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We present an error reduction method for obtaining glueball correlators from Monte Carlo simulations of 
SU(3) lattice gauge theory. We explore the scalar and tensor channels at three different lattice spacings. 
Using this method we can follow glueball correlators to temporal separations even up to 1 fermi. We 
estimate the improvement over the naive method and compare our results with existing computations.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Stable low-lying states in pure Yang–Mills theory are called 
glueballs. Remnants of such states are expected to survive in Quan-
tum Chromodynamics (QCD) where however they become un-
stable. No glueball has yet been discovered unambiguously even 
though there are several candidate glueball resonances, such as 
f0(1370), f0(1500), f0(1710), f J (2220) etc. [1]. One reason is that 
glueball states can mix with mesons in the same J PC channel and 
so it is very difficult to unambiguously extract glueball masses ex-
perimentally. It remains nevertheless a very exciting proposition 
and for a recent review on the status of glueball searches we refer 
the reader to Ref. [2].

Glueball masses can be computed in lattice quantum chromo-
dynamics and a lot of effort has been directed towards this com-
putation. However there is still no consensus regarding the mass 
spectrum. It is a difficult computation in lattice QCD with dynam-
ical fermions due to the high masses of the glueballs (> 1 GeV) 
and their mixing with mesonic operators involving quark fields 
in the same symmetry channels. In recent times computations of 
glueball masses in lattice QCD with dynamical fermions have been 
attempted in Refs. [3–5].

Glueball masses are often computed in pure Yang–Mills theory. 
Advantages are that there is no mixing with mesonic operators and 
the glueballs are stable as they cannot decay. Thus it is much eas-
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ier to extract the glueball masses from Monte Carlo simulations of 
pure Yang–Mills theory than lattice QCD with dynamical fermions. 
Nevertheless, even in this theory, glueball correlation functions 
are dominated by statistical noise at large temporal separations 
and contribution from excited states at short separations. Global 
fits become difficult and one often computes the “effective mass” 
which is the logarithm of the ratio of the values of the correlation 
function between successive time slices. If the effective mass does 
not vary over a significant temporal range then one assumes that 
the effective mass is the same as the globally fitted mass.

To remove the effect of excited states, conventional methods 
involve computing correlation matrices with matrix elements be-
tween a large set of interpolating operators constructed from 
smeared or fuzzed links [6] in the relevant symmetry channel.1

The ground state is obtained by diagonalizing the correlation ma-
trix in each channel [8–10]. As it is difficult to follow the correlator 
signal to large physical distances, even using the above techniques, 
one often uses asymmetric lattices with a significantly smaller 
temporal spacing compared to the spatial lattice spacing with the 
expectation to observe a flat behaviour of the effective masses [11,
12] over several time slices.

A different approach is to use noise reduction algorithms. Such 
algorithms have been used in the past for computing the glueball 
spectrum for U(1), SU(2) and SU(3) lattice gauge theories [13–18].

In this article we follow the latter approach. We restrict our-
selves to pure Yang–Mills theory with gauge group SU(3) and 
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Table 1
Simulation parameters for all the lattices. Lattices A, B and C were used for the scalar channel while D, E and F were used for the tensor channel.

Lattice Size β (r0/a) Sub-lattice
thickness

iupd Loop size # meas.

A 103 × 18 5.7 2.922(9) 3 30 2 × 2 1 000 000
B 123 × 18 5.8 3.673(5) 3 25 3 × 3 1 248 000
C 163 × 20 5.95 4.898(12) 4 50 5 × 5 1 024 000

D 123 × 18 5.8 3.673(5) 3 70 3 × 3 5 760 000
E 123 × 20 5.95 4.898(12) 5 100 5 × 5 3 456 000
F 123 × 20 6.07 6.033(17) 5 100 5 × 5 1 536 000
employ only the standard operators in each J PC channel (scalar 
and tensor) but try to follow the correlator to large tempo-
ral separations using a new noise reduction algorithm. Since the 
contamination due to excited states falls off exponentially, we ex-
pect correlators at distances beyond 0.5 fermi to be dominated by 
the ground state.

In Section 2 we describe the algorithm. Section 3 is devoted to 
our results on the correlators and masses for the scalar and tensor 
channels. In Section 4 we discuss the improvement obtained over 
existing conventional methods. Finally, in Section 5 we draw our 
conclusions and outline directions for future studies.

