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a b s t r a c t

Specific choices about how to represent complex networks canhave a substantial impact on
the execution time required for the respective construction and analysis of those structures.
In this work we report a comparison of the effects of representing complex networks
statically by adjacency matrices or dynamically by adjacency lists. Three theoretical
models of complex networks are considered: two types of Erdős–Rényi as well as the
Barabási–Albert model. We investigated the effect of the different representations with
respect to the construction andmeasurement of several topological properties (i.e. degree,
clustering coefficient, shortest path length, and betweenness centrality). We found that
different forms of representation generally have a substantial effect on the execution time,
with the sparse representation frequently resulting in remarkably superior performance.

© 2011 Elsevier B.V.

1. Introduction

As a consequence of the intrinsic difficulties in achieving analytical approaches for the characterization and modeling
of natural systems, a great deal of such investigations must rely on computational methods. The typical case involves
the application of numerical methods in order to solve differential equations (e.g. Refs. [1,2]), which is the most frequent
situation found in practice in physics. Frequently, such problems involve large amounts of data, as well as data which are
very large. Given the importance of effectively tackling these problems, a lot of attention and effort has been invested in
developing, implementing and applying numerical methods which are fast and accurate (e.g. Ref. [1]). Indeed, such efforts
give rise to the important area of computational physics.

Different approaches are needed in complex networks research [3–5], a newmultidisciplinary area of physics which has
undergone an impressive development in the past decade. Here, the investigations rely not just on numerical solution of
differential equations, but on intensive handling of matrices as well as combinatorial or spectral methods as required for the
calculation of measurements [6] such as shortest paths, betweenness centrality, and spectra of graphs. Though presenting
such a distinctive nature, computational approaches to complex networks also aim at achieving precision and speed. The
latter demand often becomes particularly critical as a consequence of the large size of several complex networks of current
interest, such as the Internet [7], protein-protein interaction [8], and social interactions [9], to name but a few cases. In other
words, as an ever increasing number of large real-world networks are being constructed and made available, it becomes
critically important to develop the means not only for the efficient representation of such structures, but also for handling
the frequently computationally expensive operations demanded by their analysis. For instance, it can be estimated that
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the calculation of the betweenness centrality of a typical collaboration network (e.g. movie stars) with about 400000 nodes,
represented in terms of its standard adjacencymatrix,would requiremore than threemonths in a typical personal computer.
As shown in the present work, it would be possible to reduce drastically the execution time to about one day simply by
representing the complex network in terms of its adjacency list.

Indeed, the effective approach to most of the remaining challenges in complex networks research is immediately related
to the ability to effectively represent andprocess large discretemathematical structures ([10,11]). This canbedone in the two
following ways: (i) development of more effective algorithms [12]; and (ii) careful and efficient respective implementation
of those algorithms. While much attention has been placed recently on (i), the final performance will ultimately depend
critically on the implementation, making step (ii) particularly critical for achieving good results. The current work focuses
on important practical implementational aspects related to the use of sparse or full representation of graphs. To our best
knowledge, the present article constitutes one of the few works [13] investigating the effect of such important practical
choices on the resulting efficiency of the implementation of a set of crucially important operations typically performed in
complex networks research, including network generation as well as the estimation of important topological properties
such as the degree, clustering coefficient, shortest path length, and betweenness centrality.

This article starts by describing the computational tasks to be performed, namely the estimation of several topological
features of the networks, and follows by presenting the adopted network models and the two types of representations
of networks to be compared. The work concludes by presenting and discussing the computational efficiency of these two
representations as obtained through computational simulations.

2. The methods chosen for the evaluation

It is henceforth assumed that all networks are undirected and unweighted. Full representations of the networks are
performed in terms of the respective adjacency matrices, K , such that the presence of an edge between nodes i and j imply
K(i, j) = K(j, i) = 1, with K(i, j) = K(j, i) = 0 being otherwise imposed. The total number of nodes (also known as network
size) and edges in the networks are respectively abbreviated asN and E. A set of four representativemethods/measurements
of complex networks have been selected in order to investigate the effect of implementational parameters and choices on
the respective performance: degree, clustering coefficient, shortest path and betweenness centrality. Each of thesemethods
are briefly revised in the following.

