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Rebuilding the Damaged Heart
The Potential of Cytokines and Growth
Factors in the Treatment of Ischemic Heart Disease

Nirat Beohar, MD,*† Jonathan Rapp, MD,†‡ Sanjay Pandya, MD,† Douglas W. Losordo, MD*†§

Chicago, Illinois; and New Orleans, Louisiana

Cytokine therapy promises to provide a noninvasive treatment option for ischemic heart disease. Cytokines are
thought to influence angiogenesis directly via effects on endothelial cells or indirectly through progenitor cell-
based mechanisms or by activating the expression of other angiogenic agents. Several cytokines mobilize pro-
genitor cells from the bone marrow or are involved in the homing of mobilized cells to ischemic tissue. The re-
cruited cells contribute to myocardial regeneration both as a structural component of the regenerating tissue
and by secreting angiogenic or antiapoptotic factors, including cytokines. To date, randomized, controlled clinical
trials have not reproduced the efficacy observed in pre-clinical and small-scale clinical investigations. Neverthe-
less, the list of promising cytokines continues to grow, and combinations of cytokines, with or without concurrent
progenitor cell therapy, warrant further investigation. (J Am Coll Cardiol 2010;56:1287–97) © 2010 by the
American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2010.05.039
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ytokine therapy is a promising, noninvasive treatment
pproach that may prevent cardiomyocyte loss or regenerate
amaged tissue. It may also be useful as an adjunctive
reatment to mechanical revascularization or cell therapy
nd for patients with disabling ischemia despite optimal
edical treatment. Cytokines are thought to benefit the

amaged heart through direct effects in the myocardium and
ndirectly by stimulating progenitor cells. Progenitor and
tem cells reside in the myocardium or are mobilized from
he bone marrow in response to cardiac ischemia, and
umerous reports indicate that these cells can be mobilized
herapeutically by cytokines (1–14). In the ischemic heart,
rogenitor cells can form a structural component of the
egenerating tissue—e.g., resident side-population cells (15)
nd lineage-negative, c-kit–positive cells (4) differentiated
nto endothelial cells, smooth-muscle cells, and cardiomy-
cytes in a murine model of myocardial infarction (MI).
he recruited cells also secrete angiogenic or anti-apoptotic

actors (16,17) that can maintain myocardial viability, ac-
elerate the recovery of ischemic myocardium, or amplify
unction in nonischemic regions (18,19). These observa-
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ions have led to the development of strategies that mobilize
rogenitor cells and enhance progenitor cell recruitment,
hereby preserving or replacing injured tissue (4). Impor-
antly, cytokines are pleiotropic, and their effects can be
ither beneficial or detrimental (Table 1) depending on the
ose and timing of administration. This review focuses on
everal cytokines that have displayed potentially beneficial
ffects in pre-clinical or clinical studies of ischemic heart
isease.

ytokine Agents

ibroblast growth factor (FGF). The FGF family com-
rises 22 polypeptides that promote angiogenesis and arte-
iogenesis by modulating the phenotypes of endothelial cells
nd vascular smooth muscle cells. FGF4 is encoded by the
eparin-binding secretory-transforming proto-oncogene
nd is not expressed in normal adult tissue. However, when
dministered to ischemic hearts, FGF4 stimulates endothe-
ial cell proliferation and the secretion of metalloproteinases,
rokinase-type plasminogen activator, and vascular endo-
helial growth factor (VEGF), which subsequently stimulate
ngiogenesis (20).

The AGENT (Angiogenic Gene Therapy) trials (Table 2)
xamined the effects of FGF in patients with coronary
rtery disease (CAD) and medically refractory angina.
n the first AGENT trial, intracoronary delivery of an
denovirus coding for FGF4 transcription (Ad5FGF-4)
as safe and appeared to improve exercise treadmill

imes (21). The phase 2 AGENT 2 trial tested whether
d5FGF-4 treatment improved regional myocardial perfu-
ion (22). Patients administered Ad5FGF-4, but not placebo,
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experienced a substantial reduc-
tion in reversible and total perfu-
sion defect, but the results were
not statistically significant. The
phase 3 AGENT 3 and 4 trials
(23,24) enrolled patients with
Canadian Cardiovascular Society
(CCS) class 2 to 4 angina who
were unsuitable for mechanical
revascularization. Both trials were
halted prematurely when a
planned interim analysis of the
AGENT 3 cohort indicated that
the between-group difference in
the primary end point (treadmill
exercise duration 12 weeks after
treatment) would not reach sta-
tistical significance. Differences
in secondary outcomes (such as
change in CCS class or other
clinical variables) were also
nonsignificant.
Vascular endothelial growth
factor (VEGF). The VEGF cy-
tokines were among the first to
display protective or regenerative
effects in cardiac tissue. During
hypoxia, the therapeutic benefit of
VEGF occurs primarily through
the stimulation of endothelial cell
proliferation, migration, and sur-
vival, which subsequently leads to
neovascularization (25–30). The
extent of regeneration is deter-
mined by the tissue retention of
the administered isoform and by
the isoform’s affinity for VEGF re-
ceptors. Both endothelial cells and
hematopoietic stem cells (HSCs)
express VEGF receptors 1 and 2
(also known as Flt-1 and Flk-1,
respectively) (31,32), and the ex-
pression of VEGF receptors on
HSCs appears to be critical for
VEGF-dependent regulation of

