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A b s t r a c t - - T h e  existence of multiple nonnegative solutions of the  equations - x "  = f ( x ,  x I) sub- 
ject to x(0) = x(1) --= 0 is studied. The result is obtained that  there are at least three symmetric 
nonnegative solutions if certain conditions are imposed on f .  (~) 2004 Elsevier Ltd. All rights 
reserved. 
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1. I N T R O D U C T I O N  

In this paper, we shall consider the existence of multiple nonnegative solutions for the second- 
order boundary value problem 

- x "  = f ( x ,  x ' ) ,  o < t < 1, (1.1) 

x(0)  = x (1 )  = 0, (1.2) 

where f : R x R --. [0, + ~ )  is continuous. Many authors [1-3] have studied the equations 
- x "  = f ( t , x )  and - x "  = g(t) f (x) ,  but in all these equations the nonlinear term does not 
include x'. If the equations above include x t, the relative boundary value problem will be more 
complicated. Motivated by the paper [4], we will impose certain conditions on f which ensure 
the existence of at least three symmetric nonnegative solutions of (1.1) and (1.2). 

2. S O M E  D E F I N I T I O N S  A N D  R E S U L T S  

In order to state and prove our results, we need some notation and conclusions about the 
theory of cones in Banach spaces. We denote the closure of a set D by D. C1[0,1] denotes the 
space of all continuously differentiable functions on [0, !] endowed with the maximum norm 

llxll = ma~ ma~ Ix(t)l, m= x'(t)L~ 
L O < t < 1  o_<t_<1 - - ) '  

v x  e c~[o,  1]. (2.1) 
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DEFINITION 2.1. Let  E be a ram Banach space. A closed, convex set P C E is called a cone if  
the following conditions are satisfied: 

(i) i f  x E P,  then Ax C P for any A >_ O; 
(ii) i f  x E P and - x  c P, then x -= O. 

A cone P induces a partial ordering _< in E by x _< y if and only if y - x c P.  

DEFINITION 2.2. Let  E be a Banach space, P c E a cone in E.  A map  a is said to be a 
nonnegative continuous concave functional on P i f  a : P --* [0, +c~) is continuous and 

a ( t x  + (1 - t)y) >_ ta (x )  + (1 - t)c~(y), Vx ,  y e P and Mt e [0, 1]. (2.2) 

DEFINITION 2.3. For positive numbers a, b, r with a < b and a a nonnegative continuous concave 
functionM on a cone P,  define convex sets P~ and P ( a ,  a, b), respectively, by 

and 

P~ = {x E P :  ]lxl{ < r} 

P ( a , a , b )  = {x C P : a < a(x) ,  []x[I N b}. 

The following well-known theorem is very crucial in our arguments; see [5] for a proof. 

THEOREM 2.1. (See [5].) Let  A : Pc -~ Pc be a completely continuous operator and a be a 
nonnegative continuous concave functional on P such that a (x )  < HxN for all x E Pc. Suppose 

there exist a, b, d with 0 < a < b < d < c, such that  

(i) {x e P ( a ,  b, d) :  a(x )  > b} ¢ O and a ( A x )  > b, for all x e P ( a ,  b, d); 

(ii) IIAxII < a, for all x e P~; 
(iii) a ( A x )  > b, for all x e P ( a ,  b, c) with [IAzll > d. 

Then A has at least three fixed points, Xl, x2, end x3 satisfying 

II~II < a, b < ~(x~) and, ll~ll > a, with a(x3) < b. 

3 .  M U L T I P L E  S Y M M E T R I C  N O N N E G A T I V E  S O L U T I O N S  

It is well known tha t  BVP (1.1),(1.2) is equivalent to the integral equation 

f0 z( t )  = a ( t , s ) f ( z ( s ) , x ' ( s ) ) d s ,  Vt s [0,1], 

where G(t, s) is Green's function as follows: 

t ( 1 - s ) ,  0 < t < s < l ,  

a(t ,s)= s(1-t) ,  0 < s < t < l .  

Let E = C 1[0, 1], define A : E -~ E by 

(Az) ( t )  = a( t ,  s ) f ( z ( s ) ,  z ' ( s ) )  d~, V z  c E. (3.1) 

Thus, BVP (1.1),(1.2) has a solution x(t)  if and only if x is a fixed point of the operator  A, i.e., 
Z ~  A x .  

