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Abstract

Let λ̄ be any atomless and countably additive probability measure on the product space {0,1}N with
the usual σ -algebra. Then there is a purely finitely additive probability measure λ on the power set of
a countable subset T ⊂ T̄ such that Lp(λ̄) can be isometrically isomorphically embedded as a closed
subspace of Lp(λ). The embedding is strict. It is also ‘canonical,’ in the sense that it maps simple and
continuous functions on T̄ to their restrictions to T .
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A central goal of classical analysis is to identify the classes of functions that can be mean-
ingfully integrated. The standard theory endows a space with a σ -algebra and a countably
additive probability measure, then studies integrals of measurable functions on that space. This
gives rise to the classic Lp-spaces that have been the backbone of integration theory in many
fields.

There are, however, many situations in probability where the classical approach is inade-
quate. Examples are too numerous to exhaustively list here, so I confine myself to just a few. In
his Foundation of Statistics, Savage [14] advocated that acts should encompass all functions on
a given state space. He argued that requiring acts to be measurable with respect to some restric-
tive σ -algebra (i.e., smaller than the power set) rests on questionable normative and behavioral
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grounds. A similar theme resurfaces in Dubins and Savage’s classic book [9] on the theory of
gambling and stochastic processes. Another context where standard measurability requirements
are restrictive is in modeling functions that oscillate excessively. An example is the problem of
“chattering” approximate solutions to optimal control problems (e.g., Kushner [12]). Section 4
explains how the analysis of this paper can be used to model chattering controls. Other exam-
ples where similar phenomena occur arise in modeling complexity (Al-Najjar, Anderlini, and
Felli [3]), modeling randomness in large populations (Al-Najjar [1]), and in the study of large
games (Al-Najjar [2]).

In these and other contexts a theory of integration that dispenses with measurability require-
ments may be preferable on both conceptual and technical grounds. The approach proposed
here is integration with respect to finitely additive probability measures on the power set of a
given space. Of course, the theory of integration with respect to finitely additive measures has
been known for almost as long as its standard countably additive counterpart. What hampered
its adoption is the lack of tractability: Key limit theorems fail, the Radon–Nikodym theorem is
not valid, and Lp spaces are not complete, to name just a few difficulties. This paper provides a
setting to address these issues.

For simplicity, I focus on the probability space (T̄ , B̄, λ̄) where T̄ = {0,1}N ,1 B̄ is the
σ -algebra generated by the product topology on T̄ , and λ̄ an atomless, countably additive prob-
ability measure on B̄.

The main result of this paper is that there is a continuous linear operator Φ :Lp(λ̄) → Lp(λ),
where λ is a purely finitely additive probability measure on the power set 2T̄ . In fact, λ has
countable support T ⊂ T̄ and the function space Lp(λ) is complete. The operator Φ is an iso-
metric isomorphism between Lp(λ̄) and a closed linear subspace H ⊂ Lp(λ). The embedding is
‘canonical’ in the sense that there is a unique such Φ mapping simple and continuous functions
on T̄ to their corresponding restrictions to T .

To the extent that Lp spaces are the objects of interest, the above shows that there is nothing
to lose in working with Lp(λ) rather than the standard Lp(λ̄). On the other hand, Lp(λ) is
strictly richer Lp(λ̄). In fact, when p = 2, Lp(λ) has an uncountable orthogonal set, and hence
non-separable. This may seem puzzling at first, since T̄ contains T and thus, naively, should
have richer spaces of functions. The puzzle is resolved by noting that B̄-measurability severely
restricts the class of admissible functions on T̄ , while any function on T is measurable and every
bounded function is integrable.

