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SUMMARY

During midgestation, mammalian neural precursor
cells (NPCs) differentiate only into neurons. Genera-
tion of astrocytes is prevented at this stage, because
astrocyte-specific gene promoters are methylated.
How the subsequent switch from suppression to
expression of astrocytic genes occurs is unknown.
We show in this study that Notch ligands are
expressed on committed neuronal precursors and
young neurons in mid-gestational telencephalon,
and that neighboring Notch-activated NPCs acquire
the potential to become astrocytes. Activation of
the Notch signaling pathway in midgestational
NPCs induces expression of the transcription factor
nuclear factor I, which binds to astrocytic gene
promoters, resulting in demethylation of astrocyte-
specific genes. These findings provide a mechanistic
explanation for why neurons come first: committed
neuronal precursors and young neurons potentiate
remaining NPCs to differentiate into the next cell
lineage, astrocytes.

INTRODUCTION

Fetal telencephalic neuroepithelial cell populations in mamma-

lian embryonic brain contain multipotent neural precursor cells

(NPCs) that can self-renew and give rise to the three major

central nervous system (CNS) cell types—neurons, astrocytes,

and oligodendrocytes. However, NPCs do not express multipo-

tentiality in early gestation, differentiating only into neurons at

midgestation; they gradually begin to display multipotentiality,

and differentiate into astrocytes and oligodendrocytes during

late gestation (Temple, 2001). The mechanisms driving this step-

wise process in the developing brain are poorly understood,

although cytokine-induced activation of the janus kinase (JAK)-
Develop
signal transducer and activator of transcription (STAT) pathway,

and changes in DNA methylation of astrocyte-specific gene

promoters, are thought to be intimately involved in the regulation

of astrogliogenesis (Fan et al., 2005; He et al., 2005; Takizawa

et al., 2001).

Since neurons are produced before NPCs gain the potential to

differentiate into astrocytes, pregenerated neurons are strong

candidates to confer astrogliogenic potential on NPCs. In this

context, it has been suggested that neuron-secreted cardiotro-

phin (CT)-1, a member of the interleukin (IL)-6 cytokine family

that activates the gp130-JAK-STAT pathway, induces astrocytic

differentiation of mouse NPCs at embryonic day (E) 13.5

(Barnabe-Heider et al., 2005). These findings do not, however,

exclude the possibility that, prior to E13.5, cortical precursors

undergo an intrinsic change, such as demethylation of astrocytic

gene promoters (Takizawa et al., 2001), that allows them to

respond to cytokines.

Notch receptors and their ligands, molecules best known for

influencing cell fate decisions through direct cell-cell contact

(Louvi and Artavanis-Tsakonas, 2006; Nye and Kopan, 1995;

Weinmaster, 1997), participate in a wide variety of biological

events, including fate decision of NPCs. Upon ligand binding,

the intracellular domain of Notch (NICD) is released from the

plasma membrane and translocates into the nucleus, where it

converts the CBF1(RBP-J)/Su(H)/LAG1 (CSL) repressor

complex into an activator complex. The NICD/CSL1 activator

complex targets genes such as Hes and Hesr (Hes-related

protein), which encode basic helix-loop-helix transcriptional

regulators that antagonize proneural genes, and thus neurogen-

esis (Bertrand et al., 2002; Kato et al., 1997). However, it is largely

unknown how the Notch signaling pathway is involved in neuro-

genic-to-gliogenic switching during CNS development.

Recently, it has been reported that nuclear factor I (NFI) A,

a member of a family of CCAAT box element-binding transcrip-

tion factors (Gronostajski, 2000), is both necessary and sufficient

to promote glial fate specification in embryonic spinal cord

progenitors in vivo (Deneen et al., 2006). Previous studies had

shown that adult mice deficient for NFIA or NFIB exhibited
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a reduction in cortical glial fibrillary acidic protein (GFAP),

a typical marker protein for astrocytes (das Neves et al., 1999;

Steele-Perkins et al., 2005), as well as a reduction in the number

of midline glia (Shu et al., 2003). It was further shown that E18.5

embryos lacking either NFIA or NFIB displayed a reduction in

spinal cord GFAP expression (Deneen et al., 2006), and that

misexpression of NFIA or NFIB was sufficient to accelerate

GFAP expression in astrocytic precursors by several days

in vivo and in vitro. These data indicate that NFIA/B promote

the terminal differentiation of astrocytes. Furthermore, gfap

expression is likely to be directly regulated by NFIA/B, as func-

tional NFI-binding sites have been identified in the promoter

(Cebolla and Vallejo, 2006). However, the precise relationships

between NFIs and other factors, such as the JAK-STAT and

Notch signaling pathways and DNA methylation, in the regulation

of astrocyte differentiation of NPCs have not been elucidated.

Many studies have provided us with an integrated view of the

gliogenic switch, with multiple extrinsic and intrinsic mecha-

nisms acting in concert to induce gliogenesis when an appro-

priate number of neurons has been generated. Nevertheless,

how promoter methylation changes are induced, and why

neurons have to be produced first from NPCs during brain devel-

opment, remain outstanding questions. In this study, we provide

an explanation for the sequential differentiation of NPCs into

neurons and then astrocytes through the epigenetic modification

during embryonic brain development.

RESULTS

Neurons Confer Astrocyte Differentiation Potential
on NPCs via Notch Signal Activation
It has been suggested that neuron-secreted CT-1 induces astro-

cytic differentiation of mouse NPCs at E13.5. However, CT-1 and

leukemia inhibitory factor (LIF), which activates the same

signaling pathway as CT-1, failed to do so at an earlier stage

(E11.5), and did not evoke demethylation of the astrocyte-

specific gfap gene promoter (Figures 1A and 1D and data not

shown). We therefore sought to examine the involvement of

cell-to-cell interactions, in addition to that of secreted factors.

