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Background: UV-B-exposed keratinocytes secrete various paracrine factors. Among these factors, basic
fibroblast growth factor (bFGF) stimulates the proliferation of melanocytes. Ginsenosides, the major
active compounds of ginseng, are known to have broad pharmacological effects. In this study, we
examined the antiproliferative effects of ginsenosides on bFGF-induced melanocyte proliferation.
Methods: We investigated the inhibitory effects of Korean Red Ginseng and ginsenosides from Panax
ginseng on bFGF-induced proliferation of melan-a melanocytes.
Results: When melan-a melanocytes were treated with UV-B-irradiated SP-1 keratinocytes media, cell
proliferation increased. This increased proliferation of melanocytes decreased with a neutralizing anti-
bFGF antibody. To elucidate the effects of ginsenosides on melanocyte proliferation induced by bFGF,
we tested 15 types of ginsenoside compounds. Among them, Rh3, Rh1, F1, and CK demonstrated anti-
proliferative effects on bFGF-induced melanocyte proliferation after 72 h of treatment. bFGF stimulated
cell proliferation via extracellular signal-regulated kinase (ERK) activation in various cell types. Western
blot analysis found bFGF-induced ERK phosphorylation in melan-a. Treatment with Rh3 inhibited bFGF-
induced maximum ERK phosphorylation and F1-delayed maximum ERK phosphorylation, whereas Rh1
and CK had no detectable effects. In addition, cotreatment with Rh3 and F1 significantly suppressed
bFGF-induced ERK phosphorylation. Western blot analysis found that bFGF increased microphthalmia-
associated transcription factor (MITF) protein levels in melan-a. Treatment with Rh3 or F1 had no
detectable effects, whereas cotreatment with Rh3 and F1 inhibited bFGF-induced MITF expression levels
more strongly than a single treatment.
Conclusion: In summary, we found that ginsenosides Rh3 and F1 have a synergistic antiproliferative
effect on bFGF-induced melan-a melanocyte proliferation via the inhibition of ERK-mediated upregu-
lation of MITF.
Copyright � 2016, The Korean Society of Ginseng, Published by Elsevier. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Skin pigmentation is primarily the result of the production of
the melanin pigment by melanocytes [1]. Melanosomes, melanin
containing granules, are transferred from melanocytes into kera-
tinocytes, and thus pigmentation is complete. Therefore, pigmen-
tation is a combination of melanocytes and keratinocytes in the
basal layer of the epidermis [2,3]. Hyperpigmentary disorders such
as melasma [4], solar lentigo [5], and freckles [6] are characterized
by the overproduction of melanin.

Numerous studies have reported that UV light is a well-known
extrinsic factor for hyperpigmentation [7,8]. UV-B-exposed
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keratinocytes also have a potent ability to secrete certain growth
factors, cytokines, or chemical mediators, such as nitric oxide [9],
interleukin-1 [10], interleukin-6 [11], tumor necrosis factor [12],
granulocyte macrophage colony-stimulating factor (GM-CSF) [13],
endothelin-1 [14], a-melanocyte-stimulating hormone [15], stem
cell factor [16], and basic fibroblast growth factor (bFGF) [17].
Previous studies verified that some paracrine factors produced by
human keratinocytes indirectly stimulate the proliferation of hu-
man melanocytes and play a key role in controlling melanocyte
function [18]. Among these factors, bFGF, which plays an important
role in cellular processes such as proliferation and migration,
showed the highest rate of increase in proliferation of normal
Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea.
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human epidermal melanocytes [19e22]. However, whether bFGF
derived from UV-B-induced mouse keratinocytes could stimulate
proliferation of mouse melanocytes or how bFGF might act as a
regulator of melanocyte proliferation remains unclear.

Panax ginseng Meyer, which is widely used in Chinese medicine
and throughout the world, has long been known for its medical
properties [23]. In Korea, cultivation of P. ginseng began around 11
BC with the transplantation of wild ginseng. Korean Red Ginseng
(KRG), a component of Korean herbal medicine, is harvested after
4e6 yr of cultivation, then steamed and dried [24]. The major active
components of ginseng are ginsenosides, which contain an agly-
cone with dammarane sapogenins [25]. More than 30 types of
ginsenosides are divided into two major groups based on their
chemical structure, panaxadiol and panaxatriol saponin groups
[26].

