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Abstract—The existence of multiple nonnegative solutions of the equations —z' = f(z,z’) sub-
ject to z(0) = z(1) = O is studied. The result is obtained that there are at least three symmetric
nonnegative solutions if certain conditions are imposed on f. © 2004 Elsevier Ltd. All rights
reserved.
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1. INTRODUCTION

In this paper, we shall consider the existence of multiple nonnegative solutions for the second-
order boundary value problem

_x"

z(0)

I

fl,2), 0<t<1, (1.1)
z(1) =0, (1.2)

where f : R x R — [0,400) is continuous. Many authors [1-3] have studied the equations
—z" = f(t,z) and —z” = g(¢)f(z), but in all these equations the nonlinear term does not
include z'. If the equations above include z/, the relative boundary value problem will be more
complicated. Motivated by the paper [4], we will impose certain conditions on f which ensure
the existence of at least three symmetric nonnegative solutions of (1.1) and (1.2).

2. SOME DEFINITIONS AND RESULTS

In order to state and prove our results, we need some notation and conclusions about the
theory of cones in Banach spaces. We denote the closure of a set D by D. C[0,1] denotes the
space of all continuously differentiable functions on [0, 1] endowed with the maximum norm

_ ! 1
ol = mase{ g o0, g |}, Ve € C,) (2.)
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DEFINITION 2.1. Let E be a real Banach space. A closed, convex set P C E is called a cone if
the following conditions are satisfled:

(i) ifz € P, then Az € P for any A > 0;
(ii) ifz € P and —x € P, then z = 0.

A cone P induces a partial ordering < in E by z < y if and only if y — z € P.
DEFINITION 2.2. Let E be a Banach space, P C E a cone in E. A map o is said to be a

nonnegative continuous concave functional on P if o : P — [0, +00) is continuous and

aftz + (1 —t)y) > ta(z) + (1 — t)aly), Vz,ye P and Vte[0,1. - (2.2)

DEFINITION 2.3. For positive numbers a, b, r with a < b and « a nonnegative continuous concave
functional on a cone P, define convex sets P, and P(a,a,b), respectively, by

Po={zxeP:|z| <r}
and
P(a,a,b) ={z € P:a<a(z), ||z <b}.
The following well-known theorem is very crucial in our arguments; see [5] for a proof.

THEOREM 2.1. (See [5].) Let A : P, — P. be a completely continuous operator and a be a
nonnegative continuous concave functional on P such that a(z) < ||z|| for all z € P,. Suppose
there exist a,b,d with 0 < a < b < d < ¢, such that
(i) {z € P(a,b,d) : a(z) > b} # 0 and o(Ax) > b, for all z € P(a, b,d);
(ii) ||Az|| < a, for all x € P,;
(ili) a(Az) > b, for all z € P, b, c) with ||Az|| > d.
Then A has at least three fixed points, x1, T2, and x3 satisfying

z1]| <a, b<oa(zs) and, |as|f>a, with a(z3) < b.

3. MULTIPLE SYMMETRIC NONNEGATIVE SOLUTIONS
It is well known that BVP (1.1),(1.2) is equivalent to the integral equation

1
z(t) = / G(t,s) f(z(s),Z'(s)) ds, vt e [0,1],
0
where G(t, s) is Green’s function as follows:

t(l—s), 0<t<s<1,
G(t,s):{

s(l—t), 0<s<t<Ll

Let E = C*[0,1], define A: E — E by
(Az)(t) = /0 G(t, 5)f(a(s), 2/ (s))ds, ~ V€ B, (3.1)

Thus, BVP (1.1),(1.2) has a solution z(¢) if and only if z is a fixed point of the operator 4, i.e.,
= Az.

LeEMMA 3.1. D C E is relative compact if and only if both the functions x € D and z’ are
uniformly bounded and equicontinuous on [0, 1].

ProoOF. An application of the Arzela-Ascoli theorem completes the proof.
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LEMMA 3.2. A defined by (3.1) is a completely continuous operator.
ProoF. Notice that (3.1} and

t 1
(Azy'(t) = - / sf(@(s),2/(s)) ds + / (1 - 9)f(als), z'(s)) ds

1 1
:/t f(m(s)?m’b(s))ds—/o sf(z(s),z'(s))ds, Vtel0,1], Vz€E,

we have that if D C E is bounded, then all functions Az and (Az)’ for all z € D are uniformly
bounded and equicontinuous on [0, 1], it follows from Lemma 3.1 that A is completely continuous.
And this completes the proof of the lemma.

