
File: 641J 194801 . By:BV . Date:07:07:07 . Time:11:49 LOP8M. V8.0. Page 01:01
Codes: 3815 Signs: 1983 . Length: 50 pic 3 pts, 212 mm

Journal of Number Theory � NT1948

journal of number theory 57, 385�408 (1996)

The Igusa Local Zeta Function Associated with the
Singular Cases of the Determinant and the Pfaffian

Margaret M. Robinson*

Department of Mathematics, Statistics, and Computer Science, Mount Holyoke College,
South Hadley, Massachusetts 01075

Communicated by D. J. Lewis

Received February 7, 1995

This paper describes the theory of the Igusa local zeta function associated with
a polynomial f (x) with coefficients in a p-adic local field K. Results are given in
two cases where f (x) is the determinant of a Hermitian matrix of degree m with
coefficients in: (1) a ramified quadratic extension of K; and (2) the unique
quaternion division algebra over K. � 1996 Academic Press, Inc.

1. Introduction

To an arbitrary polynomial f (x) in n variables with coefficients in a local
field K we associate a distribution | f | s on K, called the ``complex power''
of f (x) as

| f | s (8)=|
Kn

| f (x)| s
K 8(x) dx,

in which | } |K is an absolute value in K, 8 is a Schwartz�Bruhat function,
and dx is a Haar measure on Kn. The complex parameter s above is restricted
to the right half plane and a fundamental theorem states that | f | s has a
meromorphic continuation to the whole s-plane. Furthermore, if K is a
p-adic field with q as the cardinality of its residue field, then | f | s (8) is a
rational function of t=q&s. This theorem was proved by Atiyah, Bernstein,
S. I. Gel'fand, and Igusa in several papers published between 1969 and
1975 [1, 3, 9]. In the p-adic case, these complex powers are called Igusa
local zeta functions. Any discussion of developments in this field should
also mention the earlier works of Gel'fand and Shilov [7] in which this
theorem was proved for a quite general f (x) and the works of Sato and
others on prehomogeneous vector spaces [18, 19].
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In the p-adic case the theory of complex powers is not as well under-
stood as it is in the Archimedean case. For example, in the Archimedean
case the real poles of | f | s (8) are known to be the zeros of the Bernstein
polynomial [2] and hence by Malgrange [14] related to an eigenvalue of
the local monodromy of f. Igusa has conjectured a similar relationship in
the p-adic case [12]. For an excellent survey of the conjectures and results
surrounding the Igusa local zeta function, please see Denef's report
[4] and the work of Meuser [15, 16, 17]. Motivated by the need to have
a better understanding of the p-adic case, Igusa has determined the local
zeta function Z(t)=| f | s (8) for a large number of group invariants f (x),
where 8=,X 0 is the characteristic function of the lattice of integral points
of Kn. In this paper, results are given where f (x) is the determinant of a
Hermitian matrix of degree m with coefficients in: (1) a ramified quadratic
extension of K; and (2) the unique quaternion division algebra over K.

These two cases complete the determination of local zeta functions under
the following classification. Let C be a composition algebra over a number
field F, denote by X the vector space of Hermitian matrices of degree m
with coefficients in C and by f (x) the determinant (or the generic norm) of
X. For any p-adic completion Fv of F with a residue field of qv elements,
denote the lattice of integral points of Xv=X�Fv by X 0

v . In this situation
the local zeta function associated to f (x) is

Z(t)=|
X v

0
| f (x)| s

v dx,

in which | } | v is the absolute value on Fv , dx is a Haar measure on Xv

and s is a complex variable in the right half plane. By the general theorem
mentioned above, Z(t) is always a rational function of t=q&s

v . Under this
classification Z(t) has been determined for almost all v [10], i.e. excluding
a finite number of singular v's. By a classical theorem [13] there are four
types of C ; they are F itself, a quadratic extension of F, a quaternion
algebra over F, and an octonion algebra over F. Of these types (1) and (2)
above (where K=Fv) are the singular cases and the determination of the
rational function Z(t) in these cases completes the determination of Z(t)
for all v.

In both cases, recursion formulae for Z(t)=Zm(t) are obtained and
the Zm(t) are determined for all m. In so doing, the proofs use a classical
identity of Gauss. In case (2), it is natural to consider a similarly defined
Z*m(t) in which the original 8 is replaced by its Fourier transform. And,
indeed, two recursion formulae are obtained involving Zm(t) and Z*m(t). In
addition in case (2), we verify a functional equation which states that up to
sign Z*m(q2m&1t) and Zm(t&1) differ by a product of m Tate local gamma
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factors. This functional equation is evidence for Igusa's sign conjecture for
vector spaces over central division algebras [11].

2. Igusa's Key Lemma

In this section Igusa's ``Key Lemma'' [10] is introduced. Let p be any
arbitrary prime number and Qp the Hensel p-adic field. In this paper K will
denote a p-adic local field (a finite algebraic extension of Qp). The ring of
integers of K will be denoted by OK and the unique maximal ideal of OK

will be denoted by PK . If we fix an element ?K in PK&P2
K then ?K

generates PK=?KOK in OK . We let UK=OK&?K OK be the group of units
in OK (``-'' denotes set complement). Every element x of K_=K&[0] can
be uniquely expressed as x=?e

K u where e is an integer called the order of
x and u is an element of UK . The absolute value on K is the usual one:
|x|K=|?e

K u|K=q&e where q is the cardinality of the finite field OK�PK and
|0|K=0. We take as dx the Haar measure on Kn normalized so that the
measure of OK is 1 and d(?Kx)=q&1 dx.

As explained in the introduction, we are concerned with the calculation
of Z(s); however, since |x| s

K=|?e
Ku| s

K=s&se for all x # K and s a complex
number, we let t=q&s and think of Z(s) as a function of t.

