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In this note we revisit Hitchin’s prescription [1] of the Fisher metric as a natural measure on the moduli 
space of instantons that encodes the space–time symmetries of a classical field theory. Motivated by 
the idea of the moduli space of supersymmetric instantons as an emergent space in the sense of the 
gauge/gravity duality, we extend the prescription to encode also global symmetries of the underlying 
theory. We exemplify our construction with the instanton solution of the CPN sigma model on R

2.
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1. Introduction

The study of the moduli space of (anti-)selfdual instanton so-
lutions of 4-dimensional SU(2) Yang–Mills theory has been an ex-
tremely rich and fruitful one, yielding a spectrum of results from 
Donaldson’s theory of geometric invariants [2] to the recent devel-
opments in on-shell methods for scattering amplitudes (see, for 
example, [3] and references therein). Instanton calculations also 
underlie key results of the AdS/CFT correspondence such as [4–8]
where it was shown that N = 4 Super Yang–Mills (SYM) instan-
tons know about the dual geometry of AdS5 × S5 from a match-
ing of the instanton contribution of 16 fermion scatterings in the 
gauge theory and that of D(−1) instantons in the dual geome-
try. It was shown that the large N limit of the k-instanton moduli 
space collapses to just a single copy of AdS5 × S5 for all k. This 
very powerful matching gives us hope that instantons are a good 
exploratory tool of dual geometries and our aim here is to develop 
a generative method of finding that dual geometry using instanton 
moduli spaces.

The instanton moduli space generally inherits some geometric 
properties of the instantons that it parameterises. For example, us-
ing the L2 metric, the instanton moduli space of a Hyperkähler 
4-manifold will be Hyperkähler itself. However, for SU(2) Yang–
Mills the L2 metric is not conformally invariant but instead relies 
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heavily on the metric chosen for the Yang–Mills theory, not its con-
formal structure. Given the important role of the symmetries of 
gauge theories, especially conformal invariance, in the holographic 
context, this is a not insignificant drawback of using the L2 metric 
when studying AdS/CFT.

In [1] Hitchin proposed the Fisher information metric (see sec-
tion 2 for an overview of this topic) as an alternative metric to 
circumvent this shortcoming, albeit that this work pre-dates the 
AdS/CFT correspondence. In addition to being a conformally in-
variant metric, this metric has the desirable properties that it is 
complete and encodes all the spacetime symmetries of the field 
theory.

In [9] it was further suggested that using the Fisher–Hitchin 
metric, instantons of a CFT are a natural probe of the dynamics 
of the gravitational bulk dual within the AdS/CFT correspondence. 
Indeed, there it was demonstrated that not only was the Fisher–
Hitchin metric on the 1-instanton moduli space of 4-dimensional 
SU(2) Yang–Mills theory (Euclidean) AdS5, but also that small per-
turbations of the CFT metric lead directly to linearised Einstein 
equations of the Fisher–Hitchin metric. Since then, information 
geometry has been used to define the metric on instanton mod-
uli spaces in a number of different contexts, including at finite 
temperature [10], for U (N) instantons [11], for CP1 and CP2 in-
stantons [12] and in a non-commutative context [13]. Despite this 
progress, it has so far not been clear how to encode the compact 
space of the bulk theory using the Fisher–Hitchin metric.

This article arose from our attempts to understand how to use 
information geometric methods to extract the full AdS5 × S5 geom-
etry from the moduli space of instantons in N = 4 supersymmetric 
Yang–Mills theory. Since information about the S5 is expected to 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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be related to the R-symmetry of the SYM, we need to first un-
derstand how global symmetries of instantons are encoded in the 
Fisher metric. Toward this end, we warm up by studying instan-
tons, not in the full 4-dimensional SYM but in a 2-dimensional 
proxy, the CPN nonlinear sigma model that shares many of its fea-
tures and reformulate Hitchin’s prescription for the Fisher metric 
in terms of the CPN coset current algebra.

By way of an outline, in the rest of this article we first present 
a quick summary of the Fisher metric and Hitchin’s use of it as an 
alternative metric on the moduli space of 1-instanton solutions of 
SU(2) Yang–Mills theory in four dimensions, followed by an appli-
cation of the prescription to the 2-dimensional CPN sigma model 
in section 3. The crux of our argument, a new prescription for the 
metric on the moduli space of instantons in the CPN sigma model 
is presented in section 4 and we conclude in section 5.

