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Abstract

Let f (x) ∈ Z[x]. Set f0(x) = x and, for n � 1, define fn(x) = f (fn−1(x)). We describe several infinite
families of polynomials for which the infinite product

∞∏
n=0

(
1 + 1

fn(x)

)

has a specializable continued fraction expansion of the form

S∞ = [
1;a1(x), a2(x), a3(x), . . .

]
,

where ai(x) ∈ Z[x] for i � 1. When the infinite product and the continued fraction are specialized by letting
x take integral values, we get infinite classes of real numbers whose regular continued fraction expansion
is predictable. We also show that, under some simple conditions, all the real numbers produced by this
specialization are transcendental. We also show, for any integer k � 2, that there are classes of polynomials
f (x, k) for which the regular continued fraction expansion of the product

k∏
n=0

(
1 + 1

fn(x, k)

)

is specializable but the regular continued fraction expansion of
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k+1∏
n=0

(
1 + 1

fn(x, k)

)

is not specializable.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The problem of finding the regular continued fraction expansion of an irrational quantity ex-
pressed in some other form has a long history but until the 1970’s not many examples of such
continued fraction expansions were known. Apart from the quadratic irrationals and numbers
like eq , for certain rational q , there were very few examples of irrational numbers with pre-
dictable patterns in their sequence of partial quotients.

Being able to predict a pattern in the regular continued fraction expansion of an irrational
number is not only interesting in its own right, but if one can also derive sufficient information
about the convergents, it is then sometimes possible to prove that the number is transcendental.

In [10], Lehmer showed that certain quotients of modified Bessel functions evaluated at var-
ious rationals had continued fraction expansions in which the partial quotients lay in arithmetic
progressions. He also showed that similar quotients of modified Bessel functions evaluated at
the square root of a positive integer had continued fraction expansions in which the sequence of
partial quotients consisted of interlaced arithmetic progressions.

An old result, originally due to Böhmer [3] and Mahler [11], was rediscovered by Davison [7]
and Adams and Davison [1] (generalizing Davison’s previous result in [7]). In this latter paper,
the authors were able to determine, for any positive integer a � 2 and any positive irrational
number α, the regular continued fraction expansion of the number

Sa(α) = (a − 1)

∞∑
r=1

1

a�rα� (1.1)

in terms of the convergents in the continued fraction expansion of α−1. They were further able
to show that all such numbers Sa(α) are transcendental.

A generalization of Davison’s result from [7] was given by Bowman in [5] and Borwein and
Borwein [4] gave a two-variable generalization of (1.1) but the continued fraction expansion in
this latter case is not usually regular.

Shallit [15] and Kmošek [8] showed independently that the continued fraction expansions of
the irrational numbers

∞∑
k=0

1

u2k

have predictable continued fraction expansions. This result was subsequently generalized by
Köhler [9], by Pethö [13] and by Shallit [16] once again.
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In [12], Mendès France and van der Poorten considered infinite products of the form

∞∏
h=0

(
1 + X−λh

)
,

where 0 < λ1 < λ2 < · · · is any sequence of rational integers satisfying a certain growth condition
and showed that such products had a predictable continued fraction expansion in which all the
partial quotients were polynomials in Z[X]. They further showed that if the infinite product and
continued fraction were specialized by letting X be any integer g � 2, that all such real numbers

γ =
∞∏

h=0

(
1 + g−λh

)

so obtained were transcendental. Similar investigations, in which the continued fraction expan-
sions of certain formal Laurent series are determined, can be found in [2,18–20].

Let f (x) ∈ Z[x], f0(x) = x and, for i � 1, fi(x) = f (fi−1(x)), the ith iterate of f (x). In
[17], Tamura investigated infinite series of the form

θ(x : f ) =
∞∑

m=0

1

f0(x)f1(x) · · ·fm(x)
.

He showed, for all polynomials in a certain congruence class, that the continued fraction ex-
pansion of θ(x : f ) had all partial quotients in Z[x]. He further showed that if the series and
continued fraction were specialized to a sufficiently large integer (depending on f (x)), then the
resulting number was transcendental.

The infinite series
∑∞

k=0 1/x2k
, investigated by Shallit [15] and Kmošek [8] may be regarded

as a special case of the infinite series
∑∞

k=0 1/fk(x), with f (x) = x2. In a very interesting paper,
[6], Cohn gave a complete classification of all those polynomials f (x) ∈ Z[x] for which the series∑∞

k=0 1/fk(x) had a continued fraction expansion in which all partial quotients were in Z[x]. By
then letting x take integral values, he was able to derive expansions such as the following:

∑
n�0

1

T4n(2)
= [0;1,1,23,1,2,1,18 815,3,1,23,3,1,23,1,2,1,

106 597 754 640 383,3,1,23,1,3,23,1,3,18 815,1,2,1,23,3,1,23, . . .],
where Tl(x) denotes the lth Chebyshev polynomial, and also to derive the continued fraction
expansion for certain sums of series.

At the end of Cohn’s paper he listed a number of open questions and conjectures. One of the
problems he mentioned was finding a similar classification of all those polynomials f (x) ∈ Z[x]
for which the regular continued fraction expansion of the infinite product

∞∏
k=0

(
1 + 1

fk(x)

)
(1.2)

has all partial quotients in Z[x].
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This turns out to be a technically more difficult problem. One reason is that, given any positive
integer k, there are classes of polynomials such as f (x, k) = 2x +x2 +xk((−1)k + (1 +x)g(x))

for which the regular continued fraction expansion of the product
∏k

n=0(1 + 1/fn(x, k)) is
specializable for all polynomials g(x) �≡ (−1)k+1 (mod x) but the regular continued fraction
expansion of

∏k+1
n=0(1 + 1/fn(x, k)) is not specializable. This is in contrast to the infinite series

case dealt with by Cohn, where
∑∞

k=0 1/fk(x) had a specializable continued fraction expansion
if and only if

∑3
k=0 1/fk(x) had a specializable continued fraction expansion.

In this paper we give several infinite classes of polynomials for which
∏∞

n=0(1 + 1/fn(x))

has a specializable regular continued fraction. For the case where f (x) is of degree 2, we allow
zero-degree partial quotients in order to give a complete classification of all polynomials f (x)

of degree 2 for which
∏∞

n=0(1 + 1/fn(x)) has a specializable regular continued fraction.
For the polynomials in these classes of degree at least three, we specialize the product at (1.2)

by letting x take positive integral values, producing certain classes of real numbers. We examine
the corresponding regular continued fractions to prove the transcendence of these numbers.

2. Some preliminary lemmas

Unless otherwise stated f (x), G(x), g(x) will denote polynomials in Z[x], f0(x) := x and,
for n � 0, fn+1(x) := f (fn(x)). Sometimes, for clarity and if there is no danger of ambiguity,
f (x) will be written as f and fn(x) as fn. Likewise, (f (x))m will be written as f m, (fn(x))m

as f m
n , etc.

For a fixed f (x) ∈ Z[x], set

∏
n

(
f (x)

) =
∏
n

(f ) =
∏
n

:=
n∏

i=0

(
1 + 1

fi

)

and

∏
∞

(
f (x)

) =
∏
∞

(f ) =
∏
∞

:=
∞∏
i=0

(
1 + 1

fi

)
.

Similarly, Sn(f (x)) = Sn(f ) = Sn will denote the regular continued fraction expansion (via the
Euclidean algorithm) of

∏
n and S∞(f (x)) = S∞(f ) = S∞ will denote the regular continued

fraction expansion of
∏

∞. (The more concise forms will be used when there is no danger of
ambiguity.)

Unless stated otherwise, the sequence of partial quotients in Sn will be denoted by −→wn, so that
Sn = [−→wn].

If a partial quotient in a continued fraction is a polynomial in Z[x], it is said to be spe-
cializable. A continued fraction all of whose partial quotients are specializable is also called
specializable. We say that a continued fraction [a0, a1, . . . , an] has even (respectively odd) length
if n is even (respectively odd).

Since a form of the folding lemma will be used later, we state and prove this for the sake of
completeness. In what follows let −→w denote the word a1, . . . , an, ←−w the word an, . . . , a1 and −←−w
the word −an, . . . ,−a1. For i � 0, let Ai/Bi denote the ith convergent of the continued fraction
[a0, a1, . . .].
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Recall that

An+1 = an+1An + An−1,

Bn+1 = an+1Bn + −Bn−1, (2.1)

and

AnBn−1 − An−1Bn = (−1)n−1. (2.2)

We need the following preliminary results.

Lemma 1. For j = 0,1,

[
(−1)j ←−w

] = (−1)j
Bn

Bn−1
. (2.3)

If a0 = 1, then

[
(−1)j −→w

] = (−1)j
Bn

An − Bn

(2.4)

and [
(−1)j ←−w, (−1)j

] = (−1)j
An

An−1
. (2.5)

Proof. All of these follow easily from the correspondence between matrices and continued frac-
tions (easily proved by induction or see [22]):(

a0 1
1 0

)(
a1 1
1 0

)
· · ·

(
an 1
1 0

)
=

(
An An−1
Bn Bn−1

)

and (−a0 1
1 0

)(−a1 1
1 0

)
· · ·

(−an 1
1 0

)
= (−1)n

(−An An−1
Bn −Bn−1

)
. �

Lemma 2. (See [19].)

[a0;−→w,Y,−←−w] = An

Bn

(
1 + (−1)n

YAnBn

)
.

Proof. If we use (2.3), followed by (2.1) and then (2.2), we get that

[a0;−→w,Y,−←−w] = [a0,
−→w,Y,−Bn/Bn−1]

= [a0;−→w,Y − Bn−1/Bn]
= An(Y − Bn−1/Bn) + An−1

Bn(Y − Bn−1/BN) + Bn−1

= An

(
1 + (−1)n

)
. �
Bn YAnBn



J. Mc Laughlin / Journal of Number Theory 127 (2007) 184–219 189
There are other forms of symmetry which will appear later so we give the lemma below. Note
that in all of these cases a0 = 1. We call these symmetries “doubling” symmetries, following
Cohn [6].