Key Lemma [10]. Let f (x) # OK[x1 , ..., xn], f (x) homogeneous of
degree m, G a connected K-subgroup such that f (g } x)=&(g) f (x) for all
g # G and & a rational character of G. Let G0=G(OK)=G(K) & GLn(OK)
and G� 0=G(Fq) is the image of G under the cannonical map
GLn(OK) � GLn(Fq). Let R=a subset of points xo # OK such that Fn

q is a
disjoint union of G� 0 } x� 0 over all x0 in R then

Z(t)=|
On

K

| f (x)| s
K dx=

1
1&q&ntm :

x 0 # R, x� 0 � 0

|G� 0 } x� 0 | |
x 0+? KOn

K

| f (x)| s
K dx

3. Ramified Case

Let X=Hm(C) where C=K$ is a ramified quadratic extension of K. As
K$ is a quadratic extension of K, we have the natural involution on K$ and
can form Hermitian matricies over K$, Hm(K$). OK$=[a # K$ | |a|K$�1] is
the ring of integers in K$. PK$=[a # K$ | |a|K$<1] and UK$=[a #
K$ | |a|K$=1] are the unique maximal ideal of OK$ (the ideal of non-units)
and the group of units in OK$ , respectively. If we choose and fix ?K$ in
PK$&P2

K$ then ?K$ generates PK$ in OK$ and ?2
K$ and ?K differ at most by

a unit. Hence, OK�PK=OK$ �PK$ and if q is the cardinality of both residue
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fields then |?K$ |K$= |?K | 1�2
K . K$ is complete with respect to the absolute

value | } |K$ . In this case, we will assume that 2 does not divide q to get the
simpler orbital decomposition in equation (3.1). Under these conditions,
we will calculate

Z(t)=|
X0

| f (x)| s
K dx,

where C0=OK$ , X0=Hm(C0), f (x)=det(x), +(OK$)=+(OK)=1, d(?K$x)
=q&1�2 dx, and G0 is the image of GLm(C 0) in GL(X0) under the map
g � ``x � g } x=gxtg$ '', in which tg$ is the Hermitian adjoint of g.

3.1. Orbital Decomposition

Since OK�?K OK and OK$ �?K$ OK$ are both isomorphic to the finite field
with q elements, Fq , if we let Hm(?&1

K$ OK$) denote the set of Hermitian
matrices of X with diagonal entries in OK and off-diagonal entries in
?&1

K$ OK$ , there is the isomorphism

Hm(OK$)�?K Hm(?&1
K$ OK$)$Hm(Fq).

Before applying the Key Lemma, we need to determine the orbital struc-
ture of Hm(Fq) and ?KHm(?&1

K$ OK$) under the action of G� =GLm(Fq) where
G� =G0 mod ?K$ . By the diagonalization of quadratic forms [5, p. 156], we
have the following decomposition of Hm(Fq) into disjoint orbits when 2
does not divide q:

1k&1 0 0

Hm(Fq)=[0] __ .
m

k=1 {G� } \1k

0
0
0+_ G� } \ 0 =� 0+=& ; (3.1)

0 0 0

here =� is in F_
q and is not a square.

To decompose ?KHm(?&1
K$ OK$) into its orbits, write any x #

?K Hm(?&1
K$ OK$) as x=?K$ A+?K B where B # Hm(OK$) and A # Altm(OK)&

?K Altm(OK), the alternating or skew-symmetric matrices. Clearly,

?KHm(?&1
K$ OK$)�?KHm(OK$)$?K$ Altm(Fq).

The orbital decomposition of Altm(Fq) into disjoint orbits is known [8] to
be

Altm(Fq)=[0] _ { .
[m�2]

k=1

G� } \Ek

0
0
0+= , (3.2)
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where [ } ] is the Gauss symbol or the greatest integer function and Ek is
the (2k_2k) block matrix with k copies of ( 0

&1
1
0) down the main diagonal

and zeros elsewhere.

3.2. Cardinality of the orbits, |G� } x0 |.

The cardinality of each orbit |G� } x0 |=|G� |�|H� | where x0 is the orbit
representative and H� is the stabilizer of x0 in G� . Letting (i)=(1&q&i ), we
have the following formulae of Dickson [5, pages 78, 160, 94]:

|GLm(Fq)|=qm2
`
m

i=1

(i), |Sp2r(Fq)|=qr(2r+1) `
r

i=1

(2i ),

|SOm(Fq)|=qm(m&1)�2 {
`

(m&1)�2

i=1

(2i )

(1&/(d ) q&m�2) `
m�2&1

i=1

(2i )

m odd

m even
;

here d=(&1)m(m&1)�2 det(coefficient matrix) and / is the unique non-trivial
quadratic character on Fq .

To compute the cardinality of the orbits in equation (3.1), let

1k&1 0 0

x0=\1k

0
0
0+ or \ 0 =� 0+0 0 0

and let |G� } x0| be the sum of the cardinalities of the orbits for these two
rank k representatives. Then take g� =( g1

g21

g12

g2
) # H� then g1xt

0 g1=x0 and
g21=(0). Therefore, g1 # Ok(x0)(Fq), g12 # Matk, m&k(Fq) and g2 #
GLm&k(Fq). Thus, |H� |=|GLm&k(Fq)| qk(m&k) |Ok(x0)(Fq)| and the sum of
the cardinalities of the orbits for the two rank k representatives is

1
2 _

|GLm(Fq)|
|GLm&k(Fq)| qk(m&k) |SO/(d )=1

k (Fq)|

+
|GLm(Fq)|

|GLm&k(Fq)| qk(m&k) |SO/(d )=&1
k (Fq)|& ,

since SOk(Fq) is a subgroup of index 2 in Ok(x0)(Fq). By Dickson's
formulae,

|G� } x0 |=q&k(k&2m&1)�2 >k
i=1 (m&k+i)
>[k�2]

j=1 (2j )
. (3.3)

389IGUSA LOCAL ZETA FUNCTION



File: 641J 194806 . By:BV . Date:07:07:07 . Time:11:49 LOP8M. V8.0. Page 01:01
Codes: 2687 Signs: 1188 . Length: 45 pic 0 pts, 190 mm

To compute the orbits of equation (3.2), let xo=?K$ } ( Er
0

0
0). Take

g� =( g1

g21

g12

g2
) # H� then g1E t

rg1=Er and g21=(0). Therefore, g1 # Sp2r(Fq),
g12 # Mat2r, m&2r(Fq) and g2 # GLm&2r(Fq). Thus, |H� |=|GLm&2r(Fq)|
q2r(m&2r) |SP2r(Fq)| and

|G� } x0 |=
|GLm(Fq)|

|GLm&2r(Fq)| q2r(m&2r) |SP2r(Fq)|
.