2. Algorithm

We compute glueball correlators using Monte Carlo simulations 
of SU(3) lattice gauge theory with the Wilson gauge action at three 
different lattice spacings for both the scalar and the tensor chan-
nels. For updating the links we use the usual Cabibbo–Marinari 
heat-bath for SU(3) and use three over-relaxation steps for every 
heat-bath step. We set the scale on the lattice through the Som-
mer parameter r0 [19]. Our simulation parameters are given in 
Table 1. The Sommer parameter for our lattices have been com-
puted in [20] and we use those values.

The noise reduction scheme we implement follows the philos-
ophy of the multilevel algorithm. The multilevel algorithm was 
introduced in [21] as an exponential noise reduction technique for 
measuring Polyakov loop correlators in lattice gauge theories with 
a local action. However the principle is general and can be applied 
to other observables as well. In addition to Polyakov loop correla-
tors, it has been used to measure observables such as the Polyakov
loop [22], Wilson loop [23], components of the energy–momentum 
tensor [24] as well as the glueball mass spectrum [13–18].

The main principle of the multilevel algorithm is to compute 
expectation values in a nested manner. Intermediate values are 
first constructed by averaging over sub-lattices with boundaries 
and then the full expectation values are obtained by averaging
over the intermediate values with different boundaries. We refer 
the reader to [15] for details.

For our implementation, we slice the lattice along the temporal 
direction by fixing the spatial links and compute the intermediate 
expectation values of the glueball operators by performing several 
sub-lattice updates. Individual correlators are created using prod-
ucts of the averaged operators at different time slices. The scheme 
is depicted in Fig. 1 and the extents of the sub-lattices and num-
ber of sub-lattice updates along with other simulation parameters 
are shown in Table 1.

The glueball operators between which we compute our correla-
tion function (source and sink) are extended Wilson loops denoted 
by Pab where a, b go over the three spatial directions x, y, z. The 
operators are projected to zero momentum states as usual. We de-
note the temporal separation between the source and sink operator 
by �t . The sizes of the loops used for the different lattices are 
given in Table 1. Correlation functions between large loops have 
the advantage that they have much less contamination from the 
Fig. 1. Multilevel scheme for computing glueball correlators. The time slices marked 
A, B and C are held fixed during the sub-lattice updates. The thick links are the 
ones which are replaced by their multihit averages.

higher excited states compared to those between elementary pla-
quettes. Such an approach was reported in [25]. There, however, 
single exponential fits to the correlators were not possible as the 
data was too noisy. Nevertheless it was observed that glueballs 
seemed to have the largest overlap with loops of spatial extent 
0.5 fermi in each direction. We therefore choose loops of roughly 
the extent r0 × r0 to construct our glueball operators.

Our first noise reduction step is a semi-analytic multihit on the 
SU(3) links [26] with which the Wilson loops are constructed and 
in addition we use sub-lattice updates to obtain the expectation 
values of the glueball operators with very little noise. The choice 
of the number of sub-lattice updates “iupd” is an important pa-
rameter of the algorithm. For the tensor channel, the rule of the 
thumb we follow is that the operator expectation value over the 
sub-lattice updates should be the same order as the square root 
of the correlator at a large value of �t . For the scalar channel the 
same holds but for the connected parts. We compare the over-
all noise reduction of our algorithm with the naive method (where 
operators are constructed from elementary plaquettes and only full 
lattice updates using heat-bath and over-relaxation are used) in 
Section 4.

The multilevel algorithm is very efficient for calculating quanti-
ties with very small expectation values. While the operators in the 
tensor channel viz. E1 = Re(P xz − P yz) and E2 = Re(P xz + P yz −
2P xy) have zero expectation values and are therefore ideal for di-
rect evaluation using the multilevel scheme, the scalar operator 
A = Re(P xy + P xz + P yz) has a non-zero expectation value which 
has to be subtracted to obtain the connected correlator. For the 
scalar channel, we therefore do the simulation in two steps. The 
first step is to determine the expectation value of the glueball op-
erator. This has to be determined very accurately so that the error 
in the expectation value has negligible contribution to the error 
on the correlator. Otherwise the error on the expectation value of 
the operator will dominate the total error and further error reduc-
tion on the correlator would be impossible. We use multi-hit on 
the links to determine the expectation value of the glueball op-
erator. While this was sufficient for our loop size and coupling, 
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Table 2
Glueball masses in lattice units (a denotes the lattice spacing) for all lattices along with the fit parameters. A ∗ on the mass denotes our best estimate for a particular 
coupling and channel.