As a first step, we cocultured E11.5 NPCs with embryonic

cortical neurons, and found that they could differentiate into

GFAP-positive astrocytes in the presence of LIF (Figures 1B,

1B0, and 1D). Notch signaling is one of the most important medi-

ators of intercellular interaction during CNS development (Louvi

and Artavanis-Tsakonas, 2006). Several recent studies have

suggested that Notch1 is activated in proliferating NSCs (Toku-

naga et al., 2004; Androutsellis-Theotokis et al., 2006; Yoshi-

matsu et al., 2006), and may play a decisive role in promoting

glial development (Grandbarbe et al., 2003). When we performed

the same coculture experiment as above, but with a g-secretase

inhibitor (N-[N-(3,5-Difluorophenacetyl-L-Alanyl)]-S-phenylgly-

cine t-butyl ester) to inhibit cleavage of NICD, which is indispens-

able for Notch signal activation (Androutsellis-Theotokis et al.,

2006), astrocytic differentiation was abolished (Figures 1C, 1C0,

and 1D). Moreover, ectopic expression of the intracellular-acting

Notch signal inhibitor Dll3 (Ladi et al., 2005) in E11.5 NPCs also

resulted in the inhibition of astrocytic differentiation in coculture

conditions (see Figure S1 available online). Using the TP1-Venus

Notch-activation reporter plasmid (Kohyama et al., 2005), we
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further confirmed that Notch signaling was indeed activated in

NPCs located in close contact with embryonic cortical neurons

(Figure S2). These data implicated Notch signaling in the embry-

onic neuron-induced potentiation of NPCs to differentiate into

astrocytes.

Activation of Notch Signal Is Sufficient for Acquisition
of Astrocyte Differentiation in NPCs
Next, we sought to determine whether Notch activation is suffi-

cient for astrocytic differentiation of midgestational NPCs.

E11.5 NPCs were infected with retroviruses engineered to

express either green fluorescent protein (GFP) alone or GFP

together with NICD (Takizawa et al., 2003). The following day,

LIF was added to the culture, and the cells were incubated for

an additional 3 days. In contrast to NPCs infected with control

virus, a dramatic induction of GFAP-positive astrocytic differen-

tiation was observed in NICD-expressing NPCs after LIF stimu-

lation (Figures 1F–1G), indicating that the activation of Notch

signaling enabled precocious astrocytic differentiation of midg-

estational NPCs that would otherwise differentiate only into

neurons. In the absence of LIF, no GFAP-positive cells were

observed in control or NICD-expressing NPCs (data not shown).

Thus, although these experiments demonstrated that Notch acti-

vation confers astrogliogenic potential on midgestational NPCs,

LIF stimulation was still required to induce differentiation of

NPCs into GFAP-positive astrocytes.

Since an inverse correlation exists between the potential of

NPCs to express gfap and the methylation status of the

STAT3-binding site within the gfap promoter (Fan et al., 2005;

Takizawa et al., 2001), we wished to determine whether NICD

expression induces demethylation of this site. Four days after

virus infection, GFP-positive cells were sorted by fluores-

cence-activated cell sorting (FACS) and their genomic DNA

was subjected to bisulfite sequencing. In freshly prepared

E11.5 NPCs, the STAT3 binding site was highly methylated

(Figures 1H and 1I), as has been shown previously (Takizawa

et al., 2001). The STAT3 site became slightly and spontaneously

demethylated in control virus-infected cells during the 4-day

culture. In marked contrast, demethylation was dramatically

accelerated in NICD-expressing NPCs (Figures 1H and 1I).

Another astrocyte-specific gene (S100b) promoter was also

demethylated by expression of NICD in these cells (Figure S3).

These results confirm that the activation of Notch signaling is

sufficient to endow E11.5 NPCs with the ability to differentiate

into astrocytes by inducing demethylation of astrocytic gene

promoters.

Committed Neuronal Precursors and Young Neurons,
Pregenerated from NPCs, Express Notch Ligands
It was previously shown that Notch signaling is activated in cells

adjacent to MASH1/NEUROGENIN (NGN)-expressing cells in

the fetal ventricular zones (VZs) (Tokunaga et al., 2004), and

that NGNs induce expression of the Notch ligand, DELTA LIKE

1 (DLL1), in neuronal precursors (Castro et al., 2006). Thus, to

obtain direct evidence for an interaction between NGN-express-

ing cells and NPCs through Notch signaling in vivo, we examined

spatiotemporal patterning of Notch activation and expression of

its ligand in the mouse embryonic forebrain. We observed that

Notch signal-activated cells existed in the cortical VZ at E11.5
vier Inc.
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Figure 1. Pregenerated Neurons Potentiate NPCs to Differentiate into Astrocytes via Notch Signal Activation

(A and B) E11.5 NPCs labeled with GFP were cultured alone (A) or with embryonic cortical neurons (B) in the presence of LIF (80 ng/ml) for 4 days.

(C) Coculture as in (B) was performed in the presence of the g-secretase inhibitor, N-[N-(3,5-Difluorophenacetyl-L-Alanyl)]-S-phenylglycine t-butyl ester (DAPT).

After 4 days, the cells in (A)–(C) were stained with antibodies against GFP (green) and GFAP (red). Insets: H33258 nuclear staining of each field. (B0 and C0)

b III-tubulin (blue) and H33258 nuclear staining (gray) are superimposed on (B) and (C). Scale bar = 50 mm.