Lemma 3.

[1;−→w,Y,−−→w] = An

Bn

(
1 + (−1)n

An(Bn(Y + 1) − An + Bn−1)

)
, (2.6)

[1;−→w,Y,−←−w,−1] = An

Bn

(
1 + 1

(−1)nYAnBn − 1

)
, (2.7)

[1;−→w,Y,←−w,1] = An

Bn

(
1 + 1

(−1)nBn(YAn + 2An−1) − 1

)
, (2.8)

[1;−→w,Y,−→w] = An

Bn

(
1 + (−1)n

An(Bn(Y − 1) + An + Bn−1)

)
. (2.9)

Proof. We give the proof only for (2.6), as (2.7)–(2.9) follow similarly. We use (2.4), followed
by (2.1), to get that

[1;−→w,Y,−−→w] =
[

1;−→w,Y,− Bn

An − Bn

]

=
[

1;−→w,Y + 1 − An

Bn

]

= An(Y + 1 − An/Bn) + An−1

Bn(Y + 1 − An/Bn) + Bn−1
.

The result follows from (2.2), after some simple algebraic manipulation. �
Cohn proved a version of (2.8) in [6]. We also point out that the doubling symmetry de-

scribed at (2.6) occurs with some classes of polynomials such as the f (x, k) = 2x + x2 +
xk((−1)k + (1 + x)g(x)) mentioned above. However Sn is not specializable for these polyno-
mials, for n � k + 1 (see Proposition 1) and we have not found S∞ to be specializable for any
polynomials that exhibit this kind of doubling symmetry.

For future reference we show how the various forms of symmetry found in the above lemma
will be used. Suppose that

∏
m, when expanded as a continued fraction, is equal to Sm = [1;−→w],

that the numerator of the ultimate convergent of Sm is Am and the denominator of the ultimate
convergent is Bm and that A′

m and B ′
m are the numerator and denominator, respectively, of the

penultimate convergent, that Sm is specializable and that Sm+1 is related to Sm in one of the ways
shown in Lemma 2 or Lemma 3. (Ym is used here instead of Y to show the dependence on m.)
Then

∏
m+1

=
∏
m

(
1 + 1

fm+1

)
= Am

Bm

(
1 + 1

fm+1

)
.

On the other hand, from the above lemmas,
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Sm+1 = Am

Bm

(
1 + 1

H(Am,Bm,A′
m,B ′

m,Ym)

)
,

where H(Am,Bm,A′
m,B ′

m,Ym) is a polynomial in its variables with integral coefficients that is
linear in Ym.

If solving the equation fm+1 = H(Am,Bm,A′
m,B ′

m,Ym) for Ym leaves Ym in Z[x] for all m

then Sm is specializable for all m.
For later use we also note that if x | (f +1) then

∏
m simplifies to leave fm in the denominator

and, say, rm in the numerator. If (fm, rm) = 1 then, up to sign, the final numerator convergent of
Sm is rm and the final denominator convergent is fm. A similar situation also holds if (x + 1) | f .

Before coming to the next lemma, we need some facts from [12]. Let K be a field and let
L = K(x−1) denote the field of formal Laurent series in x−1 over K. Then each g ∈ L has a
continued fraction expansion

g = [c0; c2, c2, . . .]

with the partial quotients ci polynomials and with degree(ci) � 1 for i � 1. Let p and q be
polynomials in x.

Criterion. If degree(qg − p) < −degreeq and if p and q are coprime, then p/q is a convergent
of g.

Remark. We use “g” above in place of the “f ” in [12] to avoid confusion with our existing use
of “f ” to represent our general polynomial in Z[x]. We also use this criterion in the following
alternative equivalent form: “If degreeq(qg − p) < 0 and if p and q are coprime, then p/q is a
convergent of g.”

As a result of the following lemma, polynomials of degree 2 and those of degree 3 or more
will be considered separately.

Lemma 4. If f (x) has degree greater than 2, then Sn+1 contains Sn at the beginning of the
expansion.

Proof. Suppose f (x) has degree r � 3 and that Sn = [1;a1, . . . , am] = p/q where the ai ’s,
p and q are polynomials in Q[x]. We will show that p/q is a convergent of S∞ and the result
will follow

∞∏
k=0

(
1 + 1

fk

)
− p

q
=

∞∏
k=0

(
1 + 1

fk

)
−

n∏
k=0

(
1 + 1

fk

)

=
( ∞∏

k=n+1

(
1 + 1

fk

)
− 1

)
n∏

k=0

(
1 + 1

fk

)

=
( ∞∏

k=n+1

(
1 + 1

fk

)
− 1

)
p

q

⇒ q

(
q

∞∏(
1 + 1

fk

)
− p

)
=

( ∞∏ (
1 + 1

fk

)
− 1

)
pq.
k=0 k=n+1
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The first factor on the right has degree equal to −rn+1 while

degree(p) = degree(q) � 1 + r + r2 + · · · + rn = rn+1 − 1

r − 1
.

Hence the last expression on the right above has negative degree and the result follows from the
criterion above. �

Note that if deg(f ) = 2 (so that deg(fj ) = 2j ) then the situation can be quite different.

Lemma 5. Let f (x) be a polynomial of degree two and suppose Sn begins with [1;a1, . . . , ak].
If

k∑
i=1

deg(ai) < 2n, (2.10)

then Sn+1 begins with [1;a1, . . . , ak].

Proof. Suppose f (x) has degree 2 and that

Sn = [1;a1, . . . , ak, ak+1, . . . , am]

where the ai ’s, are polynomials in Q[x]. Suppose

[1;a1, . . . , ak] = p

q
,

[1;a1, . . . , ak−1] = p′

q ′ ,

[0;ak+1, . . . , am] = r

s
.

We will show that p/q is a convergent of S∞ and the result will follow. Note that degree(p) =
degree(q) = ∑k

i=1 degree(ai), that degree(r) < degree(s) and that

Sn = sp + rp′

sq + rq ′ =
∞∏(

1 + 1

fk

)
,

k=0
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∞∏
k=0

(
1 + 1

fk

)
− p

q
=

∞∏
k=0

(
1 + 1

fk

)
− sp + rp′

sq + rq ′ + sp + rp′

sq + rq ′ − p

q

=
∞∏

k=0

(
1 + 1

fk

)
−

n∏
k=0

(
1 + 1

fk

)
+ ±r

q(sq + rq ′)

=
( ∞∏

k=n+1

(
1 + 1

fk

)
− 1

)
n∏

k=0

(
1 + 1

fk

)
+ ±r

q(sq + rq ′)

=
( ∞∏

k=n+1

(
1 + 1

fk

)
− 1

)
sp + rp′

sq + rq ′ + ±r

q(sq + rq ′)

⇒ q

(
q

∞∏
k=0

(
1 + 1

fk

)
− p

)
=

( ∞∏
k=n+1

(
1 + 1

fk

)
− 1

)
q2 sp + rp′

sq + rq ′ + ±r

q(sq + rq ′)
.

The stated conditions easily imply that both products in the last expression on the right above
have negative degree and the result follows once again from the criterion above. �

We return to the case deg(f ) � 3. The implication of Lemmas 4 and 5 is that if deg(f ) � 2,
then it makes sense to talk of the continued fraction expansion of

∏∞
i=0(1 + 1/fi) and, further-

more, that if deg(f ) � 3, then S∞ is a specializable continued fraction if and only if Sn is a
specializable continued fraction for each integer n � 0.

Remark. At this stage we are not concerned with whether the polynomials which are the partial
quotients in S∞ have negative leading coefficients or take non-positive values for certain positive
integral x. Negatives and zeroes are easily removed from regular continued fraction expansions
(see [21], for example).

The following lemma means that we get the proof of the specializability of the regular con-
tinued fraction expansion of

∏∞
k=0(1 + 1/fk(x)) for some classes of polynomials f (x) for free.

Lemma 6. Suppose S∞(f ) is specializable. Define g(x) by

g(x) = −f (−x − 1) − 1. (2.11)

Then S∞(g) is specializable.

Proof. If
∏∞

k=0(1 + 1/fk(x)) has a specializable continued fraction expansion S∞(f (x)) :=
[1;a1(x), a2(x), . . .], then

∏∞
k=0(1 + 1/fk(−x − 1)) has the specializable continued fraction

expansion

S∞
(
f (−x − 1)

) = [
1;a1(−x − 1), a2(−x − 1), . . .

]
.

Let g(x) be defined as in the statement of the lemma. For k � 0,

gk(x) = −fk(−x − 1) − 1.
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This is clearly true for k = 0,1. Suppose it is true for k = 0,1, . . . ,m

gm+1(x) = g
(
gm(x)

) = g
(−fm(−x − 1) − 1

)
= −f

(−(−fm(−x − 1) − 1
) − 1

) − 1 = −fm+1(−x − 1) − 1.

Next,

∏
∞

(
g(x)

) =
∞∏

k=0

(
1 + gk(x)

gk(x)

)
=

∞∏
k=0

( −fk(−x − 1)

−fk(−x − 1) − 1

)

=
∞∏

k=0

(
fk(−x − 1)

fk(−x − 1) + 1

)
.

From what has been said above, the final product has the regular continued fraction expansion
[0;1, a1(−x − 1), a2(−x − 1), . . .] and is thus specializable. �

We next demonstrate one of the difficulties in trying to arrive at a complete classification of
all polynomials f (x) for which S∞(f ) is specializable. We need the following lemmas.