Scalar channel Tensor channel

# Global fit Effective mass # Global fit Effective mass

Range ma χ2

d.o.f . t-slice ma Range ma χ2

d.o.f . t-slice ma

A 2–9 0.981(3) 1.8 2/3 0.991(2) D 2–7 1.758(9) 32.2 2/3 1.763(2)

3–9 0.961(2) 0.05 3/4 0.977(6) 3–7 1.656(12) 1.98 3/4 1.661(14)

4–9 0.962(5) 0.06 4/5 0.966(22) 4–7 1.585(54)∗ 1.64 4/5 1.605(49)

5–9 0.952(11)∗ 0.066 5/6 0.957(41) 5/6 1.39(19)

6/7 0.89(12)

B 2–9 0.936(4) 5.7 2/3 0.944(1) E 4–10 1.166(13) 3 2/3 1.311(1)

3–9 0.915(2) 0.3 3/4 0.919(4) 5–10 1.115(39)∗ 2.4 3/4 1.223(3)

4–9 0.904(2) 0.05 4/5 0.899(8) 6–10 0.938(17) 0.12 4/5 1.177(8)

5–9 0.911(3) 0.025 5/6 0.909(21) 5/6 1.152(20)

6–9 0.906(8)∗ 0.03 6/7 0.899(53) 6/7 0.951(52)

C 3–10 0.765(3) 1.3 2/3 0.822(1) F 4–10 0.988(10) 3.3 2/3 1.177(1)

4–10 0.7537(9) 0.04 3/4 0.773(2) 5–10 0.929(10) 0.44 3/4 1.070(2)

5–10 0.7510(15)∗ 0.02 4/5 0.755(4) 6–10 0.885(16)∗ 0.16 4/5 1.004(7)

6–10 0.7499(38) 0.03 5/6 0.751(9) 5/6 0.939(10)

6/7 0.734(20) 6/7 0.899(46)

7/8 0.723(39) 7/8 0.869(89)
if necessary a multi-level scheme can also be used for this esti-
mate. Then we directly computed the connected correlator using 
(A −〈A〉) as the operator with a zero expectation value. The choice 
of “iupd” was done in the same way as in the tensor channel.

An alternative to the above is to evaluate the derivative of the 
glueball correlator directly as that does not need a subtraction. 
This was carried out in [15] for the U(1) case. In our current calcu-
lations we found that the subtraction procedure was more efficient 
compared to evaluating the derivative.

We observed one more phenomenon which is particular to this 
algorithm. For the smaller values of �t where most contributions 
come from slices which are within the same sub-lattice, there are 
strong effects due to the short temporal extent of the sub-lattice 
itself. In such cases we were forced to take into account only corre-
lators between those time slices which lay in different sub-lattices. 
We found this effect to be significant only in the tensor channel 
(probably because of the larger value of “iupd” in those cases).

3. Results — masses

In this section we describe our fitting procedures and the 
masses we obtain. All the correlators were fitted to the form

C(�t) = A
(
e−m�t + e−m(T −�t)) (1)

where m is the glueball mass and T is the full temporal extent of 
the lattice. Since the correlator is symmetric about T /2, as usual, 
we fold the data about T /2 and use only one half of the temporal 
range for the fits.

For fitting we use the “non-linear model fit” of Mathematica
and the fit range was decided on the following two criteria: (i) the 
range should extend to as large a value of �t as possible and 
(ii) the fit to the form in Eq. (1) should have a p-value < 0.01 
for both m and A. We found that the p-value for A gave the most 
stringent criterion for accepting the fit. The fit range for all the 
different channels and couplings along with the χ2/d.o.f . are in-
dicated in Table 2.

In addition to masses from global fits, we also compute the ef-
fective masses from the correlators as

ameff = − ln
〈C(�t + 1)〉

〈C(�t)〉 (2)

where a is the lattice spacing. To estimate the error on the effec-
tive masses we take 〈C(�t)〉 to be a jackknife bin and we compute 
masses for 20 such bins. The error on the effective mass is the 
jackknife error computed from the spread of the masses from the 
different bins. The effective masses are also reported in Table 2.

In Fig. 2 we plot the correlators along with the respective fits 
for each channel and coupling. Even though the fits were done on 
the folded data, in the figures we plot the fitted correlator on the 
full range. It can be clearly seen, especially in the tensor channel 
that the correlators have contamination from the excited states for 
the smaller values of �t . The same thing is seen for the effective 
masses. The masses fall at first and then stabilize to a plateau al-
beit with increasing error bars for larger values of �t .