2. The Fisher–Hitchin metric

Within the field of information theory, a measure of the dis-
tance between two (normalised) probability distributions P and Q
over a random variable x drawn from a value space, M , is given by 
the amount of information lost when one distribution is used to 
approximate the other. This so-called Kullback–Leibler divergence 
(or relative entropy) defined through [14,15],

DKL(P‖Q ) ≡
∫
M

dx P (x) log

(
P (x)

Q (x)

)
, (1)

is however only a pseudo-distance as it is not symmetric under 
interchange of P and Q . With this in mind, an actual distance 
measure on the space of parameters {θ i} that describe the two 
distributions can be defined by taking the infinitesimal limit where 
P approaches Q so that, to leading order in δθ ,

DKL(P (x; θ)‖P (x; θ + δθ)) = 1

2
δθ iδθ j gi j(θ) + . . . . (2)

The coefficient,

gij ≡
∫
M

dx P (x; θ)
∂ log P (x; θ)

∂θ i

∂ log P (x; θ)

∂θ j
, (3)

defines a metric, known as the Fisher metric on the parameter 
space of a given family of probability density functions P (x; θ). As 
a canonical and illustrative example, the family of Gaussian distri-
butions

P (x; θ) = 1

σ
√

2π
e
− 1

2

(
x−μ
σ

)2

, (4)

with θ = (μ, σ), yields the Fisher line element ds2 = (dμ2 +
2dσ 2)/σ 2. The underlying intuition is that a large standard de-
viation will lead to a larger overlap in two distributions, requiring 
more measurements to disambiguate between which of two distri-
butions corresponds to a given source being measured.

Hitchin’s proposal was to use the Fisher metric on the instan-
ton moduli space of field theories where the Lagrangian density 
evaluated on instanton solutions is used as the probability density 
function. The instanton moduli are then the parameters for this 
family of probability density functions.

Turning now to 4-dimensional SU(2) Yang–Mills theory, the 
conformally invariant and gauge-invariant Yang–Mills density
|F |2∗1 = − tr (F ∧ ∗F ) integrated over the 4-dimensional space, M , 
is proportional to the topological charge of the (self-dual) instan-
ton so that

P ≡ 1
2

|F |2∗1, (5)

8π k
defines a family of normalised probability distributions on M that 
furnishes a conformally invariant and complete metric on the in-
stanton moduli space. The fact that the probability density function 
is gauge invariant means in particular that the metric is necessarily 
degenerate along directions in the moduli space that correspond to 
global gauge rotations.

3. The CPCPCPN sigma model and its instanton moduli space

To see this construction in action in a simpler setting, let’s now 
consider the 2-dimensional CPN nonlinear sigma model defined 
through the action

S =
∫
R2

d2x
(

Dμφ
)† (

Dμφ
)
, (6)

where φ is an (N + 1)-dimensional complex vector, Dμφ = ∂μφ −
Aμφ is a U (1) gauge covariant derivative and Aμ is an auxiliary 
gauge connection whose equation of motion allows for it to be 
expressed completely in terms of the CPN vector as Aμ = φ†∂μφ. 
Completing the square in the usual way, the action can be written 
as

S = ∓2πk +
∫
R2

d2x
1

2

∣∣(Dμ ± iεμν Dν

)
φ
∣∣2 ≥ |2πk|,

with topological charge k = i
2π

∫
d2x εμν

(
Dμφ

)†
Dνφ. This Bogo-

molnyi bound saturates when Dμφ = ±iεμν Dνφ or equivalently, 
with the introduction of complex coordinates x± = x1 ± ix2 when 
D∓φ = 0. Solutions to this equation are localised, and finite action 
i.e. (anti-)instantons of the CPN sigma model. A general solution 
takes the form

φ(x) = eiθ f (x+)√
f †(x+) · f (x+)

, (7)

and we see that (anti-)instanton solutions are expressed in terms 
of an (anti-)holomorphic function f (x±). The (anti-)instanton 
charge is given by the degree of the zero of f (x±).