By Dickson's formulae,

|G� } x0 |=qr(2m&2r&1) >2r
i=1 (m&2r+i)

>r
l=1 (2l )

. (3.4)

3.3. Two Partial Integrals and a formula for Zm(t)

Lemma 1 (First Partial Integral). For :1 , :2 , ..., :k # OK&?K OK

(0�k�m)

Im, k=|
diag(:1, ..., : k, 0)+? KH m(?K$

&1OK $)
|det(x)| s

K dx

then Im, k=q&mIm&1, k&1.

Remark. By repeated application of this lemma

Im, k=qk(k&2m&1)�2 |
?KH m & k (? K $

&1OK$)
|det(x)| s

K dx.

Proof. For any x # diag(:1 , ..., :k , 0)+?KHm(?&1
K$ OK$), we can write

x=( :
y

ty$
z ) where : # OK&?KOK , y # ?K$Om&1

K$ and z # diag(:2 , ..., :k , 0)+
?K Hm&1(?&1

K$ OK$). Diagonalize x as

x=\ 1
:&1y

0
1m&1+\

:
0

0
z*+\

1
0

:&1 ty$
1m&1 + ,

where z*=z&:&1y ty$#z mod ?K . Returning to the partial integral,

Im, k=|
(:+?KOK)_?K $OK $

m&1 {|diag(:2 , ..., :k, 0)+?KHm & 1(?K $
&1OK$) }det \:

y

ty$
z + }

s

K

dz= d: dy.

By the diagonalization, the fact that dz=dz* and the fact that : is a unit,
the expression above in curly brackets is exactly Im&1, k&1. And we see that
Im, k=Im&1, k&1 vol(:+?K OK) vol(?K$Om&1

K$ )=q&mIm&1, k&1. K
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Lemma 2 (Second Partial Integral). If 0�r�[m�2] and

Jm, 2r=|?K$( E r
0

0
0)+?KHm(OK$)

|det(x)| s
K dx,

where Er is the (2r_2r) alternating matrix defined in section 3.1 then

Jm, 2r=q&m2tm&rZm&2r(t).

Proof. By induction. If r=0, make the change of variables x=?K z
then dx=q&m2 dz, then |det(x)| s

K=tm |det(z)| s
K and Jm, 0=q&m 2tm

_�Hm(OK $) |det(z)| s
K dz=q&m2tmZm(t).

Assume Lemma 2 holds for Jm&2, 2r&2. For any x # ?K$(
Er
0

0
0)+

?K Hm(OK$), we can write x=( ;
y

&ty$
z ) where ; # ?K OK , y # ?K$(&e1+

?K$Om&1
K$ ), te1=(1, 0, ..., 0), and z # Matm&1, m&1. Make the change of

variables (;, y) � (?K ;, ?K$y) then d; dy � q&m d; dy. Since

\?K;
?K$y

&?K$
ty$

z +=\?K$

0
0

1m&1+\
;
y

&ty$
z +\?K$

0
0

1m&1+ ,

Jm, 2r=q&mt |
OK_Y_Z }det \;

y
&ty$

z +}
s

K

d; dy dz, (3.5)

where from now on ; # OK , y # (&e1+?K$ Om&1
K$ )=Y, and z #

Matm&1, m&1=Z. Since y is a primitive vector, there exists a matrix
g # GLm&1(OK$) such that y=&g } e1 . Since

\;
y

&ty$
z +=\1

0
0
g+\

;
&e1

te1

z* +\
1
0

0
tg$+ ,

where z=gz*tg$ and hence dz=dz*, equation (3.5) above becomes

Jm, 2r=q&mt |
OK_Y_Z* }det \ ;

&e1

te1

z*+ }
s

K

d; dy dz*, (3.6)

where z* # Matm&1, m&1=Z*. More precisely,

; 1 0 } 0

&1 # w$1 } w$m&2

\ ;
&e1

te1

z*+=\ 0 w1 + ,

} } x*

0 wm&2
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where x* # X*=?K$(
Er&1

0
0
0)+?KHm&2(OK$), # # ?KOK , and w1 # ?K OK$ for

1�i�m&2. Denote by w # ?K Om&2
K$ =W the (m&2)_1 column vector

formed by the wi , 1�i�m&2. Now, det( ;
&e1

te1

z*)#det(x*) mod ?K , since
; det(z*) = ;(# det(x*) & tw$ adj(x*) w) # 0 mod ?K where x* adj(x*) =
det(x*) } 1m&2 and equation (3.6) becomes

Jm, 2r=q&mt |
OK_Y_1_W {|X*

|det(x*)| s
K dx*= d; dy d# dw.

The expression in curly brackets above is precisely Jm&2, 2r&2 and we have
that

Jm, 2r=q&mt vol(Y) vol(1 ) vol(W) Jm&2, 2r&2=q&(4m&4)tJm&2, 2r&2. (3.7)

Finally by the inductive hypothesis, Jm, 2r=q&m2tm&rZm&2r(t). K

Theorem 1 (Recursion Formula for Zm(t)). For any non-negative
integer m,

Zm(t)= :
m

k=0
_>k

i=1 (m&k+i)
>[k�2]

i=1 (2i) & :
[m&k)�2]

r=0

qr(2(m&k)&2r&1)

__>2r
i=1 (m&k&2r+i)

>r
i=1 (2i) & q&(m&k)2tm&k&rZm&k&2r(t).

Proof. Applying the Key Lemma,

Zm(t)= :
m

k=0

|G� } xo| |
x0+? KHm(? K$

&1OK$)
|det(x)| s

K dx.

Using formula (3.3) for the cardinality of the orbits, in this case, and the
first partial integral, we get

Zm(t)= :
m

k=0
_>k

i=1 (m&k+i)
>[k�2]

i=1 (2i) & q&k(k&2m&1)�2Im, k .

By the remark following Lemma 1 and a second application of the Key
Lemma, Zm(t) becomes

Zm(t)= :
m

k=0
_>k

i=1 (m&k+i)
>[k�2]

i=1 (2i) & :
[(m&k)�2]

r=0
}G� } \Er

0
0
0+ }

_|? K$ (
E r
0

0
0)+?KHm&k(O K $)

|det(x)| s
K dx.
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Due to formula (3.4) and the second partial integral, we get the following
expression for Zm(t):

Zm(t)= :
m

k=0
_>k

i=1 (m&k+i)
>[k�2]

i=1 (2i) & `
[(m&k)�2]

r=0

qr(2(m&k)&2r&1)

__>2r
i=1 (m&k&2r+i)

>r
i=1 (2i) & Jm&k, 2r .

