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In the present article, we have studied the unsteady boundary layer flow of a rotating Eyring—Powell fluid
on a rotating cone with the combined effects of heat and mass transfer. The governing momentum,
energy and mass equations for unsteady flow are presented and simplified using similar and nonsimilar
transformations. The reduced coupled nonlinear differential equations are solved analytically with the
help of a strong analytical technique namely the optimal homotopy analysis method. Numerical results
for important physical quantities are computed and displayed. The physical features of suitable param-
eters are discussed through the graphs of velocities, heat transfer, concentration, skin friction, Nusselt
number and Sherwood number.
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Introduction

Flow of non-Newtonian fluids has attained a great success in
the theory of fluid mechanics due to its applications in biological
sciences and industry. A few applications of non-Newtonian fluids
are food mixing and chyme movement in the intestine, polymer
solutions, paint, flow of blood, flow of nuclear fuel slurries, flow
of liquid metals and alloys, flow of mercury amalgams and lubrica-
tions with heavy oils and greases. Some important studies of differ-
ent non-Newtonian fluids studied by the researchers are cited in
Refs. [1-9]. The phenomenon of mixed convection has fascinated
most of the scientific experts due to its exclusive real world appli-
cations. Solar central receivers exposed to wind currents, electronic
devices cooled by fans, nuclear reactors cooled during emergency
shutdown, heat exchangers placed in a low velocity environment
are some applications. In the pioneering work, Hering and Grosh
[10] have investigated the steady mixed convection from a vertical
cone for small Prandtl number. They applied similarity transforma-
tion which shows Buoyancy parameter is the dominant dimension-
less parameter that would set the three regions, specifically forced,
free and mixed convection. Himasekhar et al. [11] studied the
similarity solution of the mixed convection flow over a vertical
rotating cone in a fluid for a wide range of Prandtl numbers.
Non-similar solutions to the heat transfer in unsteady mixed con-
vection flows from a vertical cone were discussed by Kumari and
Pop [12]. Anilkumar and Roy [13,14] presented the self-similar
solutions of an unsteady mixed convection flow over a rotating
cone in a rotating fluid. They found that similar solutions are only
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possible when angular velocity is inversely proportional to time.
Non-similar solutions to the heat transfer in unsteady mixed con-
vection flows from a vertical cone are presented by Ishak et al. [15].
Boundary layers on rotating cones, discs and axisymmetric sur-
faces with a concentrated heat surface have been studied by Wang
[16]. Yih [17] inspected the mixed convection about a cone in a
porous medium. Not a great attention has been paid to the three
dimensional flows of Eyring-Powell fluid by the researchers. In fact
this fluid model differentiates itself from other non-Newtonian
fluid models. It is derived from kinetic theory of liquids in spite
of empirical relation. Further it appropriately reduces to Newto-
nian behavior for low and high shear rates. Few studies regarding
Eyring-Powell fluid are mentioned in Refs. [18-21].

The present article is a motivation of the above mentioned
study. So we are concerned to examine the analytical solutions of
unsteady mixed convective rotating flow of Eyring-Powell fluid
in a rotating cone. The similarity solution is presented by using
the optimal homotopy analysis method [22-33]. It is observed that
similarity solutions are only possible when angular velocity is
inversely proportional to time. At the end of the article, graphical
and tabular results of some important physical quantities are
discussed for some related parameters. Also the comparison of
present results with the previous numerical results is computed
as a special case of the present work.

Physical model

We are interested to investigate the unsteady laminar incom-
pressible rotating flow of Eyring-Powell fluid over a rotating infi-
nite cone. The coordinate system is considered to be fixed. The
geometry of the flow problem is given in Fig. 1. The unsteadiness
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is introduced in the flow field due to the combined rotation of the
fluid and the cone with the unsteady angular velocity in both direc-
tions i.e., (same or opposite). The wall and free stream are main-
tained at constant temperature and concentration. The buoyancy
forces arise due to the temperature and concentration variations
in the fluid. Further the flow is taken to be axisymmetric and also
the dissipation effects are not considered.