(D) GFAP-positive astrocytes in GFP-positive cells were quantified. Data represent means ± SD (n = 3). Statistical significance was evaluated by one-way ANOVA

(**p < 0.01).

(E and F) E11.5 NPCs were infected with retroviruses engineered to express GFP alone (E) or GFP together with NICD (F), cultured for 24 hr in the presence of

bFGF, and then stimulated with LIF (80 ng/ml) for a further 3 days to induce astrocyte differentiation. The cells in (E) and (F) were stained with antibodies against

GFP (green) and GFAP (red). Scale bar = 50 mm.

(G) GFAP-positive astrocytes in GFP control (pMY) and GFP-NICD-expressing cells were quantified. Data are shown as means ± SD. Statistical significance was

examined by the Student t test (**p < 0.01).

(H) E11.5 NPCs were infected with GFP control (pMY) and GFP-NICD-expressing retroviruses, and were cultured for 4 days with bFGF. After cell sorting based on

GFP fluorescence, genomic DNA was extracted from the cells, and the methylation status of the STAT3 binding site and other CpG sites around this sequence in

the gfap promoter was examined by bisulfite sequencing. ‘‘E11.5’’ indicates the result obtained for freshly prepared NPCs from forebrain at E11.5. Closed and

open circles indicate methylated and unmethylated CpG sites, respectively.

(I) Methylation frequency of the CpG site within the STAT3 binding sequence in the gfap promoter. Data are shown as means ± SD (n = 3). Statistical significance

was examined by the Student t test (*p < 0.05).
Developmental Cell 16, 245–255, February 17, 2009 ª2009 Elsevier Inc. 247
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Figure 2. NGN1-Postive Cells Expressing DLL1 and Notch Signal-

Activated Cells Are Mutually Exclusive

(A and B) E11.5 forebrain sections (B) from the region illustrated in (A) were

immunostained with antibodies against activated Notch (AcNotch, red) and

NGN1 (green). Arrows (AcNotch) and arrowheads (NGN1) indicate representa-

tives of each cell type. Notch activation and NGN1 expression were mutually

exclusive in these cells. LV, lateral ventricle. Scale bar = 20 mm.

(C) High-magnification view of boxed area in (B). Scale bar = 10 mm.

(D) E11.5 forebrain sections were stained with antibodies against NGN1

(NGN1, green) and DLL1 (DLL1, red). DLL1 was expressed in NGN1-positive

differentiating neurons (arrowheads in [D]–[F] mark representatives). Scale

bar = 20 mm.

(E) High-magnification view of boxed area in (D). Scale bar = 10 mm.

(F) Coexpression of DLL1 and NGN1 in these cells was confirmed by three-

dimensional digital imaging of a brain section immunostained as in (D). Scale

bar = 10 mm.

(G and H) E9.5 forebrain sections (12 mm) were stained with antibodies against

activated Notch (AcNotch, red) (G), or NGN1 (green) and DLL1 (red) (H). Scale

bar = 50 mm.

(I and J) H33258 staining of nuclei of cells in (G) and (H), respectively. No

Notch-activated or NGN1-positive cells were observed in VZ at E9.5. LV,

lateral ventricle.
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(Figures 2A–2C), but not yet at E9.5 (Figures 2G–2J). These

results suggest that the timing of Notch signal activation coin-

cides with the onset of demethylation of the gfap promoter

STAT3 binding site in vivo. Notably, most of the Notch-activated

NPCs appeared to be located adjacent to NGN1-expressing

cells, and Notch activation and NGN1 expression were mutually

exclusive in these cells (Figures 2A–2C). Since NGN1 is a proneu-

ral gene product, the expression of which is downregulated

when neurons become mature (Schuurmans et al., 2004), we

reasoned that cells expressing NGN1 at this stage are either

committed neuronal precursors or neurons at very early stages

of maturation (Kawaguchi et al., 2008). Furthermore, DLL1 and

another Notch ligand, JAGGED1 (JAG1) (Tokunaga et al.,

2004; Xue et al., 1999), were expressed in NGN1-expressing

cells (Figures 2D–2F; Figures S4A–S4C), consistent with

previous reports that Dll1 is expressed in migrating committed

neuronal daughters (intermediate progenitor and young neurons)

(Henrique et al., 1995; Castro et al., 2006; Campos et al., 2001;

Yoon et al., 2008; Kawaguchi et al., 2008). In agreement with

these observations, we found that a significant number of

NGN1-positive cells were also positive for T-box brain gene 2,

a marker of intermediate progenitor cells (Figures S5A–S5C).

On the other hand, Notch-activated NPCs appeared to be radial

glial cells, as judged by their morphology through immunostain-

ing with an anti-Nestin antibody (Figures S5D–S5L). Collectively,

these data indicate that committed neuronal precursors and

young neurons, pregenerated from NPCs, act as a trigger for

activation of Notch signaling in adjacent residual NPCs at midg-

estation.

It should be noted that, although Notch signaling is activated in

NPCs at E11.5 in vivo, these NPCs seemed not yet to have the

potential to differentiate into GFAP-positive astrocytes when

cultured in vitro (Figures 1A, 1C–1E, and 1G). This may be

because Notch signal activation had not been underway for

long enough to induce the demethylation of astrocytic gene

promoters before the NPCs were transferred to in vitro culture,

at which point the cell density became sparse compared with

that in the brain, leading to insufficient Notch signal activation

for the demethylation under these in vitro conditions.