We cross-check our data by comparing them with results in [10,
13,14,16,18]. In [10] scalar and tensor glueball masses were com-
puted on a symmetric lattice with the Wilson action in the β range 
5.6925 to 6.3380 and we compare our results with the data pre-
sented there in Tables 3 and 4. In [13] the scalar mass at β = 5.7
was computed to be 0.929(49) and in [18], from the ratio of par-
tition functions, as 0.935(42). These compare quite well with our 
global fit value of 0.952(11). Our effective masses are also consis-
tent with our global fit values.

In the tensor channel at β = 5.8, the data was noisy and we 
did not get a signal for correlators beyond �t of 7. At this β , we 
report the results from the operator E2 as the corresponding cor-
relators were less noisy. We compare our results with the values 
reported in [10] in Table 4. At β = 5.95, we differ slightly from 
the results in [10] for our fit range between �t = 6 and �t = 10. 
However if we include the point �t = 5 in our fit, the difference 
goes away. The same trend is there in the effective masses as well. 
Between �t = 5 and 6, ameff jumps from around 1.15 to 0.95. At 
β = 5.95 and 6.07 our results are from the operator E1.

4. Results — algorithmic gains

To investigate the advantage of the current algorithm over the 
naive method, we did a few runs for the same computer time 
using both methods. Since it is not yet clear how the algorithm 
behaves as either �t or β changes we report our experience for 
different values of �t and β (see Table 5).

For the lattice D1, we carried out runs for 200 hours. The multi-
level algorithm had an error of 3% at �t = 3 which is just below r0
(see Table 1), while the naive algorithm had an error of 81%. It 
would be interesting to compare the performance at a value of �t
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Fig. 2. The correlators along with their fits at the different β values. The left column (with boxes) is for the scalar channel while the right column (with circles) is for the 
tensor channel.
between r0 and 2r0. So we choose points around 1.5r0 (in this 
case �t = 6). Even after 200 hours of runtime we do not have 
a signal at that distance for the naive method. So to estimate 
the % error we multiply the naive correlator at the largest value of 
�t where we have a signal (i.e. �t = 3) by corrmultilevel(�t = 6)/

corrmultilevel(�t = 3). Doing this we get the % error to be 850% for 
the naive method while it is 29% for the multilevel scheme. Thus 
for the tensor channel at β = 5.8 we estimate that the error re-
duction algorithm produces an error which is between 27 times 
smaller than the naive method at both �t = 3 and 6. Since the er-
ror ∝ time2 we estimate the new method is more efficient by at 
least a factor of 729 or so.

At β = 5.95 (lattice E1), the runs were for about 100 hours. 
There at �t = 3 the multilevel algorithm produced an error of 
about 4% while the naive algorithm had an error of 75%. Doing 
a similar estimate as β = 5.8 we estimate that at 1.5r0 (�t = 8) 
the errors are 150% for the multilevel algorithm while it is about 
3000% for the naive method. At this β value therefore, the gains in 
terms of % error is about a factor 20. At β = 6.07, we did not get 
a signal for the naive algorithm for any �t other than �t = 1 even 
Table 3
Comparison of scalar glueball masses. A ∗ on the β indicates that it is from this 
work. Other entries are from [10]. A † on the β indicates that the corresponding 
mass was obtained by exponential interpolation between neighbouring β values 
reported in [10]. r0 for β values in [10] were obtained by interpolating and ex-
trapolating the values presented in [20].

β ma L mL mr0

5.7∗ 0.952(11) 10 9.52(11) 2.78(4)

5.6993 0.969(18) 8 7.75(14) 2.83(6)

5.6925 0.941(25) 8 7.53(20) 2.70(8)

5.8∗ 0.906(8) 12 10.87(10) 3.328(34)

5.8 0.945(21) 10 9.45(10) 3.471(82)

5.7995 0.909(15) 10 9.09(15) 3.335(60)

5.95∗ 0.7510(15) 16 12.016(24) 3.678(16)

5.95† 0.743(12) – – 3.639(68)

after about 300 hours of runs. Thus we see that the gain has very 
little dependence on �t but does depend on β .

For the scalar channel using lattice A, runs were carried out for 
about 3850 min. Comparing the errors around 1.4r0, we got a gain 
of about 5.7 in terms of errors or 32 in terms of time. At β = 5.8
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Table 4
Comparison of tensor glueball masses. Labelling convention is identical to Table 3.