ndothelial progenitor cells (EPCs) (33,34).
Treatment with VEGF protein-enhanced collateral

lood flow in animal models of chronic myocardial ischemia
35–38) and the safety and feasibility of VEGF therapy for
ngiogenesis has been assessed in several phase 1 studies
39–44). The VIVA (Vascular Endothelial Growth Factor
n Ischemia for Vascular Angiogenesis) trial was among the
rst large, phase 2 trials (Table 3) completed. Patients with
yocardial ischemia who were considered unsuitable for
echanical revascularization were randomized to receive

Abbreviations
and Acronyms

Ad5FGF � adenoviral
fibroblast growth factor

Ang � angiopoietin

CAD � coronary artery
disease

CCS � Canadian
Cardiovascular Society

CFI � collateral flow index

EPC � endothelial
progenitor cell

EPO � erythropoietin

FGF � fibroblast growth
factor

GCSF � granulocyte
colony-stimulating factor

GH � growth hormone

GMCSF � granulocyte-
macrophage colony-
stimulating factor

HGF � hepatocyte growth
factor

HIF � hypoxia-inducible
factor

HSC � hematopoietic stem
cell

IGF � insulin-like growth
factor

LVEF � left ventricular
ejection fraction

MI � myocardial infarction

PCI � percutaneous
coronary intervention

PlGF � placental growth
factor

rhVEGF � recombinant
human vascular endothelial
growth factor

SCF � stem cell factor

SDF � stromal cell-derived
factor

VEGF � vascular
endothelial growth factor
lacebo, low-dose recombinant human vascular endothelial a
rowth factor (rhVEGF), or high-dose rhVEGF by intra-
oronary infusion, followed by peripheral infusions 3, 6, and
days later (45). VEGF therapy was safe, but changes in

xercise treadmill time (the primary end point) did not differ
ignificantly between groups at the 2-month follow-up visit.
our months after treatment, the only statistically signifi-
ant finding was the proportion of high-dose VEGF pa-
ients who improved by at least 1 CCS class (p � 0.05 vs.
lacebo). In the Euroinject One trial (46), patients with
CS class 3 or 4 angina were randomized to receive 0.5-mg

njections of either VEGF-A165 plasmid or a placebo
lasmid into myocardial regions that displayed stress-
nduced perfusion defects. At the 3-month follow-up visit,
he perfusion defects did not differ between treatment
roups, but VEGF treatment was associated with improve-
ents in local wall motion. Intracoronary VEGF gene

ransfer was also evaluated in the KAT (Kuopio Angiogen-
sis Trial) (47). Upon initiation of percutaneous coronary
ntervention (PCI), patients with CCS class 2 or 3 angina
90% of whom received stents) were randomized to receive
ntracoronary injections of adenovirus-encoded VEGF165,
EGF165 plasmid liposome, or Ringer’s lactate. Six months

fter treatment, there were no significant differences among
he 3 treatment groups in functional status, but myocardial
erfusion improved in patients treated with adenoviral
EGF.
ranulocyte colony-stimulating factor (GCSF). GCSF

s a potent hematopoietic cytokine that influences the
evelopment and function of granulocytes and mobilizes
rogenitor cells from the bone marrow (48). Progenitor cell
obilization appears to be initiated when GCSF binds to

eceptors on the cell surface, which leads to the release of
nzymes that digest adhesion molecules (49). GCSF also
irectly influences the activity of some nonhematopoietic
ells, such as cardiomyocytes and endothelial cells (50).

hen administered shortly after MI, GCSF activates the
anus kinase/signal transducer and activator of transcription
athway, which stimulates the production of several anti-
poptotic proteins, decreases cardiomyocyte death, and
imits infarct size (51). In a murine model of MI, GCSF
reatment was associated with improvements in left ventric-
lar function and enhanced arteriogenesis (52). However,
CSF can also stimulate the differentiation of lineage-

ommitted progenitor cells into neutrophils and macro-
hages (53), which could worsen inflammation and cardiac
emodeling (54).