Notch Activation Is Necessary for Astrocyte
Differentiation
We next asked whether the Notch downstream molecule, CSL, is

involved in Notch-induced demethylation of astrocytic gene

promoters in NPCs. To address this, we used CSL-deficient

mouse embryonic stem cells (mESCs) (Schroeder et al., 2003),

since CSL-deficient embryos die at around E9.5 before neuro-

genesis in the telencephalon. As has been previously shown,

mESC-derived NPCs recapitulate the sequential onset of

neuronal and glial differentiation observed in vivo in these

cultures (Shimozaki et al., 2005). As expected, at early times in

suspension culture, mESC NPCs primarily differentiated into

neurons under differentiation-culture conditions, even in the

presence of LIF for 4 days (Figure 3A). After 2 weeks in suspen-

sion, wild-type (WT) mESC NPCs differentiated into GFAP-posi-

tive cells in response to LIF (Figure 3A). In CSL-deficient mESC

NPCs, however, no astrocytic differentiation induced by LIF

was observed, even after 2 weeks in suspension (Figure 3A).

Consistent with these results, the hypermethylated status of
vier Inc.
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Figure 3. Requirement of CSL for Astrocytic

Differentiation and Demethylation of Gfap

Promoter of NPCs

(A) WT or CSL-deficient (CSL KO) mESCs were

cultured in serum-free medium without LIF (neural

spheroid, mESC-NPC culture) on poly-HEMA-

coated dishes to make suspended aggregates.

After 4 or 14 days, the aggregates were dissoci-

ated, seeded onto ornithine/fibronectin-coated

dishes (monolayer culture) with LIF (80 ng/ml),

and incubated for 4 days. Cells were stained with

antibodies against a neuronal marker, b-III Tubulin

(Tuj1, green), and GFAP (red). LIF-induced GFAP-

positive astrocyte differentiation was observed in

WT, but not in CSL-deficient mESCs, even after

14 days in suspension. Scale bar = 50 mm.

(B) Bisulfite sequencing results for the CpG site

within the STAT3 recognition sequence (red) and

other CpG sites around this sequence of the

gfap promoter in WT and CSL-deficient mESC

NPCs cultured as in (A). Each cell type was

collected after 4 days in monolayer culture to

extract genomic DNA. Closed and open circles

indicate methylated and unmethylated CpG sites,

respectively.

(C) Methylation frequency of the CpG site within

the STAT3 binding sequence in the gfap promoter.

Data are shown as means ± SD (n = 3). Statistical

significance was examined by the Student t test

(*p < 0.05).

(D) E14.5 forebrain sections of dimethyl sulfoxide

(DMSO)- (upper panels) or LY411575 (lower

panels)-treated embryonic mice were stained

with antibodies against activated Notch (AcNotch

in left panels, red). Hoechst staining indicates

nuclei (right panels, blue). The white dotted line

marks the boundary between the intermediate

zone and VZ/SVZ in telencephalon. Scale bar =

50 mm.

(E) Bisulfite sequencing results for the CpG site

within the STAT3 recognition sequence (red) and

other CpG sites around this sequence of the

gfap promoter in telencephalon of DMSO- or

LY411575-treated embryos.

(F) Methylation frequency of the CpG site within

the STAT3 binding sequence in the gfap promoter.

Data are shown as means ± SD (n = 3). Statistical

significance was examined by the Student t test

(*p < 0.05).

(G) E11.5 NPCs were infected with GFP- or GFP-

NICD-expressing virus and cultured for 4 days.

After sorting of virus-infected cells based on GFP fluorescence, the expression level of each Dnmt gene was examined by RT-PCR.

(H) ChIP assay with specific antibodies for respective DNMTs from GFP- and GFP-NICD-expressing retrovirus-infected NPCs, cultured as in Figure 1G. Disso-

ciation of DNMT1 from the gfap promoter was observed in response to NICD expression.
the gfap promoter STAT3 site was maintained in CSL-deficient

mESC NPCs, compared with WT mESC NPCs (Figures 3B and

3C). Recently, it has been reported that CSL-deficient ESCs

are defective in neural precursor generation (Lowell et al.,

2006). However, we observed that NPCs can arise from CSL-

deficient mESCs in our culture conditions, which are based on

methods described previously (Shimozaki et al., 2005), as

judged by Nestin or bIII-tubulin staining (Figure 3A and data

not shown).

To determine whether the activation of Notch signaling is

necessary for demethylation of the astrocyte-specific gene
Develop
promoter in vivo, we administered the g-secretase inhibitor,

LY411575, to pregnant mice from 10.5 to 13.5 days postcoitum

(dpc) and examined the activation of Notch signaling, by immu-

nohistochemistry and by monitoring the methylation status of the

gfap promoter in E14.5 embryonic telencephalon. As expected,

the number of Notch signal-activated cells in the VZ of

LY411575-treated embryos was significantly lower than that in

control mice (Figure 3D). Moreover, many bIII-tubulin-positive

neurons were observed in the VZ of LY411575-treated embryos

compared with control mice, suggesting that the disruption of

Notch signaling in NPCs leads to an overproduction of neurons
mental Cell 16, 245–255, February 17, 2009 ª2009 Elsevier Inc. 249
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(Figure S6A). Consistent with this reduction of Notch signal acti-

vation, gfap promoter methylation was much higher in the

treated embryos than in the controls (Figures 3E and 3F).