The analysis of this paper hinges on the completeness of Lp(λ) which, for 1 � p < ∞, is not
guaranteed in the finitely additive setting. Many useful characterizations of the completeness of
Lp(λ) (such as λ having the Radon–Nikodym property) were reported by Gangopadhyay [10],
Gangopadhyay and Rao [11] and Basile and Bhaskara Rao [4]. The results in this paper are made
possible by the work of Blass, Frankiewicz, Plebanek, and Ryll-Nardzewski [8] who provide a
simple sufficient condition for completeness. This paper subscribes to a broader methodology of
using finitely additive spaces to overcome difficulties appearing in standard settings. An interest-
ing recent illustration is Berti, Regazzini, and Rigo’s study [5] of Brownian motion.

1 The analysis is conducted here for the product space T̄ = {0,1}N for simplicity. It can be readily generalized to other
spaces, including [0,1], at the expense of more cumbersome notation and arguments.
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2. Embedding theorem

Let B̄k denote the algebra on T̄ generated by the first k coordinates. Note that
⋃∞

k=1 B̄k is
itself an algebra and that B̄ is the σ -algebra it generates.

For the remainder of this paper, fix a countable dense subset T ⊂ T̄ and let Σ denote its power
set. Define Bk = {B ∩T : B ∈ B̄k}. A function f̄ : T̄ →R (respectively f :T → R) is simple if it
is measurable with respect to B̄k (respectively Bk) for some k. Let S̄ (respectively S) denote the
set of all simple functions on T̄ (respectively T ), and note that S̄ and S are linear spaces. Define
φ : S̄ → RT by φ(f̄ )(t) ≡ f̄ (t), t ∈ T , i.e., φ(f̄ ) is the restriction of f̄ to T . The next lemma is
obvious:

Lemma 2.1. φ is a linear isomorphism from S̄ onto S .

In light of this lemma, we shall often drop the ‘¯’ in referring to B̄k , S̄ and the sets and
functions they contain. It is also worth noting that the restriction to T of a continuous function
c̄ : T̄ → R is uniformly continuous. Conversely, any uniformly continuous function on T has a
unique continuous extension to T̄ .

A critical fact underlying the analysis of this paper is the completeness of Lp(λ), 1 � p < ∞.
Gangopadhyay [10], Gangopadhyay and Rao [11] and Basile and Bhaskara Rao [4] established
that completeness of Lp spaces on finitely additive measure spaces is equivalent to a property
which, in our context, is:

(AP) For any increasing sequence of sets A1,A2, . . . there is a set A such that λ(A) =
limk→∞ λ(Ak) and for every k, λ(Ak − A) = 0.

Blass, Frankiewicz, Plebanek, and Ryll-Nardzewski [8] showed that, when the underlying space
is the integers and λ is an extension of the density, (AP) holds when λ is defined in terms of a free
ultrafilter on the integers containing a thin set; i.e., a set X ⊂ N which, when enumerated in an
increasing manner l1 < l2 < · · · , satisfies ln−ln−1

ln
→ 1. The following lemma therefore ensures

that Lp(λ) is complete:

Lemma 2.2. For any atomless and countably additive probability λ̄ on (T̄ , B̄), there is an enu-
meration {t1, . . .} of T and a free ultrafilter U on the positive integers containing a thin set
{l1, . . .} such that:

λ̄(B) = U-lim
n

λn(B), ∀B ∈
∞⋃

k=1

Bk,
2 (1)

where λn is the uniform distribution on {t1, . . . , tln}. The set function

λ(A) ≡ U-lim
n

λn(A), A ⊂ T , (2)

is a finitely additive probability measure on 2T .

Proof. Let {t∗1 , . . .} be an arbitrary enumeration of T . Set T0 = ∅. For k = 1, . . . find a finite set
Tk ⊂ T such that:

2 For a sequence of real numbers {xn}, U-limn xn = α means: {n: |xn − α| < ε} ∈ U for every ε > 0.
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1. {t∗1 , . . . , t∗k } ∪ Tk−1 ⊂ Tk ,

2. #Tk−#Tk−1
#Tk

> 1 − 1
k

,3

3. | #(B∩Tk)
#Tk

− λ̄(B)| < 1
k

, ∀B ∈ Bk.