By Lemma 2, the recursion formula is proved. K

3.4. Closed Form Expression for Zm(t).

The following identity of Gauss [6] will be used. If

Fm, n(x)= `
n

i=1

(1&xm+i)
(1&xi)

for m, n non-integers and Fm, 0(x)=1, then

(i) Fm, n(x)=Fn, m(x),

(ii) Fi, j (x) } Fi+j, k(x)=Fi, j+k(x) } Fj, k(x),

(iii) Fm, n(x)=Fm, n&1(x)+xnFm&1, n(x), if m, n�1.

The Gauss identity below follows from (iii):

:
i+j=k

Fi, j (x) xi(i&1)�2ti= `
k

i=1

(1+xi&1t).

Define the right hand side of the identity above to be R.H.S.=Gk(x, t)
where for k=0, we let Gk(x, t)=1.

Lemma 3. For any non-negative integer k, the following identity holds:

1= :
k

j=0

x j2t jFj, k&j (x) Gk&j (x, &x j+1t).

Proof. Apply the Gauss identity and the expression to be proved
becomes

1= :
k

j=0

:
k&j

p=0

Fj, k&j (x) Fp, k&j&p(x)(&1) p x p( p&1)�2+p( j+1)+j 2t j+p.
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Letting p � p&j, switching the order of summation, and using property
(ii), we rewrite the identity as

1= :
k

p=0

Fk&p, p(x) x p( p+1)�2(&1) p t p } _ :
p

j=0

(&1) j x j( j&1)�2Fp&j, j (x)& ,

where the bracketed expression is precisely Gp(x, &1) which is 0 for p>0
and 1 for p=0. The terms in the outer sum above, therefore, reduce to the
p=0 term which is 1 and the identity holds. K

Lemma 4. For any non-negative integer k,

q&k(k+1)�2t[(k+1)�2]= :
[k�2]

r=0

qr(2k&2r&1) >2r
i=1 (k&2r+i)

>r
i=1 (2i)

_q&k2tk&r `
[(k+1)�2]

i=[(k+1)�2]&r+1

(1&q&(2i&1)t)
(1&q&(2i&1))

.

Proof. The identity to be verified is

1= :
[k�2]

r=0

qr(2k&2r&1) >2r
i=1 (k&2r+i)

>r
i=1 (2i)

q&k(k&1)�2t[k�2]&r

_ `
[(k+1)�2]

i=[(k+1)�2]&r+1

(1&q&(2i&1)t)
(1&q&(2i&1))

. (3.8)

Case 1. When k=2c, equation (3.8) becomes

1= :
c

r=0

qr(4c&2r&1) >2r
i=1 (2c&2r+i)

>r
i=1 (2i)

q&c(2c&1)tc&r `
c

i=c&r+1

(1&q&(2i&1)t)
(1&q&(2i&1))

.

If we reverse the order of summation by letting r=c&r=l, simplify, and
use the notation from the Gauss identity with x=q&2, this identity becomes

1= :
c

l=0

Fl, c&l(x) Gc&l(x, &xl+1�2 t) xl (l&1�2) tl .

By Lemma 3 with k equal to c and t equal to x&1�2t, this lemma holds
when k is even.

Case 2. When k=2c&1, the identity to be proved (3.8) becomes

1= :
c&1

r=0

qr(4c&2r&3) >2r
i=1 (2c&2r&1+i)

>r
i=1 (2i)

q&(c&1)(2c&1)tc&r&1

_ `
c

i=c&r+1

(1&q&(2i&1)t)
(1&q&(2i&1))

.
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Let x=q&2, change the order of summation by letting r � c&r&1=l,
and simplify, then the above becomes

1= :
c&1

l=0

Fl, c&l&1(x) Gc&l&1(x, &xl+3�2 t) xl (l+1�2) tl .

This identity also follows from Lemma 3 if we set k equal to c&1 and t
equal to x1�2t. Thus, Lemma 4 is true when k is odd and hence for all non-
negative integers k. K

Theorem 2. If m is any non-negative integer,

Zm(t)= `
[(m+1)�2]

i=1

1&q&(2i&1)

1&q&(2i&1)t
,

where Z0(t)=1.

Proof. Start with the recursion formula in section 3.3 and let k � m&k.
Then dividing both sides by Zm(t) and rewriting, leaves the following
identity to be proved:

1= :
m

k=0

>m&k
i=1 (k+i)

>[(m&k)�2]
j=1 (2j)

`
[(m+1)�2]

i=[(k+1)�2]+1

(1&q&(2i&1)t)
(1&q&(2i&1))

__ :
[k�2]

r=0

qr(2k&2r&1) >2r
p=1 (k&2r+p)

>r
l=1 (2l )

q&k2tk&r

_ `
[(k+1)�2]

i=[(k+1)�2]&r+1

(1&q&(2i&1)t)
(1&q&(2i&1)) & . (3.9)

By Lemma 4, the expression in brackets becomes q&k(k+1)�2t[(k+1)�2]. Split
the above sum into sums over even and odd k:

1= :
[m�2]

j=0

`
[m�2]&j

i=1

(2(i+j))
(2i)

`
[(m+1)�2]

i=j+1

(1&q&(2i&1)t) q&j(2j+1)t j

+ :
[(m+1)�2]

j=1

>[m�2]&j+1
i=1 (2(i+j&1))

>[(m+1)�2]&j
i=1 (2i)

`
r

i=j+1

(1&q&(2i&1)t) q&j (2 j&1)t j.