Furthermore, when we purified NPCs from E14.5 embryos of

mice expressing an enhanced GFP (EGFP)transgene under the

NPC marker Sox2 gene promoter (D’Amour and Gage, 2003)

by FACS sorting, we observed that the gfap promoter in cells

from LY411575-treated embryos was hypermethylated

compared with its status in control mice (Figures S6B and

S6C). We conclude from these experiments that the activation

of Notch signaling is prerequisite for demethylation of the astro-

cyte-specific gfap promoter both in vitro and in vivo.

Notch Activation Impairs the Association
of Maintenance Methyltransferase with the gfap

Promoter in NPCs
To establish which DNA methyltransferases (DNMTs) participate

in NICD-induced demethylation of the gfap promoter, we next

examined the expression levels of one maintenance (Dnmt1)

and two de novo (Dnmt3a and Dnmt3b) methyltransferase genes

by RT-PCR in control and NICD-expressing E11.5 NPCs.

Surprisingly, we found no significant differences in Dnmt expres-

sion between the two cell populations, although Dnmt3b expres-

sion decreased slightly in NICD-expressing NPCs (Figure 3G).

On the other hand, chromatin immunoprecipitation (ChIP) assays

with specific antibodies against the three DNMTs revealed that

DNMT1 and DNMT3a associated with the gfap promoter in the

control NPCs (Figure 3H). DNMT1 dissociated from the promoter

when Notch signaling was activated (Figure 3H), however,

implying that its dissociation may be in part responsible for the

Notch-induced demethylation. Moreover, NICD-induced deme-

thylation of the gfap promoter was not observed in the absence

of basic fibroblast growth factor (bFGF), which is essential for

proliferation of NPCs. The proliferation rates of control and

NICD-expressing virus-infected cells were similar, as judged

by bromodeoxyuridine uptake in the presence of bFGF, ruling

out the possibility that selective proliferation of NICD-expressing

NPCs occurred (data not shown). Notch-induced demethylation

of the astrocytic gene promoter is therefore apparently attribut-

able to passive demethylation: maintenance methylation of

genomic DNA, following DNA replication and cell division, fails

due to DNMT1 dissociation from the promoter.

NFI Acts as a Critical Molecule Downstream of the Notch
Signaling Pathway to Potentiate Astrocytic
Differentiation of Midgestational NPCs
A recognition sequence for NFI (Gronostajski, 2000), which is

known to play an important role in migration and differentiation

of astrocyte precursors (Deneen et al., 2006), has been identified

in the gfap promoter, and is conserved among human, rat, and

mouse (Krohn et al., 1999). We thus next examined whether

Nfi-family gene expression is upregulated by Notch activation,

and found that the expression of Nfia indeed increased

(Figure 4A). Moreover, its expression was reduced markedly in

NPCs from CSL-deficient mESCs compared with that in NPCs

from WT mESCs (Figure 4B). We also identified a consensus

CSL-binding sequence �2 kb upstream of the Nfia transcription

start site, and binding of CSL to this region in NPCs was

confirmed (Figure 4C). Furthermore, Notch activation led to

binding of NFI to the gfap promoter (Figure 4D). To determine

whether NFIA expression depends on the activation of Notch

signaling, we examined NFIA expression by immunohistochem-

istry in the telencephalon of LY411575-treated embryos. The

area of the VZ occupied by NFIA-positive cells was significantly

reduced in LY411575-treated embryos (Figure S7), supporting

the scenario that NFIA expression is controlled by the activation

of Notch signaling in NPCs.

These results implied that NFI is involved in the Notch-induced

potentiation of NPCs to differentiate precociously into astro-

cytes. To test this notion, E11.5 NPCs were infected with

Figure 4. NFI Is a Downstream Molecule

of Notch Signaling in NPCs

(A) E11.5 NPCs were infected with GFP- (pMY,

closed bars) or GFP-NICD-expressing virus

(NICD, red bars) and cultured for 4 days. After sort-

ing of virus-infected cells based on GFP fluores-

cence, the expression level of Nfia and Nfib

mRNAs was examined by real-time RT-PCR.

Data are shown as means ± SD (n = 3). Statistical

significance was examined by the Student t test

(*p < 0.05).

(B) Expression level of Nfia mRNA in NPCs derived

from ES cells cultured as in (A) (14 days) was

examined by real-time RT-PCR. Data are shown

as means ± SD (N = 3). Statistical significance

was examined by the Student t test (**p < 0.01).

(C) ChIP assay of E11.5 NPCs with an antibody

against CSL. Binding of CSL to a region containing

a CSL cognate sequence located�2 kb upstream

of the Nfia transcriptional start site (arrow at right)

was detected in E11.5 NPCs.

(D) ChIP assay with an anti-NFI antibody from

GFP- and GFP-NICD-expressing retrovirus-

infected NPCs cultured as in Figure 1G. Binding

of NFI to the gfap promoter was observed in

response to NICD expression.
250 Developmental Cell 16, 245–255, February 17, 2009 ª2009 Elsevier Inc.
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Figure 5. NFI Functions as a Critical Down-

stream Molecule Mediating Notch Signaling

to Potentiate Astrocytic Differentiation of

Midgestational NPCs

(A and B) E11.5 NPCs were infected with retrovi-

ruses engineered to express GFP alone (A) or

GFP together with NFIA (B), cultured for 24 hr in

the presence of bFGF, and then stimulated with

LIF (80 ng/ml) for a further 3 days to induce astro-

cytic differentiation. The cells were stained with

antibodies against GFP (green) and GFAP (red).

Scale bar = 50 mm.

(C) GFAP-positive astrocytes in GFP control (pMY)

and GFP-NFIA-expressing (NFIA) cells were quan-

tified. Data are shown as means ± SD. Statistical

significance was examined by the Student’s t

test (**p < 0.01).