Degree: The degree of a node i corresponds to the number of edges attached to it. It can be calculated by adding all entries
in column i of the adjacency matrix. The degree is an intrinsically local measurement, in the sense of taking into account
only the edges directly attached to the node. Usually, the degree is calculated for all the nodes of a given network.

Clustering coefficient: The clustering coefficient is also a local measurement, specific to each node i. However, it also
considers the interconnectivity between the neighbors of that node. In the case of full representation in terms of the
adjacency matrix, the calculation of these measurements requires access to all the columns corresponding to each of the
neighbors of node i.

Shortest path identification: Given two nodes i and j, the shortest topological path between them corresponds to the path
which has the smallest number of edges. Note that it is possible to have two ormore distinct shortest paths of the same size.

Betweenness centrality: The betweenness centrality is a property associated to a given node or edge. In both cases, it refers
to the number of shortest paths, considering all pairs of nodes in the networks, which pass through the given node or edge.
The calculation of the betweenness centrality requires the determination of the shortest paths for every pair of distinct
nodes.

3. Network models

In the following we use three network models. Two models due to Erdős and Rényi (ER) and the scale free model of
Barabási and Albert [14] (BA). The first model, denoted ER (probability), connects each pair of nodes with a fixed probability
p. The average degree in this model is p(N −1), where N is the number of nodes in the network. The secondmodel, denoted
ER (edges), uses a fixed number E of edges, and connects each edge to a randomly chosen pair of nodes. The average degree
of the network is 2E/N . These two models have similar statistical properties, but are included here due to their different
behavior during network construction: as the first model must consider all pairs of nodes, it is computationally intensive
for large networks; the second model has construction time proportional to the number of edges, and is therefore faster for
sparse networks.

The Barabási–Albert networks are constructed starting with a small number of nodes, and adding nodes one by one,
each new vertex being connected tom existing nodes, chosen using a linear preferential attachment rule, nodes with higher
degrees having higher probabilities of being chosen. The resulting average degree is given by 2m.

4. Full or sparse representation of the networks

Two main representations were used: the adjacency matrix and adjacency lists [15]. The adjacency matrix is a dense
representation, in the sense that all possible edges in the network are explicitly included, with a value used to indicate
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the presence of each edge, and another value used otherwise. Adjacency lists are sparse, as only the edges present in the
network are incorporated. The adjacency matrix is usually implemented as a static structure, like the basic arrays used in
most computer languages. On other hand, adjacency lists are implemented as dynamic structures and require pointers (a
memory position pointing to another one).

For the elements of the adjacency matrix, we consider five possibilities, depending on the C language data type used
for each element: double precision (double, 64 bits) and single precision (float, 32 bits) floating point number, integer
numbers (int, 32 bits), Boolean values (which can assume only true and false values, 8 bits) and bits. This last element
representation does not have a corresponding type in C, and was implemented using an int value to store 32 elements of
the matrix, with bit manipulation operations used to access the individual bit values.

In the adjacency lists representation, a list ismaintained for each vertex,with the numbers of the nodes that are neighbors
to it. This representation uses an integer value for each neighbor and an overhead for list administration. Nevertheless, it
spares memory space for sparse networks.

5. Algorithms

In this section we discuss briefly the algorithms used. We use N for the number of nodes and E for the number of edges
in the networks. Also, let ⟨k⟩ = 2E/N be the average degree and ⟨k2⟩ be the second momentum of the degree distribution.

ER (probability) network generation: For this model, all possible pairs of nodes need to be considered. Therefore, the time
complexity is O(N2) independent of representation.