This can be done since T is dense and Bk is finite.
Let {t1, . . .} be any sequence of distinct elements in T such that Tk = {t1, . . . , t#Tk

}. That is,
{t1, . . .} is an enumeration of T that is consistent with the Tk’s.

Let U be a free ultrafilter that contains the sequence of integers {#T1, #T2, . . .} and set
ln = #Tn. By the construction above, {ln} is thin and λn(B) → λ̄(B), so λ(B) = λ̄(B). That λ is a
finitely additive probability on 2T is well known and easy to verify (see, e.g., Blass, Frankiewicz,
Plebanek, and Ryll-Nardzewski [8]). �

Our use of integration on finitely additive measure spaces follows Bhaskara Rao and Bhaskara
Rao [6]. The next lemma is obvious:

Lemma 2.3. Suppose that λ̄ and λ are as in Lemma 2.2. Then φ preserves integrals: for every
f ∈ S ,

∫
B

f dλ̄ =
∫
B

φ(f )dλ, ∀B ∈
∞⋃

k=1

Bk.

For probability measures λ̄ and λ on (T̄ , B̄) and (T ,Σ), the spaces Lp(λ̄) and Lp(λ) are
defined in the usual way.4 We shall use ‘≡p,ν ’ and ‘[·]p,ν ’, ν ∈ {λ, λ̄}, to denote equivalence
relationships and equivalence classes. We typically drop p and ν when they are clear from the
context. In fact, we will drop references to equivalence classes when there is no risk of ambiguity.
Thus, for a function Φ defined on Lp(λ̄), we will write Φ(f̄ ) instead of Φ([f̄ ]).

The following is the paper’s main embedding theorem:

Theorem 1. For 1 � p < ∞ and any atomless and countably additive probability measure λ̄ on
(T̄ , B̄), there is a purely finitely additive probability measure λ on (T ,Σ) and a unique bounded
linear operator Φ :Lp(λ̄) → Lp(λ) such that

Φ(f ) = [
φ(f )

]
, ∀f ∈ S.

The operator Φ preserves integrals: for every [f̄ ] ∈ Lp(λ̄),
∫
B

f̄ dλ̄ =
∫
B

Φ(f̄ ) dλ, ∀B ∈
∞⋃

k=1

Bk. (3)

In fact, Φ is an isometric isomorphism onto a closed linear subspace H ⊂ Lp(λ); that is, Φ is
one-to-one and ‖Φ(f̄ )‖ = ‖f̄ ‖ for every [f̄ ] ∈ Lp(λ̄).

For p = 2, Φ also preserves inner products: (f̄ |ḡ) = (Φ(f̄ )|Φ(ḡ)) for every f̄ , ḡ ∈ L2(λ̄).

3 The notation # denotes the cardinality of a finite set.
4 For the theory of Lp spaces on finitely additive measure spaces, see Bhaskara Rao and Bhaskara Rao [6].
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The theorem establishes an embedding of equivalence classes of functions. It does not claim
that one can map arbitrary measurable subsets of T̄ to subsets of T in any sensible way. Notice
also that two functions f and g such that f − g is a null function5 are Lp-equivalent and thus
correspond to the same element of Lp(λ). But it is possible that |f (t) − g(t)| > 0 for every t ,
since a null function need not be equal to 0 almost everywhere in the finitely additive setting. The
point is that the difference between f and g can be made ‘infinitely’ small, and thus irrelevant
from the perspective of Lp spaces.

Proof of Theorem 1. Define Φ on S by Φ(f ) ≡ [φ(f )]. Lemma 2.3 and Eq. (3) readily imply
that Φ is uniformly continuous. Since S is dense in Lp(λ̄) and Lp(λ) is complete, Φ has a unique
uniformly continuous extension from Lp(λ̄) into Lp(λ) (Royden [13, Proposition 11, p. 149]),
which we shall also denote by Φ .