(D) E11.5 NPCs were infected with GFP control

(pMY) and GFP-NFIA-expressing (NFIA) retrovi-

ruses, and cultured for 4 days with bFGF. After

cell sorting based on GFP fluorescence, genomic

DNA was extracted, and the methylation status

of the STAT3 binding site in the gfap promoter

was examined by bisulfite sequencing. Closed

and open circles indicate methylated and unme-

thylated CpG sites, respectively.

(E) Methylation frequency of the CpG site within

the STAT3 binding sequence in the gfap promoter.

Data are shown as means ± SD (N = 3). Statistical

significance was examined by the Student t test

(*p < 0.05).

(F) ChIP assay with a specific antibody for DNMT1

from GFP- and GFP-NFIA-expressing retrovirus-

infected NPCs, cultured as in Figure 1G.

(G) E11.5 NPCs were infected with control and

DN-NFIA-expressing lentiviruses, and cultured

for 4 days with (JAG1-Fc) or without (CTRL)

JAG1-Fc in the presence of bFGF. A ChIP assay

was performed with a specific antibody for

DNMT1 from control (Vehicle) and DN-NFIA-

expressing (DN-NFIA) lentivirus-infected NPCs,

cultured as in Figure 5F. For quantification, real-

time PCR results using specific primers for the gfap promoter were indicated as the relative enrichment of DNMT1 compared with NPCs cultured without

JAG1-Fc. Data are shown as means ± SD (N = 3). Statistical significance was evaluated by the Student t test (**p < 0.01).
retroviruses engineered to express NFIA, and cultured in the

presence of LIF. A dramatic induction of GFAP-positive astro-

cytic differentiation ensued (Figures 5A–5C). As was the case

for NICD, GFAP was not expressed in control or NFIA-express-

ing NPCs in the absence of LIF (data not shown). Furthermore,

gfap promoter demethylation and DNMT1 dissociation from

the promoter were both accelerated in NFIA-expressing NPCs

(Figures 5D–5F), as they were in NICD-expressing NPCs. These

results prompted us to hypothesize that NFIA is necessary for

the Notch-induced dissociation of DNMT1 from the gfap

promoter. To answer this question, control and dominant-nega-

tive NFIA (DN-NFIA)-expressing lentivirus-infected E11.5 NPCs

were cultured with JAG1-Fc, a soluble form of the Notch ligand

JAG1, for 4 days. We then performed ChIP assays to examine

the association of DNMT1 with the gfap promoter. In control

NPCs, JAG1-Fc treatment led to the dissociation of DNMT1

from the gfap promoter, as in the case of NICD expression

(Figure 5G). In contrast, we found that dissociation was virtually

inhibited in NPCs infected with DN-NFIA-expressing lentiviruses

(Figure 5G). Thus, these results indicate that NFIA is prerequisite
Develop
for the Notch-induced dissociation of DNMT1 from the gfap

promoter in NPCs. It is noteworthy that a consensus NFI binding

site is also present in the promoters of other astrocytic genes,

including S100b, aquaporin4, and clusterin (Saadoun et al.,

2005; Bachoo et al., 2004) (Figure S8A), and the anticipated

binding of NFI to these promoter regions was indeed observed

in NICD-expressing NPCs (Figure S8B). Furthermore, demethy-

lation of particular CpG sites within the three promoters was

induced in NFIA-expressing NPCs (Figures S9A–S9C). These

findings suggest that NFIA acts as a critical molecule down-

stream of the Notch signaling pathway to potentiate astrocytic

differentiation of midgestational NPCs.

NFIA Is Necessary and Sufficient for NPCs to Acquire
Astrocytic Potential In Vivo
Finally, we asked whether NFIA indeed plays a critical role in the

acquisition of astrocytic potential by NPCs in vivo. To this end,

we first stimulated E14.5 NPCs from WT and NFIA-deficient

mice with LIF to induce astrocyte differentiation. Since E14.5

NPCs have normally already gained the potential to become
mental Cell 16, 245–255, February 17, 2009 ª2009 Elsevier Inc. 251
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GFAP-positive astrocytes in response to LIF, we observed astro-

cyte differentiation in the WT NPC culture. In marked contrast,

almost no GFAP-positive cells were observed in NFIA-deficient

NPCs. Moreover, the gfap promoter was significantly more

Figure 6. NFIA Is Necessary and Sufficient for the Expression of As-

trocytic Potential by NPCs In Vivo

(A and B) NPCs prepared from E14.5 WT (A) or NFIA-deficient (NFIA-KO [B])

mouse telencephalons cultured in the presence of LIF (80 ng/ml) for 4 days

to induce astrocytic differentiation. The cells were stained with antibodies

against bIII-Tubulin (green) and GFAP (red), and with H33258 to identify nuclei

(blue). Scale bar = 50 mm.

(C) GFAP-positive astrocytes in total cells were quantified. Data are shown as

means ± SD (n = 3). Statistical significance was evaluated by the Student t test

(**p < 0.01).

(D) Bisulfite sequencing results for the CpG site within the STAT3 recognition

sequence (red) and other CpG sites around this sequence of the gfap promoter

in telencephalon of WT or NFIA-deficient (NFIA-KO) mouse embryos. Closed

and open circles indicate methylated and unmethylated CpG sites, respec-

tively.

(E) Methylation frequency of the CpG site within the STAT3 binding sequence

in the gfap promoter. Data are shown as means ± SD (n = 3). Statistical signif-

icance was examined by the Student t test (*p < 0.05).