KRG has been shown to have broad pharmacological effects,
such as anticancer [27], antitumor [28], and antidiabetic [29], and
has demonstrated clinical efficacy for severe climacteric syndromes
[30]. Previous studies also verified that ginsenosides had a number
of pharmacological actions in cardiovascular disease [31], neuro-
logical disorders [32], and ovarian cancer [33]. Previous studies
using KRG on skin have been limited to atopic dermatitis [34],
wound healing [35], antiallergic, and anti-inflammatory [36] ef-
fects. However, the effects of KRG, particularly of ginsenosides on
UV-induced skin pigmentation, have not yet been investigated.

In this study, we examined the effect of ginsenosides on mela-
nocyte proliferation induced by bFGF.

2. Materials and methods

2.1. Compound and reagents

Total extract and saponin of KRG were provided by the Korea
Ginseng Corporation (Daejeon, Korea). Ginsenoside compounds
were purchased from Chengdu Biopurify Phytochemicals, Ltd
Fig. 1. Effects of anti-bFGF on melanocyte proliferation induced by UVB-irradiated SP-1 ker
Conditioned media were collected after 24 h of incubation from UVB-irradiated SP-1 keratino
for 24 h at 4�C. Melan-a melanocytes were treated with the conditioned media for 3 days.
control and the data were analyzed using Student’s unpaired t-tests. **p < 0.01, ***p < 0.00
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(Chengdu, Sichuan, China). Newborn calf serum (NBCS) was pur-
chased from Gibco Invitrogen (Carlsbad, CA, USA). Mouse bFGF was
purchased from Cell Signaling Technology (Beverly, MA, USA).
2.2. Cell culture

Murine melan-a melanocytes were kindly donated by Professor
Dorothy C. Bennett (St. George’s Hospital, London, UK). Melan-a
cells were cultured in Ham’s F-10 medium supplemented with
10 mg/mL insulin, 0.5 mg/mL bovine serum albumin, 1mM etha-
nolamine, 1mM phosphoethanolamine, 10nM sodium selenite,
100 mg/mL transferrin, 0.5mM dibutyryl-cyclic adenosine mono-
phosphate, and 1% penicillinestreptomycin. Murine SP-1 kerati-
nocytes were derived from SENCAR mice and were generously
provided by Dr Stuart H. Yuspa (Laboratory of Cellular Carcino-
genesis and Tumor Promotion, National Cancer Institute, National
Institutes of Health, Bethesda, MD, USA). SP-1 keratinocytes were
grown in Eagle’s minimum essential medium (EMEM) containing
0.05mM Ca2þ, 8% Chelex-treated heat-inactivated NBCS, and 1%
penicillinestreptomycin.
2.3. Cell viability assay

Melan-a melanocytes were seeded onto 96-well plates
(2 � 104 cells/well). After 24 h at 37�C, the media were replaced
with Ham’s F-10 media containing ginsenosides and bFGF diluted
to the appropriate concentrations. Control cells were treated with
dimethyl sulfoxide (DMSO) or phosphate-buffered saline (PBS) at a
final concentration of 0.1%. After 24 h, the media containing the
compounds or DMSOwere replaced with media containing 10% EZ-
CyTox (Daeil Lab Service, Seoul, Korea). The cells were then incu-
bated at 37�C for 30 min and the absorbance was measured using a
microplate reader (Tecan, Mannedorf, Switzerland) at a wavelength
of 450 nm. All assays were performed in triplicate. The cytotoxic
atinocyte media. SP-1 keratinocytes were irradiated with UVB at a dose of 30 mJ/cm2.
cytes. IgG or Anti-bFGF was added to the conditioned media and the media were stored
The experiment was repeated three times. Results are presented as percentages of the
1.
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Fig. 2. Effects of bFGF on melan-a melanocyte proliferation. Melan-a melanocytes were cultured in 48-well plates (1x104 cells/well). After incubation with indicated concentrations
of bFGF for 5 days, cell proliferation was measured using the cell proliferation assay described in the Materials and Methods section. Results are presented as percentages of the
control and the data were analyzed using Student’s unpaired t-tests. **p < 0.01, ***p < 0.001.