(3.10)

If we let r=[(m+1)�2], equation (3.10) becomes

1= `
r

i=1

(1&q&(2i&1)t)+ :
r

j=1

q&j(2j&1)t j >r
i=j+1 (1&q&(2i&1)t)
>r&j

i=1 (1&q&2i )

__`
r&j

i=1

(2(i+j)) q&2j+ `
r&j+1

i=1

(2(i+j&1))& .
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The expression in brackets above reduces to >r&j
i=1 (2(i+j)), and if x=q&2

the identity above simplifies to

1= :
r

j=0

`
r&j

i=1

1&xi+j

1&xi `
r

p=j+1

(1&x p&1�2t) x j ( j&1�2)t j ,

where r=[(m+1)�2]. This identity follows from Lemma 3 with k=r
and t, in the Lemma, equal to x&1�2t and Theorem 2 holds. K

4. Quaternion Case

Let X=Hm(D) be the (2m2&m)-dimensional vector space over K of
Hermitian matrices of degree m with entries in D where D is the unique
quaternion division algebra over a p-adic local field K. The reduced norm
of D, n(!)=!!$, maps D _=D&[0] surjectively to K_=K&[0] where $
is the involution on the quaternions. The inverse image of OK under the
norm map is OD , the maximal compact subring of D. If ?D is picked so
that n(?D)=?K then ?DOD is the ideal of non-units in OD . The reduced
trace, tr(!)=!+!$, maps !OD to OK if and only if ! is in ?&1

D OD [11].
If f (x) is the generic norm of Hm(OD), as a Jordan algebra, (i.e. the
determinant), we will calculate

Z(t)=|
X0

| f (x)| s
K dx,

where C0=OD , X0=Hm(C0), dx is the Haar measure on OD normalized
so that +(OD)=+(OK)=1, d(?Dx)=q&2 dx, and G0 is the image of
GLm(Co) in GL(X0) under the map g � ``x � g } x=gxtg$'', in which tg$ is
the Hermitian adjoint of g. We remark that there is a K-linear isomorphism,
%, from Hm(D) to Alt2m(K) such that det(x)=Pf (%x) for x # Hm(D) and
where Pf (%x) is the Pfaffian of %x [8]. Hence, we are computing the local
zeta function of the Pfaffian of a subalgebra of Mat2m .

4.1. Orbital Decomposition

Since OK�?K OK is isomorphic to the finite field with q elements, Fq , and
OD�?DOD is isomorphic to the finite field with q2 elements, Fq2 , if we let
Hm(?&1

D OD) denote the set of Hermitian matrices of X0 with diagonal
entries in OK and off-diagonal entries in ?&1

D OD , we have the isomorphism

Hm(OD)�?K Hm(?&1
D OD)$Hm(Fq 2).
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Splitting ?KHm(?&1
D OD) into its alternating and Hermitian parts, we have

that

?K Hm(?&1
D OD)�?KHm(OD)$?D Altm(Fq2).

As in section 3.1, we determine the orbital structure of Hm(Fq2) and
Altm(Fq2) under the action of G� =GLm(Fq2) where G� =G 0 mod ?D . By the
diagonalization of quadratic forms over F2

q (where the norm map from
Fq 2 to Fq is surjective) and the orbital structure of skew-symmetric or
alternating matrices, we have the following decompositions into disjoint
orbits:

Hm(Fq2)= .
m

k=0

G� } \1k

0
0
0+ , (4.1)

and

Altm(Fq)=[0] _ { .
[m�2]

k=1

G� } \Ek

0
0
0+= , (4.2)

where [m�2] and Ek are as in section 3.1.

4.2. Cardinality of the Orbits, |G� } x0 |.

From Dickson [5, pages 78, 134, 94], we have the formulae

|GLm(Fq2)|=q2m 2
`
m

i=1

(1&q&2i), |Um(Fq2)|=qm2
`
m

i=1

(1&(&q)&i)

|Sp2r(Fq2)|=q2r(2r+1) `
r

i=1

(1&q&4i).

To simplify the formulae in this section, we will again use the notation
(a)\=(1\q&a). In addition we make the convention that if there is
no sign in the subscript a minus sign will be assumed (i.e. (a)=(a)&). To
compute the cardinality of the orbits in (4.1), let x� 0=( 1k

0
0
0). Computing the

fixer of x� 0 , we find |H� |=|GLm&k(Fq 2)| q2k(m&k) |Uk(Fq2)|. By Dickson's
formulae,

|G� } x0|=qk(2m&k) `
k

i=1

(1&q&2(m&k+i))
(1&(&q)&i)

. (4.3)

To compute the cardinality of the orbits of (4.2), let x0=?D( Er
0

0
0). Com-

puting the fixer of x0, we find |H� |=|GLm&2r(Fq2)| q4r(m&2r) |Sp2r(Fq2)|.
By Dickson's formulae,

|G� } x0 |=q2r(2m&2r&1) >2r
i=1 (2m&4r+2i)

>r
l=1 (4l)

. (4.4)
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4.3. Two Partial Integrals and a Recursion Formula for Zm(t).

Lemma 5 (First partial Integral). If m is a positive integer, 0�k�m,
and

Lm, k=|( E r
0

0
0)+?K Hm (?&1

D OD)
|det(x)| s

K dx,

then Lm, k=q&(2m&1)Lm&1, k&1.

Remark. Notice that by repeated application of Lemma 5,

Lm, k=q&k(2m&k) |
? K H m & k (? D

&1O D)
|det(x)| s

K dx. (4.5)

Proof. If the :i are all 1 and D is substituted for K$, the proof is identical
to the proof of Lemma 1 up until the last two lines. The difference in the
results comes from the change in measure due to the quaternion algebra.
Following the proof of Lemma 1, we see that

Lm, k=Lm&1, k&1 vol(1+?KOK) vol(?DOm&1
D )=q&(2m&1)Lm&1, k&1 . K

Lemma 6 (Second Partial Integral). If m is a positive integer, 0�r�
[m�2], and

Mm, 2r=|?D( E r
0

0
0)+?K Hm (OD)

|det(x)| s
K dx,

then Mm, 2r=q&m(2m&1)tm&rZm&2r(t).

Proof. The proof follows that of Lemma 2. The differences are again
due to the change in measure in the quaternion case. For example,
for X=Hm(OD) we have that d(?K x)=q&m(2m&1) dx. In the quaternion
situation equation (3.7) in Lemma 2 becomes

Mm, 2r=q&(2m&1)t vol(&e1+?D Om&1
D ) vol(?KOK) vol(?KOm&2

D ) Mm&2, 2r&2

=q&(8m&10)tMm&2, 2r&2

and by the inductive hypothesis Mm, 2r=q&m(2m&1)tm&rZm&2r(t). K

Theorem 3 (Recursion Formula for Zm(t)). If m is a positive integer
then
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Zm(t)= :
m

k=0
_`

k

i=1

(1&q&2(m&k+i))
(1&(&q)&i) & :

[(m&k)�2]

r=0

q2r(2(m&k)&2r&1)

__>2r
i=1 (2(m&k&2r+i))

>r
i=1 (4i) & q&(m&k)(2(m&k)&1)tm&k&rZm&k&2r(t).