LEMMA 3.1. D C E is relative compact i f  and only i f  both the functions x E D and x'  are 

uniformly bounded and equicontinuous on [0, 1]. 

PROOF. An application of the Arzela-Ascoli theorem completes the proof. 
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LEMMA 3.2. A defined by (3.1) is a completely continuous operator. 

PROOF. Notice tha t  (3.1) and 

f (Ax)'(t)  = -.1o s f (x (s ) ,  x'(s)) ds + (1 - s ) f (~ ( s ) ,  ~ ' (s) )  d~ 

= f~ I(~(~),~'(s))ds- sZ(~(~),~'(s))ds, V t • [ 0 , 1 ] ,  V ~ • E ,  

we have tha t  if D C E is bounded,  then all functions A x  and (Ax)  ~ for all x • D are uniformly 
bounded and equicontinuous on [0, 1], it follows from Lemma  3.1 tha t  A is completely continuous. 
And this completes the proof of the lemma. 

Next we define a cone P in E by 

{ 1 ]} 
P = x • E : x is concave, symmetr ic  for ~ and nonnegative on [0, 1 , 

and define the nonnegative continuous concave functional c~ : P --~ [0, +oo) by 

c~(x) = min x(t) ,  g x  • P, 
~<_t<_i-n 

where the constant  r / •  (0, 1/2). 

LEMMA 3.3. I f  the function x • P,  then x is increasing on [0, 1/2] but  x'  is decreasing on [0, 1/2]. 

Wi th  the use of L e m m a  3.3 we have tha t  

~(~) = x(~) ~ [Ixll, Vx • P, (3.2) 

and 

We now present our result of this paper.  

THEOREM 3.1. Let  0 < a < b < c / M ,  M = 1/~(1 - 2~), and f satisfies 

(H:) :(~,,v) < 2a, :or a1~ 0 < ~, < a, I~:I --- a; 
(H2) f ( u , v )  >_ [~7(1/2 - ~7)]-lb, for ~11 b < u < Mb, Iv[ _ Mb; 
(H3) f ( u ,  v) < 2c, for ~11 0 < u < c, lvl < ~; 
(H4) f ( u ,  v) = f (u ,  - v ) ,  for all 0 ~_ u < +oo, - ~  < v < ÷oo; 
(Hh) f ( u l ,  vl)  <_ f (u2,  v2), for ali 0 <_ ul <_ u2 <_ c, 0 <_ v~ < vl <_ c. 

Then, B V P  (1.1),(1.2) has at least three symmetr ic  nonnegative solutions x l ,  x2, and x3 satisfying 

Ilxlll <_ a, b < ~(x2), and tlx311 > a, with ~(x3) < b. 
PROOF. L e m m a  3.2 implies tha t  the operator  A defined by (3.1) is completely continuous from E 
into E.  We first note tha t  for any x e P,  (dx) ( t )  >_ 0 and (dx ) " ( t )  = - f ( x ( t ) ,  x ' ( t ))  ~_ 0 for 
0 < t < 1, and second note tha t  Assumption (H4) yields for 0 < t < 1, 

/0' (Az)(t) = a(t, s)f(x(s), z'(s)) as 

Jo' = (1 - t) s f ( x ( s ) ,  x ' (s))  ds + t (1 - s ) f ( x ( s ) ,  x ' (s ) )  ds 

f = (1 - t) (1 - w ) f ( x ( 1  - w), x'(1 - w)) dw 
--t  

~0 
1 - t  

+ t ~ f ( x ( 1  - ~) ,  x ' (1  - ~ ) )  d~  
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~i I 1 - t  
= (1 - t) - , ( 1  - ~ ) f ( x ( ~ ) ,  - ~ ' ( ~ ) )  dw + t {1~ ~f(x(~), -~'(~)) d~ 

/ /  ~/o ~- = (1 - t) ( 1  - w)f(x(w) ,  x'(w)) dw + wf (x(w) ,  x'(w)) dw 

= (Ax)(1 - t ) .  

Consequently Ax • P, tha t  is, A : P ~ P.  

Now, we divide our proof into three steps. 