In phase 1 trials, GCSF administration after PCI for
cute MI appeared to improve cardiac function (50,55–58).
atients in the randomized, open-label FIRSTLINE-AMI

Front-Integrated Revascularization and Stem Cell Libera-
ion in Evolving Acute Myocardial Infarction) trial received

daily subcutaneous GCSF injections starting within
0 min after primary PCI for ST-segment elevation MI;
he control group did not receive placebo injections but
ad identical post-interventional care. Four months (56)

nd 1 year (55) after the PCI procedure, improvements in
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eft ventricular ejection fraction (LVEF) were significantly
reater in GCSF-treated patients than in the control group.
nfortunately, these promising results were not repro-
uced in subsequent double-blind, placebo-controlled trials
59–61) (Table 4).

Several nonrandomized studies have investigated the use
f GCSF for treatment of chronic ischemic heart disease
Table 5). Hill et al. (62) administered 5 daily subcutaneous
njections of GCSF to patients with CAD and angina. The
reatment produced large increases in the number of circu-
ating progenitor cells, but there was no improvement in

gentsTable 1 Agents

Agent Molecular Targets

VEGF VEGF receptors on endothelial cells,
monocytes, and HSCs

Stimula
tube

Mobilize
and d

PlGF VEGF receptor 1 Cross-ta
Mobilize

FGF FGF receptors on endothelial cells,
smooth muscle cells, and myoblasts

Stimula

GCSF GCSF receptors on hematopoietic and
nonhematopoietic cells

Inhibits
Activate
Synergis
Mobilize
Accelera
Possible

stem

GMCSF GMCSF receptors on granulocyte and
monocyte precursor cells and
monocytes

Stimula
Activate
Mobilize

SCF c-kit Synergis
facto

Mobilize

Angiopoietin-1 TIE2 receptors on endothelial cells Enhance
stabi

Mobilize

HGF c-Met receptor on numerous cells (e.g.,
endothelial cells, cardiac myocytes,
progenitor cells)

Attracts

GH/IGF-1 IGF receptor on vascular and satellite
cells, cardiac stem cells

Enhance
regen

Erythropoietin Erythropoietin receptor on HSCs, EPCs,
endothelial cells, and cardiac
myocytes

Promote
Mobilize

CS � acute coronary syndrome; EPC � endothelial progenitor cell; FGF � fibroblast growth factor;
olony-stimulating factor; HGF � hepatocyte growth factor; HPC � hematopoietic progenitor cell; H
I � myocardial infarction; PlGF � placental growth factor; SCF � stem cell factor; SDF � stromal

g-like loops and Epidermal growth factor homology domains-2; VEGF � vascular endothelial grow
VEF, left ventricular wall motion, myocardial perfusion, t
r treadmill exercise time 1 month after treatment. Wang et
l. (63) administered subcutaneous injections of GCSF for

days to 13 prospectively selected patients with severe
cclusive CAD. CCS class improved from baseline to the
-month follow-up visit, but the number of single-photon
mission computed tomography image segments with per-
usion defects either at rest or under stress was unchanged
nd LVEFs declined, perhaps because GCSF-mobilized
eukocytes increased inflammation and fibrosis. Notably,
rogenitor cell mobilization was considerably lower in
patients who were considered “poor mobilizers” than in

ts/Mechanism Potential Detrimental Effects

liferation, migration, and
tion
s; improves EPC survival
tiation

Tumorigenesis
Retinopathy
Flushing (protein infusion)
Hypotension (protein infusion)

VEGF receptor 2
s and HSCs

Associated with carotid atherosclerotic plaque
destabilization and adverse outcomes
in ACS

Associated with depressed LV function in
ischemic cardiomyopathy (exact role
undefined)

liferation Membranous nephropathy
Dose-related hypotension
Coronary plaque destabilization
Accelerated atherosclerosis

sis
AK-STAT pathway
h SDF-1
s and granulocytes
ound healing post-MI
ts on resident cardiac

Tumorigenesis
Dysregulated inflammation leading to

impaired wound healing or plaque
destabilization

Medullary bone pain

eriogenesis
ocytic cells
s and HSCs

Infarct expansion through alteration of
inflammation (i.e., dendritic cell function)