J.E. Lee et al / Melanocyte proliferation and ginsenoside 3
effect of each treatment was expressed as a percentage of cell
viability relative to the untreated control cells.

2.4. Neutralization assay

SP-1 keratinocytes were seeded in 60-mm culture dishes
(1.5 � 106 cells/dish). After 24 h, the cells were washed with PBS
and replenished with serum-free EMEM. After starvation for 24 h,
SP-1 keratinocytes were washed with PBS and exposed to a radi-
ation dose of 30 mJ/cm2 of UV-B light (290e320 nm) by a UV
Fig. 3. Effects of KRGE on bFGF-induced melanocyte proliferation. Melan-a melanocytes we
total extract, saponin and oil of Korean Red ginseng (KRG) (10, 20 and 50 ppm) for 5 days, cell
and Methods section. Results are presented as percentages of the control and the data wer
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irradiation system. After irradiation, the cells were replaced with
2% NBCS EMEM containing immunoglobulin-G (IgG) or anti-bFGF
(Millipore, Temecula, CA, USA). After 24 h, melan-a melanocytes
were seeded onto 24-well plates (1 � 104 cells/well) and treated
with the conditioned media for 72 h.

2.5. Cell proliferation assay

Melan-a melanocytes were seeded in 48-well plates (1 � 104

cell/well). After 24 h, the cells were washed with PBS and
re cultured in 48-well plates (1x104 cells/well). After incubation with bFGF (10 ng/mL),
proliferation was measured using the cell proliferation assay described in the Materials
e analyzed using Student’s unpaired t-tests. *p < 0.05, **p < 0.01.
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replenished with Ham’s F10 media containing bFGF (10 ng/mL).
After 72 h, the media containing the compounds or DMSO were
replaced with media containing 10% EZ-CyTox (Daeil Lab Service).
The cells were then incubated at 37�C for 2 h, and the absorbance
wasmeasured using amicroplate reader at awavelength of 450 nm.
All assays were performed in triplicate. The proliferation effect of
each treatment was expressed as a percentage of cell viability
relative to the untreated control cells.

2.6. Western blot analysis

Melan-a melanocytes were seeded in 60-mm dishes
(1 � 106 cells/dish). Cells were pretreated with saponin of KRG
(20 ppm) or ginsenoside (10nM) and then treatedwith bFGF (10 ng/
mL) for the indicated times. Following washing with PBS, cells were
lysed in an extraction buffer (0.1M Tris-HCl, pH 7.2, 1% TritonX-100,
200mM NaCl, and protease inhibitor cocktail) at 4�C for 30 min.
A

B

E

Fig. 4. Effects of ginsenosides on bFGF-induced melanocyte proliferation. Melan-a melano
(10 ng/mL) and ginsenosides (A) F2, Rc, Rd, (B) Re, Ro, CK, (C) Rg1, Rg2, Rf (D) Rb1, Rb2, Rb
proliferation assay described in the Materials and Methods section. Results are presented as
*p < 0.1, **p < 0.01.
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Each cell lysate was loaded onto NuPAGE 10% Bis-Tris sodium
dodecyl sulfate/polyacrylamide gels and run with a 3-(N-morpho-
lino)propanesulfonic acid sodium dodecyl sulfate running buffer
(Invitrogen, Carlsbad, CA, USA) for electrophoresis and then
transferred to a polyvinylidene fluoride transfer membrane (PALL
Corporation, Port Washington, NY, USA). Membranes were blocked
with 5% skim milk or 5% bovine serum albumin in Tris-buffered
saline containing 0.1% Tween-20, 100mM NACl, and 10mM Tris-
HCl (pH 7.5) for 1 h at room temperature, before overnight incu-
bation with a primary antibody using mouse monoclonal anti-b-
actin antibody (Sigma Aldrich, St. Louis, MO, USA), rabbit mono-
clonal anti-p42/44 mitogen-activated protein kinase [MAPK;
extracellular signal-regulated kinase (ERK)1/2] antibody (Cell
Signaling, Beverly, MA, USA), rabbit monoclonal anti-phospho-42/
44 MAPK (ERK1/2) (Cell Signaling), and antimicrophthalmia-
associated transcription factor (MITF; C5; NeoMarkers, Fremont,
CA, USA) at 4�C. After incubation, membranes were rinsed three
C