Proof. The proof follows that of Theorem 1, using formulae (4.3) and
(4.4) for the orbits and Lemmas 5 and 6 for the partial integrals. K

4.4. Closed Form Expression for Zm(t) in the Quaternion Case

We will use Gauss' identity and the notation developed in section 3.4 to
prove Lemmas 7, 6, and 9 which we will need in the proof of Theorem 4.

Lemma 7. For s, l non-negative integers such that 0<l<s

0= :
s

j=0

(&1) j x j( j&1)�2 Gs&l(x, xs&j+1t)
>s&j

k=1 (1&xk) > j
k=1 (1&xk)

. (4.6)

Proof. The right-hand side of the identity to be proved becomes

1
>s

k=1 (1&xk) _ :
s

j=0

(&1) j x j( j&1)�2Fj, s&j (x) Gs&l(x, xs&j+1t)& .

Applying Gauss' identity and reversing the order of summation, we have
left to show that the expression in brackets above is 0:

[ } ]= :
s&l

i=1

xi(i&1)�2+i(s+1)Fi, s&l&i (x) ti } _ :
s

j=0

(&1) j x j ( j&1)�2Fj, s&j (x) x&ij& .

(4.7)

The bracketed expression above can be rewritten as Gs(x, &x&i)=
>s

k=1 (1&xk&i&1). The terms in the outer sum are all 0 when s>i>0
which is always the case by the hypothesis. K

Lemma 8. For an integer k>0, the following identity holds:

xk 2
lkGk(x, t)= :

k

j=0

(&1) j x j ( j&1)�2Fk&j, j (x)

_Gj (x, &xk&j+1l) Gk&j (x, xklt). (4.8)

Proof. Compare coefficients of ti. Using Gauss' identity, the left-hand
side of (4.8) is xk2

lk �k
i=0 Fi, k&i (x) xi(i&1)�2ti and we see that the

coefficient of ti is xk2
lkFi, k&i (x) xi(i&1)�2. The Gauss identity allows the

right-hand side of (4.8) to be rewritten as �k
j=0 Bj �k&j

i=0 Ai, j } ti where
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Bj=(&1) j x j( j&1)�2Fk&j, j (x) Gj (x, &xk&j+1l) and Ai, j=Fi, k&j&i (x)_
xi(i&1)�2+kili. Changing the order of summation, the right-hand side
becomes �k

i=0 (�k&i
j=0 BjAi, j) ti in which the coefficient of ti is �k&i

j=0 BjAi, j .
Using the second property of the Gauss identity which says that

Fj, k&j (x) } Fk&j&i, i (x)=Fj, k&j&i (x) } Fk&i, i (x),

the coefficient of ti on the right-hand side of (4.8) becomes precisely

Fi, k&i (x) xi(i&1)�2+kili :
k&i

j=0

(&1) j x j ( j&1)�2Fk&j&i, j (x) } Gj (x, &xk&j+1l).

Equating coefficients of ti from both sides of (4.8), we have left to show
that

xk 2&kilk&i= :
k&i

j=0

(&1) j x j ( j&1)�2Fk&j&i, j (x) } Gj (x, &xk&j+1l).

Using Gauss' identity and property (ii) once more,

xk 2&kilk&i= :
k&i

j=0

:
p+q=j

Fk&p&q&i, p+q(x) Fp, q(x) xkp+q(q&1)�2l p(&1)q

= :
k&i

p=0

Fp, k&i&p(x) xkpl p

} _ :
k&i&p

q=0

Fq, k&i&p&q(x) xq(q&1)�2(&1)q& , (4.9)

where the bracketed expression is precisely

Gk&i&p(x, &1)={1
0

if k&i&p=0
otherwise.

The terms in the outer sum of (4.9) are, therefore, all 0 except when
p=k&i and the sum above reduces to xk(k&i)lk&i which is exactly the
left-hand side. K

Lemma 9. For any non-negative integer n,

q&n2t[(n+1)�2] An*(t)
>n

i=1 (1&q&(2i&1)t)

= :
[n�2]

r=0

q2r(2n&2r&1) >2r
i=1 (1&q&2(n&2r+i))
>r

i=1 (1&q&4i)

_q&n(2n&1)tn&r An&2r(t)
>n&2r

i=1 (1&q&(2i&1)t)
,
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where

An*(t)= :
[n�2]

i=0

(&1) i q&i(2(i+# n)&1)ti
>n

j=i+1 (1&q&2j )

>[n�2]&i
j=1 (1&q&4j) >i+# n

j=1 (1+q&(2i&1))

with #n=n&2[n�2] (i.e. #n=0 if n is even and 1 if n is odd ) and where

An(t)= :
[n�2]

i=0

(&1) i q&2i2ti
>n

j=[n�2]&i+1 (1&q&2j)

>[(n+1)�2]&i
j=1 (1+q&(2j&1)) >i

j=1 (1&q&4j )
.

Remark. Notice that if we let u=q&1 and v=t and think of An(t)=
An(u, v) and An*(t)=An*(u, v) as functions of both u and v then we have the
following relation between the two polynomials:

An(u&1, v&1)=(&1)n u&n 2v[n�2]An*(u, v).

Proof. We must verify the identity

An*(t)= :
[n�2]

r=0

q&n(n&1)+2r(2n&2r&1)t[n�2] >2r
i=1 (1&q&2(n&2r+i))
>r

i=1 (1&q&4i)

_ `
n

i=n&2r+1

(1&q&(2i&1)t) An&2r(t).

If we reverse the order of summation by letting r go to [n�2]&r and
expand the right-hand side of the identity above in powers of t, we find
that

An*(t)= :
[n�2]

r=0

Cr :
2[n�2]&r

i=0

(&1) i tr+i :
i

k=0

Bi&k, rDk, r ,

where

Cr=q&2r(2r+2#n&1) >2[n�2]&2r
s=1 (4r+2#n+2s)

>[n�2]&r
s=1 (4s)

,

Bi&k, r=q&(i&k)(i&k+4r+2# n) `
2[n�2]&2r&i+k

s=1

(2i&2k+2s)
(2s)

,

and

Dk, r=q&2k2 >2r+#n
s=r&k+1 (2s)

>r&k+#n
s=1 (2s&1)+>k

s=1 (4s)
.
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Rewriting in powers of t, the identity to be proven becomes

An*(t)= :
[n�2]

p=0

51( p)(&1) p t p+ :
2[n�2]

p=[n�2]+1

52( p)(&1) p t p ,

where

51( p)= :
p

i=0

(&1) i :
[( p&i)�2]

j=0

(&1) j Ci+j Bp&i&2j, i+jDj, i+j

and

52( p)= :
2[n�2]&p

i=0

(&1) i :
[( p&i)�2]

j=0

(&1) j Ci+jBp&i&2j, i+jDj, i+j .

