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A b s t r a c t - - I n  this paper, we are concerned with the delay difference equations of the form 

y n + l  -- Yn -k p n Y n _ k  -= O, n = 0 , 1 , 2 , . . . ,  

where Pn >_ 0 and k is a positive integer. We prove by using a new technique that 

mp' ln t~ " '+ ' - s ign#p '  ) - m p'ln/ ~] p,-I- l -s ign m 
n=O i=n x i : n  i : n + l  \ i : n + l  i = n + l  / J 

, guarantees that all solutions of equation (*) oscillate, which improves many previous well-known 
results. In particular, our theorems also fit the case where n-1 ~i=n_kpi < kk+l/(k + 1) k+l. In 
addition, we present a nonoscillation sufficient condition for equation (*). (~) 1999 Elsevier Science 
Ltd. All rights reserved. 

(,) 

K e y w o r d s - - O s c i l l a t i o n ,  Eventually positive solution, Difference equation. 

1. I N T R O D U C T I O N  

We are concerned with the delay difference equations of the form 

Y,~+I - y n  + p , ~ y n - k  = 0, n -- 0, 1 , 2 , . . . ,  (1) 

where {p~} is a sequence of nonnegative real numbers and k is a positive integer. 
As is customary, a solution { Y n }  of (1) is said to be oscillatory if the terms Yn of the sequence 

are not eventually positive or eventually negative. Otherwise, the solution is called nonoscillatory. 
In 1989, Erbe and Zhang [1] first proved that  if 

k k 
lim_}nfpn > (k + 1) k + l '  (2) 

t h e n  e v e r y  s o l u t i o n  of  (1) osci l la tes .  I f  

k k 
Pn <-- (k + 1) k + l '  for large  n,  (3) 

then (1) has a nonoscillatory solution. 
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In the same year, Ladas, Philos and Sficas [2] proved that  condition (2) can be replaced by the 
weaker condition 

n-1 ( k ~ k + l  
lim_ inf E Pi > \ ~ - ~ )  . (4) 

i=n-k 

We remark that  condition (4) is a discrete analogue of a well-known oscillation criteria 

lim inf i t  1 
p(s) ds > - (5) 

t--.~ J t - r  e 

for the following delay differential equation: 

x'(t) + p(t)x(t  - T) = 0, (6) 

where p(t) E C([0, oo), [0, c~)) and r is a positive constant. A nonoscillation criteria for (6) 
corresponding to (5) is 

p(s) ds < - for large t. (7) 
7" e 

As a discrete analogue of (7), Ladas [3] presented the following open problem in 1990. 

O P E N  PROBLEM A .  Assume that  

n-1 ( k ~k+l 
E Pi -< \~-~--~) , for large n. (8) 

i=n-k 

Does (1) have an eventually positive solution? 
In 1994, Yu, Zhang and Wang [4] obtained a better sufficient condition than (4) for the oscil- 

lation of all solutions of (1) and used the result to construct an example which shows that  the 
answer to Open Problem A is negative. That is, if for some integer N _> 1, 

sup ~ 1 - 1 p ~  < 1 ,  (9) 
)~EE,n>_N k i=n-k 

where E = {)~ > 0 I 1 - APn > 0, n = 0, 1, 2 , . . .  }, then every solution of (1) oscillates; if there 
exists a '~0 E E such that  

n--1 

~o 1-I (1 - ~oPi) > 1, for large n, (10) 
i=n-k 

then (1) has an eventually positive solution. 
Since for A E E, 

n--1 

1-I (1 - )~Pi) < (k / (k  + 1)) k+l 
- -  n - 1  ' 

i=n-k E Pi 
i=n-k 

which follows that  if (4) holds then (9) holds naturally. However, the converse is not true. As 
one has seen, from the example given in [4], oscillation criteria (9) fit the case when (8) holds. 

The negative answer to Open Problem A shows that  the discrete analogue of the oscillation 
results for delay differential equations may be not true. Therefore, it is valuable to study the 
oscillation criteria for delay difference equations. 