Lemma 7. Let k be an indeterminate and let t be a non-negative integer. Then

(1 + k)

t∑
m=0

(−1)m
(
2k + k2)m = kt+2ht (k) + (−1)t

(
2t+1 − 1

)
kt+1 +

t∑
m=0

(−1)mkm, (2.12)

where ht (k) ∈ Z[k].

Proof. Upon taking the last term on the right side of (2.12) to the left side and simplifying, we
get that

(1 + k)

t∑
m=0

(−1)m
(
2k + k2)m −

t∑
m=0

(−1)mkm = (1 + k)
1 − [−(2k + k2)]t+1

1 − [−(2k + k2)] − 1 − (−k)t+1

1 − (−k)

= (−k)t+1 − [−(2k + k2)]t+1

1 + k

= (−k)t+1 1 − (2 + k)t+1

1 + k
.

The final quotient is clearly a polynomial in k, with constant term 1 − 2t+1. The result now
follows. �
Lemma 8. Let k � 2 be an integer and let g(x) ∈ Z[x] be such that g(x) is not the zero polyno-
mial if k = 2. Define

f (x) := 2x + x2 + xk
(
(−1)k + (x + 1)g(x)

)
.
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For 0 � n � k, let

Bn = x

n∏
j=1

fj

fj−1 + 1
.

Then

f n
n

Bn

= Pn(x) + 2n(n−1)/2

x
, (2.13)

for some Pn(x) ∈ Z[x].

Proof. Since x(x + 1) | f , it follows that Bi | f i+1
i , for i � 0. This, together with the definition

of Bn, give that

f n
n

Bn

= f n
n (fn + 1)

Bn−1fn

= f n
n

Bn−1
+ f n−1

n

Bn−1
.

From what has been said just above, the first term is in Z[x] and from the definition of f (x) it
follows that

f n−1
n

Bn−1
= rn(x) + 2n−1 f n−1

n−1

Bn−1
,

for some rn(x) ∈ Z[x]. Thus

f n
n

Bn

= sn(x) + 2n−1 f n−1
n−1

Bn−1
,

for some sn(x) ∈ Z[x]. The result follows upon iterating this last expression downwards, noting
that B0 = x. �
Proposition 1. Let k � 2 be an integer and let g(x) ∈ Z[x] be such that g(x) is not the zero
polynomial if k = 2. Define

f (x) = 2x + x2 + xk
(
(−1)k + (x + 1)g(x)

)
. (2.14)

Then Sn(f ) is specializable for n � k. If g(x) �≡ (−1)k+1 (mod x), then Sn is not specializable
for n > k.

Proof. We will show that the doubling symmetry at (2.6) can be used to develop the continued
fraction expansion of

∏
n, 1 � n � k. More precisely we will show that if Sn = [1;−→wn] for

0 � n � k − 1, with each partial quotient in Sn a polynomial in Z[x], then

Sn+1 = [1;−→wn,Yn,−−→wn],
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for some Yn ∈ Z[x]. We will then show that Sk+1 is not specializable unless g(x) ≡ (−1)k+1

(mod x) (which would have the effect of replacing k by k + 1 in the statement of the form of
f (x) above) and this, together with Lemma 4, will give the result.

Note first of all that S0 = [1;x] and S1 = [1;x,−f/(x(x + 1)),−x], so that the doubling
symmetry at (2.6) occurs with Y0 = −f/(x(x + 1)). Next, let n ∈ {0, . . . , k − 1} and suppose
Sn = [1;−→wn] is specializable. We also suppose that Sj was developed from Sj−1 via the dou-
bling symmetry at (2.6), for 1 � j � n (so that −→wn has odd length). Let An/Bn denote the final
approximant and A′

n/B
′
n the penultimate approximant of Sn. We further assume that

An = fn + 1, Bn = x

n∏
j=1

fj

fj−1 + 1
. (2.15)

Note that this holds for n = 0,1. We also assume that if n � 1, then

Bn−1

∣∣∣∣
(

B ′
n−1 +

k−1∑
j=0

(−1)j+1f
j

n−1

)
. (2.16)

This is true for n = 1 since B0 = x, B ′
0 = 1 and f0 = x.

By the correspondence between continued fractions and matrices (see [22])

[1;−→wn] ↔
(

An A′
n

Bn B ′
n

)
.

Further, from Lemma 1 and its proof

[1;−→wn,Yn,−−→wn] ↔
(

An A′
n

Bn B ′
n

)(
Yn 1
1 0

)(
Bn B ′

n

An − Bn B ′
n − A′

n

)

=
(

A2
n − AnBn(1 + Yn) − BnA

′
n −AnA

′
n + AnB

′
n(1 + Yn) + A′

nB
′
n

Bn(An − Bn − YnBn − B ′
n) −BnA

′
n + BnB

′
n(1 + Yn) + B ′2

n

)

=:
(

An+1 A′
n+1

Bn+1 B ′
n+1

)
.

If we set

Yn = −1 − −(1 + fn)
2 + f1+n + B ′

n(1 + fn)

Bn(1 + fn)
, (2.17)

and use the facts that An = fn + 1 and that −→wn has odd length (so that A′
n = (−1 +B ′

nAn)/Bn =
(−1 + B ′

n(fn + 1))/Bn, by the determinant formula),

(
An+1 A′

n+1

Bn+1 B ′

)
=

(
1 + f1+n

1+fn−B ′
n−f1+nB ′

n

Bn
f1+n Bn 1 − f1+n B ′

)
. (2.18)
n+1 1+fn 1+fn n
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It is clear that

An+1

Bn+1
= (1 + f1+n)(1 + fn)

f1+nBn

= 1 + f1+n

f1+n

∏
n

=
∏
n+1

,

so that [1;−→wn,Yn,−−→wn] gives the regular continued fraction expansion of
∏

n+1 and is special-
izable, provided Yn ∈ Z[x]. Note also that (2.15) now holds with n replaced by n + 1.

We show Yn ∈ Z[x]. From the definition of f (x) we have that

fn+1 = 2fn + f 2
n + f k

n

(
(−1)k + (1 + fn)g(fn)

)
.

From (2.15) and the fact that x(x + 1) | f , it follows that Bn | f n+1
n , and since 0 � n � k − 1,

Bn | f k
n . Thus the result will follow if we can show that

Bn

∣∣∣∣
(

B ′
n + (−fn)

k − 1

fn + 1

)
or Bn

∣∣∣∣
(

B ′
n +

k−1∑
j=0

(−1)j+1f
j
n

)
. (2.19)

Here and subsequently we mean divisibility in Z[x].
We now use the facts (clear from (2.18)) that

Bn = Bn−1
fn

fn−1 + 1
and B ′

n = 1 − B ′
n−1

fn

fn−1 + 1

to get that (2.19) will follow if

Bn−1
fn

fn−1 + 1

∣∣∣∣
(

−B ′
n−1

fn

fn−1 + 1
− fn

k−2∑
j=0

(−1)j+1f
j
n

)

or

Bn−1

∣∣∣∣
(

B ′
n−1 +

k−2∑
j=0

(−1)j+1f
j
n (1 + fn−1)

)
. (2.20)

By the same argument as that just before (2.19), it follows that −Bn−1 | f k
n−1, so that (2.20) will

hold if

Bn−1

∣∣∣∣
(

B ′
n−1 +

k−2∑
j=0

(−1)j+1(2fn−1 + f 2
n−1

)j
(1 + fn−1)

)
. (2.21)

By (2.12)

k−2∑
(−1)j+1(2fn−1 + f 2

n−1

)j
(1 + fn−1) =

k−2∑
(−1)j+1f

j

n−1 + f k−1
n−1 h(fn−1),
j=0 j=0
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with h(z) ∈ Z[z]. Since Bn−1 | f k−1
n−1 , we can ignore the second term on the right above and

increase the index on the sum from k − 2 to k − 1 for free, and get that (2.21) will hold if

Bn−1

∣∣∣∣
(

B ′
n−1 +

k−1∑
j=0

(−1)j+1f
j

n−1

)
. (2.22)

However, this is true by (2.16) and thus Yn ∈ Z[x]. Note that (2.19) is (2.16) with n replaced by
n + 1, so that the induction can be continued and Sn is specializable for 0 � n � k.

We next show that if g(x) = (−1)k+1 + b + xg1(x), with b �= 0 and g1(x) ∈ Z[z], then Sk+1
is not specializable. Define

Y ′
k := −1 − −(1 + fk)

2 + f1+k + B ′
k(1 + fk)

Bk(1 + fk)
+ 2k(k−1)/2b

x
. (2.23)

Firstly, we prove that Y ′
k ∈ Z[x]. If (2.14) is used to write fk+1 in terms of fk and we recall that

Bk | f k+1
k , it can easily be seen that Y ′

k ∈ Z[x] if it can be shown that

−−1 + f k
k [(−1)k + (1 + fk)((−1)k+1 + b)] + B ′

k(1 + fk)

Bk(1 + fk)
+ 2k(k−1)/2b

x
∈ Z[x]. (2.24)

The first fraction can be re-written as

−(
(−1)k+1 + b

)f k
k

Bk

− (−1 + (−fk)
k)/(1 + fk) + B ′

k

Bk

. (2.25)