ER (edges) network generation: In this case, for each edge to be generated, two endpoints must be chosen. Each generated
edgemust be tested to avoidmultiple edges between the samepair of nodes. For the adjacencymatrix representation, testing
for the existence of an edge can be done by reading a matrix element, and therefore the complexity is O(E) = O(N⟨k⟩). In
the case of adjacency lists, the list of neighbors of one of the endpoints of the possible edge must be searched in order to
verify if an edge exists. As these lists have on average ⟨k⟩ elements, the complexity is O(E⟨k⟩) = O(N⟨k⟩2).

BA network generation: for each vertex added to the network, it is necessary to chose among all existing nodes with a
probability proportional to their degrees. To achieve this, a list (represented by an array) is maintained where for a vertex i
with degree ki there are ki entries with value i. Each time the degree of a vertex increases, a new entry is added. From this
list, one value is randomly chosen to determine the vertex that will be connected to the new vertex. For each edge to be
added, the amount of time taken to handle this auxiliary list is constant. The time complexity is therefore identical to that
of the ER (edges) model.

Degree: The computation of the average degree can be done by counting the number of edges of each vertex. Using
adjacency matrices, it is necessary, for each vertex, to scan the entire corresponding line (or column) in the matrix. That is,
for each of the N nodes, N matrix elements must be considered, yielding a time complexity of O(N2). When using adjacency
lists, it is enough to count the number of elements in the list of each vertex. As there are on average ⟨k⟩ elements in these
lists, the time complexity is O(N⟨k⟩) = O(E). This complexity can be further reduced to O(N) if the length of the list is
stored inside the list during its construction, as done in the present work.

Clustering coefficient: For each vertex, we (i) find its neighbors; and (ii) verify if there is an edge between each pair of
neighbors. Step (i) needs O(N) for the adjacency matrix representation and O(⟨k⟩) (in average) for the adjacency lists
representation. For step (ii), if the vertex has degree k, k(k−1)/2 pairs need to be tested; each pair can be tested inO(1)with
the adjacency matrix and in O(⟨k⟩) (in average) for adjacency lists. Therefore, the overall time complexity for computing
the average clustering coefficient is O(N2

+ N⟨k2⟩) when using adjacency matrices and O(N⟨k2⟩⟨k⟩) when using adjacency
lists. We note that for the Erdős–Rényi models ⟨k2⟩ is independent of N , while for the Barabási–Albert model it grows with
logN [16]. In both models ⟨k2⟩ grows with ⟨k⟩2.

Average shortest path distances: Each vertex in turn is considered as the source of the paths and the distances from it to
all other nodes are computed using the breadth-first search algorithm [15]. In this algorithm, we mark all neighbors of the
source as having distance one, then consider the neighbors of the neighbors that have not already been visited and mark
them as having distance two, and so on. For each source vertex, all other nodes must be visited once, and their neighbors
considered. As computing the neighbors is O(N) in the adjacency matrix representation and O(⟨k⟩) in the adjacency lists
representation, the total time complexity of the average shortest distance computation is O(N3

+ N2
⟨k⟩) when using

adjacency matrices and O(N2
⟨k⟩) when using adjacency lists.

Betweenness centrality: The betweenness centrality of all nodes is computed by using the algorithm of Brandes [17]. This
algorithm is an extension of the breadth first search algorithm, and therefore has the same time complexity. Further details
can be found in Ref. [17].

6. Results and discussion

We study the execution time needed for the generation of the network and for the computation of the following network
measurements: average degree, clustering coefficient, all-pairs distances and betweenness centrality. The effect of the
various network representations is evaluated as a function of the network size and average degree.
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Fig. 1. Time taken to generate networks of different number of nodes (using ⟨k⟩ = 10).

6.1. Network generation times for different network sizes

We first consider the effect of network size on the execution time needed for the generation of the networks, using
different network representations.

6.1.1. ER (probability) model
We start by investigating how the generation of ER networks is affected by the choice of different graph representations.