The aim of this note is to give some new explicit conditions for oscillation and nonoscillation 
for (1). Our oscillation criterion improves condition (4), in which condition (2) or (4) or even the 
condition 

n--1 

lira_ inf ~ Pi > 0 (11) 
i=n-k 

is no longer necessary. In particular, our results are still effective when (8) holds. 
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2. L E M M A S  

LEMMA 1. Let {Yn} be an eventually positive solution of (1). I f  

then 

PROOF. From (1), we have eventually 

It follows that  

l imsupp~ > 0, 

l iminf Yn-k < co. 
n--*c~ Yn 

Pn = - -  
Yn Yn+l < 1 

Yn-k Yn-k -- Yn-k/Yn" 

1 
lim sup pn < 

n-*~ - lim infn-~c~(yn-k/yn)' 

which implies that  the conclusion of Lemma 1 is true. The proof is complete. 

LEMMA 2. (See [1].) I f  (1) has an eventually positive solution, then 

n 

E pi<_l  
i = n - k  

eventually. 
k LEMMA 3. Assume that a, b > 0, x~ >_ O, i = 1, 2 , . . . ,  k, and ~ = 1  x~ = b. Then 

k 

~ - ~ ( a + x i ) l n ( a + x ~ ) > _ _ k ( a + b ) l n ( a + b ) .  
i = l  

k 
PROOF. Let L ( x l , x 2 , . . .  ,xk) = ~ i= l (a  + x~)ln(a + xi) + ~(~-'~/k=l Xi - -  b). Then 

where 

OL 
= l n ( a + x i )  + 1 +A, i = l , 2 , . . . , k ,  

Oxi 
02L 5ij 

- - -  i , j - = l , 2  . . . .  ,k, 
OxiOxj a + x~' 

0, i C j ,  
~iij = 

1, i = j .  

By a simple calculation, it is easy to see that  the unique stationary point of the function 
L(Xl, x2 , . . . ,  xk) is (b/k, b / k , . . . ,  b/k). Since the matrix 

M = 

02 L 02 L 

OX~l OxlOx2 
02 L 02 L 

Ox2Ozl Ox~ 

02 L 02 L 

O X n O X l  O X n O X 2  

' a;-+ b 
02L k 

" = ak-+b 

. . . . . .  " . ,  

02 L k 

"'" -~x2n x~=b/k ak -+ b 

is positive definite. It is easy to know that  the point (b/k, b / k , . . . ,  b/k) is the minimum point of 
the function L. Hence, in view of Lagrange's method of multipliers, we obtain 

k 

~ ( a + x ~ ) l n ( a + x ~ ) > _ k ( a + b ) l n ( a + b ) .  
i = l  

The proof is complete. 
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3. M A I N  R E S U L T S  

THEOREM 1. I f  

i ~ - . . , p i l n , E p ~ + l - s i g n ~ =  Pi '  - E p ~ l n (  E P i + l - s i g n E  Pi = c o ,  (12) 
n = 0  Li=n \ i = n  i = n + l  \ i = n + l  i = n + l  

then every solution of (i) oscillates. 

PROOF. Assume the contrary. Without loss of generality, we may assume that  (1) has an even- 
tually positive solution {Yn}. Choose a positive integer nz so large that  

Yn > 0 and Yn+1 - Yn -< 0, n ~ ?Z 1. (13) 

Define two functions p(t) and x(t) as follows: 

p ( t ) = p n ,  n < t < n + l ,  n = 0 , 1 , 2 , . . . ,  

x ( t ) = y n + ( Y n + l - - y n ) ( t - - n ) ,  n < t < n + l ,  n = O ,  1 ,2 , . . . .  