By Lemma 8

−(
(−1)k+1 + b

)f k
k

Bk

= −(
(−1)k+1 + b

)
Pn(x) − 2k(k−1)/2((−1)k+1 + b)

x
, (2.26)

for some Pn(x) ∈ Z[x]. The second term in (2.25) can be written as

−−∑k−1
j=0(−fk)

j + B ′
k

Bk

= −
−∑k−1

j=0(−fk)
j + 1 − B ′

k−1
fk

1+fk−1

Bk−1
fk

1+fk−1

= −∑k−2
j=0(−fk)

j (1 + fk−1) + B ′
k−1

Bk−1

= s(x) + −∑k−2
j=0(−(2fk−1 + f 2

k−1))
j (1 + fk−1) + B ′

k−1

Bk−1
,

for some s(x) ∈ Z[x]. Here we have used, in turn, the formulae from (2.18) relating Bk to Bk−1
and B ′

k to B ′
k−1, (2.14) to write fk in terms of fk−1 and the fact that Bk−1 | f k

k−1. Next, we use
Lemma 7 to get that
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−∑k−2
j=0(−(2fk−1 + f 2

k−1))
j (1 + fk−1) + B ′

k−1

Bk−1

= −f k
k−1hk−2(fk−1) + (−1)k−1(2k−1 − 1)f k−1

k−1 − ∑k−2
j=0(−fk−1)

j + B ′
k−1

Bk−1

= t (x) + (−1)k−12k−1f k−1
k−1 − ∑k−1

j=0(−fk−1)
j + B ′

k−1

Bk−1

= t (x) + (−1)k−12k−1 f k−1
k−1

Bk−1
+ −∑k−1

j=0(−fk−1)
j + B ′

k−1

Bk−1
,

for some t (x) ∈ Z[x]. Here again we have used the fact that Bk−1 | f k
k−1. Finally, Lemma 8 and

(2.16) give that this last expression has the form

u(x) + (−1)k−12k(k−1)/2

x
,

for some u(x) ∈ Z[x]. Thus

−∑k−1
j=0(−fk)

j + B ′
k

Bk

= v(x) + (−1)k−12k(k−1)/2

x
, (2.27)

for some v(x) ∈ Z[x]. That Y ′
k ∈ Z[x] now follows by (2.24)–(2.27).

Secondly, define αk by

[
1;−→wk,Y

′
k, αk

] =
∏
k+1

= Ak

Bk

(
1 + 1

fk+1

)
.

Upon solving

αk(Y
′
kAk + A′

k) + Ak

αk(Y
′
kBk + B ′

k) + Bk

= Ak

Bk

(
1 + 1

fk+1

)

for αk and using (2.23) to eliminate Y ′
k and the determinant formula to eliminate A′

k , we find

αk = Bkx

2k(k−1)/2bBk + (1 + fk − Bk)x
. (2.28)

Since Ak = 1 + fk and
∏

k = Ak/Bk , fk and Bk have the same degree and same leading co-
efficient, so that (1 + fk − Bk)x has degree less than Bkx. This implies that αk is a rational
function whose numerator has higher degree in x than its denominator, so that Sk+1 begins with
[1;−→wk,Y

′
k]. Next,

(
αk − −x

k(k−1)/2

)−1

= − (2k(k−1)/2b + 1)(2k(k−1)/2bBk + (1 + fk − Bk)x)
. (2.29)
2 b + 1 x(Bk − x − fkx + Bkx)
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If b = 0 then f (x) has the form at (2.14), but with k replaced by k + 1 and, from what has been
shown already,

Sk+1 = [1;−→wk,Yk,−−→wk] =
[

1;−→wk,Yk,−x,− 1 + fk − Bk

Bk − x − fkx + Bkx

]
.

The final term in the last continued fraction comes from letting b = 0 on the right side of (2.29)
and is a rational function whose numerator has degree greater than its numerator. (This must be
the case since when b = 0, Sk+1 has the form [1;−→wk,Yk,−x, . . .], as each −→wk begins with x.)
This implies that the rational function on the right side of (2.29) has the same property and so,
when b �= 0,

Sk+1 =
[

1;−→wk,Y
′
k,

−x

2k(k−1)/2b + 1
, . . .

]

and is thus not specializable. The proof is now complete by Lemma 4. �
Corollary 1. Let k � 2 be an integer and let g(x) ∈ Z[x] be such that g(x) �= 0 if k = 2. Let

f (x) = −x2 − (1 + x)k
(
1 + (−1)k+1xg(x)

)
.

Then Sn is specializable for 0 � n � k. If g(x) �≡ (−1)k+1 (mod (x + 1)), then Sn is not special-
izable for n > k.

Proof. This follows from Proposition 1 and Lemma 6. �
One reason we proved Proposition 1 was to show that it is not possible to eliminate all classes

of polynomials for which S∞ is not specializable by simply looking at the continued fraction
expansion of a finite number of terms of the infinite product for a general polynomial (Cohn was
able to do this in the infinite series case by looking at just the first four terms).

3. Specializability of S∞ for various infinite families of polynomials of degree greater than
two

We can now show that the specializability of Sn occurs for all n for all polynomials in several
infinite families. We have the following theorem.

Theorem 1. Let f (x) and g(x) denote non-zero polynomials in Z[x] such that the degree of
f (x) is at least three. If f (x) has one of the following forms:

(i) f (x) = x2(x + 1)g(x),

(ii) f (x) = x(x + 1)g(x) − x − 1,

(iii) f (x) = x(x + 1)2g(x) − 1,

(iv) f (x) = x
(
x2 − 1

)
g(x) + 2x2 − 1,

(v) f (x) = (x + 1)
(
x(x + 2)g(x) − 2(x + 1)

)
,
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(vi) f (x) = x2(x2 − 1
)
g(x) + x2,

(vii) f (x) = x(x + 1)
(
(x + 2)(x + 1)g(x) − 1

) − x − 2,

then, for each n � 0, Sn is a specializable continued fraction. Hence S∞ is a specializable con-
tinued fraction.

Proof. We note that the proof of (iii) follows from the proof of (i) and Lemma 6 and that the
proof of (v) likewise follows from the proof of (iv) and Lemma 6. However, we give independent
proofs of (iii) and (v) since we also wish to demonstrate the types of doubling symmetry exhibited
by the corresponding continued fractions. The proof of (vii) can similarly be deduced from the
proof of (vi) and in this case no independent proof is given (doubling symmetry is not involved
for cases (vi) and (vii)).

As in the proof of Proposition 1, throughout let Ai/Bi denote the final approximant, and
A′

i/B
′
i the penultimate approximant, of Si = [1;−→wi], for each i � 0.

(i) For this class of polynomials we will show that Sm+1 is derived from Sm via the type
of symmetry exhibited in the folding lemma (Lemma 2). S0 = [1;x] is clearly specializable.
Suppose that Sm is specializable. From Lemma 2 and the discussion following Lemma 3 it is
clear that Sm+1 is specializable if AmBm | fm+1 in Z[x]. Since f (x) = x2(x + 1)g(x) it follows
that, for i � 0,

f 2
i (fi + 1) | fi+1. (3.1)

Since (x + 1) | f we get after cancellation that

∏
i

= fi + 1

x
∏i−1

j=0 f 2
j g(fj )

.

Since fj | fj+1 for j � 0, each term in the denominator of the expression divides fi and thus
the numerator and denominator are relatively prime. Thus, up to sign, Ai = fi + 1 and Bi =
f 2

i−1g(fi−1)Bi−1. (The first of these holds for i � 0 and the second for i � 1.) It follows easily
by induction that Bi | f 2

i . The facts that Bm | f 2
m and Am = ±(fm + 1) together with (3.1) give

that

AmBm | fm+1.

Hence the result.
(ii) For this class of polynomial it will be shown that Sm is derived from Sm−1 by adding a

single new partial quotient. It is clear from the definition of f (x) = x(x + 1)g(x) − x − 1 that,
for i � 0,

(fi + 1) | fi+1, fi | (fi+1 + 1), fi | fi+2. (3.2)

This implies that

∏
= fi + 1

x
∏i−1

(fjg(fj ) − 1)
= (x + 1)

∏i−1
j=0((fj + 1)g(fj ) − 1)

fi

. (3.3)

i j=0
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This gives that Ai | (fi + 1), and Bi | fi , for all i � 0. Next,

Ai+2

Bi+2
= Ai

Bi

(fi+1 + 1)

fi+1

(fi+2 + 1)

fi+2
= Ai

Bi

((fi+1 + 1)g(fi+1) − 1)

(fi+1g(fi+1) − 1)
.

We next show that

(
Ai,fi+1g(fi+1) − 1

) = (
Bi, (fi+1 + 1)g(fi+1) − 1

) = 1,

so that, up to sign,

Ai+2 = (
(fi+1 + 1)g(fi+1) − 1

)
Ai,

Bi+2 = (
fi+1g(fi+1) − 1

)
Bi. (3.4)

That (Bi, (fi+1 + 1)g(fi+1) − 1) = 1 is easily seen to be true since Bi | fi , fi | fi+2, so that
Bi | fi+2, but ((fi+1 + 1)g(fi+1) − 1) | (fi+2 + 1). The proof that (Ai, fi+1g(fi+1) − 1) = 1 is
similar. We are now ready to prove that Sn is specializable for n � 0.

Initially, S0 = [1;x] and S1 = [1;x,−G]. It will be shown by induction that Si =
[1;α1, . . . , αi+1], where all the αj ’s ∈ Z[x] and (−1)ifi = Ai−1Bi . Both statements are eas-
ily seen to be true for i = 0,1.

Suppose these statements are true for i = 0,1, . . . ,m − 1. Let Sm−1 = [1;α1, . . . , αm]. Set

αm+1 = − (fm−1 + 1)

Am−1
g(fm−1)Am−2, (3.5)

which is in Z[x], since Am−1 | (fm−1 + 1), by the remark following (3.3). Let Cm+1 be the
numerator of the final convergent of [1;α1, . . . , αm,αm+1] and let Dm+1 be the denominator of
the final convergent

Cm+1 = αm+1Am−1 + Am−2 = −(
(fm−1 + 1)g(fm−1) − 1

)
Am−2,

Dm+1 = αm+1Bm−1 + Bm−2 = −(
fm−1g(fm−1) − 1

)
Bm−2.