β ma L mL mr0

5.8∗ 1.525(35) 8 12.20(28) 5.60(14)

5.8∗ 1.585(54) 12 19.02(65) 5.82(21)

5.8 1.57(6) 10 15.7(6) 5.77(23)

5.7995 1.52(5) 10 15.2(5) 5.58(19)

5.95∗ 1.115(39) 12 11.26(20) 5.46(21)

5.95† 1.148(19) – – 5.62(11)

6.07∗ 0.885(16) 12 10.62(19) 5.34(11)

6.07† 0.913(13) – – 5.51(9)

6.0625 0.922(13) 16 14.75(21) 5.49(9)

Table 5
Simulation parameters for additional lattices on which comparisons with the naive 
method were carried out. Lattices A1, B1 and C1 were used for the scalar channel 
while D1, E1 and F1 were used for the tensor channel. (th denotes the sub-lattice 
thickness.)

Lattice Size β th iupd Loop size

A1 63 × 16 5.7 2 20 2 × 2
B1 63 × 18 5.8 3 25 3 × 3
C1 83 × 24 5.95 4 50 5 × 5

D1 63 × 18 5.8 3 50 3 × 3
E1 83 × 30 5.95 5 100 5 × 5
F1 103 × 30 6.07 6 130 6 × 6

Table 6
Comparison of error bars between the naive and error reduction methods. Please 
see the text in Section 4 for a discussion on these values. errn stands for error in 
the naive method while errml denotes error in the multilevel scheme. Gain is in 
terms of time and is given by (errn/errml)

2.

Scalar channel Tensor channel

# Time (min) errn
errml

Gain # Time (min) errn
errml

Gain

A 3850 5.7 32 D1 12 000 27 729
B1 1000 5.5 30 E1 5775 20 400
C1 1100 18 324 F1 15 000 – –

(lattice B1) the runs were carried out for about 1000 min. In this 
case we have a signal at 1.5r0 for both methods and we get an 
error of 13% for the multilevel scheme while it is about 70% for 
the naive method. Thus the gain in terms of % error is about 5.5 
or in terms of time about 30. At β = 5.95 in the scalar channel, 
again we do not have a signal at 1.5r0 using the naive method and 
are forced to use the same method as in the tensor channel to es-
timate the errors. At �t = 3 we obtain the errors to be 2% and 
37% for the multilevel and the naive methods respectively, while 
at 1.5r0 they are 29% and 500% (estimated) respectively. Thus the 
ratio of errors is about 18 or gain in terms of time 324. A compi-
lation of our results is presented in Table 6.

In addition to the above, at β = 5.7 we have one more compar-
ison using the lattice A1. There we obtain a gain of 2.5 in terms 
of errors or 6 in terms of time. Thus the gain seems to increase 
with increase in volume. We expect this will help us go to larger 
lattices.

Error reduction techniques only reduce statistical errors. There 
are systematic errors as well and the most important among that 
are finite volume effects. In our lattices with small physical vol-
umes (B1 to F1), we encounter them. For example at β = 5.8 (lat-
tices B1 and D1) the mass in the tensor channel is smaller than 
the mass in the scalar channel which is the expected behaviour 
at small volumes [27–29]. For a recent study of finite volume ef-
fects we refer the reader to [30]. To mitigate these we choose our 
lattices (A to F) such that mL > 9 in all cases [31].
In Tables 3 and 4 we note the values of mL for our calculation 
along with those in [10] for an easy comparison. mL varies be-
tween 9.5 and 12 in the scalar channel and between 10.5 and 19 
in the tensor channel for our simulations.

Tables 3 and 4 also list the values of mr0 for our measurements. 
In the scalar channel it varies between 2.8 and 3.6. Thus there are 
significant lattice spacing effects. We therefore need to go to finer 
lattices before a continuum limit can be attempted. In the tensor 
channel, the variation is significantly less with mr0 varying from 
5.7 to 5.4. However the error bars on these are still too high and 
at least one more β value and higher statistics is desirable before 
attempting a continuum limit extrapolation.

5. Conclusions

Extraction of glueball masses from correlators is a difficult 
problem in lattice QCD due to a very low signal to noise ratio at 
large Euclidean times. In this article we present a new method, 
based on the multilevel scheme, to enhance the signal to noise 
ratio in glueball correlators. We observe that this error reduc-
tion technique works quite well at least in pure gauge theories. 
For a given computational cost, the improvement over the naive 
method in the signal to noise ratio is several times to more than 
an order of magnitude. We are able to follow the correlator to tem-
poral separations of about 1 fermi and can perform global fits to 
the correlators between 0.5 and 1 fermi. Our effective masses also 
show a plateau in the same range obtained from the global fits.

We improve upon the existing error bars on the masses in the 
scalar channel and in the tensor channel our error bars are compa-
rable to the existing ones in the range of β that we have looked at. 
It is of course of interest to reach the continuum limit and we are 
continuing our runs at finer and larger lattices and will report our 
results in subsequent publications.
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