To implement Hitchin’s construction of the moduli space met-
ric, we first need to know how many parameters parameterise an 
instanton for a given value of k. For example, the k = 1 instanton 
takes the general form

φ = eiθ (x+ − a)u + λv√|x+ − a|2 + λ2
, (8)

with a labelling the position of the instanton in the Euclidean 
(x+, x−)-plane, λ its size and u, v satisfying u†u = v† v = 1
and u† v = 0 and giving the orientations of the instanton in the 
(N + 1)-dimensional complex vector space. Asymptotically, for the 
instanton to be a finite action solution, Aμ must be pure gauge 
and φ constant up to the U (1) gauge symmetry. In other words 
the asymptotic data for the instanton is that

lim|x|→∞φ = φ0eiθ ,

lim|x|→∞ Aμ = i∂μθ. (9)

Zero modes define nearby solutions with the same asymptotic 
data. Since the U (1) gauge field Aμ is higgsed, the global part 
of the U (1) is not a zero mode. Similarly, the global orientation 
of φ in the (N + 1)-dimensional complex vector space is fixed by 
the asymptotic data and hence u is not a zero mode leaving the 
remaining zero modes as the complex position a, the real scale λ
and the orientation vector v . The constraints v† v = 1 and u† v = 0
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imply 2N − 1 independent components for v and therefore a total 
of 2(N + 1) zero modes in CPN .

Plugging the 1-instanton solution back into the Lagrangian den-
sity gives the on-shell expression

L = λ2(
λ2 + |x+ − a|2)2

. (10)

Following Hitchin’s prescription, the normalised Lagrangian den-
sity, L̃, defined so that 

∫
d2x L̃ = 1 is the probability density func-

tion. The associated Fisher–Hitchin metric

gab =
∫

d2x L̃
(
∂a log L̃

) (
∂b log L̃

)
(11)

produces the line element

ds2 = 4
da2

1 + da2
2 + dλ2

3λ2
. (12)

This is an immediate consequence of the SO(1, 3) conformal sym-
metry of the planar CPN sigma model. This symmetry acts on a
and λ which are the only zero modes appearing in the probabil-
ity density L̃. The v zero modes have been “traced out” and give 
degenerate directions in the Fisher metric. Consequently, while the 
conformal nature of the underlying classical field theory has been 
captured, since L̃ is a singlet under all global symmetries, we have 
no chance of capturing the internal symmetries of the instantons 
in the Fisher–Hitchin metric. The question then arises as to how 
we can possibly encode the global symmetries of the instanton 
in the information metric? This is particularly important if one 
considers the instanton moduli space of N = 4 Super Yang–Mills 
where we would hope to capture both the AdS5 as well as the S5

parts of the holographic dual.

4. An information metric as a functional of the CPCPCPN coset 
current

We now discuss a way for the Fisher metric to retain infor-
mation about the internal symmetries. As is clear, we must use a 
density function that is charged under those internal symmetries. 
Such a density function cannot yield a probability density function. 
It does, however, behave like an amplitude that “squares” to the 
probability density. There are a couple of different such amplitudes 
that come to mind. For example, one may use D+φ evaluated on 
k = 1 instantons. However, since we want our prescription to be 
as broad as possible, we will exploit the fact that the CPN sigma 
model can be formulated as a coset sigma model on the coset

CP
N = U (N + 1)

U (N) × U (1)
, (13)

and utilise the corresponding coset current in our proposed mod-
ification of the Fisher metric. In this way, our construction is ex-
pected to generalise to any coset model. For concreteness, we will 
make our argument with the 1-instanton of the CPN model where 
we define an information metric in terms of the coset current J
evaluated on the k = 1 instanton as

Gab ≡ 4
∫
R2

d2x tr
[
∂(a Ĵ † ∂b) Ĵ

]
, (14)

with Ĵ a normalised current associated to J such that∫
d2x tr

(
Ĵ † Ĵ

)
= 1.

Although we are not aware of such a definition in existing infor-
mation theory literature, we can motivate the above definition by 
noting that (i) the coset current J does indeed behave like an am-
plitude by virtue of its relation to the Lagrangian as L = tr

(
J † J

)
, 

and (ii) when the naive replacement J ∼ √
L is placed into (14) we 

get back the normal definition of the Fisher metric. As we demon-
strate below however, this new formulation also allows for internal 
moduli to be encoded when they are present. That this definition 
has the same overall power of J as the definition in [1] is crucial 
for the integral to be well defined.