Plaque destabilization/acute MI
“First-dose reaction”: dyspnea, hypotension,

hypoxia, tachycardia, or syncope
Bone pain
Peripheral edema, pericardial effusion

h colony-stimulating

marrow precursor cells

Mast cell degranulation/wheal formation
at injection site

Hyperpigmentation
Allergic-like reaction including respiratory

distress

el maturation and

s and HPCs

Enhanced renal inflammation and fibrosis
Pulmonary hypertension
Adverse vascular remodeling or angiogenesis

nt cardiac stem cells Tumorigenesis
Retinopathy

etal and cardiac muscle
n

Retinopathy
Diarrhea
Hypotension
Hypoglycemia

survival
s

May accelerate death in patients with cancer
Hypertension, headache, arthralgias, and

nausea
MI (rare)

granulocyte colony-stimulating factor; GH � growth hormone; GMCSF � granulocyte-macrophage
ematopoietic stem cell; IGF � insulin-like growth factor; JAK � Janus kinase; LV � left ventricular;
ived factor; STAT � signal transducers and activators of transcription; TIE2 � Tyrosine kinase with
or.
Effec

tes pro
forma
s EPC
ifferen

lk with
s EPC

tes pro

apopto
s the J
tic wit
s HSC
tes w
effec
cells

tes art
s mon
s EPC

tic wit
rs
s bone

s vess
lity
s EPC

reside

s skel
eratio

s cell
s EPC

GCSF �

SC � h
he 9 remaining patients who were considered “mobilizers.”
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he mobilizers, but not the poor mobilizers, experienced
ignificant improvements in nitroglycerin use and angina
requency. These findings indicate that the potential benefit
f GCSF therapy requires progenitor cell mobilization.
GCSF treatment did not worsen inflammation in several

tudies of patients with acute MI (50,55,56,58 – 61), and

andomized, Double-Blind Trials of FGFTable 2 Randomized, Double-Blind Trials of FGF

Grines et al. (21)
Agent

Grines e
Age

Phase 1 2

Patients Chronic CAD, LVEF �40%,
CCS class 2–3

Chronic CAD, LV
CCS class 4

Therapy Ad5FGF-4 Ad5FGF-4

Delivery route Intracoronary Intracoronary

Duration of follow-up 12 weeks 8 weeks

Primary end point Safety and feasibility � RPDS

Assessment modality Clinical and exercise treadmill test Adenosine SPEC

Secondary end point � Exercise time � Defect size

Treatment groups FGF (n � 60)
Placebo (n � 19)

FGF (n � 35)
Placebo (n � 17

Dose 108.5–1010.5 vp 1010 vp

Findings Trend toward1 in exercise time
with therapy

Lower rates of r
at 1 year wit
RPDS with th
baseline to fo
change in CC
primary end

Notes — One outlier in p
had 50%2

p � 0.05.
Ad � adenoviral; CAD � coronary artery disease; CCS � Canadian Cardiovascular Society; ETT �

ot applicable; QOL � quality of life; RPDS � reversible perfusion defect size; SPECT � single-ph

hase 2 VEGF TrialsTable 3 Phase 2 VEGF Trials

Henry et al. (45) VIVA

Patients Stable angina, “no-option” CAD

Therapy Recombinant human VEGF

Duration of follow-up 60 days, 120 days

Primary end point � ETT at 60 days

Secondary end points � ETT, angina, and myocardial perfusion at
day 120

Treatment groups High-dose (n � 59)
Low-dose (n � 56)
Placebo (n � 63)

Dosage High-dose: 50 ng/kg per min IC for 20 min†
Low-dose: 17 ng/kg per min IC for 20 min†

Findings 2 in angina class at day 120 in high-dose
group compared with placebo*;
no benefit in �ETT

p � 0.05. †Followed by 4-h infusions on days 3, 6, and 9.

Adv � adenovirus vector; IC � intracoronary; PCI � percutaneous coronary intervention; PFU � plaque-fo

s in Table 2.
he rate of restenosis did not differ significantly between
CSF and control patients in the randomized, open-label,
IRSTLINE-AMI trial (55,56) or in 3 randomized, double-
lind, placebo-controlled studies (i.e., the STEMMI [Stem
ells in Myocardial Infarction], REVIVAL-2 [22 Regen-

rate Vital Myocardium by Vigorous Activation of Bone

3) Henry et al. (24)
Agent 3

Henry et al. (24)
Agent 4

3 3

0%, CAD not requiring immediate
revascularization,
LVEF �30%, CCS class 2–4
(U.S.)

“No-option” CAD patients,
LVEF �30%, CCS class 2–4
(Europe, Latin America,
Canada)

Ad5FGF-4 Ad5FGF-4

Intracoronary Intracoronary

12 weeks 12 weeks

� ETT � ETT

Exercise treadmill test Exercise treadmill test

� CCS class, coronary events, or death at 1 year, � QOL, time to
ST-segment depression during exercise, proportion of patients
with �30% increase in ETT

High-dose (n � 140)
Low-dose (n � 137)
Placebo (n � 139)

High-dose (n � 35)
Low-dose (n � 43)
Placebo (n � 38)

High-dose: 1010 vp
Low-dose: 109 vp
Placebo � NA

High-dose: 1010 vp
Low-dose: 109 vp
Placebo � NA

larization
py.2 in
from
p*; no
e (not

Potential therapeutic benefit
among older patients with
more severe angina

—

Pooled analysis: placebo effect much greater in men than women.
Women had improved CCS class and ETT with therapy*

group
S

Enrollment ended early when interim analysis indicated that the
primary end point was unlikely to differ significantly between
groups

ise treadmill time; FGF � fibroblast growth factor; LVEF � left ventricular ejection fraction; NA �

ission computed tomography; vp � viral particles; � � change;1 � increase;2 � decline.