The execution times required to produce ER networks of several sizes, and average degree 10, are shown in Fig. 1.
Generally speaking, the different types of graph representation clearly had little effect on the execution time. This result

is expected, considering the identical complexities O(N2) of the various representations, and the fact that in all codes most
of the computational effort is invested in considering all pairs of nodes to be connected with constant probability. A least-
square fitting for the inclination of the lines gives a result of about 1.9 for the list representation and 2.0 for the other
representations.

6.1.2. ER (edges) model
Unlike the results obtained previously, the adoption of different types of graph representations has a marked effect on

the respective execution times for the ER (edges) model, as can be seen in Fig. 1. In particular, the improvements allowed
by the more memory-effective representations (bit and list) are now evident. Interestingly, a sharp change of execution
times in the matrix cases is observed at about N = 1000. This abrupt increase occurs when the capacity of the cache of the
microcomputer is exceeded by larger sizes of graphs. Though the list representation is initially slower than thematrix cases,
it becomes faster and faster with the increase of N .

As ⟨k⟩ is kept constant, the complexity for all representations is O(N). For small values of N , the fact that the
adjacency lists representation has a complexity constant proportional to ⟨k⟩2, while the constant for the adjacency matrix
is proportional to ⟨k⟩, is shown by the larger generation times for the adjacency lists representation. As soon as the network
size grows, thementioned architectural effects (for largematrices, matrix representations takemorememory space than list
representations), not taken into account in a complexity analysis, dominate. This can be seen in the slopes of the power-law
segments of the curves. The adjacency list representation curve has a slope of 1.0. For adjacency matrix representations,
there are some segments of power-law behavior with fast transitions between them, and the slopes depend on the size of
the matrix element. When using bits for the elements, the slope is about 1.0 in the region N ≤ 4000 and 1.5 for N ≥ 5000.
If the elements are boolean, the approximate values of the slopes of the power-law regions are: 1.1 for N ≤ 1000, 1.5 for
2000 ≤ N ≤ 5000 and 1.8 for N ≥ 6000. For int and float elements (both using 32 bits) the results are identical, with
slopes of 1.2 for N ≤ 700, 1.6 for 800 ≤ N ≤ 2000 and 1.5 for N ≥ 5000. When using double, the slopes are: 1.3 for
N ≤ 500, 1.7 for 600 ≤ N ≤ 2000 and 1.4 for N ≥ 3000.
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Fig. 2. Computation time for average degree, clustering coefficient, average distances and betweenness centrality as a function of network size for BA
networks of average degree 10.

6.1.3. BA model
The generation times obtained for BA networks are also shown in Fig. 1. The results are similar to that of the ER

(edges) model, with the list and bit representations providing the fastest execution times for large values of N , and similar
architectural effects are displayed. The regions with power-law behavior are identical and the slopes do not differ much. For
adjacency lists the slope is 1.0. Using bits: 1.1 in the region N ≤ 4000 and 1.5 for N ≥ 5000. Using bool: 1.1 for N ≤ 1000,
1.7 for 2000 ≤ N ≤ 5000 and 1.6 for N ≥ 6000. Using int or float: 1.3 for N ≤ 700, 1.7 for 800 ≤ N ≤ 2000 and 1.4
for N ≥ 5000. Using double: 1.5 for N ≤ 500, 1.8 for 600 ≤ N ≤ 2000 and 1.3 for N ≥ 3000. It is interesting to note that,
although the generation of ER (edges) and BA networks have identical complexities and the algorithm for the generation
of BA networks is a bit more complicated, due to the necessity of maintaining a list of node connection (see Section 5), the
execution times are a bit smaller for the BA networks. The reason is discussed in Section 6.3.1.

6.2. Computation time of some measurements for different network sizes

We turn now our attention to the effect of network size on the computation time of some network measurements, for
the various network representations.