D

cytes were cultured in 48-well plates (1x104 cells/well). After incubation with bFGF
3, (E) F1, Rh1, Rh3 (1, 10 mM) for 5 days, cell proliferation was measured using the cell
percentages of the control and the data were analyzed using Student’s unpaired t-tests.
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times with Tris-buffered saline and were incubated with donkey
anti-rabbit IgG antibody (Bethyl Laboratories, Montgomery, TX,
USA) and goat anti-mouse IgG antibody (Bio-Rad, Hercules, CA,
USA) for 1 h at room temperature. After washing, bands were
detected with the WEST-ZOL plus Western Blot Detection system
(INtRON Biotechnology, Kyungki-Do, Korea) and visualized with
ChemiDoc XRS (Bio-Rad).
3. Results

3.1. Effects of anti-bFGF on melanocyte proliferation induced by UV-
B-irradiated SP-1 keratinocyte media

We investigated whether bFGF from UV-B-irradiated SP-1 ker-
atinocytes stimulated melan-a melanocyte proliferation. UV-B-
irradiated SP-1 keratinocytes conditioned media increased melan-
a melanocytes proliferation by w60% compared with the nonirra-
diated control. Neutralizing anti-bFGF treatment decreased cell
proliferation by approximately 30% at 10 ng/mL. Therefore, we
identified bFGF-specific antibodies partially blocked bFGF fromUV-
B-irradiated SP-1 keratinocytes (Fig. 1).
3.2. Effects of bFGF on melan-a melanocyte proliferation

To investigate the role of bFGF on melan-a melanocytes prolif-
eration, bFGF was treated on melan-a cells (0.001e10 ng/mL)
directly. After 24 h, bFGF had no effect on cellular proliferation
(data not shown). However, after 72-h culture, we observed that
bFGF treatment increased melan-a melanocyte proliferation by
approximately 30% at 10 ng/mL compared with the nontreated
control (Fig. 2).
Fig. 5. Effects of SKRG on bFGF-induced ERK activation in melanocytes. Melan-a melanocyt
with SKRG (20 ppm) for 24 h. Cells were treated with bFGF (10 ng/mL) at the indicated times
was quantified and normalized relative to ERK using ImageJ (1.47) software (NIH, USA).
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3.3. Effects of KRG extract on bFGF-induced melanocyte
proliferation

We investigated the effects of KRG on bFGF-inducedmelanocyte
proliferation. Melan-a melanocytes were seeded in 48-well plates,
w1�104 cells/well. After 24 h, the cells were replenished by Ham’s
F-10 media containing bFGF and KRG extract. After 72 h, cell pro-
liferation was detected using an EZ-cytox assay.

Saponin and total extract of KRG inhibited bFGF-induced cell
proliferation by w20% compared with bFGF-treated cells (Fig. 3).

3.4. Effects of ginsenosides on bFGF-induced melanocyte
proliferation

To investigate the effects of ginsenosides on bFGF-induced
melanocyte proliferation, melan-a melanocytes were seeded onto
48-well plates, w1 �104 cells/well, and bFGF and the ginsenosides
were treated with melan-a melanocytes. No cytotoxicity was
observed after 24 h of ginsenosides treatment (data not shown).
After 72-h culture, treatment of ginsenosides Rh3, Rh1, F1, and CK
reduced proliferation of bFGF-induced melan-a melanocytes
compared with the DMSO-treated control (Fig. 4).

3.5. Effects of saponin of KRG on bFGF-induced ERK
phosphorylation in melan-a melanocytes

To investigate the biological mechanisms involved in the pro-
liferation effect of saponin of KRG (SKRG), we investigated the ERK
signal. bFGF binds to the FGF receptor, and this leads to the acti-
vation of the ERK pathway in melanocytes and melanoma [37]. To
determine the effects of SKRG on bFGF-induced ERK-phosphory-
lation, melan-a melanocytes were pretreated with SKRG at a dose
es were cultured in 60-mm dishes (1x106 cells/dish). After 24 h, cells were pretreated
for western blot analysis of phospho-ERK (p-ERK) and total-ERK (t-ERK). Band intensity