Hedman et al. (47) KAT Kastrup et al. (46) Euroinject One

CAD undergoing PCI Severe, stable angina; “no-option” CAD

PL VEGF Plasmid VEGF

ths 3 months

al lumen diameter, % stenosis � Myocardial perfusion

rdial perfusion, exercise tolerance,
dence of new cardiac events,
ascularization, functional class

Safety, wall motion, LVEF, angina

� 37)
� 28)
o (n � 38)

VEGF-A165 (n � 40)
Placebo (n � 40)

� 1010 PFU IC
00 �g IC

VEGF-A165: 0.5 mg

erfusion at 6 months compared
baseline in Ad group*; no

erences among groups

Improved regional wall motion in VEGF
group compared with placebo*
t al. (2
nt 2

EF �3

T

)

evascu
h thera
erapy
llow-u
S scor
point)

lacebo
in RPD
Stable

Ad or

6 mon

Minim

Myoca
inci
rev

Adv (n
PL (n
Placeb

Adv: 2
PL: 2,0

1 in p
with
diff
rming unit; PL � plasmid liposome; VEGF � vascular endothelial growth factor; other abbreviations
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arrow Stem Cells], and G-CSF-STEMI [Granulocyte
olony-Stimulating Factor ST-Segment Elevation Myo-

ardial Infarction] trials) (59–61). However, Kang et al.
64) found restenosis in 2 of 3 patients who received GCSF
lone as adjunctive therapy to primary PCI and in 5 of 7
atients who received both GCSF and infused progenitor
ells as adjunctive treatments. This may have occurred
ecause PCI was performed 4 days after GCSF injection,
hen GCSF-induced leukocytosis and the subsequent in-
ammatory response was peaking. In an uncontrolled study
65), patients received GCSF therapy 2 days after primary
CI, followed 4 days later by the collection and intracoro-
ary injection of mobilized progenitor cells; restenosis was
eported in 8 of 20 patients, and 2 patients experienced MI
etween 2 and 6 months after treatment.
Among 122 patients in 4 studies who received GCSF

herapy soon after acute MI (50,57,60,61), 2 died during the
ollow-up periods (50,61), another experienced subacute
tent thrombosis (60), and a fourth patient underwent
mergency splenectomy for spontaneous splenic rupture

andomized Controlled GCSF Trials* in Patients With Acute MITable 4 Randomized Controlled GCSF Trials* in Patients With

Treatment Group

Valgimigli
et al. (58)

Ince et al. (56)
FIRSTLINE-AMI

GCSF Control GCSF Control†

GCSF dosage 5 �g/kg/day for
4 days beginning
37 � 66 h after
symptom onset

10 �g/kg/day for
6 days beginning
85 � 30 min after
reperfusion

Duration of follow-up 6 months 4 months

n 10 10 25 25

LVEF Increased Increased Increased Unchanged

Perfusion Increased Increased NR NR

LVEDV Unchanged Unchanged Unchanged Declined

LVESV NR NR NR NR

Wall thickening NR NR Increased Increased

arameters displaying significantly better performance than was observed in the alternative treatm
ither insignificant (p � 0.05) or the significance was not reported. *Double-blind: Ripa et al. (60)
l. (56). †No placebo treatment. ‡Decreased infarct size.
AMI � acute myocardial infarction; GCSF � granulocyte colony-stimulating factor; LVEDV � l

nd-systolic volume; NR � not reported.