(F–H) E14.5 forebrain sections of mice expressing GFP (H) and NFIA-GFP

(F and G) from plasmids introduced by exo utero electroporation at E11.5

were stained with antibodies against GFP (green) and GFAP (red). Scale

bars indicate 50 mm (F) or 20 mm (G and H). (G) High-magnification view of

boxed area in (F). Hoechst staining indicates nuclei (blue).
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highly methylated in E14.5 NFIA-deficient telencephalons than

it was in those of WT litters (Figures 6D and 6E), even though

Notch signal was clearly activated in the NFIA-deficient brain

(Figure S10). These results indicate that NFIA is indispensable

for the Notch signal-induced demethylation of astrocytic gene

promoters during brain development.

Using exo utero electroporation, we next examined whether

NFIA expression is sufficient for the induction of astrocyte differ-

entiation in the telencephalon. Misexpression of NFIA in E11.5

telencephalon led to precocious generation of GFAP-positive

cells at E14.5 (Figures 6F and 6G), indicating that NFIA is suffi-

cient for the production of astrocytes from NPCs in vivo. We

suggest that NFIA plays a decisive role in the Notch-induced

acquisition of astrocytic potential by NPCs.

DISCUSSION

We have shown in the present study that committed neuronal

precursors and young neurons derived from NPCs confer astro-

cytic differentiation potential on remaining NPCs through Notch

signal-induced demethylation of astrocyte-specific gene

promoters (Figure 7). The demethylation process is mediated

by Notch-induced NFIA, the binding of which to astrocytic

gene promoters leads to dissociation of DNMT1 from the

promoters. This does not imply that the activation of Notch

signaling alone is sufficient for NPCs to differentiate into astro-

cytes. It potentiates the process, but signals from astrocyte-

inducing cytokines are still required to induce differentiation.

All members of the IL-6 cytokine family, to which LIF and CT-1

belong, induce GFAP-positive astrocytic differentiation of

NPCs by activating STAT1 and/or STAT3 (He et al., 2005;

Barnabe-Heider et al., 2005). However, since STAT1 and

STAT3 are not capable of binding to methylated cognate

sequences (Fan et al., 2005; Takizawa et al., 2001), astrocyte-

specific gene promoters must first become demethylated to

enable IL-6 cytokines to induce differentiation.

Here, we have shown that committed neuronal precursors and

young neurons pregenerated from NPCs express Notch ligands,

and provide a feedback signal to Notch-expressing residual

NPCs, to acquire astrocyte differentiation potential. In this

context, Yoon et al. (2008) have shown recently that the expres-

sion of Dll1 and its critical regulator, Mindbomb-1 (Mib-1), is

restricted to migrating premature neurons and newborn

neurons, and that Mib-1-expressing neuronal daughters trans-

mit the Notch signal to neighboring NPCs. Moreover, Mib-1

conditional mutant mice display a complete abrogation of Notch

activation, which leads to impairment of NPC maintenance.

Together with our results, these data suggest that Notch

ligand-expressing, neuronally committed cells are an important

cellular source of the Notch signal in development. Such a mech-

anism would provide an unanticipated level of crosstalk between

these different developing cellular populations, and ensure that

astrocytes begin to appear only after sufficient numbers of

neurons have been generated.

Although Notch signaling clearly enhances astrocyte differen-

tiation, the molecular mechanisms by which it activates glial

gene expression have been far from clear. Our results suggest

that NFI is one of the downstream target genes of the Notch

signaling pathway, and plays a critical role in the Notch-induced
vier Inc.
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Figure 7. Schematic Representation of Notch Activa-

tion-Induced Potentiation of NPCs to Differentiate

into Astrocytes and Sequential Changes in the Differ-

entiation Potential of NPCs during Brain Development

At midgestation, an NPC divides asymmetrically and gener-

ates a committed neuronal precursor and another NPC (radial

glial cells). The committed neuronal precursors and young

neurons express Notch ligands and activate Notch signaling

in neighboring NPCs, conferring astrocytic differentiation

potential on NPCs through NFI expression, which leads to

demethylation of astrocyte-specific gene promoters. When

the NPCs receive a STAT-activating signal, they differentiate

into astrocytes at late gestation. The NPCs eventually become

multipotent adult-type NPCs.
acquisition of astrocyte differentiation potential by NPCs.

Binding sites for NFI have indeed been identified, not only in

the gfap promoter, but also in other astrocyte-specific gene

promoters (Bachoo et al., 2004; Bisgrove et al., 2000; Gopalan

et al., 2006; Saadoun et al., 2005), and Nfia�/� mice show

reduced expression of these genes (Wong et al., 2007). It will

therefore be intriguing to establish the methylation status of

these gene promoters in Nfia mutant mice.

Since STAT1 and STAT3 are incapable of binding to methyl-

ated cognate sequences (Fan et al., 2005; Takizawa et al.,

2001), the gfap promoter should already be demethylated in

such cells as injury-induced reactive astrocytes, which are

competent to express GFAP in response to inflammatory cyto-

kines, including the IL-6 family. The existence of different

morphological subtypes of astrocytes, such as fibrous and

protoplasmic, has long been recognized, and protoplasmic

astrocytes are generally GFAP negative (Vaughn and Pease,

1967; Mori and Leblond, 1969; Raff et al., 1984; Raff, 1989).

Therefore, it remains unclear whether all astrocyte subtypes

derived from NPCs in various brain regions require the Notch-

induced demethylation of the gfap promoter reported here to

become astrocytes.