The final equality for Dm+1 uses the facts that Am−1Bm−2 − Am−2Bm−1 = (−1)m−1 and
(−1)m−1fm−1 = Am−2Bm−1. Hence, by (3.4), Cm+1/Dm+1 = Am/Bm = ∏

m and Sm =
[1;α1, . . . , αm,αm+1]. Finally,

Am−1Bm = Am−1(αm+1Bm−1 + Bm−2)

= −(fm−1 + 1)g(fm−1)Am−2Bm−1 + Am−1Bm−2

= −(fm−1 + 1)g(fm−1)(−1)m−1fm−1 + (−1)m−1fm−1 + (−1)m−1

= (−1)m(fm−1 + 1)
(
fm−1g(fm−1) − 1

) = (−1)mfm.

The third equality also uses the facts that Am−2 − Bm−1 = (−1)m−1fm−1 and Am−1Bm−2 −
Am−2Bm−1 = (−1)m−1. Hence Sn is specializable for all n.
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(iii) It will be shown that Sm+1 is derived from Sm via the doubling symmetry found in (2.7).
Suppose Sm = [1;−→wm]. It will be shown that Ym can be chosen such that

Sm+1 = [1;−→wm,Ym,−←−wm,−1], Ym ∈ Z[x]. (3.6)

Note that S0 = [1;x] and that S1 = [1;x,−G,−x,−1]. S1 has even length and if S2, . . . , Sm

have been defined using (3.6), then Sm has even length. It can be seen from (2.7) that if Sm =
Am/Bm and has even length, then fm+1 = AmBmYm − 1 and Ym ∈ Z[x] if AmBm | (fm+1 + 1).
This we now show.

Since f (x) = x(x + 1)2g(x) − 1, it follows that fj | (fj+1 + 1). After cancellation,

∏
i

= (x + 1)
∏i−1

j=0(fj + 1)2g(fj )

fi

,

so that Ai | ((x + 1)
∏i−1

j=0(fj + 1)2g(fj )) and Bi | fi . Thus it will be sufficient to show that

fm(x + 1)

m−1∏
j=0

(fj + 1)2g(fj )

∣∣∣ (fm+1 + 1).

Suppose that

fi(x + 1)

i−1∏
j=0

(fj + 1)2g(fj )

∣∣∣ (fi+1 + 1),

for i = 0,1, . . . ,m − 1 (this is clearly true for i = 0). Then

(x + 1)

m−2∏
j=0

(fj + 1)2g(fj )

∣∣∣ (fm + 1).

Since (fm−1 + 1)2g(fm−1) | (fm + 1) it follows that

⇒ fm(x + 1)

m−1∏
j=0

(fj + 1)2g(fj )

∣∣∣ fm(1 + fm)2.

This completes the proof of (iii), since fm(1 + fm)2 | (fm+1 + 1).
(iv) The argument is similar to that used in the proof of (iii). It will be shown that Sm+1 is

derived from Sm using the doubling symmetry found in (2.8).
Note that S1 = [1;x,−(x − 1)g(x) − 2, x,1] and by induction we assume Sm has the sym-

metric form exhibited in (2.8), so that A′
m = Bm. Note also that the induction means that Sm has

even length, since the duplicating formula always produces a continued fraction of even length.
It can be seen from (2.8) that

Sm+1 = [1;−→wm,Ym,←−wm,1]
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and will be specializable if the equation

Bm

(
AmYm + 2A′

m

) = fm+1 + 1 (3.7)

is solvable with Ym ∈ Z[x].
Since f (x) = x(x2 − 1)g(x) + 2x2 − 1 it can be seen that, for i � 0,

fi | (fi+1 + 1),
(
f 2

i − 1
) | (fi+1 − 1). (3.8)

After cancellation,

∏
m

= (x + 1)
∏m−1

j=0 ((f 2
j − 1)g(fj ) + 2fj )

fm

. (3.9)

Also, (3.8) implies that

m∏
j=0

(1 + fj )

∣∣∣ (
f 2

m − 1
)
,

so that the numerator and denominator in (3.9) above are relatively prime. Thus, up to sign
Bm = fm and Am | (f 2

m − 1).
Let

Ym = fm

Bm

f 2
m − 1

Am

g(fm),

so that Ym ∈ Z[x]. Upon using the facts that Bm = ±fm and (from above) A′
m = Bm, we get that

Bm

(
AmYm + 2A′

m

) = BmAmYm + 2B2
m

= fm

(
f 2

m − 1
)
g(fm) + 2f 2

m

= fm+1 + 1.

The result now follows by (3.7).
Cohn also gave a proof of (iv) in [6].
(v) In this case it will be shown that Sm+1 is derived from Sm using the doubling symmetry

found at (2.9).
Since S1 = [1;x,−G,x] and −→wi symmetric implies −→wi , Yi ,

−→wi is symmetric, we have by
induction that Sm has odd length and that −→wm is symmetric. This gives that B ′

m = Am − Bm.
It can thus be seen from (2.9) that [1;−→wm,Ym,−→wm] will equal Sm+1 and be specializable if

the equation

fm+1 = −Am

(
Bm(Ym − 2) + 2Am

)
(3.10)

leads to Ym ∈ Z[x].
Since f (x) = (x + 1)(x(x + 2)g(x) − 2(x + 1)) it follows that (fj + 1) | fj+1.
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After cancellation,

∏
m

= fm + 1

x
∏m−1

j=0 (fj (fj + 2)g(fj ) − 2(fj + 1))
. (3.11)

Further, since x(x + 2) | (f + 2), it follows that

m−1∏
j=0

fj

∣∣∣ (fm + 2).

Thus the numerator and denominator in (3.11) above are relatively prime so that, up to sign,
Am = fm + 1 and Bm | fm(fm + 2). Let

Ym = 2 − fm(fm + 1)(fm + 2)

AmBm

g(fm),

so that Ym ∈ Z[x]. The result now follows from (3.10), since

−AmBm(Ym − 2) − 2A2
m = (fm + 1)fm(fm + 2)g(fm) − 2(fm + 1)2

= fm+1.

(vi) It will be shown that, for this class of polynomials and m � 1, Sm+1 is derived from Sm

by adding two terms. More precisely, if m � 1, Sm = [1;x,α1, β1, . . . , αm,βm] is specializable
and

αm+1 := − (fm+1 − f 2
m)

AmBm

,

βm+1 := −AmBm, (3.12)

then αm+1, βm+1 ∈ Z[x] and Sm+1 = [1;x,α1, β1, . . . , αm,βm,αm+1, βm+1].
Initially, S0 = [1;x], S1 = [1;x,−xg(x)(x − 1) − 1,−x(x + 1)] and

S2 =
[

1;x,−xg(x)(x − 1) − 1,−x(x + 1),−f (f − 1)g(f )

x(x + 1)
,−x(x + 1)f (f + 1)

]
,

so that (3.12) holds for m = 1. As part of the proof, it will be shown that, for i � 1,

Ai =
i∏

j=0

(fj + 1), Bi =
i∏

j=0

fj , A′
i = − fi

Bi−1
. (3.13)

These equations are easily shown to be true for i = 1. Suppose that Si has been defined via
(3.12) for i = 2, . . . ,m, that the conditions at (3.13) are true for i = 1, . . . ,m and that Sm is
specializable.

We first show that αm+1 ∈ Z[x] (clearly βm+1 ∈ Z[x] if Sm is specializable). Since f =
x2((x2 − 1)g(x) + 1), we have that x2 | f and (x2 − 1) | (f − 1), which imply that
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m−1∏
j=0

fj

∣∣∣ fm,

m−1∏
j=0

(fj + 1)

∣∣∣ (fm − 1).

These conditions with (3.13) imply that AmBm | f 2
m(f 2

m −1) and hence that AmBm | (fm+1 −f 2
m)

and thus that αm+1 ∈ Z[x].
Since S0 = [1;x], each Si has odd length (in particular, Sm has odd length). Consider the

following matrix product:

(
Am A′

m

Bm B ′
m

)(
αm+1 1

1 0

)(
βm+1 1

1 0

)

=
(

Am(αm+1βm+1 + 1) + A′
mβm+1 Amαm+1 + A′

m

Bm(αm+1βm+1 + 1) + B ′
mβm+1 Bmαm+1 + B ′

m

)

=
(

Am(fm+1 − f 2
m + 1) − A′

mAmBm −fm+1−f 2
m

Bm
+ A′

m

Bm(fm+1 − f 2
m + 1) − B ′

mAmBm −fm+1−f 2
m

Am
+ B ′

m

)

=
(

Am(fm+1 + 1) −fm+1
Bm

Bmfm+1
−fm+1+1

Am

)

=:
(

Cm+1 C′
m+1

Dm+1 D′
m+1

)
.

For the fourth equality we have used the facts (induction step) that Bm = fmBm−1, AmB ′
m −

AmB ′
m = 1 (since Sm has odd length) and A′

m = −fm/Bm−1. By the definition of Cm+1, Dm+1

Cm+1

Dm+1
= Am(1 + fm+1)

Bmfm+1
=

∏
m

(
1 + 1

fm+1

)
=

∏
m+1

.

Thus, from the relationship between matrices and continued fractions, we have that

Sm+1 = [1;x,α1, β1, . . . , αm,βm,αm+1, βm+1]

and

(
Am+1 A′

m+1

Bm+1 B ′
m+1

)
=

(
Am(fm+1 + 1) −fm+1

Bm

Bmfm+1
−fm+1+1

Am

)
.

This equation also implies that (3.13) holds for i = m + 1 and the result follows.
(vii) This follows from (vi) and Lemma 6. �
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4. The degree two case

In this section a complete classification is given of all polynomials f (x) of degree two for
which S∞ is specializable or can be transformed in a simple way to produce a continued fraction
which is specializable.