To avoid repetition, we shall assume in the remainder of the proof that f̄ , ḡ ∈ Lp(λ̄) and
fn → f̄ and gn → ḡ in Lp; all functions indexed by n are simple.

To check that Φ is linear, take any pair of real numbers a and b, then

Φ(af̄ + bḡ) = Φ
(

lim(afn + bgn)
)

= limΦ(afn + bgn)

= a limΦ(fn) + b limΦ(gn)

= aΦ(f̄ ) + bΦ(ḡ).

A similar argument shows that Φ preserves inner products when p = 2:

(f̄ |ḡ) = lim(fn|gn)

= lim
(
Φ(fn)|Φ(gn)

)
= (

Φ(limfn)|Φ(limgn)
)

= (
Φ(f̄ )|Φ(ḡ)

)
.

Φ is an isometry since:∥∥Φ(f̄ )
∥∥ = ∥∥Φ(limfn)

∥∥ = lim
∥∥Φ(fn)

∥∥ = lim‖fn‖ = ‖f̄ ‖.
Φ is obviously one–one since for any f̄ and ḡ, ‖Φ(f̄ ) − Φ(ḡ)‖ = ‖f̄ − ḡ‖. �

The next lemma shows that Φ preserves continuous functions:

Lemma 2.4. Let c̄ : T̄ → R be any continuous function and c is its restriction to T . Then
c ∈ Φ(c̄).

Proof. In this proof we will explicitly distinguish between simple functions on T̄ and T . Let {f̄n}
be a sequence of simple functions converging uniformly to c̄ on T̄ (such sequence exists using an
argument similar to that in Bhaskara Rao and Bhaskara Rao [6, p. 137]). Since supt∈T |fn(t) −
c(t)| = supt∈T̄ |f̄n(t)− c̄(t)|, the sequence {fn} converges uniformly on T , hence ‖fn − c‖ → 0.
On the other hand, the continuity of Φ implies: [fn] = [φ(f̄n)] = Φ(f̄n) → Φ(c̄) in Lp . That is,
for any c′ ∈ Φ(c̄), we have ‖fn − c′‖ → 0. But then ‖c − c′‖ = 0, and c ∈ Φ(c̄) as required. �

5 That is, λ{|f − g| > ε} = 0 for every ε > 0 (Bhaskara Rao and Bhaskara Rao [6, p. 88]).
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3. How rich is Lp(λ)?

Lp(λ) strictly includes Lp(λ̄). To see this, let M denote the set of all functions s :T → {0,1}
endowed with the σ -algebra M generated by all events of the form {s: s(t) = 0}, t ∈ T . Let
P denote the (countably additive) probability measure on (M,M) generated by i.i.d. flips of a
balanced coin for each t ∈ T . By the law of large numbers, there is A ⊂ M with P(A) = 1 such
that any s ∈ A satisfies∫

B

s dλ = 0.5λ(B), for all B ∈
∞⋃

k=1

Bk. (4)

But for any such s there can be no measurable function s̄ on T̄ such that s ∈ Φ(s̄). For if this
were true, then s̄ must satisfy:∫

B

s̄ dλ̄ = 0.5λ̄(B), for all B ∈
∞⋃

k=1

Bk.

The indefinite integral on the LHS is a finitely additive set function on
⋃∞

k=1 Bk ⊂ B̄. But then it
must be countably additive on

⋃∞
k=1 Bk , and thus admits a unique countably additive extension

ν̄ to B̄ (Billingsley [7, Theorems 2.3 and 3.1, respectively]). This implies:

ν̄(A) ≡
∫
A

s̄ dλ̄ = 0.5λ̄(A), ∀A ∈ B̄,

So s̄ may be taken to be the constant function 0.5. Since s takes values in {0,1}, Lemma 2.4
implies that s /∈ Φ(s̄).

We have thus shown:

Theorem 2. For every 1 � p < ∞, Lp(λ) − Φ(Lp(λ̄)) �= ∅.