The constitutive equation for a Cauchy stress in an Eyring-
Powell model fluid is given by

S=uvV+-sinh

o ()

where V is the velocity, S is the Cauchy stress tensor, u is the shear
viscosity, p and c are the material constants. Considering

3
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approximations, the governing equations for motion, temperature
and concentration for Eyring-Powell fluid model are stated as
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Employing the following similarity transformation [14]
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Here u, v and w are velocity components along x , y and z-axis,
respectively, T is the temperature, K is the concentration, g is the
gravity, k is the thermal diffusivity, D represents mass diffusivity,
o is the semi-vertical angle of the cone, v is the kinematic viscosity,
p is the density, g and * are the volumetric coefficient of expansion
for temperature and concentration, respectively, C., and T, are the
free stream concentration and temperature, R and K are the flow
parameters for Eyring-Powell model. By using the above mentioned
similar and non-similar variables of Eq. (6), Eq. (1) is identically sat-
isfied and Egs. (2)-(5) give

(T+Rf" —ff"+27f2 = 2(g* = (1 — ou)*) — 21 (0 + N¢p)
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f(0)=0=F(0), g0)=0n, 00)=p(0)=1. o
fl(00) =0, g(oo)=1-0y, 0(cc)=¢(c0)=0.

where 2; is the buoyancy force, N is the ratio of the Grashof
numbers. It vanishes for chemical diffusion, approaches to infinity
for the thermal diffusion and positive when the buoyancy forces
due to temperature and concentration difference act in the same
direction and vice versa. s is the unsteady parameter and the flow
is accelerating if s> 0 and the flow is decreasing, if s <0. Further

=0 shows that the fluid is rotating but the cone is at rest.
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Moreover the fluid and the cone are rotating with equal angular
velocity in the same direction for o; = 0.5 and for «; =1, only the
cone is rotating. The coefficient of local surface skin friction in x-
and y-directions, the local Nusselt number and local Sherwood
number in dimensionless forms are given by

Cfes = [=(1+RIf" = kK{(")f" 4 g8} o (12)
CoRek = —2(1 +R)g' —K{FF'g + (7)€}, o:
Nu Rey? = —0/(0), (13)

ShRe,* = —¢/(0).

Qx2 sino* (1-st*)
v

[K(5D)],
Tw

—Too

where Re, =

and Sh = _b (”)]Z ¢, Note that when K and R — 0 in Egs. (7) and

(8) our problem reduces to the problem of viscous flow [14]. As
we are focused to find the self-similar solutions, for this purpose
we solve Egs. (7)-(10) with boundary conditions (11). Self-similar
solution means that the solution at different times may be reduced
to a single solution i.e., the solution at one value of time t is same to
the solution at any other value of time t. This similarity property
reduces the number of independent variables to one.

is the Reynolds number, Nu = —

Analytical solutions by homotopy analysis method

In order to proceed for the HAM solutions we choose the base
functions of the form
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with solution expressions of f{1), g(n), 6(n7) and ¢(n), respectively.
The initial approximations fo, go, 0o and ¢q along the respective aux-
iliary linear operators are
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The operators given in Egs. (23)-(26) have the following properties
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where Cj(i=1 —9) are arbitrary constants. Let p € [0,1] denote an

embedding parameter, hy, he, hy and b, indicate the non -zero auxil-
iary parameters. The problems at the zeroth order are given by
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For p=0 and p =1, we have

Fm:0)=fom), f;1) =fam), (41)
&n;0) =go(m), &0m;1)=gm), (42)
0(17;0) = 6o(17),  0(;1) = 0(n), (43)
b(1;0) = po(1),  $(1;1) = (1) (44)

When p varies from 0 to 1, then the initial guesses vary from fo

(1), 8o(1), Oo(n), o) to fn), &(n), 0(n). d(n), respectively. Due to
Taylor’s series with respect to p, we have by Taylor’s theorem
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The mth-order deformation problems satisfy the following
expressions
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The general solutions of Egs. (5
fu(1) = fu(m) + C1 + Coexp(n) + C3 exp(—1), (
Em(n) = &gn(1) + Ca + Cs exp(—17), (
Om(n) = 0*( )+ Csexp(n) + C7 exp(—1), (67
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in which f: (), g;,(n), 0;,(n) and ¢;, (1) denote the special solutions
of (54)-(58) and the integral constants C(i=1 — 9) are determined

4)-(59) are

Table 1
Total averaged squared residual errors using single optimal convergence control
parameter Co.