Although DNA methyltransferases have been well studied

biochemically, the molecular mechanism underlying active

DNA demethylation is poorly understood, and the existence of

DNA-demethylating enzymes is even debatable. A major

outstanding question about the stepwise development of

NPCs is how DNA methylation status is modulated to endow

these precursor populations with glial competency. In this study,

we have shown that demethylation of the gfap promoter, and

dissociation of DNMT1 from the promoter, is caused by the

expression of NICD or NFIA in NPCs in a sequential manner.

These results suggest that the binding of NFIA to astrocytic

gene promoters in Notch-activated NPCs protects the

promoters from DNMT1, and hence that NFI plays a critical regu-

latory role in the epigenetic switch toward astrocytogenesis. We

also suggest that demethylation of the gfap promoter is attribut-

able to passive, replication-dependent demethylation. It has

been reported previously that disruption of Dnmt1 in NPCs leads

to demethylation of astrocytic gene promoters and precocious
Develop
astrogliogenesis, which suggests that Dnmt1 is required for the

maintenance methylation of astroglial marker genes in NPCs

during the early developmental stage (Fan et al., 2005). Further-

more, virus-derived episomal vectors are demethylated at sites

where transcription factors bind with high affinity (Hsieh, 1999;

Lin et al., 2000), and replication-dependent demethylation of

specific sites in Xenopus embryos is strongly stimulated by the

transactivation domain of the triggering transcription factor (Mat-

suo et al., 1998). Thus, it is reasonable to hypothesize that

passive demethylation is attributable to transcription factors

that mask their cognate sites from DNMT1 action, although

these and our findings do not yet permit a precise definition of

the mechanism.

In summary, our present study offers a plausible explanation

for the transitions that occur during the stepwise process of

NPC fate specification, and we have suggested how committed

neuronal precursors and young neurons might ‘‘unlock’’ nearby

NPCs and allow them to differentiate into the next lineage: astro-

cytes. The activation of Notch signaling in midgestational NPCs

induces demethylation of astrocyte-specific genes. Notch

ligands are expressed in committed neuronal precursors and

young neurons, and Notch-activated NPCs undergo promoter

demethylation and acquire the ability to become astrocytes in

response to astrocyte-inducing cytokines.

EXPERIMENTAL PROCEDURES

Cell Culture

E11.5 NPCs and embryonic neurons were cultured as described previously

(Takizawa et al., 2001). Briefly, E14.5 cortical cells were cultured with bFGF

and cytosine arabinoside for 4 days in the eight well chamber slides (4 3 104

cells per well). E11.5 NPCs labeled with EGFP (4 3 104 cells per well) were

cultured with the embryonic neurons prepared as above, or alone (8 3 104 cells

per well) in the chamber slides. Culturing of WT and CSL-deficient mESCs and

induction of mESC NPCs were conducted as described previously (Shimozaki

et al., 2005). To activate the Notch signaling pathway in Figure 5G, we used

JAG1-Fc (500 ng/ml; R&D Systems).

Plasmids

To express NICD (Takizawa et al., 2003) and NFIA (Deneen et al., 2006), we

used the retroviral vector pMY-IRES-GFP (Kitamura et al., 2003), which

contains an IRES-GFP cassette that allows identification of transduced cells.
mental Cell 16, 245–255, February 17, 2009 ª2009 Elsevier Inc. 253
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As DN-NFIA, we used the DNA binding domain of NFIA (NFIA-DBD) cloned by

PCR from mNFIA cDNA. The NFIA-DBD was cloned into the lentiviral vector

(Lois et al., 2002).

Immunostaining

All antibodies for immunostaining in this study and the procedures are

descried in Supplemental Experimental Procedures.

LY411575 g-Secretase Inhibitor Treatment

Pregnant mice were orally dosed with either 1 mg/kg LY411575 (Hyde et al.,

2006) or vehicle (dimethyl sulfoxide in sunflower oil) once a day from 10.5 to

13.5 dpc. Twenty-four hours after the last injection at 13.5 dpc, the embryos

at E14.5 were obtained for subsequent immunohistochemical analyses.

Bisulfite Sequencing

Cells expressing GFP alone, or GFP together with NICD or NFIA, were isolated

by FACSVantage (BD Biosciences), and their genomic DNAs were then

extracted. Bisulfite genomic sequencing was performed essentially, as previ-

ously described (Takizawa et al., 2001). Specific DNA fragments were ampli-

fied by PCR using primers described previously (Takizawa et al., 2001). The

PCR products were cloned into pT7Blue vector (Novagen), and 10–16 clones

randomly picked from each of three independent PCR amplifications were

sequenced.

ChIP Assay

ChIP assays were performed as described previously (Takizawa et al., 2001).

Coimmunoprecipitated DNA was used as a template for PCR with primers, the

sequences of which are available upon request. Antibodies used for the ChIP

assay were mouse anti-CSL (Institute of Immunology) and rabbit anti-NFI

(Santa Cruz Biotechonoly), -DNMT1, -DNMT3a, and -DNMT3b (Abcam).

In Vivo Electroporation

Embryonic exo utero surgery and electroporation were performed as

described previously (Muneoka et al., 1986; Saito and Nakatsuji, 2001). DNA

solutions (pMYs or pMYs-Nfia, 2 mg/ml in PBS containing FAST Green)

were injected into the lateral ventricle of E11.5 telencephalons. Electronic

pulses of 28 V (50 ms) were charged six times at 950-ms intervals using

a square-pulse electroporator (CUY21EDIT; Nepa Gene Company).

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures and ten

figures and can be found with this article online at http://www.cell.com/

developmental-cell/supplemental/S1534-5807(09)00002-1/.
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