insenosides on basic fibroblast growth factor-induced melanocyte
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Fig. 6. Effects of ginsenosides Rh1, CK, Rh3 and F1 on bFGF-induced ERK activation in melanocytes. Melan-a melanocytes were cultured in 60-mm dishes (1x106 cells/dish). After 24
h, cells were pretreated with ginsenoside (10 mM) (A) CK, (B) Rh1, (C) Rh3, (D) F1 and (E) Rh3 and F1 for 24 h. Cells were treated with bFGF (10 ng/mL) at the indicated times for
Western blot analysis of phospho-ERK (p-ERK) and total-ERK (t-ERK). Band intensity was quantified and normalized relative to ERK using ImageJ (1.47) software (NIH, USA).
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of 20 ppm for 24 h. After bFGF exposure for the indicated time, cell
lysates were harvested and subjected to western blot analysis using
phospho-42/44MAPK and 42/44MAPK antibody.We observed that
treatment of mouse melanocytes with bFGF over a period of 6 h
resulted in rapid phosphorylation of ERK. ERK phosphorylation
peaked at 1 h and SKRG inhibited bFGF-induced ERK phosphory-
lation at 1 h (Fig. 5).

3.6. Effects of ginsenosides Rh3, Rh1, F1, and CK on bFGF-induced
ERK phosphorylation in melan-a melanocytes

To test the inhibitory effects of ginsenosides Rh3, Rh1, F1, and CK
on bFGF-induced ERK-phosphorylation, melan-a melanocytes were
Fig. 7. Effects of ginsenosides Rh3 and F1 on bFGF-induced MITF expression in melanocytes.
were pretreated with ginsenoside (10 mM) (A) Rh3, (B) F1 and (C) Rh3 and F1 for 24 h. Cells
MITF. Band intensity was quantified and normalized relative to b-actin using ImageJ (1.47)
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exposed to ginsenosides (10mM) for 24 h prior to bFGF (10 ng/mL)
treatment. Although ginsenosides CK and Rh1 had no significant
effect on ERK activation (Figs. 6A and 6B), Rh3 inhibited bFGF-
induced phosphorylation of ERK in melanocytes at 1 h and 2 h
(Fig. 6C). We also observed that F1 regulated early phosphorylation
and slightly delayed ERK activation (Fig. 6D). These results sug-
gested that ginsenosides CK and Rh1 may affect other signaling
pathways of bFGF, such as the phosphatidylinositol 3-kinase-pro-
tein kinase B pathway. To investigate whether Rh3 and F1 could
have synergistic effects on ERK phosphorylation, cells were treated
with Rh3 and F1 simultaneously. We observed that cotreatment
with Rh3 and F1 regulated early phosphorylation and strongly
inhibited bFGF-induced ERK activation (Fig. 6E). Therefore, we
Melan-a melanocytes were cultured in 60 mm dishes (1x106 cells/dish). After 24 h, cells
were treated with bFGF (10 ng/mL) at the indicated times for Western blot analysis of
software (NIH, USA).

insenosides on basic fibroblast growth factor-induced melanocyte
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found that ginsenosides Rh3 and F1 were involved in the activation
of ERK during the intracellular signaling initiated by bFGF in mouse
melanocytes.
3.7. Effects of ginsenosides Rh3 and F1 on bFGF-induced MITF
expression in melan-a melanocytes

MITF, a basic-helix-loop-helix/leucine-zipper transcription fac-
tor, is essential for melanocyte development and survival and
controls proliferation of melanocytic cells [38]. Here, we found
bFGF increased MITF protein expression for a period of 4 h. To
further elucidate the inhibitory effect of ginsenosides Rh3 and F1,
cells were treated with each ginsenoside separately. The results
indicated that treatment with either Rh3 or F1 had no effect on
bFGF-induced MITF expression in melanocytes (Fig. 7A and 7B). To
investigate whether Rh3 and F1 could have a synergistic effect on
MITF expression, cells were treated with Rh3 and F1 simulta-
neously. We observed that cotreatment of Rh3 and F1 inhibited
bFGF-induced MITF protein expression in melan-a melanocytes
(Fig. 7C).
4. Discussion

Previous studies have reported that UV light is a well-known
extrinsic factor for stimulating keratinocytes to produce paracrine
factor for melanocytes [8e10]. Paracrine regulation of GM-CSF
derived from UVB-irradiated SP-1 keratinocytes was also
observed in our previous study [39].