m Co &t
2 -0.84 112 x 1072
4 -0.65 3.78 x 103
6 —-0.54 239 %1073
8 -0.51 2.06 x 1073
Table 2
Average squared residual errors using Table 1.
m 2 4 6 8
o, 186x107* 1.83 x 1074 1.79 x 1074 1.77 x 1074
¢, 285x1073 1.61x 1073 116 x 1073 9.96557 x 10~*
g, 439x10° 1.08 x 1073 574 x107* 485x10°*
gh 387x107° 9.12 x 1074 477 x 1074 403 x 1074
~
NI
z,u
Y, v
\ /
zZ,w
1w or qu
a
\j Q, T

Fig. 1. Schematic diagram and coordinate system.
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Fig. 2. (a) and (b) h-curves for f'(0), g'(0), ¢'(0) and ¢'(0) for 10th order of approximations, respectively.

by employing the boundary conditions (59) and (60). It is noted that
to satisfy the boundary conditions at infinity, we must set Cy, Cg
and Cg equal to zero. Note that Eqs. (54)-(58) can be solved by
Mathematica one after the other in the order m=1,2,3,....

Optimal convergence-control parameters

It is seen that the series solutions obtained by HAM, contain the
non-zero auxiliary parameters ¢}, c§, ¢} and c{, which determine
the convergence-region and rate of the homotopy series solutions.
In order to determine the optimal values of ¢}, ¢, c§, and cf, it is
used here the so-called average residual error defined by Liao [23].

- 2
1 j m_ m R m_ m_
=72 |V (Zf(n)vzg(n),zﬁ(vazb(n)) dy (69)
i=0 L n=0 n=0 n=0 n=0 y=isy
- 2
1 j m_ m R
=i [Ne (Zf(n)yzg(n),) dy (70)
i=0 L n=0 n=0 y=idy
2
1 J m_ m_ m_
TR ) (zfm),ze(m zas(n)) Y
J+ i=0 L n=0 n=0 n=0 y=idy
- 2
1 J m_, m_ . m._.
i=0 | n=0 n=0 n=0 y=idy
Following Liao [23]
&, =&, + &8 + & + & (73)

where &, is the total squared residual error, éy = 0.5 and J = 20. Total
average squared residual error is minimized by using symbolic
computation software Mathematica. We have directly applied the
command Minimize to obtain the corresponding local optimal con-
vergence control parameters. Tables 1 and 2 are presented for the
case of single optimal convergence control parameter. It is found

Table 3
Comparison of OHAM results and numerical results when K=R = 0.

that the averaged squared residual errors and total averaged
squared residual errors are getting smaller and smaller as we
increase the order of approximation. Therefore, the optimal homot-
opy analysis method gives us relaxation to select any set of local
convergence control parameters to obtain convergent results.

Results and discussion

The solutions of highly nonlinear coupled ordinary differential
equations of the concerning flow problem are carried out by a
famous analytical tool namely the optimal homotopy analysis
method. It was proposed by Liao [23]. We have seen that the series
solutions (52)-(55) contain the non-zero auxiliary parameters hy,
hg, hy and h,. These auxiliary parameters adjust and control the
convergence of the series solutions. For admissible values of the
auxiliary parameters hy, hg, hy and hy, h-curve is plotted for 15th-
order of approximations. Fig. 2(a) and (b) depicts that the range
for the acceptable values of h; hgh, and h, are —1.2<hf
<—-04,-13<h< —03,-12<hy<-03,-13<h, < —03.
It is apparent from the Tables 1 and 2 that, the obtained optimal
values are well within the convergence region as shown in
Fig. 2(a) and (b). An excellent agreement of our present analytical
results with the previous literature [14] is given in Table 3. Further
the influences of ratio of angular velocities of the cone and the fluid
o4, ratio of the buoyancy forces N, flow parameters K and R on the
velocity, temperature and concentration fields are presented in
graphical and tabular forms. These influences have been analyzed
in Figs. 3-9. The variation of both velocities (i.e., tangential and azi-
muthal) for combined effects of «; and 4; is sketched in Fig. 3(a)
and (b), respectively. The direction of both the fluid and the cone
is same when rotating with an equal angular velocity for o = 0.5.
The positive Buoyancy force i.e., /; = 1 which behaves as favorable
pressure gradient is responsible for the flow. For o; > 0.5, the tan-
gential velocity —f(#) has an increasing magnitude, but the azi-
muthal velocity g(#) reduces. While for o4 <0.5 the behavior is