Essentially, the method is to start with a general polynomial

f (x) = ax2 + (b − 1)x + c − b − 1, a �= 0

(this form makes the continued fraction a little easier to work with) and to choose an in-
teger n large enough so that some part of the continued fraction expansion of

∏
n, say

[1;a1(x), . . . , at (x)], forms part of the continued fraction expansion of
∏

∞ (this follows by
Lemma 5). The coefficients in the ai(x) will be rational functions in a, b and c and the require-
ment that the ai(x) ∈ Z[x], or that S∞ can be transformed to produce a continued fraction that is
specializable, will impose limiting conditions on a, b and c, leading to the stated classification.
Define

num := (1 + b + ab − c − ac)
(−1 + a2 − 2ab + ac

) + a(a − b)(b − c)x

+ f
(
(1 + a − b + ab − ac)

(−1 + a2 − 2ab + ac
) + a(a − b)2x

)
+ (1 + ab − ac)

(−1 + a2 − 2ab + ac
)
f2,

den := a
(
(b − c)

(
1 − a2 + 2ab − ac

)
× [(−1 + b − b2 + a2(1 − b + c) + a

(−1 + b + b2 + c − bc
))

f

− 1 − (−1 + a)b2 − (−1 + a(−2 + c)
)
c − b

(
1 − 2a(−1 + c) + c

)]
+ (

b − c + (a − b)f
)
x

× [−1 + b − b2 + a4(b − c) + a
(−1 + b(−1 + 3b − 2c) + 2c

)
− a3(−1 + b(−1 + 3b) + c − 4bc + c2) + a2(2b − c)

(−2 + b2 + c − b(1 + c)
)])

,

β := a(1 + ab − ac)2(−1 + a2 − 2ab + ac)2num

(a − b)4den
.

Then (preferably using a computer algebra system such as Mathematica) it can be shown that

∏
2

=
[

1;−1

a
+ x,−a(−1 − b2 + ac)

(a − b)2
− a2x

a − b
,

(a − b)2

a(1 + ab − ac)2(−1 + a2 − 2ab + ac)2

× (−1 + b3 + a4(b − c)2 + a
(−(

b(4 + 3b)
) + 3c

) + a2(1 − 5b2 − 3c2 + b(3 + 8c)
)

+ a3(−1 − 2b3 − 2c + 5b2c + c3 + b
(
2 − 4c2)))

+ (a − b)3x

(1 + ab − ac)(−1 + a2 − 2ab + ac)
,β

]
. (4.1)

In what follows we will make use of a remark of Cohn in [6]: that if the first partial quotient in
a continued fraction with non-integral coefficients has a non-integral coefficient other than the
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constant term then the continued fraction is not specializable. (We will see that some continued
fractions with partial quotients in which the constant term is non-integral can be transformed to
make them specializable.) Also, polynomials whose coefficients satisfy one of the conditions

a − b = 0, 1 + ab − ac = 0, −1 + a2 − 2ab + ac = 0 (4.2)

will be considered separately. If none of these three equalities hold, then the numerator of β has
degree four and the denominator has degree three. Note that the cofactor of (b − c + (a − b)f )x

in den is not zero for any triple of integers (a, b, c). This means that if the coefficients of f (x)

do not satisfy one of the conditions at (4.2), then the next regular partial quotient in S2 is linear
in x, so that

3∑
i=1

deg
(
ai(x)

) = 3 < 22.

Thus, by Lemma 5, Sn begins with the first four partial quotients in the continued fraction at
(4.1), if n � 2.

For specializability, it is necessary to have (b − a) | a2 in the third partial quotient (the case
a = b is to be examined separately). Write b − a = u2v, with v square-free. Since u2 | a2, then
u | a, so write a = us. Since u2v | a2, then v | s2, which implies v | s (v is square-free), or
s = vw. Thus, for specializability, it is necessary to have

a = uvw, b = u2v + uvw,

for some integers u, v and w. If we substitute for a and b in the coefficient of x in the fourth
partial quotient, then specializability requires

u6v3

(−1 + uvw(c − uv(u + w)))(−1 + uvw(c − uv(2u + w)))
∈ Z.

A check shows that happens only for

(a, b, c) ∈ {
(2,3,4), (−2,−3,−4), (2,1,1), (−2,−1,−1)

}
,

or

f ∈ {
2x2 + 2x,−2x2 − 4x − 2,2x2 − 1,−2x2 − 2x − 1

}
.

That
∏

∞ is not specializable for the first and fourth polynomials follows from consideration
of S3 and Lemma 5. We will show that specializability occurs for the third polynomial and
specializability for the second will follow from this fact and Lemma 6.

We next consider the case a = b, proceeding as previously. Suppose

f = ax2 + (a − 1)x + c − a − 1,

and we define
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num := (
1 + a2 − ac

)[
(1 + f )(1 + x)(−1 + ax)(1 + f3)

+ f2
(
(1 + f )(1 + x)(−1 + ax) − (

f − (1 + x)(−1 + ax)
)
f3

)]
,

den := a2x(1 + x)
[−(aff2f3) + (−1 + a

(−1 + c − x + a
(−1 + x + x2)))

× (
(1 + f )(1 + f3) + f2(1 + f + f3)

)]
,

β := num

den
.

Then (preferably once again using a computer algebra system such as Mathematica) it can be
shown that

∏
3

=
[

1;−1

a
+ x, a + a3x

−1 − a2 + ac
+ a3x2

−1 − a2 + ac
,β

]
. (4.3)

Further, the numerator of β has degree twelve and the denominator has degree ten and the leading
coefficient in the numerator or denominator does not vanish except in the case (1 + a2 − ac),
which is examined separately. This all means that, apart from this exceptional case, the next
partial quotient in the regular expansion of

∏
3 has degree two. Thus

2∑
i=1

deg
(
ai(x)

) = 3 < 23,

so that Sn starts with[
1;−1

a
+ x, a + a3x

−1 − a2 + ac
+ a3x2

−1 − a2 + ac
, . . .

]

for n � 3 (this once again by Lemma 5). This in turn implies that specializability requires(−1 − a2 + ac
) | a3,

and it is not difficult to see that this needs −1 − a2 + ac = ±1. A check shows that the only
solutions in this case are

(a, b, c) ∈ {
(a, a, a), (1,1,3), (−1,−1,−3), (2,2,3), (−2,−2,−3)

}
or

f ∈ {
ax2 + (a − 1)x − 1, x2 + 1,−x2 − 2x − 3,2x2 + x,−2x2 − 3x − 2

}
.

We will show specializability for the case f (x) = ax2 + (a − 1)x − 1. A more extensive con-
sideration of S3 shows that S∞ is not specializable for the remaining four of these polynomials.
Note that for f (x) = ax2 + (a − 1)x − 1, −f (−x − 1) − 1 = f (x), so that Lemma 6 gives
nothing new.

We return to the exceptional case −1 − a2 + ac = 0, which is solvable only for

(a, b, c) ∈ {
(1,1,2), (−1,−1,−2)

}
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or

f ∈ {
x2,−x2 − 2x − 2

}
.

We will show specializability for the first of these polynomials and specializability in the second
case will follow from this and Lemma 6.

For the exceptional case 1 + ab − ac = 0 it is clear that a = ±1 is necessary. For a = 1,
c = b + 1 and an examination of the third partial quotient in S2 shows b ∈ {0,1,2} is necessary.
Consideration of S4 eliminates b = 0 and b = 2 (using Lemma 5) and b = 1 gives f (x) = x2

(encountered above). For a = −1, c = b − 1 and an examination of the third partial quotient in
S2 shows b ∈ {0,−1,−2} is necessary. Lemma 5 and consideration of S4 eliminate b = 0 and
b = 2. The case b = −1 gives f (x) = −x2 − 2x − 2 (encountered above).

Lastly, for the exceptional case −1 + a2 − 2ab + ac = 0, it is obvious that a = ±1 is again
necessary, and in each case c = 2b. Consideration of S3 in the case a = 1 shows that b ∈ {0,1,2}
is necessary. Looking at S4 eliminates b = 0 and b = 2 and b = 1 gives f (x) = x2, which has
been encountered above. Likewise, the case a = −1 necessitates b ∈ {0,−1,−2}. Only b = −1
is of interest, giving once again f (x) = −x2 − 2x − 2.

The reasoning above leads to the following theorem.

Theorem 2. Let f (x) ∈ Z[x] be a polynomial of degree two such that
∏

∞(f ) has a specializable
continued fraction expansion. Then

f (x) ∈ {
x2,−x2 − 2x − 2,2x2 − 1,−2x2 − 4x − 2, ax2 + (a − 1)x − 1

}
. (4.4)

Proof. The necessity of (4.4) has already been shown. Also, by Lemma 6, it is enough to show
sufficiency for the first, third and fifth of the polynomials in this list.

(i) If f (x) = x2, then

n∏
i=0

(
1 + 1

fi

)
=

n∏
i=0

(
1 + 1

x2i

)

=
∑2n+1−1

j=0 xj

x2n+1−1

= x2n+1 − 1

x2n+1−1(x − 1)

=
[

1;x − 1,
x2n+1−1 − 1

x − 1

]
,

which is clearly specializable for x �= 1, and S∞ = [1;x − 1].
(ii) If f (x) = 2x2 − 1, then

S1 = [1;x − 1/2,−4x − 2],
S2 = [1;x − 1/2,−4x, x,−4x − 2],
S3 = [1;x − 1/2,−4x, x,−4x, x,−4x, x,−4x − 2]. (4.5)
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We will show that if Sn = [1;x − 1/2,−→wn,−4x − 2], with −→wn specializable, then

Sn+1 = [1;x − 1/2,−→wn,−4x, x,−→wn,−4x − 2].