To prove this identity we have just to show that 51( p) equals the coef-
ficient of (&1) p t p in An*(t) for 0�p�[n�2] and that 52( p) is 0 for
[n�2]+1�p�2[n�2]. To obtain the latter result, we show that the inner
sum in the expression for 52( p) is 0 for all i and for [n�2]+1�p�2[n�2].
Hence, we need to show that 0=�[( p&i)�2]

j=0 (&1) j Ci+jBp&i&2j, i+jDj, i+j or
that

0=W :
[( p&i)�2]

j=0

(&1) j q&2 j( j&1)
>2[n�2]&2i&2j

k=p&i&2j+1 (2k)

>[n�2]&i&j
k=1 (4k) > j

k=1 (4k)
(4.10)

where the W above is made up of all the factors independent of j. Then

W=(&1) i q&:n
>n

k=i+1 (2k)
>i+#n

k=1 (2k&1)+ >2[n�2]&p&i
k=1 (2k)

,

where :n=( p+i)2&2i if n is even and ( p+i)2+2p if n is odd. We have
left to show that the sum on the right-hand side of equation (4.10) is 0. If
we write the product in the numerator of each term as a product over even
k times a product over odd k and let x=q&4, the sum on the right-hand
side of (4.10) can be rewritten in the form

:
[( p&i)�2]

j=0

(&1) j x j( j&1)�2 >[( p&i)�2]&( p&[n�2])
k=1 (1&x[( p&i)�2]&j+k\1�2)

>[( p&i)�2]&j
k=1 (1&xk) > j

k=1 (1&xk)
, (4.11)

where \1
2=&1

2 if p&i is even and +1
2 if p&i is odd. By applying

Lemma 7 with s=[( p&i)�2], l=p&[n�2], and t=&x\1�2, the sum
above is identically 0 and we have shown that 52( p)=0.
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To complete the proof of Lemma 9, it remains to be shown that 51( p)
equals the coefficient of (&1) p t p in the definition of An*(t) when
0�p�[n�2]. Simplifying the expression for 51( p) much as we did that for
52( p), we see that

51( p)= :
p

i=0

(&1) i q&: n
>n

k=i+1 (2k)
>i+# n

k=1 (2k&1)+ >2[n�2]&p&i
k=1 (2k)

__ :
[( p&i)�2]

j=0

(&1) j q&2j( j&1)
>2[n�2]&2i&2j

k=p&i&2j+1 (2k)

>[n�2]&i&j
k=1 (4k) > j

k=1 (4k)& .

Using the notation from the Gauss identity and by taking out a factor of
1�>[( p&i)�2]

k=1 (4k),

51( p)= :
p

i=0

(&1) i q&:n
>n

k=i+1 (2k)
>i+# n

k=1 (2k&1)+ >2[n�2]&p&i
k=1 (2k) >[( p&i)�2]

k=1 (4k)

__ :
[( p&i)�2]

j=0

(&1) j q&2j( j&1)F[( p&i)�2]&j, j (q&4)

_ `
[n�2]&i&j

k=[( p&i+1)�2]&j+1

(4k&2)& .

Now the expression in brackets above has the product representation

[ } ]=q( p&i)( p&i&1) `
p&1

k=[( p&i+1)�2]+i \4 _n
2&&4k+ `

[n�2]&[( p&i)�2]&i

k=[( p&i+1)�2]+1

(4k&2) .

To show that this relation holds, we use the notation from the Gauss iden-
tity, let x=q&4, and show that

x( p&i)( p&i&1)�4 `
p&1

k=[( p&i+1)�2]+i

(1&x[n�2]&k) `
[n�2]&[( p&i)�2]&i

k=[( p&i+1)�2]+1

(1&xk&1�2)

= :
[( p&i)�2]

j=0

(&1) j x j( j&1)�2F[( p&i)�2]&j, j (x)

_ `
[n�2]&i&j

k=[( p&i+1)�2]&j+1

(1&xk&1�2).

Rewriting the first product on the left-hand side and dividing both sides by
the second product, we rewrite the identity for the inner sum as
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x( p&i)( p&i&1)�4 `
[( p&i)�2]

k=1

(1&xk&1+[n�2]&2[( p&i)�2]\1)

= :
[( p&i)�2]

j=0

(&1) j x j( j&1)�2F[( p&i)�2]&j, j (x)

_ `
j

k=1

(1&xk+[( p&i)�2]&j+1�2)

_ `
[( p&i)�2]&j

k=1

(1&xk&[( p&i)�2]+[n�2]&i+1�2),

where \1 is +1 when p&i is odd and &1 when p&i is even. By applying
Lemma 8 with k=[( p&i)�2], l=x\1�2, and t=&x[n�2]&2[( p&i)�2]\1, the
identity for the inner sum holds and our expression for 51( p) becomes

51( p)= :
p

i=0

(&1) i q&p(2p\1)&i(2i\1)

_
>n

k=i+1 (2k) > p&1
k=[( p&i+1)�2]+i (4[n�2]&4k) >[n�2]&[( p&i)�2]&i

k=[( p&i+1)�2]+1 (4k&2)

>2[n�2]&p&i
k=1 (2k) >i+#n

k=1 (2k&1)+>[( p&i)�2]
k=1 (4k)

,

where \1=&1 if n is even and +1 if n is odd. Simplifying we see that

51( p)=q&p(2p\1) > p&1
k=0 (4[n�2]&4k) >[n�2]&# n

k=1 (4k&2)
> p+#n

k=1 (2k&1)+

__ :
p

i=0

(&1) i q&i(2i\1)
> p+#n

k=i+1+#n
(2k&1)+

> p&i
k=1 (2k) >i

k=1 (2k)& . (4.12)

Setting 51( p) equal to the coefficient of (&1) p t p in An*(t) and simplifying,
we will have proven Lemma 9 when we have shown that

:
p

i=0

(&1) i q&i(2i\1) > p
k=i+1 (2k\1)+> p

k=1 (2k)
> p&i

k=1 (2k) >i
k=1 (2k)

=1.