Pr Sc Present results Numerical results [14]
CpRel CpRel NuRe;? ShRe,? CpReb CyReb NuRe;? ShRe;?
0.7 0.22 1.55441 -0.18622 0.92497 0.52520 1.55441 —0.18622 0.92497 0.52520
0.60 1.39263 —0.21528 0.90106 0.83546 1.39265 -0.21528 0.90102 0.83549
0.94 1.31331 —0.22757 0.89011 1.02810 1.31338 -0.22757 0.89011 1.02816
2.57 1.13111 0.25133 0.86677 1.63912 113111 0.25133 0.86679 1.63912
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Fig. 9. Effects of Pr and Sc on temperature 6(#) and concentration ¢(7), respectively.

Table 4
Numerical values of skin friction coefficients, Nusselt and Sherwood number for
different values of flow parameters.

K R

CRel CyRel NuRe;? ShRe?
00 0.1 271214 0.58070 0.90461 1.02345
2.0 2.69289 0.69232 0.88873 1.00725
40 2.67005 0.79226 0.87698 0.99475
6.0 2.62419 0.88221 0.86253 0.98515
05 00 2.63619 0.84054 0.91242 1.82485
02 2.79437 0.87245 0.89739 0.89831
0.4 2.91897 0.89859 0.88517 0.88660
0.6 2.99338 0.92283 0.87519 0.87660

opposite. The asymptotic behavior at the edge of boundary layer of
both velocities is noticed for o; <0 and A; = 1. Physically these
oscillations are caused by surplus convection of angular momen-
tum present in the boundary layer. Fig. 4(a) and (b) depict the
behavior of tangential velocity —f(#) and azimuthal velocity g(1)
on various values of K, respectively. It is illustrated that the tangen-
tial velocity —f(#n) decreases as the values of K get higher. On the
other hand the azimuthal velocity g(#) shows an increasing atti-
tude. In Fig. 5(a) and (b) the effects of flow parameter R have been
plotted for tangential velocity —f(#) and azimuthal velocity g(#),
respectively. It is clear from the figure that the variation of both
velocities is opposite. Fig. 6(a) and (b) give the variations of ratio
of the buoyancy forces N on the skin friction coefficients in both
directions ( i.e., tangential and azimuthal). It is found that both
the skin friction coefficients are increasing functions of N. Tangen-
tial and azimuthal skin friction coefficients increase by increasing
flow parameter K and R (see Figs. 7 and 8), respectively. The effects
of Prandtl number Pr and Schmidt number Sc on temperature and
concentration profiles are shown in Fig. 9. Both the thermal and
concentrated boundary layer decreases with an increase in Prandtl
number Pr and Schmidt number Sc, respectively. Physically higher
Prandtl number Pr fluid has a lower thermal conductivity which
results in thinner thermal boundary layer and thus the rate of heat
transfer grows up. For engineering phenomenon, the heat transfer
rate should be small. This can be maintained by keeping the low
temperature difference between the surface and the free stream
fluid, using a low Prandtl number fluid, keeping the surface at a
constant temperature instead of at a constant heat flux, and by
applying the buoyancy force in the opposing direction to that of
forced flow. The influences of flow parameters K and R on skin
friction coefficients, Nusselt number and Sherwood number in a
tabular form are given in Table 4. It is found that skin friction
coefficients increase for R, but other physical quantities show an
opposite variation for increasing values of K and R.

Remarks

We have inspected the unsteady mixed convection flow of
rotating Eyring-Powell fluid on a rotating cone in the presence of
heat and mass transfer. The non-dimensional differential equations
are solved by the optimal homotopy analysis method. The present
results are found to be in decent agreement with the prior results
of published work. The important results are concluded as follows:

e The effects of ratio of angular velocities «; are significant on
both velocities.

o The tangential velocity —f(#) and azimuthal velocity g(#) have
opposite behavior for flow parameter K and R.

e The increase in Prandtl number Pr and Schmidt number Sc
causes a reduction in the thermal and concentrated boundary
layer, respectively.

e The skin friction coefficients increase its magnitude due to an
increase in ratio of buoyancy forces N and flow parameter R,
but decreases with increasing K.

e The Nusselt and Sherwood numbers are decreasing function of
K and R.
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