Let x'(t) denote derivative on the right. Then x'(t) = Y~+I -Y~  for n _< t < n +  1, n = 0, 1, 2 , . . . .  
Hence, we may rewrite (1) as 

x ' ( t )  + p ( t ) x ( [ t  - k]) : 0, n >_ 0, (14) 

where and in the sequel, [.] denotes the greatest integer function. In view of (13), then 

x(t) > 0 and x'(t) <_ O, t >_ nl. (15) 

Set A(t) = - x ' ( t ) / x ( t )  for t _> nl.  Then A(t) _> 0 for t _> nl.  It follows from (14) that  

(f:)  A(t) = p(t) exp -kl A(s) ds , t >_ nl + k 

o r  

= A(s) ds , t > _ n l + k .  (16) A(t) p(s) ds p(t) p(s) ds.  exp -k] 

One can easily show that  

~(r)re x > qD(r)x + ~(r) ln(er + 1 - signr), for r > 0 and x e R,  (17) 

where ~(0) = 0 and qa(r) _> 0 for r > 0. 
[t+k+Z] P s) By the definition of p(t), we see that  p(t) is right-continuous. Therefore, ft ( ds = 0 

implies that  p(t) = O. Employing inequality (17) on the right-hand side of (16), we get 

(f: ) A(t) p(s) ds = p(t) p(s) ds exp A(s) ds 
Jt Jt -k]  

~[[t I f  It+k+1] t A(s) ds + p(t) in e p(s) ds (18) >_ p(t) -k] Jt 

(f[t+k+l] ) ]  
+ 1 -- sign \Jr  p(s) ds , t >_ nz + k. 
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= e f~t+k+ll p(s) ds 1-sign(f~t+k+']p(s)ds). Then (18)can be rewritten as Set A(t) + 

A(s) ds >_ p(t) In A(t), t ~ nl + k. (19) A(t) Jt p(s) ds-p(t)  -kl 

Thus for any integer N > n2 + 2k (n2 = nl + k), 

g [t+k+l] fnNp(t) f[~ ~n N f A(t) f p(s)dsdt- A(s)dsdt >_ p(t)lnA(t)dt. (20) 
2 Jt -k] 2 

Let D1 = {(t,s) [ n2 < t  < N , [ t - k ]  < s < t} and 92 = {(s,t) I n2 < s < N - k , s _ <  t < 

[s + k + 1]}. Clearly, D2 c D1. Hence 

fn N= p(t) f[:~(s)dsdt=f/DP(t);~(s)dsdt>-ffDP(t)A(s)dsdt._k] , 2 (21) 

Since 
N-k-1 i+1 / i+k+l fro p(t),k(s)dsdt= E f / ~ ( s )  p(t)dtds 

2 i=rt2 J i  ,Is 

fnN-k )~(8) f [s-l-kq-1] = p(t) dt ds 
2 J8  

= )~(t) p(s) ds dr. 
2 J t  

It follows from (20), (21), and (22) that  

/N ft+k+l] fn N ,k(t) p(s) ds dt > p(t) In A(t) dt. 
-k J t  2 

Note that  for n _< t < n + 1, 

t,+k+11 f.+k+l f p(s) ds < p(s) ds = Pi. 
• I t  J n  i~r~ 

(22) 

(23)  

By Lemma 2, we have eventually 

From (23) and (24), we obtain 

lim 
N---*oo 

f t  t+k+ll p(s) ds < 1. 

A(t) dt> p(t) In A(t) dt 
- k  2 

(24) 

or 

f n  °°  
lim YN-k >_ p(t)lnA(t)dt. 

N ~  YN 2 
(25) 
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Set E = {n > n2 I pn > 0}. Then 

Lco oo in-t-1 [ fit+k-I-i] (it[t-l-kq-l] )] 
p(t) In A(t) dt = E p(t) In e Jt p(s) ds + 1 - sign p(s) ds dt 

n 2  r ~ 1 ~ 2  "] I~ 

= n=n, pn]n In e Jt p(s)ds+ 1 - sign t ~  p(s) ds)J dt 

= E p n  l n l e  E p i + e p n ( n + l - t )  dt 
nEE J n  L. i = n + l  

rn+k [n+k ~ n+k n+k ) ] 
= ( E P ' )  - E p, ln (  E p~+l-sign E p~ 

Li=n \i=n i i = n + l  \ i = n + l  i = n + l  

= l n ( E p i + l - s i g n E p i  
n=n2 Li=n \i=n i=n 

- E p'ln t E P i+ l - s i gn  E Pi • 
i = n + l  \ i = n + l  i = n + l  

L ~ p(t) In A(t)  dt = c~ .  ( 2 6 )  
n2 

In view of (12), 

= (27) 