Next we define a cone P in F by
. . 1 .
P = <¢x € E: z is concave, symmetric for 3 and nonnegative on [0,1] »,

and define the nonnegative continuous concave functional o : P — [0, +00) by

ofz) = nSrtnSl{I—nx(t)’ Yz €P,

where the constant n € (0,1/2).

LEMMA 3.3. Ifthe function ¢ € P, then z is increasing on [0,1/2] but ' is decreasing on [0,1/2].
With the use of Lemma 3.3 we have that

a(z) =z(n) < [zf, VzeP (3.2)

and .
lz|| = max {m (5) ,x’(O)} , Yz e P (3.3)
We now present our result of this paper.

THEOREM 3.1. Let 0 <a <b<e/M, M =1/n(1—2n), and f satisfies

(Hy) f(u,v) <2a, forall0 <u<a, |v| <aq;

(Ha) f(u,v) > [g(1/2 —n)|7'b, for all b < u < Mb, |v| < Mb;

(Hs) flu,v) <2 forall0 <u<c, jv| <g

(Hq) f(u,v) = f(u,—v), for all 0 < u < +o0, —~00 < v < +00;

(Hs) flug,v1) < flug,va), forall 0 <uy Sus <, 0<v <u <e.
Then, BVP (1.1),(1.2) has at least three symmetric nonnegative solutions 1, x2, and 3 satisfying
lz1]| < a, b < a(zs), and {zs|| > a, with a(zs) < b.
PRrRoOOF. Lemma 3.2 implies that the operator A defined by (3.1) is completely continuous from F
into E. We first note that for any z € P, (Az)(t) > 0 and (Az)"(¢) = —f(z(¢t), z(t)) < 0 for
0 £t <1, and second note that Assumption (H,) yields for 0 <t <1,

(Az)(t) = /0 G(t, 8)f (2(s), ' (s)) ds
t 1
z(l—t)/o sf(g:(s),z'(s))ds-{—t/t (1= 8)f(x(s), o (s)) ds
1
:(1—t>/1 (1= w)f(@(1 — w), 2 (1 — w)) dw

-t

11—t
+t/0 wf(z(l —w),z'(1 —w))dw
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1 1-t
—(1-9) /1 (= w)f(a(w), ~a'(w)) dw + ¢ /O wf (@(w), ' (w)) dw

1-t

1
—(1-9) /1_t(1——w)f(m(w),:c'(w))dw—l—t/o w (@(w), o () dw
= (Az)(1—-1)..

Consequently Az € P, thatis, 4: P — P.

Now, we divide our proof into three steps.
STEP 1. We show
AP, C P,

and

AP, c P,.

It is obvious that for any z € P,

1
(Az)(t) = /0 G(t, 5)f(2(s), 2/ (s)) ds |
t 1

:(1-—t)/0 sf(n:(s),w(s))ds—i—t/t (1 —s)f(z(s),2'(s)) ds

t 1 1
= [ sf(z(s),z'(s))ds — sf(z(s),z'(s)) ds z(s),z'(s)) ds

|| st 2D ds—t [ spta s )ds vt [ sao)ate)

t Fr1/2 1

:/ sf(x(s),z'(s))ds —t -/0 sf(m(s),x(s))ds-f—/l/zsf(a:(s),x(s))ds}

—I-t/ f(z(s),2'(s))d

0

1/2 1/2
:/ Fa(s), ())ds——t/o sf(:v(s),x'(s))ds-l—/ (1—w)f(x(w),x'(w))dw]

—i—t/ F(a(s),'(s)) d
=/O sf(z(s), ' (s)) ds — t 01/2]”:]6(3 ds+t/ f(z(s),2'(s))d

=/0tsf(x(s),9:’(s)) ds—t/1/2 fz(s),2'(s)) d5+t/ fz(s),2'(s)) ds

$0 we obtain that

t 1/2
(Az)(¢) =/o sf(z(s),z'(s)) ds -I-t/t Flz(s),2'(s)) ds, Vit e [0,1],

and

1/2
(Az)'() = /t Fla(s),a'(s))ds,  Vte[o,1].

(3.6)

(3.7)

For any given z € P,, it follows from Assumption (H3) that f(z(t),z'(t)) < 2¢, 0 <t < 1. Thus,
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from (3.3),

Il = ma { g (420, g (4 01}

0<t<1

— max {(Ax) (%) ; (Az)’(O)}

1/2
:max{ /0 sf(a(9)'(s)) ds, [

1/2
< / 2cds
0

= C.

1/2

f(z<s>,x'(s>>ds}

Hence, (3.4) holds. In a similar argument, if z € P,, then Az € P,.