CSF Trials in Patients With Chronic Ischemic Heart DiseaseTable 5 GCSF Trials in Patients With Chronic Ischemic Heart D

Treatment Groups

Wang et al. (63)

GCSF Control

GCSF dosage 5 �g/kg/day for 6 days

Cell therapy None

Duration of follow-up 2 months

End point assessment SPECT, MRI, echocardiography

n 13 16

LVEF Decreased Decreased

Perfusion Unchanged Unchanged

LVEDV Decreased Increased

LVESV Increased Increased

Myocardial ischemia Decreased Increased
ignificant (p � 0.05), within-group changes from baseline to follow-up are identified with italicized text.
MRI � magnetic resonance imaging; SPECT � single-photon emission computed tomography; other a
57). Wang et al. (63) found no serious vascular adverse
vents in 13 patients who received GCSF therapy for
reatment of severe ischemic heart disease. However, Hill et
l. (62) and Boyle et al. (66) reported serious vascular
dverse events in 2 of 16 patients with CAD and in 1 of 5
atients with chronic ischemic heart disease, respectively,
fter GCSF treatment. There is no evidence of GCSF-
nduced arrhythmia in clinical trials of patients with isch-
mic heart disease, and the results from some animal studies
uggest that GCSF treatment may improve electrical
tability (67).

ranulocyte-macrophage colony-stimulating factor (GMCSF).
MCSF stimulates the growth and differentiation of gran-

locyte and macrophage precursor cells, induces peripheral
onocytosis, impedes monocyte apoptosis (5,68), and in-

reases the number of circulating EPCs, which may then
articipate in regenerative activity (69). In patients with
AD who received a single intracoronary injection of
MCSF, followed by subcutaneous injections every other

ay for 2 weeks afterward, GMCSF was associated with

MI

Ripa et al. (60)
STEMMI

Zohlnhöfer et al. (61)
REVIVAL-2

Engelmann et al. (59)
G-CSF-STEMI

CSF Control GCSF Control GCSF Control

�g/kg/day for
days beginning

–2 days after AMI

10 �g/kg/day for
5 days beginning
5 days after AMI

10 �g/kg/day for
5 days beginning
6 h to 7 days after
symptom onset

6 months 4–6 months 3 months

39 56 58 23 21

eased Increased Increased Increased Increased Increased

NR Increased‡ Increased‡ Unchanged Unchanged

eased Increased Decreased Decreased Increased Increased

reased Decreased Decreased Decreased Decreased Decreased

eased Increased NR NR Increased Increased

oup are identified with bold italicized text. Within-group changes from baseline to follow-up were
höfer et al. (61), and Engelmann et al. (59); single-blind: Valgimigli et al. (58); open-label: Ince et

tricular end-diastolic volume; LVEF � left ventricular ejection fraction; LVESV � left ventricular

e

Hill et al. (62) Boyle et al. (66)

GCSF GCSF

10 �g/kg/day for 5 days 10 �g/kg/day for 4 days

None Intracoronary infusion

1 month 12 months

MRI Angiography

16 5

Decreased Increased

Increased Increased

NR NR

NR NR

Increased Decreased
Acute

G

10
6
1

39

Incr

NR

Incr

Dec

Incr

ent gr
, Zohln
iseas
bbreviations as in Table 4.
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ignificant improvement in electrocardiographic signs of
yocardial ischemia during coronary balloon occlusion and
ith significant improvement in collateral flow index (CFI).
FI was unchanged in patients who received placebo

njections. These benefits likely evolved from cytokine-
nduced angiogenesis or changes in collateral vascular tone,
ather than through a progenitor cell–mediated mechanism,
ecause the mobilization of progenitor cells was low. Im-
rovements in CFI were also reported in a subsequent study
f GMCSF therapy, but 2 of 7 GMCSF-treated patients
xperienced acute MI during the 2-week course of therapy
70). Furthermore, in animal studies of MI, cardiac remod-
ling worsened after treatment with romurtide to induce
MCSF expression (68,71). Thus the mechanism of action

nd potential inflammatory consequences associated with
MCSF must be better understood and controlled before

arger human trials can be considered.
rythropoietin (EPO). EPO is involved in both angio-
enesis and progenitor/stem cell development. Numerous
issues produce EPO in response to hypoxia and metabolic
tress though a mechanism mediated by hypoxia-inducible
actor (HIF)-1, and activation of the EPO receptor inhibits
poptosis (72). EPO is also believed to enhance angiogen-
sis by increasing the proliferation of endothelial cells and
y mobilizing bone marrow–derived cells, including EPCs
73). A long-acting EPO analog, darbepoetin alpha, was
afely administered to patients with acute MI but provided
o functional benefit (74,75). The administration of EPO
o patients with acute MI continues to be investigated in the
ngoing HEBE III (Intracoronary Infusion of Autologous
ononuclear Bone Marrow Cells or Peripheral Mononu-

lear Blood Cells After Primary Percutaneous Coronary
ntervention) and REVEAL (Reduction of Infarct Expan-
ion and Ventricular Remodeling With Erythropoietin
fter Large Myocardial Infarction) trials (NCT00378352,
linicalTrials.gov) (76).
rowth hormone (GH) and insulin-like growth factor