For p = 2 we can get a sharper result:

Theorem 3. L2(λ) has an uncountable number of orthogonal elements and is thus not separable.

Proof. Let (M,M), P and A be as above. For s ∈ A let ŝ = s = 0.5, and define Â ≡ {s − 0.5,

s ∈ A}. Thus, Â is the same as A except that each of its members has mean zero.
Choose ŝ1 ∈ Â. Let ‘⊥’ denote orthogonality in either Lp(λ̄) or Lp(λ). We show that for each

ordinal α > 1 but strictly smaller than the first uncountable ordinal ℵ1 we can choose ŝα ∈ Â

such that ŝα ⊥ ŝβ whenever β < α. In this case, {ŝα: 1 � α < c} is an uncountable collection of
orthogonal elements of L2(λ), as required.

Suppose that ŝβ has been defined for every β < α < c. Since α < ℵ1, the set of such β’s is
countable. For a given such β , define Zβ ≡ {s ∈ {0,1}T : ŝ ⊥ ŝβ}. The law of large numbers
implies P(Zβ) = 1. Since {Zβ : β < α} is a countable collections of P -measure 1 sets and P is
countably additive, it follows that P(

⋂
β<α Zβ) = 1. Since P is atomless, the set( ⋂

β<α

Zβ

)
∩ Â

is uncountable (hence non-empty!). Any choice of ŝα in this set has the desired properties. �
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4. Representation of Lp(λ) − Φ(Lp(λ̄))

What do points in Lp(λ)−Φ(Lp(λ̄)) correspond to? The next theorem answers this question.

Theorem 4. For every bounded f :T → R there is a B̄-measurable function f̄ : T̄ → R such
that ∫

B

f̄ dλ̄ =
∫
B

f dλ, ∀B ∈
∞⋃

k=1

Bk. (5)

f̄ is unique (up to equivalence). If p = 2, then Φ(f̄ ) is the orthogonal projection of f on
Φ(L2(λ̄)):∥∥f − Φ(f̄ )

∥∥ � ‖f − f ′‖, ∀f ′ ∈ Φ
(
L2(λ̄)

)
. (6)

The following commutative diagram illustrates the theorem for the case p = 2:

f Theorem 4

Projection on
Φ(L2(λ̄))

f̄

Φ

Φ(f̄ )

For a concrete example, take any function s :T → {0,1} satisfying Eq. (4). How should s be
represented in Lp(λ̄)? Theorem 4 represents it (up to equivalence) as the constant function 0.5,
which is the best one can do to ‘smooth out’ the wildly fluctuating s under the constraint of B̄-
measurability. The intuition is particularly sharp in the case p = 2: Theorem 4 may be interpreted
as extracting the ‘measurable part’ of a function, in the sense of projecting it on the linear space
spanned by ∪∞

k=1Bk-measurable functions.

Proof of Theorem 4. Define

ν̄(B) ≡
∫
B

f dλ, B ∈
∞⋃

k=1

Bk. (7)

Then ν̄ is a finitely additive set function on
⋃∞

k=1 Bk ⊂ B̄. Using similar argument as above, ν̄ is
countably additive and so must have a unique countably additive extension to B̄, which we shall
also denote by ν̄.

Next we show that v̄ is absolutely continuous with respect to λ̄.6 Define

fk(t) ≡
{

ν̄(Bk(t))/λ̄(Bk(t)) if λ̄(Bk(t)) > 0,

0 otherwise,
(8)

where B̄k(t) is the smallest (by set inclusion) set in Bk containing t . Then the sequence of func-
tions {fk}∞N=1 is a martingale under λ̄ and thus converges λ̄-a.e. to a B̄-measurable function
f̄ : T̄ → R ∪ ∞ (Shiryayev [15, pp. 492–493]). Theorem 1, p. 493, in the same reference states