6.2.1. Average degree
Westart by investigating the execution times required for determination of the average degree. Fig. 2 depicts the obtained

results for BA networks with varying sizes and average degree equal to 10.
It is clear that the list implementation allows a dramatic reduction of the execution times for all network sizes. The

other implementations required similar execution times and, as could be expected, the representation using matrices of
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double precision values implied the longest execution times. It is also easy to see that all matrix representation cases have a
complexity of O(N2), as expected: the slopes of all curves are 2.0. The implementation with adjacency lists shows not only
complexity O(N) (confirmed by the slope of 1.0 assumed for N larger than 1000), but dramatically reduced execution times
with respect to the other representations.

6.2.2. Clustering coefficient
Fig. 2 shows the execution times obtained for the calculation of the clustering coefficient of BA networks of several sizes

and average degree 10. As a consequence of the fact that this measurement demands more computations than the average
degree, the execution times resulted larger. Interestingly, the several tested representations led to similar execution times,
with the list and bool implementations providing particularly good efficiency for large values of N . Moreover, by keeping
⟨k⟩ fixed, the complexity of these calculations is O(N2) for adjacency matrices and O(N logN) for adjacency lists (and the
BA model). The lower complexity using the adjacency lists representation can be seen on the graph. It also has significantly
higher constants, as shown by the larger values for small N . The slope of the adjacency matrices curves is 1.9 for N greater
than 500.

6.2.3. All-pairs distances and betweenness centrality
Wealso investigated how the time required for the calculation of the average distances and betweenness centrality varied

with the several adopted implementations. Fig. 2 shows the obtained results for BA networks of several sizes and average
degree equal to 10. The results for the two measurements are similar.

The substantially more complex nature of these measurements has been clearly reflected in the larger execution times.
While little differences can be noticed for most implementations, the list representation allowed, again, substantially faster
execution times, representing the fast option for all values ofN . Indeed, the relative improvement obtainedwith lists clearly
seems to increase with the network size. This implies that the use of lists becomes critical for allowing calculation of these
measurements in particularly large networks.

These results are compatible with the respective complexity for fixed ⟨k⟩, which is O(N3) for adjacency matrices (the
slopes are of 2.7 for bool and int and 2.8 for the other representations) and O(N2) for adjacency lists (slope of 2.1).

6.3. Network generation times for different average degrees

So far we have probed how the execution time varies with the network size for a fixed average degree (equal to 10).
Now, we proceed to investigate how the speed is influenced by different values of average degree. This will allow us to get
insights about the generality of the previously observed trends. In principle, it could be expected that the larger the average
degree of a network, the smaller would be the benefits provided by the lists, because thematrices would become less sparse.
Therefore, special attention is henceforth focused on this potential effect.

6.3.1. Network generation time
Fig. 3 shows the execution times, in terms of the average degree, obtained for generating networks of the three considered

models while using the several representations. The network size is henceforth fixed at N = 10 000.
The results are evident and confirm that the use of lists guarantees higher speed for sparse networks, decreasing steeply

as the network becomesmore dense. Particularly interesting is the behavior of the bits implementation, which overtakes the
lists from average degree of the order of 10. This fact suggests that the execution time seems to be strongly affected by the
memory which is demanded by each implementation. With the increase of the average degree, the matrix implementations
become progressively more effective, while the bits, and particularly the list, implementations lose their effectiveness.

With respect to time complexity, as we are dealing with the constant N case, the ER (probability) model is O(1) for both
representations (confirmed in the results) while the ER (edges) and BA models are O(⟨k⟩2) for adjacency lists (confirmed
by a slope of 1.0 in the ER curve and 1.1 in the BA curve) and O(⟨k⟩) for adjacency matrices. This last fact could only be
confirmed for the curve corresponding to bit elements for the ER model, which has a slope of 2.2. Using larger elements,
there is no clear power-law region, but the curves tend to follow the same slope for large ⟨k⟩.