Substituting this into (25), we have 

lira Yn-k 

On the other hand, from (12), we can show that 

l imsuppn > 0. (28) 
n ---4OO 

x--~nTk In fact, if (28) is not true, then limn--.oopn = O. Hence, 2--,i=n Pi < 1/e for large n. Since the 
function xlnx is decreasing in (0, l/e),  it follows that for large n, 

n+k [n+k n+k 
.~p~lnl~=np~+l-sign~=np,  ) 

and so 

E | E p i l n  t E P i  + l-signi~=nPi ) - 
n = 0  Li=n xi=n 

n+k ( n+k n+k 
E p~ln~ E p i + l - s i g n  E P'] <0, 

i=n+l \ i = n + l  i----n+1 / 

n+k ( n+k n+k ~ ] 

E p i l n (  E Pi+ 1 - s i g n  E pil l  < ~ ,  
i = n + l  \ i = n + l  i = n + l  ] / 

which contradicts (12). Therefore, (28) holds. Hence, by Lemma 1, we have 

lim inf Yn-k < O0. 
n---~OO Y n  

This contradicts (27) and complete the proof. 
From Theorem 1, we obtain immediately the following. 

K'~n+k COROLLARY 1. /1 ¢ there exists an integer N > 0 such that z-~i=n+l Pi > 0 for n >_ N, and 

p ~ I n [ E P i ] -  E p ~ l n (  E Pi] = o  c, 
n=N Li=n \i=n / i=n+l \ i = n + l  / 

(29) 

then every solution of (1) oscillates. 
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REMARK 1. Corollary 1 substantially improves condition (4). In fact, if (4) holds, then there 
exist 0 > 1 and an integer s > 0 such that 

n+k ( k ~ k+l  

E p~ >- 0 \ ~ - - ~ ]  = 01, for n >_ sk. (30) 
i=n+l 

For d > 0, the function (d + x) ln(d + x) - xlnx is nondecreasing in (0, +c~), it follows that for 
n >_ s k ,  

E p i l n ~ E P i )  - E piln Pi >_(pn+O1)ln(pn+O1)-Olln01, 
i=n \ i = n  / i=n+l \ i=n+l  

and so for j = s,s + 1,s + 2 , . . . ,  

~..~..jk [ E P i l n  [ Z P i ) -  E p i ln~  Z Pi 
= " Li=n \ i = n  / i=n+l \ i=n+l  

(j+l)k-1 

> Z [(pn+O1)ln(p.+Oll-OllnOx] 
n = j k  

(j+l)k-1 ~ 1 Z Pn I -- 81 ln01 1 E P n /  In 81-}- >k o1+~ 
~=jk / n=jk / 

(31) 

In the last inequality, we have used Lemma 3. Since the function x in x is increasing on [l/e, co), 
and by (30) 

1 k + l _  1 
o1 + ~ ~ p, _> --T-Oa = o ~ > - ,  

i= jk  e 

hence, from (31), we have 

~ k  p~ln(EP~ - p ~ I n [ Z  Pi] 
= " Li=n \ i = n  / i=n+l \ i=n+l  / 

\ V - ~ ]  OlnO > o. 

It follows that (29) holds with N = sk. 
EXAMPLE 1. Consider the delay difference equation 

Yn+l--yn+pnYn_3=O, n = 0 , 1 , 2 , . . . ,  (32) 

where P3n = 0 ,  P 3 n + l  = P 3 n + 2  = d, n = 0, 1, 2 . . . .  , d E (4/27, 81/512]. Observe that 

~-'  ( 3 )  4 
p ,=2d<_ ~ , 

i=n--3 
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which implies that  condition (8) is satisfied. But, on the other hand, for j = 0, 1 ,2 , . . . ,  

E | E  piln [ E  pi] - E p~ln Pi 
n = 3 j  L i=n  \ i = n  / i = n + l  \ i = n + l  