6 Unlike the earlier argument, this requires proof since ν̄ is defined in terms of λ and not λ̄. In the latter case absolute
continuity of ν̄ is guaranteed by definition.
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that ν̄ is absolutely continuous with respect to λ̄ if ν̄({t : f̄ (t) = ∞} = 0, in which case f̄ is its
Radon–Nikodym derivative with respect to λ̄. But whenever λ̄(Bk(t)) > 0 we have

fk(t) ≡ ν̄(Bk(t))

λ̄(Bk(t))
≡

∫
Bk(t)

f dλ

λ̄(Bk(t))
� (supT |f |) λ̄(Bk(t))

λ̄(Bk(t))
= sup

T

|f | < ∞.

Thus, ν̄({t : f̄ (t) = ∞} = 0, as required. The uniqueness of f̄ follows from the uniqueness of the
Radon–Nikodym derivative.

Now assume that p = 2. Clearly, it is sufficient to verify Eq. (6) for f ′ ∈ S . Specifically,
assume that f ′ is measurable with respect to Bk for some k. Let fk be the function given in
Eq. (8). Then, fk is the conditional expectation (hence the orthogonal projection) of f̄ on Bk , so

E(f |Bk) = fk = E(f̄ |Bk).

Hence, for every l � k,

‖f − f ′‖ �
∥∥f − E(f |Bk)

∥∥ = ∥∥f − Φ
(
E(f̄ |Bk)

)∥∥ �
∥∥f − Φ

(
E(f̄ |Bl )

)∥∥.

By Levy’s theorem (Shiryayev [15, p. 478]) E(f̄ |Bl) → E(f̄ |B) = f̄ , λ̄-a.e., hence in L2-norm
since f is bounded. Since Φ is continuous, Φ(E(f̄ |Bl)) → Φ(f̄ ) and the result follows. �

As a further illustration, consider the following example, motivated by Kushner [12]. Let λ̄

be the uniform distribution on T̄ and let fn : T̄ → {0,1}, n = 1,2, . . . , be the sequence of func-
tions fn(t) = sign(sinnt), where t is viewed as the binary expansion of a real number. Clearly,
{fn} does not converge in Lp . On the other hand, for any continuous function c̄ : T̄ ×{0,1} → R,∫

T̄

c̄
(
t, fn(t)

)
dλ̄ →

∫

T̄

[
f̂ (t) c̄(t,1) + (

1 − f̂ (t)
)
c̄(t,0)

]
dλ̄, (9)

where f̂ is the constant function 0.5 on T̄ . That is, the sequence {fn} converges to a distribution
f̂ that puts equal weight on c̄(t,1) and c̄(t,0) at each t . The mode of convergence in Eq. (9)
is known as compact-weak convergence (see Kushner [12, p. 48]). If we interpret T̄ to be the
interval [0,1], then {fn} may be viewed as a sequence of ordinary controls and f̂ is a relaxed
control. Relaxed controls are artifacts introduced to ensure the closure of the space of ordinary
controls.

Using the space T introduced in this paper, in this example any function s satisfying Eq. (4)
is an ordinary control such that∫

T

c
(
t, fn(t)

)
dλ →

∫
T

c
(
t, s(t)

)
dλ (10)

for every uniformly continuous c. That is, in this example, it is not necessary to use relaxed
controls. To establish Eq. (10), we need to show that∫

T

c
(
t, s(t)

)
dλ =

∫
T

[
0.5 c(t,1) + 0.5 c(t,0)

]
dλ,

and so it suffices to show that∫
s(t)c(t,1) dλ = 0.5

∫
c(t,1) dλ. (11)
T T
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Suppose that {cn} is a sequence of simple functions that converge uniformly to c. Then the
sequence of functions t �→ s(t)cn(t) also converges uniformly to t �→ s(t)c(t). The result now
follows from that facts that Eq. (11) holds for each cn and that uniform convergence preserves
integration (e.g., Bhaskara Rao and Bhaskara Rao [6, Theorem 4.4.20]).
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