STEP 1. We show 

APe c Pc (3.4) 

and 

APa C Pa. (3.5) 

It is obvious that  for any x • P,  

(Ax)(t) = o 1 G(t, e)f(x(s), x'(e)) de 

= ( 1 - t )  ~ t e f ( x ( s ) , x ' ( s ) ) d s  + t f t l ( 1 -  s)f(x(s) ,xt(s))  ds 

/o ~ /o ~ r e = sf(x(s) ,  x'(s)) ds - t s f(x(s) ,  x'(s)) ds + t f (x(s) ,  x'(s)) de 
dt 

/0 ; ] = sf(x(s) ,  x'(s)) ds - t s f(x(s) ,  x'(s)) ds + sf(x(s) ,  x'(e)) ds 
/2 

f + t f (x(s) ,  x'(s)) de 

/: " 1 = sf(x(s) ,  x'(s)) de - t s f (x(s) ,  x'(s)) de + / o  (1 - w)f(x(w) ,  x'(w)) dw 

f l  
+ t f (x(s) ,  x'(s)) de 

/o ~ ~ /1 = sf(x(s) ,  x'(s)) ds - t Jo f(x(s) ,  x'(s)) ds + t f (x(s) ,  x'(s)) de 

j~O t ~11 j(t 1 = sf(x(s) ,  x'(s)) de - t f(x(e),  x'(s)) ds + t f (x(s) ,  x'(s)) de, 
/2 

so we obtain that  

f0 t [ 1 / 2  (Ax)(t) = sf(x(e),  x'(s)) ds + t f (x(s) ,  x'(s)) ds, 
dt 

v t  • [0,1], (3.6) 

and 
1/2 

(Ax)'(t) = f(x(e),  x'(s)) ds, Vt • [0, 1]. (3.7) .It 

For any given x • Pc, it follows from Assumption (Ha) tha t  f (x( t) ,  x'(t)) < 2c, 0 < t < 1. Thus, 



Multiple Symmetric Nonnegative Solutions 265 

from (3.3), 

HAxH = max ~ max I(Ax)(t)l, max I(Ax)'(t)l},  
~ O < t < l  O < t < l  

= m a x { ( A x ) ( 1 } , ( A x ) ' ( O ) }  

max sf(x(s),  x'(s)) ds, f l / 2  : I (x(s) ,  x'(s)) ds 
JO 

f 
Zl2 

< 2cds 
JO 

~ C .  

Hence, (3.4) holds. In a similar argument, if x E Pc, then Ax C Pc. 

STEP 2. We show 
{x e P(a,b, Mb) : a(x) > b} ¢ 0 

and 

(3.8) 

a(Ax) > b, for x e P(a, b, Mb). (3.9) 

We note that  y(t) = Mb, 0 < t < 1, is a member of P(a, b, Mb) and a(y) = Mb > b, thus (3.8) 
holds. 

In addition, i f x  e P(a,b, Mb), then a(x) >_ b, [Ixll < Mb, and so b <_ x(t) < Mb, Ix'(t)l <_ Mb, 
for all ~ ~ t ~ 1/2. Thus, for any x C P(a ,  b, Mb), Assumption (H2) yields tha t  f(x(t) ,  x'(t)) > 
[7(1/2 - ~)]-lb, ~ <_ t ~ 1/2, and consequently, from (3.6), 

a(Ax) = (Ax)(~) 

fo f l/2 = Vs f (x ( s ) , x ' ( s ) )ds+~ f (x(s) ,x ' ( s ) )ds  

f l / 2  
> ~ j~ f(x(s) ,  x'(s)) ds 

> f l / 2 [ ~ ( 2 - , ) ] - l b d s  -'J, 
~--b. 

Hence, (3.9) holds. 

STEP 3. Let x e P(a,b,c) with IIAxll > Mb. Then Assumption (Hh) yields f (x(t) ,x ' ( t))  >_ 
f(x(~),  x'(~)), ~ < t < 1/2, and f(x(t) ,  x'(t)) < f(x(~), x'(~)), 0 < t < ~?. And consequently, 

a(Ax) = (Ax)(v) 

fo = n sf(x(s),  x'(s)) ds + ~? f(x(s),  x'(s)) ds 

f 
112 

>_ ~ f(x(s) ,  x'(s)) ds 
J ~  

f l / 2  = M-~--[r/(1 - 2 ~ ) ] - 1 ~  f (x(s) ,x ' (s))  ds 

1 (~  1/2 ( 1 ) - - 1 f l / 2  ) 
= -~ f(x(s),  x'(s)) ds + V - V f(x(s) ,  x'(s)) ds 
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> -~  f(x(s) ,  xt(s)) ds + ~Tf(x(~7), x'(~)) ds 

/: ) .> ~ f (x (s ) ,x ' ( s ) )ds  + f (x ( s ) , x ' ( s ) )ds  

= ~ ~o f ( ~ ( s ) , x ' ( s ) ) d s  

= M m a x {  (Ax) (2 ) I , l (Ax ) ' (O)[  } 

= MIIAxll  

> b .  