STEP 2. We show
{z € P(a,b, Mb) : a(z) > b} # 0 (3.8)

and
afAz) > b, for z € P(o, b, Mb). (3.9)

We note that y(t) = Mb, 0 < t <1, is a member of P(a,b, Mb) and a(y) = Mb > b, thus (3.8)
holds.

In addition, if z € P{a, b, Mb), then a(z) > b, ||z|| < Mb, and so b < z(t) < Mb, |2'(t)] < Mb,
for all 7 <t < 1/2. Thus, for any z € P(a,b, Mb), Assumption (Hs) yields that f(z(t),z'(t)) >
[n(1/2 —n)]*b, n <t < 1/2, and consequently, from (3.6),

a(Az) = (Az)(n)
1/2

-/ " s (@(s), @' (s)) ds | stats)sas
0] n

1/2
> / f(a(s),2'(s)) ds
o[BG e
=b.

Hence, (3.9) holds.

STEP 3. Let z € P(a,b,¢) with ||Az| > Mb. Then Assumption (Hs) yields f(z(t),z'(t)) >
flz(n),z'(n), n <t <1/2, and f(z(t),2'(t)) < flz(n),2'(n)), 0 <t < 7. And consequently,

o(Az) = (Az)(n)
n 1/2
— / sf(z(s),2/(s)) ds + 7 / f(z(s),2/(s)) ds
o] n
1/2
> / F(a(s),2'(s)) ds

1/2

(1 —2n)]""n f(z(s),2'(s)) ds

1/2 -1 ,1/2
( [ ttate) ) ds+n (5 -n) f<x<s>,x'(s>>ds)

gl g~
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1 1/2
? >+ ( [ i), () ds +nf(m<n>,x'(n>)ds>
1 (2 , ! ,
> ( / flale) 2/ (@) ds + | f(a(s),2 (s))ds)
1 1/2 , 1/2 ,
- M’ma‘x{/o sf(z(s),'(s)) ds, i f(w(s),m(s))dS}
= _]\14- max{ (Az) (%) l , ](Ax)/(O)[}
1
= 57ll4al
> b.

Hence, an application of Theorem 2.1 completes the proof.
In the following, we present a few examples to which Theorem 3.1 may be applied.

ExXAMPLE 3.1. Let a=1/17,b=1,c=525,5=1/4, M =8, and

1
1602 + — 0<u< -
u—|—17(1+v2), <u<s, o0 < v < 00,
f(u,v): 1
— 84— 4102 8 — .
Vvu +17(1+v2)+ 4, u> 8§, oo < v < 400

It is easy to check that the conditions in Theorem 3.1 hold. So it follows from Theorem 3.1
that BVP (1.1),(1.2) has at least three symmetric nonnegative solutions z1, o, and z3 satisfying
lz1] £1/17, 1 < a(ze), and ||zs|| > 1/17 with a(z3) < 1.

ExaMPLE 3.2. Let a=1/521,b=1, ¢=33372,n=1/4, M =8, and

2
ll(—)—%, 0<u<s8 —oco<v<+oo,
U, V) =
f(u,) 66560 + vu — 8
—_—, U > 3§, —o0 < v < 4o00.
1422

It is easy to check that the conditions in Theorem 3.1 hold. So it follows from Theorem 3.1
that BVP (1.1),(1.2) has at least three symmetric nonnegative solutions z;, 23, and z3 satisfying
llz1]] <1/521, 1 < axp), and |jzg] > 1/521 with a(zs) < 1.

If the norm is defined by

_ 1 / 1
Joll = mox { guax (0, § gmax [0}, VaeCUo.

as in the argument above, we shall have the following result similar to Theorem 3.1.

THEOREM 3.2. Let 0 <a<b<c¢/M, M =1/9(1—2n), and f satisfles

(Hy) f(u,v) < 8a, for all 0 < u < qa, |v] < 4a;

(Ha) f(u,v) > [n(1/2 —n)] b, for all b < u < Mb, |v] < 4Mb;

(Hs) f(u,v) <8¢ forall0 <u<e, |v] <4

(Hq) f(u,v) = f(u,—v), for all 0 <u < 400, —00 < v < 400;

(Hs) f(u1,v1) < flug,va), for all 0 S ugp <ug <, 0 <vp < vy < 4e.

Then, BVP (1.1),(1.2) has at least three symmetric nonnegative solutions 1, xo, and x3 satisfying
lz1]] € a, b < a(zs), and ||zs| > a, with o(z3) < b.
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