cytomegalovirus disease after solid organ transplantation. Transplant Proc
2009;41:2259–61.

*[96] de Rooij BJ, van der Beek MT, van Hoek B, Vossen AC, ten Hove WR, Roos A, et al. Mannose-binding lectin and ficolin-2
gene polymorphisms predispose to cytomegalovirus (re)infection after orthotopic liver transplantation. J Hepatol
2011;55:800–7.

[97] Chang WL, Baumgarth N, Yu D, Barry PA. Human cytomegalovirus-encoded interleukin-10 homolog inhibits matu-
ration of dendritic cells and alters their functionality. J Virol 2004;78:8720–31.

[98] Cederarv M, Soderberg-Naucler C, Odeberg J. HCMV infection of PDCs deviates the NK cell response into cytokine-
producing cells unable to perform cytotoxicity. Immunobiology 2009;214:331–41.

[99] Nachtwey J, Spencer JV. HCMV IL-10 suppresses cytokine expression in monocytes through inhibition of nuclear
factor-kappaB. Viral Immunol 2008;21:477–82.

[100] Spiller OB, Morgan BP, Tufaro F, Devine DV. Altered expression of host-encoded complement regulators on human
cytomegalovirus-infected cells. Eur J Immunol 1996;26:1532–8.

[101] Spear GT, Lurain NS, Parker CJ, Ghassemi M, Payne GH, Saifuddin M. Host cell-derived complement control proteins
CD55 and CD59 are incorporated into the virions of two unrelated enveloped viruses. Human T cell leukemia/
lymphoma virus type I (HTLV-I) and human cytomegalovirus (HCMV). J Immunol 1995;155:4376–81.

[102] Ip WK, Takahashi K, Moore KJ, Stuart LM, Ezekowitz RA. Mannose-binding lectin enhances toll-like receptors 2 and 6
signaling from the phagosome. J Exp Med 2008;205:169–81.

[103] Nonaka M, Ma BY, Ohtani M, Yamamoto A, Murata M, Totani K, et al. Subcellular localization and physiological
significance of intracellular mannan-binding protein. J Biol Chem 2007;282:17908–20.

[104] Brouwer N, Frakking FN, van de Wetering MD, van Houdt M, Hart M, Budde IK, et al. Mannose-binding lectin (MBL)
substitution: recovery of opsonic function in vivo lags behind MBL serum levels. J Immunol 2009;183:3496–504.

[105] Razonable RR. Innate immune genetic profile to predict infection risk and outcome after liver transplant. Hepatology
2010;52:814–7.

[106] Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol 2011;30:16–34.


	Risk factors for infection after liver transplantation
	Introduction
	Transplant factors
	Level and type of immunosuppression

	Recipient factors
	Hepatitis B
	Hepatitis C
	HIV
	Herpes viruses

	Donor factors
	Genetic polymorphisms in the innate immune system
	Toll-like receptors
	Lectin pathway of complement activation

	Conflicts of interest
	Acknowledgements
	References