Hence, an application of Theorem 2.1 completes the proof. 

In the following, we present a few examples to which Theorem 3.1 may be applied. 

EXAMPLE 3.1. Let a--1/17, b--l,c--525,~7=1/4, M=8, and 

1 
16u2+  1 7 ( 1 + v 2 )  ' 0 < u < 8 ,  - c ~ z < v < + c x ~ ,  

f (u ,v )  = 1 
8 + 17(1 + v 2) + 1024, u > 8, - o c  < v < +c~. 

I t  is easy to check tha t  the conditions in Theorem 3.1 hold. So it follows from Theorem 3.1 
tha t  BVP (1.1),(1.2) has at least three symmetr ic  nonnegative solutions xl ,  x2, and x3 satisfying 
Ilxll] < 1/17, 1 < a(x2) ,  and Hx3]] > 1/17 with a(x3) < 1. 

EXAMPLE 3.2. Let a = 1/521, b = 1, c = 33372, ~7 = 1/4, M = 8, and 

1040u 
f ( u , v ) =  l + v  2' O < u < 8 ,  - o c < v < + c ~ ,  

6656o + ~ s 
l + v 2 , u > 8, - co  < v < +oo. 

I t  is easy to check tha t  the conditions in Theorem 3.1 hold. So it follows from Theorem 3.1 
tha t  BVP (1.1),(1.2) has at least three symmetr ic  nonnegative solutions xl ,  x2, and x3 satisfying 
I[xl[] _< 1/521, 1 < a(x2) ,  and [[x3[I > 1/521 with a(xa) < 1. 

If  the norm is defined by 

( 1 / 
to_<L< 7 o<L<imax >'(t)l , Vx ~ ci[0,1], 

as in the argument above, we shall have the following result similar to Theorem 3.1. 

THEOREM 3.2. Let  0 < a < b < elM, M = 1/r/(1 - 2r/), and f satisfies 

(HI) f ( ~ ,  v) < sa,  for all 0 < ~ < a, Ivl < 4~; 
(H2) f (u ,  v) _> [~(1/2 - rl)]-lb, for a11 b < u < Mb, Iv[ _< 4Mb; 
(H3) f (u ,v )  <_ 8c, for all 0 < u < c, Iv[ _< 4c; 
(H4) f (u,  v) = f(u,  - v ) ,  for ali 0 <_ u < Wee, -c~ < v < +oc; 
(Hh) f (u l ,  Vl) <_ f(u2, v2), for a11 0 <_ ul <_ u2 <_ c, 0 <_ v2 <_ vl <_ 4c. 

Then, B VP (1.1), (1.2) has at  least three symmetric nonnegative solutions xi ,  x2, and x3 satisfying 
Hxlll _< a, b < ~(~2) ,  and IIx~l] > a, with ~(x~)  < b. 



Multiple Symmetric Nonnegative Solutions 267 

R E F E R E N C E S  
1. L.H. Erbe, S. Hu and H. Wang, Multiple positive solutions of some boundary value problems, Y. Math. Anal. 

Appl. 184, 640-648, (1994). 
2. Z. Liu and F. Li, Multiple positive solutions of nonlinear two-point boundary value problems, Y. Math. Anal. 

Appl. 203, 610-625, (1996). 
3. K. Lan and J.R.L. Webb, Positive solutions of semilinear differential equations with singularities, J. Differ- 

ential Equations 148, 407-421, (1998). 
4. J. Henderson and H.B. Thompson, Multiple symmetrc positive solutions for a second order boundary value 

problem, Proc. Amer. Math. Soc. 128, 2373-2379, (2000). 
5. R. Leggett and L. Williams, Multiple positive fixed points of nonlinear operator on ordered Banach spaces, 

Indiana Univ. Math. Y. 28, 673-688, (1979). 