= [i~=npilntEPi] - E piln t E Pi 
n=O \ i = n  / i = n + l  \ i = n + l  

= 2(3dln3d - 2dln 2d) 

= 2d In "zYa > O. 
4 

It follows that  

E I E  piln ~ E  pi) - E piln Pi = ee. 
n = 0  Li=n \ i = n  / i = n + l  \ i = n +  1 

In view of Corollary 1, every solution of (32) oscillates. 
The above example shows that  Theorem 1 and Corollary 1 fits the case when (8) holds. Next, 

we give another example for the comparison with condition (9) and obtain the oscillation of all 
solutions which cannot be obtained by condition (9). 

EXAMPLE 2. Consider the delay difference equation 

Yn+l -Yn+PnYn-2 =0, n = 0 , 1 , 2 , . . . ,  (33) 

where psn = psn+l = 0, Psn+2 = Psn+3 . . . . .  P8~+7 = d, d E (2/9, 1/3). 
By a simple calculation, one can obtain for j = 0, 1, 2 , . . . ,  

E l E P i l n ( E p i + l - s i g n E  pi - E p~ln p ~ + l - s i g n  E Pi 
n = 8 j  L i=n  \ i = n  i = n  i = n + l  \ i = n + l  i = n + l  

= E l E P i l n ~ i ~ p i + l - s i g n E p i  - E p i l n {  E p i + l - s i g n  E Pi 
n=O Li=n  "= i = n  i = n + l  \ i = n + l  i = n + l  

= 4(3dln3d - 2dln 2d) + (2dln 2d - d lnd)  + dlnd 

= 6dln ( ~ ) > 0 .  

It follows that  

I n + 2  { n + 2  n + 2  

~ [Epiln ~Ep~ + l -signi~=nP~ ) - 
n=O Li=n \ i = n  

n+2 n+2)] 
E p i l n  + l - s i g n  E Pi 

i = n + l  \ i = n + l  i = n + l  

----C~. 

In view of Theorem 1, every solution of (33) oscillates. The same conclusion, however, cannot be 
inferred from the aforementioned results. Since 

n - 1  

l iminf E Pi=O and limsup p i - - 3 d < l ,  
n----+C~ 

i= n - -  2 n.-.-*cx~ i=n - -  2 

and for A > 1 
8 n + l  

H (1-~p~)  = ~ > 1, n=O, 1,2,.... 
i = 8 n  

These show that  conditions (4) and (9) do not hold. In fact, to the best of our knowledge, 
Example 2 does not satisfy the known oscillation conditions in the literature. 
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We now present a nonoscillation result for (1). 

THEOREM 2. / / f o r  large n, 
n 1 

E p~ -< - '  (34) e i=n-k 

then (1) has a nonosci l latory  solution. 

PROOF. By  [5, Theorem 8.3.3], (1) has an eventually positive solution is equivalent to t ha t  the 

following delay differential equation: 

x ' ( t )  + p( t )x ([ t  - k]) = 0 (35) 

has an eventually positive solution, where p(t)  = pn, n <_ t < n + 1, n = 0, 1, 2 , . . . .  By a similar 

me thod  of proof  of  Corol lary 2.1.1 in [6], we can prove tha t  condit ion 

p(s)  ds < - ,  for large t (36) 
-kl e 

guarantees  t ha t  (35) has an eventually positive solution. Note tha t  for n <_ t < n + 1, 

p(s)  ds < p(s)  ds = Pi. 
-k] J n - k  i=n-k  

Hence, (34) implies t ha t  (36) holds, and so condition (34) guarantees t ha t  (1) has an eventually 

positive solution. T he  proof  is complete. 

Using the  fact k k + l / ( k  + 1) k+l < l / e ,  we have the following nonoscillation condit ion from 

Theorem 2, which m a y  be looked upon as a correction for (8). 

COROLLARY 2. I f  for large n, 

~-~ Pi-< \ ~ ~ ]  , (37) 
i=n-k  

then  (1) has a nonosci l latory  solution. 
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