Letting x=q&2 and using the notation from the Gauss identity, the expres-
sion above becomes:

:
p

i=0

(&1) i xi(i\1�2) `
p

k=i+1

(1+xk\1�2) Fi, p&i (x)=1

This identity follows from Lemma 3 with k=p and t= &x\1�2 and
Lemma 9 is proved. K
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Theorem 4. If m is any non-negative integer then

Zm(t)=
Am(t)

>m
i=1 (1&q&(2i&1)t)

,

where Am(t) is defined as in Lemma 9 and Z0(t)=1.

Proof. Start with the recursion formula in section 4.3. Substituting in
for Zm&k&2r(t), the identity to be proved becomes

Am(t)
>m

i=1 (1&q&(2i&1))

= :
m

k=0

`
k

i=1

(2(m&k+i))
(1&(&q)&i) _ :

[(m&k)�2]

r=0

q2r(2(m&k)&2r&1)

_
>2r

i=1 (2(m&k&2r+i))
>r

i=1 (4i)
q&(m&k)(2(m&k)&1)tm&k&1

_
Am&k&2r(t)

>m&k&2r
i=1 (1&q&(2i&1))& .

By Lemma 9, the expression in brackets above is exactly

[ } ]=q&(m&k) 2t[(m&k+1)�2] A*m&k(t)
>m&k

i=1 (1&q&(2i&1)t)

and the identity to be proved becomes

Am(t)= :
m

k=0

q&(m&k) 2t[(m&k+1)�2] `
k

i=1

(2(m&k+i))
1&(&q)&i

_ `
m

i=m&k+1

(1&q&(2i&1)t) A*m&k(t)

If we reverse the order of summation by letting k � m&k and start to
expand the right side of the identity above in powers of t, we get that

Am(t)= :
m

k=0

Ck :
m&[(k+1)�2]

i=0

(&1) i ti+[(k+1)�2] :
i

l=0

Bi&l, kDl, k ,
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where

Ck= `
m&k

i=1

(2k&2i)
(1&(&q)&i)

q&k 2
,

Bi&l, k=q&(i&l)(i&l+2k) `
m&k&(i&l)

j=1

(2i&l+j)
(2j)

,

Dl, k=q&l (2l\1)
>k

j=l+1 (2j )

>[k�2]&l
j=1 (4j ) >l+#k

j=1 (2j&1)+

,

where \1 is &1 when k is even and +1 when k is odd and #k=0 when
k is even and 1 when k is odd. With these definitions in mind, we can now
fully expand our identity in powers of t.

Am(t)= :
m

p=0

(&1) p t p _ :
p

j=0

(&1) j :
p&j

i=0

(&1)[(i+1)�2]

_C2j+i Bp&i&j, 2j+iD[i�2], 2j+i& .

We can prove this identity by showing that the coefficients of t on both
sides of the equal sign agree. The manipulations are analogous to those in
the proof of Lemma 9. K

4.5. A Functional Equation for Zm(t).

If X=Hm(D) and 8X 0(x) is the characteristic function of Hm(OD), then
Zm(t)=�X |det(x)| s

K 8X 0(x) dx where 8X 0(x) is a element in the Schwartz�
Bruhat space of locally constant functions on X with compact support.
We construct the Fourier transform of 8X 0(x). Take the symmetric,
non-degenerate, K-bilinear form tr(xy ) on X_X. Choose a non-trivial
character of K, �0 , such that �0=1 on OK and �0{1 on ?&1

K OK and let
d $x be the unique self-dual Haar measure corresponding to �0 . Then
�*X 0(x)=�X �0(tr(xy )) 8X 0( y) d $y is the Fourier transform of 8X 0 . As
�*X 0(x)=�X 0 �0(tr(xy)) d $y and tr(!OD) # OK if and only if ! # ?&1

D OD ,

�*X 0 (x)={vol(X0)
0

x # Hm(?&1
D OD)

otherwise

Since Hm(?&1
D OD) is the group of annihilators of X0, denote it by

(X0)
*

=X 0

*
. With this notation, �*X 0(x)=vol(X0) �X 0

*
(x), where �X 0

*
is

the characteristic function of X 0

*
. Define

Z*m(t)=|
X

|det(x)| s
K �*X 0(x) dx;
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then Z*m(t)=Vol(X0) �X 0

*
|det(x)| s

K dx. By a change of variables x=?K y,

|
? KX 0

*

|det(x)| s
K dx=q&m(2m&1) tm |

X 0

*

|det(x)| S
K dx

and since vol(X 0)=Vol(Hm(OD))=q&m(m&1)�2,

Z*m(t)=qm(3m&1)�2t&m |
? KHm (?D

&1OD)
|det(x)| S

K dx.

The inner sum in the recursion formula in Theorem 3 gave a recursive
formula for the integral above. In Lemma 8, the closed form expression for
this recursive formula was found to be

|
? KH m (? D

&1O D)
|det(x)| s

K dx=q&m 2t[(m+1)�2] A*m(t)
>m

i=1 (1&q&(2i&1)t)
.

Using our expression for Z*m(t) above we see that

Z*m(t)=qm(m&1)�2t&[m�2] A*m(t)
>m

i=1 (1&q&(2i&1)t)
.

The quaternion division algebra is an arithmetic ``prehomogeneous vector
space'' [18, 19, 10]. If, for the moment, the notations D and X refer to
their tensor products with the universal field, then det(x) is an irreducible
polynomial on X such that the identity component of its group of
similarities is transitive on Y=X&det&1(0). Then GK is transitive on YK ;
this transitivity follows from the subjectivity of the reduced norm of DK .
Therefore, returning to the original notation and dropping the subscripts
K, a general theorem [11, Theorem 1] states that

Z(|)* (8)=#(|) Z(|2m&1|&1) (8)

for some #(|) where | is a quasicharacter of K*=K&[0]. Taking |=|s

where |s=| } | s
K and 8=,X o and using the formulae for Z*m(t) and Zm(t),

it is easy to verify that:

Z*m(q2m&1t)=(&1)m(m&1)�2 `
m

i=1

(1&q&(2i&1)t&1)
(1&q2i&2t)

Zm(t&1).

In other words, the #(|s) above becomes the product of m Tate local
gamma factors [20] up to a factor of (&1)m(m&1)�2. This value for #(|s)
has been obtained using a different method in [11].
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