This can be seen to be true for n = 1 and n = 2. Let Tn+1 denote the continued fraction which
we claim is equal to Sn+1. By induction −→wn is made up of the pair of terms −4x, x repeated a
certain number of times, and if Tn+1 = Sn+1, then it is easy to see that −→wn+1 will have the same
form. We will also show, for i � 2, that Ai = (1 + x)2i+1 ∏i−1

j=0 fj and

(
Ai A′

i

Bi B ′
i

)
=

(
Ai

fi

2 − Ai

4

2fi
f 2

i −1
Ai

− fi

2

)
. (4.6)

This is easily checked for i = 2 from (4.5). Suppose it is true for i = 2, . . . , n.
The continued fraction Tn+1 can be constructed as follows: take Sn, remove the final term

−4x − 2, add the terms −4x and x and then append another copy of Sn which has the first two
terms (1 and x − 1/2) removed. Thus, by the correspondence between continued fractions and
matrices which we have used several times already,

Tn+1 ∼
(

An A′
n

Bn B ′
n

)(
0 1
1 4x + 2

)(−4x 1
1 0

)(
x 1
1 0

)

×
(

0 1
1 −x + 1/2

)(
0 1
1 −1

)(
An A′

n

Bn B ′
n

)

=
(

An A′
n

Bn B ′
n

)(
1/2 1/2
2 0

)(
An A′

n

Bn B ′
n

)

=
( An(An+Bn+4A′

n)

2
AnA′

n+4A′2
n +AnB ′

n

2

AnBn+B2
n+4AnB ′

n

2
BnA′

n+BnB ′
n+4A′

nB ′
n

2

)

=
(

2Anfn
−1−Anfn+2f 2

n

2

2(−1 + 2f 2
n )

−(−An+4fn+2Anf 2
n −4f 3

n )

2An

)

=:
(

Cn+1 C′
n+1

Dn+1 D′
n+1

)
.

The next-to-last equality comes from substituting for A′
n, Bn and B ′

n from (4.6). Next,

Cn+1

Dn+1
= 2Anfn

2(−1 + 2f 2
n )

= An

Bn

2f 2
n

(−1 + 2f 2
n )

=
∏
n

(
1 + 1

fn+1

)
=

∏
n+1

,

so that Tn+1 = Sn+1. Here we have also used the fact that Bn = 2fn. It is also now easy to check
that (4.6) now holds with i = n + 1, so that the induction continues. Thus

S∞ = [1;x − 1/2,−4x, x ]
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and all that remains is to show that the expansion can be manipulated to remove the “1/2” from
the first partial quotient. This follows from the identity[

x + 1

a
; c,α

]
=

[
x;a,−c + a

a2
,−a2α

]
. (4.7)

If this identity is applied repeatedly, it follows that

∏
∞

= [1;x − 1/2,−4x, x,−4x, x − 4x, x,−4x, x, . . .]

= [1;x,−2, x + 1/2,−4x, x,−4x, x,−4x, x,−4x, . . .]
= [1;x,−2, x,2, x − 1/2,−4x, x,−4x, x,−4x, x,−4x, . . .]
...

= [1;x,−2, x,2 ],
which is specializable. This completes the proof for f (x) = 2x2 − 1.

(iii) If f (x) = ax2 + (a − 1)x − 1, then

S1 = [1; s − 1/a],
S2 = [

1;x − 1/a,−a3x2 − a3x + a
]
,

S3 = [
1;x − 1/a,−a3x2 − a3x + a, ax2 + (a − 2)x − 1 + 1/a

]
,

S4 = [
1;x − 1/a,−a3x2 − a3x + a, ax2 + (a − 2)x − 1 + 1/a,

−a3x(1 + x)
(−1 − ax + a2x + a2x2)(−1 − a − ax + a2x + a2x2)]. (4.8)

The situation is somewhat similar to case (ii) in Theorem 1 (going from
∏

n to
∏

n+1 adds one
new term to the continued fraction expansion), but the presence of the 1/a term in some partial
quotients is troublesome, necessitating a different approach.

Define α1, . . . , α4 by

S4 = [1;α1, α2, α3, α4],
and for n � 2, define

α2n+1 = α3

n−1∏
i=1

(af2i − 1)
(
a(f2i + 1) − 1

) = α3

n−1∏
i=1

f2i+1(f2i+1 + 1)

(f2i + 1)f2i

, (4.9)

α2n+2 = α4

n−1∏
i=1

(af2i+1 − 1)
(
a(f2i+1 + 1) − 1

) = α4

n−1∏
i=1

f2i+2(f2i+2 + 1)

(f2i+1 + 1)f2i+1
. (4.10)

The second equalities follow from the definition of f (x). It is clear from these definitions and
(4.8) that, for n � 1, α2n+2/a

3 ∈ Z[x, a] and α2n+1 − 1/a ∈ Z[x, a]. We will show that

Sn = [1;α1, . . . , αn], (4.11)
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for each integer n � 1. Let An/Bn denote the final convergent of the right side of (4.11). As part
of the proof, we will show that, for n � 1,

A2n+1 = A1(−1)n
n∏

i=1

(
a(f2i + 1) − 1

) = A1(−1)n
n∏

i=1

f2i+1 + 1

f2i

,

A2n+2 = A2(−1)n
n∏

i=1

(
a(f2i+1 + 1) − 1

) = A2(−1)n
n∏

i=1

f2i+2 + 1

f2i+1
,

B2n+1 = B1(−1)n
n∏

i=1

(af2i − 1) = B1(−1)n
n∏

i=1

f2i+1

f2i + 1
,

B2n+2 = B2(−1)n
n∏

i=1

(af2i+1 − 1) = B2(−1)n
n∏

i=1

f2i+2

f2i+1 + 1
. (4.12)

Once again the second equalities follow in each case from the form of f (x). With these values,
we have, for n � 1, that

A2n+1

B2n+1
= A1

B1

n∏
i=1

(f2i+1 + 1)(f2i + 1)

f2i+1f2i

= A1

B1

2n+1∏
i=2

(
1 + 1

fi

)

=
∏

2n+1

.

Similarly,

A2n+2

B2n+2
=

∏
2n+2

for n � 1. Thus to prove (4.11) it is sufficient to prove (4.12). It is not difficult to check that
(4.12) holds for n = 1. Suppose it holds for n = 1,2, . . . ,m

A2m+3 = α2m+3A2m+2 + A2m+1

= α3

m∏
i=1

f2i+1(f2i+1 + 1)

(f2i + 1)f2i

× A2(−1)m
m∏

i=1

f2i+2 + 1

f2i+1
+ A1(−1)m

m∏
i=1

f2i+1 + 1

f2i

= (−1)m
m∏

i=1

f2i+1 + 1

f2i

(
α3A2

f2i+2 + 1

f2 + 1
+ A1

)

= (−1)m
m∏

i=1

f2i+1 + 1

f2i

(−aA1(f2m+2 + 1) + A1
)

= (−1)m+1
m+1∏ f2i+1 + 1

f2i

.

i=1
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The next-to-last equality follows from the fact that

α3A2

f2 + 1
= −aA1, (4.13)

and the last equality from the fact that f2m+3 + 1 = f2m+2(a(f2m+2 + 1) − 1).
The proof that A2m+4 has the form stated by (4.12) is similar, except that we use the fact that

α4A1

f2
= aA2. (4.14)

The proofs that B2m+3 and B2m+4 have the forms stated by (4.12) are similar, except that we
use, in turn, the facts that

α3B2

f2
= −aB1,

α4B1

f2 + 1
= aB2. (4.15)

This completes the proof of (4.11). What remains is to show is that S∞ can be transformed into
a specializable continued fraction. It is clear from (4.8) and the remarks following (4.9) that we
can write

S∞ =
[

1;x − 1

a
,−a3(x2 + x

) + a,β3 + 1

a
, a3β4, . . . , β2n+1 + 1

a
, a3β2n+2, . . .

]
,

where each βi ∈ Z[a, x]. Proof of specialization now easily from a single application of (4.7),
starting with the first partial quotient

S∞ =
[

1;x + 1

−a
,−a3(x2 + x

) + a,β3 + 1

a
, a3β4, . . . , β2n+1 + 1

a
, a3β2n+2, . . .

]

=
[

1;x, (−a),−−a3(x2 + x) + a + (−a)

(−a)2
,−(−a)2

(
β3 + 1

a

)
,

a3β4

−(−a)2
, . . . ,

−(−a)2
(

β2n+1 + 1

a

)
,
a3β2n+2

−(−a)2
, . . .

]

= [
1;x,−a, a

(
x2 + x

)
,−a2β3 − a,−aβ4, . . . ,−a2β2n+1 − a,−aβ2n+2, . . .

]
,

which is specializable. This completes the proof of Theorem 2. �
5. Specialization and transcendence

In what follows, we assume f (x) ∈ Z[x] and M ∈ Z are such that fj (M) �= 0,−1, for j � 0
and fi(M) �= fj (M) for i �= j .

For any of the polynomials f in Theorems 1 and 2, S∞(f ) will typically have some partial
quotients which are polynomials in x with negative leading coefficients. It may also happen that
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if S∞(f ) is specialized by letting x assume integral values, that negative or zero partial quo-
tients may appear in the resulting continued fraction. These are easily removed, as the following
equalities show (see also [21])

[. . . , a, b,0, c, d, . . .] = [. . . , a, b + c, d, . . .],
[. . . , a,−b, c, d, e, . . .] = [. . . , a − 1,1, b − 1,−c,−d,−e, . . .].

Thus, if M is an integer, repeated application of the identities above will transform S∞(f (M))

to produce the regular continued fraction expansion of the corresponding real numbers.
A natural question is whether these numbers are transcendental or not. We will make use of

Roth’s theorem.

Theorem 3. (See Roth [14].) Let a be an algebraic number and let ε > 0. Then the inequality

∣∣∣∣α − p

q

∣∣∣∣ <
1

q2+ε

has only finitely many solutions with p ∈ Z, q ∈ N.

We have the following theorem for the case where the degree of f (x) is at least three.