IGF)-1. GH is synthesized by the anterior pituitary gland,
nd the binding of GH to receptors in the myocardium
ncreases IGF-1 synthesis (77). Experimental evidence has
ong suggested a role for the GH/IGF signaling in the

yocardium (8). In experimental models of MI, subcuta-
eous injections of GH significantly increased hypertrophy
f the viable myocardium and improved left ventricular
ystolic function without increasing collagen deposition or
brosis (78,79). Moreover, cardiac stem cells have been
hown to possess growth factor receptors that may partici-
ate in the activation of these cells for cardiac repair (9).
he effect of GH on myocardial growth, cardiac function,

nd IGF-1 levels in patients with nonischemic or ischemic
ardiomyopathy, and in mixed patient populations, has been
nvestigated in several small studies (80–85). Collectively,
he findings suggest that additional investigations with GH
r IGF-1 are warranted, despite concerns about retinopathy

nd other potential long-term side effects. a
ngiopoietin (Ang). Ang1, Ang2, and Ang3/4 are be-
ieved to control the remodeling and stabilization of vessels
uring the later stages of adult vascular development
86,87). Ang1 is a Tyrosine kinase with Ig-like loops and
pidermal growth factor homology domains-2 (TIE2) ag-
nist that promotes vessel survival, inhibits vascular damage,
uppresses inflammatory gene expression, and stimulates
essel remodeling and angiogenesis (88). In rats, Ang1
dministration after acute MI increased vascular density,
nd the vessels appeared to be relatively mature, with
arger-sized lumens (89). In a swine model of chronic
schemia, perfusion improved significantly 4 weeks after
ng1 administration, and the improvement was sustained

hrough week 12 (90). Curiously, Ang1 activity seems to
ppose VEGF-induced angiogenesis (91). Ang2 acts as a
IE2 agonist in EPCs, which increases angiogenesis (92),
ut primarily antagonizes TIE2 in vascular endothelial cells,
hereby reducing endothelial integrity, increasing vessel
ermeability, and inducing vessel destabilization and re-
odeling through, in part, the suppression of Ang1-
ediated activity (93). Thus the influence of Ang2 on

ndothelial cell activity and, by extension, angiogenesis is
omplex and context-dependent. To date, none of the
ngiopoietins have been investigated for treatment of isch-
mic heart disease in clinical studies.

epatocyte growth factor (HGF). HGF is a pluripotent
rowth factor synthesized by the liver. Both HGF and the
GF receptor c-Met can be found in the heart, and cardiac
GF levels are up-regulated after MI in both animal
odels and human subjects (94). HGF can induce both

ro-angiogenic and antiapoptotic effects and is believed to
educe detrimental remodeling after MI (95). HGF has yet
o be investigated for cardiac repair in humans.
lacental growth factor (PlGF). PlGF is a member of the
EGF family of cytokines (96) and directly influences

ngiogenesis by binding to VEGF receptor-1, transactivat-
ng VEGF receptor-2, and enhancing VEGF activity (97).
lGF mediates endothelial cell growth, survival, and migra-

ion (98,99); mobilizes hematopoietic progenitor cells from
he bone marrow; is chemotactic for monocytes and mac-
ophages (2,100,101); and may induce monocytes to release
ytokines that increase the homing of stem cells to the
njured myocardium (102). Results from pre-clinical inves-
igations suggest that PlGF can improve myocardial perfu-
ion (11,103); however, adenoviral PlGF therapy was asso-
iated with greater atherosclerotic intimal thickening and
dventitial neovascularization (104). Before clinical trials
an be initiated, additional pre-clinical studies must dem-
nstrate that PlGF can induce neovascularization without
orsening atherosclerosis.
tem cell factor (SCF). SCF is the ligand of c-kit
CD117), a proto-oncogene receptor tyrosine kinase that is
xpressed on adult HSCs (105–107). Activation of the c-kit
eceptor (107–110) is required for the mobilization of
-kit–positive HSCs and EPCs, and c-kit–positive cells favor-

bly impact cardiac remodeling both directly, through the

http://www.clinicaltrials.gov
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epair and regeneration of infarcted myocardium, and indi-
ectly, through an increase in neoangiogenesis (4,111–117).
CF acts synergistically with colony-stimulating factors to
obilize bone marrow-derived stem cells (106,118), improves

he homing of c-kit–positive bone marrow-derived cells (118),
nd enhances the migration of resident cardiac stem cells to the
eri-infarct zone (119). Combined SCF and GCSF therapy
ncreased myocardial blood flow, but not function, after cir-
umflex artery ligation in baboons (120), and treatment with
CF, GCSF, or both (compared with placebo) reduced mor-
ality in a murine model of MI, but SCF therapy alone did not
mprove left ventricular performance or remodeling (121). The
enefits of combined SCF and GCSF treatment have also
een reported in a mouse infarct-reperfusion model (122).