Recall that to construct the coset current for a general coset 
space G/H , we start with the Maurer–Cartan form of G given 
as g−1dg , where g ∈ G is a general group element. The Maurer–
Cartan form itself is an element of g, the Lie algebra of G . An 
H-invariant current is then obtained by projecting onto m, the or-
thogonal complement to the Lie algebra h of H , with respect to 
the Killing form on g. We denote this projection by

J = g−1dg|m. (15)

For the purpose of calculating the coset current, we can use any 
coset representative. For CPN we will use

g =
(

e−iθ
(
δα

β + bαb∗
β (sinρ − 1)

)
bα cosρ

−b∗
β cosρ eiθ sinρ

)
, (16)

for some ρ , θ ∈ R and a complex vector bα satisfying bαb∗
α = 1, 

where the indices α, β = 1, . . . , N are U (N) indices. We now need 
to evaluate g and J on instanton solutions. To do this, let us first 
relate the matrix g to the CPN vector φ as

φ = g

(
0
1

)
=

(
bα cosρ

eiθ sinρ

)
. (17)

We now equate this with the instanton solution (8) to find(
bα cosρ

eiθ sinρ

)
= 1√

r2 + λ2
(λv + y+u) , (18)

where we have introduced the variables y+ = x+ − a and r = |y+|. 
This allows us to identify

u =
(

0
1

)
, v =

(
bα

0

)
,

y+ = reiθ , cosρ = λ√
r2 + λ2

, (19)

where bα is constant for the 1-instanton solution. We can now 
calculate the coset current, J , evaluated on the instanton solutions. 
Firstly, we find

g−1dg =
(−idθ

(
δα

β + bαb∗
β cos2 ρ

)
−qbα

q∗b∗
β idθ sin2 ρ

)
, (20)

where we have defined

q = eiθ
(

dρ + i

2
sin 2ρ dθ

)
= λ

r2 + λ2
dx+. (21)

Projecting (20) onto m gives the current

J = g−1dg|m =
(

0 −qbα

q∗b∗
β 0

)
. (22)

Finally, substituting into our prescription for the information
metric gives

Gab = 4
∫

d2x∂(a
(
qμbα

)
∂b)

(
q∗
μb∗

α

)
. (23)
π
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We can parameterise the N-dimensional complex unit-vector 
bα recursively in terms of a family of n-dimensional unit-vec-
tors, cn:

bα = (cN)α , cn =
(

eiρn cos θn−1

cn−1 sin θn−1

)
, c1 = eiρ1 . (24)

The resultant metric is AdS3 × M2N−1. The moduli a1, a2, λ are 
coordinates on the same AdS3 metric as for the Fisher–Hitchin 
prescription, whereas the moduli ρ1, . . . , ρN , θ1, . . . , θN−1 parame-
terise a (2n − 1)-dimensional compact space with metric:

ds2 = 4

3λ2

(
da2

1 + da2
2 + dλ2

)
+ 4d�2

N , (25)

where d�2
N is defined recursively in terms of

d�2
n = dθ2

n−1 + cos2 θn−1dρ2
n + sin2 θn−1d�2

n−1, (26)

and d�2
1 = dρ2

1 . For N = 1 and N = 2, the compact space is nothing 
but an S1 and S3 in Hopf coordinates.

5. Discussion

We have shown here that Hitchin’s proposal for a gauge and 
conformally-invariant, geodesically complete metric on the mod-
uli space of instantons, while superior to the usual L2 metric in 
these respects, is nevertheless insufficient to capture information 
about the internal symmetries of the gauge theory. In a simple 
extension of the information metric, we have argued that a new 
current formulation of the metric on the space of instanton solu-
tions does indeed capture both isometric information as well as 
information about the global internal symmetries. As a proof of 
principle, in this article, we have shown that the 1-instanton mod-
uli space of the planar CPN nonlinear sigma model is equipped 
with an AdS3 × M2N−1 metric.

As discussed in the introduction, our motivation for this study 
comes from trying to understand to what extent gauge theory in-
stantons are a good probe of dual geometry and, more specifically, 
how the instanton moduli space is related to the emergent dual 
spacetime. In this light, there are a number of further avenues to 
pursue. Foremost among these is an understanding of the moduli 
space of supersymmetric instantons, both in nonlinear sigma mod-
els as well as gauge theory. Understanding how the R-symmetry of 
the latter is coded in the information metric on the moduli space 
is, of course, key to our end goal.

Ideas from information theory, in particular the geometry of in-
formation manifolds are currently enjoying a resurgence in high 
energy physics, due in no small part to the rapid development of 
the field of quantum entanglement and entanglement entropy us-
ing holographic methods [16–18]. It would be most interesting to 
understand how these two, seemingly disparate, threads in which 
information geometry plays such a key role in the emergence of 
spacetime, may be related to each other.
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