Theorem 4. Let f (x) ∈ Z[x] and M ∈ Z be such that fj (M) �= 0,−1, for j � 0 and fi(M) �=
fj (M) for i �= j .

If either deg(f ) > 3 or deg(f ) = 3 and either x | (f + 1) or (x + 1) | f , then

∞∏
i=0

(
1 + 1

fi(M)

)

is transcendental.

Proof. Let f and M satisfy the conditions stated in the theorem and suppose that deg(f ) = d

and that

f (x) = Lxd + a1x
d−1 + · · · + ad−1x + ad =: Lxd

(
1 + β(x)

x

)
.

Define βi := β(fi(M)) so that |βi | � ∑d
i=1 |ai | for all i and M . Then for k � 1,

fk(M) = L
(
fk−1(M)

)d
(

1 + βk−1

fk−1(M)

)

= L
dk−1
d−1 Mdk

k−1∏(
1 + βi

fi(M)

)dk−1−i

.

i=0
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Note that the second equality for fk(M) also holds for k = 0, upon taking, as usual, the empty
product to be equal to 1. Also,

N∏
k=0

fk(M) = L
1

d−1 ( dN+1−1
d−1 −(N+1))M

dN+1−1
d−1

N−1∏
i=0

(
1 + βi

fi(M)

) dN−i−1
d−1

.

Then

(
∏N

k=0 fk(M))d−1

fN+1(M)
= L−(N+1)M−1

N∏
i=0

(
1 + βi

fi(M)

)−1

.

Since fi(M) �= 0 for any i and the βi are absolutely bounded, the product on the right converges,
so that

1

fN+1(M)
= O

(
1

(
∏N

k=0 fk(M))d−1

)
. (5.1)

On the other hand, if we set α = ∏
∞(f (M)) and pN/qN = ∏

N(f (M)) in Roth’s theorem, then
it is not difficult to see that ∣∣∣∣α − pN

qN

∣∣∣∣ = O

(
1

fN+1(M)

)
.

Since qN | ∏N
k=0 fk(M), (5.1) gives that∣∣∣∣α − pN

qN

∣∣∣∣ = O

(
1

qd−1
N

)
.

If d � 4, then ∣∣∣∣α − pN

qN

∣∣∣∣ <
1

q2+ε
N

has infinitely many solutions for ε = 1/2, say, and thus
∏

∞(f (M)) is transcendental. If d = 3
and x | (f + 1), then qN | fN(M) and since

fN+1(M) = L
(
fN(M)

)3
(

1 + βN

fN(M)

)

we get that ∣∣∣∣α − pN

qN

∣∣∣∣ = O

(
1

q3
N

)
, (5.2)

so that once again
∏

∞(f (M)) is transcendental. The case d = 3 and (x + 1) | f is similar, in
that in this case pN | (fN(M)+ 1). Also, qN is within a constant factor of pN , so that (5.2) holds
and Roth’s theorem once more gives transcendence. �
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Corollary 2. If f (x) has any of the forms in the statement of Theorem 1 and M ∈ Z is such that
fj (M) �= 0,−1, for j � 0 and fj (M) �= fj (M) or i �= j , then

∏
∞(f (M)) is transcendental.

Proof. Each polynomial in the statement of Theorem 1 satisfies the conditions of Theo-
rem 4. �

In the proof of Theorem 4 we were able to show the transcendence of
∏

∞(f (M)) when f (x)

had degree three only for the special cases where x | (f + 1) or (x + 1) | f . If f (x) ∈ Z[x] is a
polynomial of degree three such that x � (f + 1) and (x + 1) � f , and M is an integer such that
fj (M) �= 0,−1 for any j and fj (M) �= fk(M) for j �= k, is the infinite product

∞∏
j=0

(
1 + 1

fj (M)

)

transcendental? If this is false, find a counter-example.
With this question in mind, we investigated the possibility that

∞∏
j=0

(
1 + 1

fj (x)

)
=

√
ax + b

ax + c
, (5.3)

for a polynomial f (x) = rx3 + sx2 + tx + u ∈ Z[x] and integers a, b and c. (The coefficient
of x is the same in the numerator and denominator of the rational function on the right, since
the infinite product on the left tends to one as x tends to infinity.) Upon replacing x by f (x),
dividing the new equation into the old and squaring both sides, we get

(
1 + 1

x

)2
af (x) + b

af (x) + c
= ax + b

ax + c
.

However, comparing coefficients shows that there is no polynomial f (x) with integral coeffi-
cients satisfying (5.3). Interestingly, this approach does lead to the following “near miss”: if
f (x) = 4x3 + 6x2 − 3/2 and M is any integer different from −1, then

∞∏
j=0

(
1 + 1

fj (M)

)
=

√
2M + 3

2M − 1
.

It is not evident to the author how to extend Theorem 4 to the remaining polynomials in Z[x]
of degree three.

For the polynomials of degree two in Theorem 2, only f (x) = ax2 + (a − 1)x − 1 needs
investigation. We have shown

∏
∞(f (M)) converges to a rational number for f (x) = x2, M �= 1

(and thus a similar situation holds for f (x) = −x2 − 2x − 2, by Lemma 6).
For f (x) = 2x2 − 1,

∏
∞(f (M)) has an infinite periodic regular continued fraction expan-

sion (after removing negatives and zeroes) when M �= 0, ±1, and so
∏

∞(f (M)) converges for
M �= 0, ±1 to a quadratic irrational, namely sign(M)(M + 1)/

√
M2 − 1. A similar situation

holds for f (x) = −2x2 − 4x − 2, again by Lemma 6.



J. Mc Laughlin / Journal of Number Theory 127 (2007) 184–219 217
For f (x) = ax2 +(a−1)x−1, it is not difficult to show from (4.9) and (4.12) that if x �= −1,0
or 1 (in the case a = 1) or −2 (in the case a = −1), then

lim
n→∞ = B2n+1

α2n+2
(5.4)

can be written as a convergent infinite product. If an irrational number α has regular expansion
[a0;a1, . . .] and its N th approximant is pN/qN then

∣∣∣∣α − pN

qN

∣∣∣∣ <
1

q2
NaN+1

, (5.5)

for all N � 0. If all the negatives are removed from S∞(f (M)), then α2n+2 will increase or
decrease by at most 2 to α′

2n+2, say. The approximant immediately before α′
2n+2 will still be still

be A2N+1/B2N+1. Thus (5.4) and (5.5) will give that

∣∣∣∣∏
∞

(
f (M)

) − A2N+1

B2N+1

∣∣∣∣ = O

(
1

|B2N+1|3
)

and Roth’s theorem gives that
∏

∞(f (M)) is transcendental.
We now look at some particular examples of specialization. As Cohn showed in [6], if l ≡ 2

mod 4, and Tk(x) denotes the kth Chebyshev polynomial then

∞∏
j=0

(
1 + 1

Tlj (x)

)

has a specializable continued fraction expansion with predictable partial quotients. This follows
from Theorem 1(iv), using the facts that T1(x) = x, that if l ≡ 2 mod 4 then Tl(x) ≡ 2x2 −1 mod
x(x2 − 1) and that Ta(Tb(x)) = Tab(x), for all positive integers a and b. For example, setting
l = 6 and x = 3, we get after removing negatives, that

∞∏
j=0

(
1 + 1

T6j (3)

)

= [1;2,1,1632,1,2,1,3 542 435 884 041 835 200,1,2,1,1632,1,2,1,

260 295 392 177 712 345 385 442 165 884 885 661 964 026 558 044 771 652 539

336 341 222 077 618 284 068 468 732 496 046 837 200 411 447 595 913 600,

1,2,1,1632,1,2,1,3 542 435 884 041 835 200,1,2,1,1632,1,2,1, . . .].

In part (vi) of Theorem 1, setting g(x) − (x2k−2 − 1)/(x2 − 1) gives f (x) = x2k , for k � 2,
so that

∞∏(
1 + 1

x(2k)j

)

j=0
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has a specializable continued fraction expansion with predictable partial quotients. This result
can also be found in [12], where the formulae for the partial quotients that we have are also
given. For example, if k = 2 and x � 2 is a positive integer, then

∞∏
j=0

(
1 + 1

x4j

)
=

[
1;x − 1,1, x(x − 1), x(x + 1), x3(x − 1)

(
x2 + 1

)
, x5(x + 1)

(
x4 + 1

)
,

x11(x − 1)
(
x2 + 1

)(
x8 + 1

)
, x21(x + 1)

(
x4 + 1

)(
x16 + 1

)
, . . . ,

x(2×4i+1)/3(x − 1)

i−1∏
j=0

(
x2×4j + 1

)
x(4i+1−1)/3(x + 1)

i∏
j=0

(
x4j + 1

)
, . . .

]
.

6. Concluding remarks

Ideally, one would like to have a complete list of all classes of polynomials f (x) for which∏∞
n=0(1 + 1/fn) has a specializable continued fraction expansion. We hesitate to conjecture that

our Theorems 1 and 2 give such a complete list, since there may be other classes of polyno-
mials for which S∞ displays more complicated forms of duplicating symmetry. One reason for
suspecting this is that Cohn [6] found some quite complicated duplicating behavior for several
classes of polynomials. One example he gave was the class of polynomials of the form

f (x) = x3 − x2 − x + l + x2(x − 1)2g(x),

with g(x) ∈ Z[x]. If Sn = ∑n
j=0 1/fj = [0;−→s n], then, for n � 3,

Sn = [0;−→s n−1,Xn,−−→s n−2,0,−→s n−4, Yn−2,0,Zn,−←−s n−4, Yn,
←−s n−2], (6.1)

where the Xi , Yi and Zi are polynomials in Z[x]. It is not unreasonable to suspect similar such
complicated behavior might also exist in the infinite product case.

We hope the results in this paper will stimulate further work on this problem.
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