Another interesting point shown in the results is that the generation of ER (edges) networks is much slower than that of
BA networks for adjacency lists when ⟨k⟩ is large. This is somewhat surprising, as the algorithm to generate BA networks
is more complicated. Some additional experiments have shown that, for large ⟨k⟩, the generation time for these models
is dominated by the test to verify if a possible new link already exists. In the adjacency list representation, this involves
searching for a node number in the list of neighbors of the other node. As this search is generally not successful, all of the
list is searched. In the case of the ER (edges) model, as each link is independent of the other, a new list must be searched
every time, implying a poor use of the processor cache. For BA networks, we simply search always the list of the new node
that is being added, which results in better locality in the cache, and also in searching through a smaller list of neighbors.

6.4. Computation time of some measurements for different average degrees

Nowwe consider the effect of the average degree in the computation of some networkmeasurements for different graph
representations.
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Fig. 3. Time taken to generate networks of different average degrees (using N = 10 000).

6.4.1. Average degree
Fig. 4 depicts the execution time, in terms of the average degree, required to calculate the average degrees of BA networks

with size N = 10 000.
As expected by complexity analysis (Section 5), with fixed N all representations have constant time. But the better

performance of the list representation is indisputable.

6.4.2. Clustering coefficient
The dependency of the execution times required for calculation of the clustering coefficient is shown in Fig. 4, in terms

of several average degrees of BA networks.
The general trends verified in this graph are similar to those obtained for the networks generation and average degree

calculation. However, the relative advantage of the list implementation is only present for networks with average degrees
smaller than 10.

This behavior is explained by the fact that, for fixed N , the complexity of this computation is O(⟨k⟩3) for the list repre-
sentation (the curve shows a slope of 3.0) and O(⟨k⟩2) for the matrix representation. For this last case, the curves show no
clear power-law region, implying that architectural effects are dominating complexity issues.

6.5. All-pairs distances and betweenness centrality

The estimation of the shortest distances and the betweenness centrality in terms of the average degree are shown in
Fig. 4. Both show similar behaviors.

From complexity analysis, it is expected that the execution times grows linearly with ⟨k⟩ (for fixed N) for all represen-
tations. Nevertheless, we see that for most of the values of ⟨k⟩ used, the matrix representations show almost constant time.
The explanation is that this constant comes from the (large) N3 term of the complexity expression, that is only overcome
by the linear term when ⟨k⟩ is of the order of N . As expected, the list representation is more sensitive to increasing ⟨k⟩ and
it demands increasing execution times for smaller values of the average degree. No clear power-law regions can be seen in
these results. It is interesting to note that the transition from the almost constant time for small ⟨k⟩ to linear time for large
⟨k⟩ closely follows a q-exponential function of q-statistics [18]. As an example, we fit the execution time for the betweenness
centrality computation using the bits representation to the following expression:

T (⟨k⟩) = T0

1 − (1 − q)

x
κ

1/(1−q)
. (1)

The fitting can be seen in the inset of the betweenness centrality graph of Fig. 4, where the values q = 0.56, T0 = 116, and
κ = 358 were found by the least squares method.
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Fig. 4. Computation time for average degree, clustering coefficient, distances and betweenness centrality as a function of average degree for BA networks
of size N = 10 000.

7. Concluding remarks

Though the development of more effective algorithms for complex network generation and characterization can lead to
great computational savings, we have shown that the choice of adequate network representations can have a major impact
on the overall execution time. More specifically, we compared full and sparse schemes for representing the connectivity of
the networks while generating networks and calculating several measurement of their topology. The sparse representation
resulted as being generally more effective than the full scheme, except for the cases when the networks have very large
average degrees. We also investigated the effect of having diverse data types such as byte, integer, float, double and bit.
In general, the shorter data types led to superior performance as a consequence of the smaller amount of memory to be
accessed.

The obtained results and trends suggest a number of further investigations. For instance, it would be interesting to
consider other network models and measurements, as well as to assess the effect of different types of hardware, compilers
and operating systems.
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