Here, we found that bFGF increased mouse melanocyte prolif-
eration via a paracrine effect. When melan-a melanocytes were
treated with UV-B-irradiated SP-1 keratinocyte conditioned media,
cell proliferation increased by w60%. We also found that bFGF
derived from UV-B-induced keratinocytes was blocked by anti-
bFGF treatment, and melanocyte proliferation decreased by w40%
(Fig. 1), indicating that bFGF secreted from UV-B-irradiated kera-
tinocytes stimulated melanocytes proliferation.

KRG has been shown to have broad pharmacological effects,
such as anticancer, antitumor, and antidiabetic effects [27e29].
Ginsenosides, the major active components of ginseng, also have
various clinical actions, including antiaging, antidiabetic, and anti-
inflammatory effects [40e42]. However, the effects of KRG and
ginsenosides on bFGF-induced melanocyte proliferation have not
been investigated previously.

In this study, we demonstrated the antiproliferative effects of
SKRG and ginsenosides. SKRG at a concentration of 20 ppm did not
have cytotoxic effects on melanocytes. However, preincubation
with SKRG before bFGF stimulation decreased melanocyte prolif-
eration to 20% after 72 h (Fig. 3). Among those tested ginsenosides
Rh3, Rh1, F1, and CK also inhibited bFGF-induced melan-a mela-
nocyte proliferation (Fig. 4).

In melanocytes, bFGF binds to the FGF receptor, and this leads to
activation of theMAPK pathway [37]. Western blot analysis showed
that bFGF significantly induced ERK phosphorylation in melan-a
melanocytes, consistent with previous evidence that bFGF
induced melanocyte proliferation through ERK1/2 signaling in
human primary melanocyte [22]. Treatment of SKRG inhibited
phosphorylation of ERK (Fig. 5). Treatment of Rh3 had the capacity
to interrupt maximum ERK phosphorylation and, interestingly,
treatment of F1 slightly delayed the maximum ERK phosphoryla-
tion, whereas Rh1 and CK had no detectable effects (Fig. 6).
Cotreatment of Rh3 and F1 showed greater suppression of ERK
phosphorylation than did single treatment of either Rh3 or F1
(Fig. 6). This is likely due to the fact that F1 delayed early activation
of ERK and then, synergistically, Rh3 and F1 inhibited
Please cite this article in press as: Lee JE, et al., Inhibitory effects of g
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phosphorylation of ERK. Rh1 and CK might affect other pathways
induced by bFGF in melan-a melanocytes.

In melanocytes, MITF is phosphorylated by MAPK signaling and
stimulates its activation while it simultaneously targets its
ubiquitin-dependent proteasomal degradation. MITF regulates
genes important for melanocyte function, including apoptosis,
proliferation, and differentiation [43]. Thus, we next determined
whether bFGF increased MITF protein levels. Western blot analysis
showed that bFGF stimulated MITF protein expression at 4 h.
Separate treatment of Rh3 and F1 had no remarkable effects.
However, cotreatment of Rh3 and F1 effectively suppressed bFGF-
induced MITF protein expression in melan-a melanocytes (Fig. 7).

In this study, we identified treatment of Rh3 and F1 decreased
the phosphorylation of ERK and MITF protein expression in bFGF-
treated melan-a melanocytes. Therefore, Rh3 and F1 can act syn-
ergistically to inhibit the bFGF-induced proliferation of mouse
melanocytes.

Keratinocyte derived paracrine factors stimulate melanocyte
proliferation, leading to skin hyperpigmentation [18]. In a previous
study, we found that SKRG decreased GM-CSF expression levels in
UV-B induced keratinocytes [44] and inhibited the proliferation of
GM-CSF induced melanocytes [39]. These findings showed that
SKRG had antiproliferative effects on mouse melanocytes and
ginsenoside Rh3 and F1 may be effective ingredients that inhibit
skin pigmentation stimulated by bFGF following UV-B radiation.

Further studies are needed to identify which transcriptional
regulator of MITF is affected by ginsenosides Rh3 and F1 and how
Rh1 and CK regulate other signaling pathways induced by bFGF in
mouse melanocytes.
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