ractical Considerations

iming of therapy. The cellular environment of infarcted
yocardium is dynamic, so the timing of cytokine admin-

stration is a necessary consideration during treatment. For
xample, the number of GCSF receptors on cardiomyocytes
ncreases markedly soon after MI in rats (51), and prompt

CSF administration has been associated with declines in
ardiomyocyte apoptosis, smaller infarct areas, and de-
reased ventricular dilation (51,123,124), whereas delayed
SCF treatment aggravated left ventricular remodeling in a

orcine myocardial-reperfusion model (124). Four clinical
rials of GCSF therapy administered at different time points
nd for different durations after MI yielded different pat-
erns of efficacy (55,60,61,64).

The time-dependent effects of cytokine administration
fter MI could be either direct or related to the recruitment
f bone marrow-derived progenitor cells. The activity of
one marrow-derived cells may differ depending on the state
f the infarcted myocardium, and the expression of cell-
ignaling molecules may change over time. Wang et al. (30)
ound that the expression of VEGF and stromal cell-derived
actor (SDF)-1, which is involved in the homing of pro-
enitor cells to ischemic tissue, is not acutely elevated in
schemic myocardium (30), and that human plasma levels of
DF-1, VEGF-A, and FGF-2 reach maximum concentra-
ions 2 to 3 weeks after MI (125). In a murine MI model,
ytokines involved in progenitor-cell homing, including
DF-1, were up-regulated immediately after MI, then
own-regulated over a 7-day period, and the delayed ad-
inistration of GCSF (56 days after MI) improved remod-

ling only when SDF-1 expression was enhanced in the
nfarcted tissue. These observations imply that the effective-
ess of cell-mobilizing agents for treatment of MI may
epend on the early, cytokine-mediated recruitment of
obilized stem cells to the injured myocardium (126,127).

afety. Because angiogenic inhibitors can reverse or reduce
he formation of atherosclerotic plaques in animal models
128,129), the pro-angiogenic activity of cytokines could, in
heory, worsen plaque formation or contribute to plaque

estabilization (as noted in the studies of GCSF, GMCSF, r
nd PlGF described above). However, successful angiogenic
herapy may enhance re-endothelialization after vascular
njury and, consequently, impede plaque formation by
uppressing neointimal thickening (130). The long-term
heoretical concerns associated with therapeutic angiogene-
is include an increased risk for neoplastic disease and the
nduction or worsening of retinopathy. No evidence of a link
etween angiogenic cytokines and tumor development or
etinopathy has been reported in clinical trials (131), but
andidate patients must be adequately screened and moni-
ored for malignancies, premalignant conditions, and
etinopathy.
eperfusion injury. In most published animal studies, MI
as induced by ligating the coronary artery, which perma-
ently halts blood flow. However, blood flow is restored in
linical presentations of MI, so the ischemia-reperfusion
odels used by Beohar et al. (124) and Dawn et al. (122)
ore closely reproduce the clinical experience. The release

f cell-homing factors may differ in chronically ischemic and
eperfused cells and could influence the recruitment of
rogenitor cells to the injured tissue. In addition, early,
ustained reperfusion has been shown to reduce left ventric-
lar remodeling after MI (62,132), and this benefit could
bscure the effects of cytokine administration in clinical
rials.

ummary and Future Directions

ytokine therapy could provide an attractive treatment
ption for many cardiovascular diseases. Although the
utcomes from clinical trials of cytokine therapy have failed
o meet expectations, combinations of cytokines, with or
ithout concurrent progenitor cell therapy, or the admin-

stration of agents (e.g., HIF-1 alpha, Sonic hedgehog) that
p-regulate several angiogenic factors simultaneously, war-
ant further investigation. For patients with chronic CAD,
herapy that combines progenitor cell-mobilizing agents
ith the elevated expression of cell-homing factors (e.g.,
DF-1) in ischemic tissue may be particularly valuable. The
ffectiveness of regenerative therapies could also be im-
roved by a more complete understanding of the cellular
nvironment after MI. The growth factors IGF-1 (133) and
GF (134) induce expression of collagen-degrading met-

lloproteinases that could make the extracellular matrix
ore amenable to progenitor cell migration, and researchers

ave begun to investigate other agents that modulate the
nterstitial matrix, including the matrix protein Del-1,
hich coordinates integrin expression (135), and Cyr61,
hich induces angiogenesis by binding to av�5 (136).
pproaches that combine cytokine and cell therapy can be

efined by continuing to characterize the relevant signaling
athways, the optimal magnitude of progenitor cell mobi-

ization, the relative efficiency of subpopulations of bone
arrow–derived cells, and the potential importance of
esident cardiac progenitor cells (9).
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