
Theoretical Computer Science 91 (1991) 239-264

Elsevier

239

Some fundamental algebraic tools
for the semantics of computation:
Part 3. Indexed categories*

Andrzej Tarlecki
Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Rod M. Burstall
Department of Computer Science, Unioersity of Edinburgh. Edinburgh, UK

Joseph A. Goguen
Programming Research Group, University of Oxford, Oxford, UK and SRI International, Menlo Park
CA, USA

Communicated by MS. Paterson

Received July 1988

Revised August 1989

Abstract

Tarlecki, A., R.M. Burstall and J.A. Goguen, Some fundamental algebraic tools for the semantics of

computation: Part 3. Indexed categories, Theoretical Computer Science 91 (1991) 239-264.

This paper presents indexed categories which model uniformly defined families of categories, and

suggests that they are a useful tool for the working computer scientist. An indexed category gives rise

to a singlejattened category as a disjoint union of its component categories plus some additional

morphisms. Similarly, an indexed functor (which is a uniform family of functors between the

components categories) induces a flattened functor between the corresponding flattened categories.

Under certain assumptions, flattened categories are (co)complete if all their components are, and

flattened functors have left adjoints if all their components do. Several examples are given. Although

this paper is Part 3 of the series “Some fundamental algebraic tools for the semantics of computa-

tion”, it is entirely independent of Parts 1 and 2.

1. Introduction

Category theory has played an important role in clarifying, generalising, and

developing results in both the theory and practice of computing. Many examples

*This work was partially supported by grants from the Polish Academy of Sciences, from the U.K.

Science and Engineering Research Council, and by Linkiiping University (AT); and by Office of Naval
Research Contracts NOO014-85-C-0417 and NOOOl4-86-C-0450, NSF Grant CCR-8707155, and a gift from

the System Development Foundation (JAG).

0304-3975/91/$03.50 c 1991-Elsevier Science Publishers B.V. All rights reserved

240 A. Tarlrcki et al.

occur in algebraic specification, which used initiality in the very beginning to explicate

the concept of abstract data type [20], and later used final objects [41], left adjoints

[40, S], colimits [S], comma categories [lS], 2-categories [14, 161, and sketches

[22,2]. Some early applications of category theory to various topics may be found in

the collection [28], and some recent applications to programming language semantics

of 2-categories, Kleisli categories, and indexed categories may be found in [30, 311.

Taylor [39] applies indexed category theory to recursive domains and polymorphism.

Institutions [17, 181 use category theory to formalise the concept of logical system.

Topics studied here include specification languages (Clear [S, 61, ASL [32], Extended

ML [34]), implementations [3, 353, observational equivalence [33], free construc-

tions [36,38], and model theory [37]. It is hard to see how this work could be done

adequately without categorical tools.

This paper is the third in a series [15, 161 intended to introduce fundamental

concepts and techniques from category theory to the working computer scientist, but

it is entirely independent of the previous parts. Its goal is to present indexed cate-

gories. Many-sorted algebras are a prime example with which the reader may

already be familiar: for each many-sorted algebraic signature C, there is a category

Alg(C) of C-algebras, and a signature morphism 0: C+C’ induces a functor

Alg(a):Alg(C’)+Alg(C), which we call a a-reduct. Thus, there is a functor

Alg: AlgSigoP+Cat from the (index) category of signatures to the category of catego-

ries. The mathematics literature [25] develops indexed categories “up to coherent

isomorphism” and is not very accessible to the average computer scientist. In contrast,

this paper develops “strict” indexed categories, which are defined “up to equality”,

a special case that often arises in theoretical computer science.

Any indexed category gives rise to a “flattened” category by taking the disjoint

union of the component categories and adding reduct morphisms. A flattened indexed

category has a projection functor, which maps each object to the index of the

component category from which it came. This is the “fibred category” [23] presented

by the indexed category. Benabou [4] argues that fibred categories formalise the same

intuition as indexed categories, but are easier to work with and conceptually simpler.

However, his argument does not apply to our strict indexed categories, which are

simpler still, and are not proposed for use in foundations, but only as a tool for doing

theoretical computer science.

Colimits have been used to “put together” many different kinds of structure,

including general systems [ll, 191, theories [6, 15, 161, and labelled graphs [9]. The

dual concept of limit, particularly the special case of equaliser, has also been applied,

for example to study unification in computing and in linguistics [13]. It is especially

convenient to use these constructions when every diagram has a (co)limit, i.e. when the

category is (co)complete. Section 3 shows that under certain conditions, if all compon-

ent categories are (co)complete, then so is the flattened category. This simplifies

(co)completeness proofs for some categories.

Given two categories indexed over the same category, an indexed functor between

them is a family of functors between their component categories that is consistent with

Tools for the semantics of computation: indexed categories 241

the functors induced by the index morphisms. An indexed functor induces a flattened

functor between its flattened source and target categories. If all the components of an

indexed functor have left adjoints, then so does the flattened functor. This can simplify

proofs that some functors have left adjoints. See Section 4.

Although these results may be in the folklore, they seem not to have been previously

published’. We believe they deserve an exposition for the working computer scientist.

We assume familiarity only with basic category theory and universal algebra; such

material may be found in [7, 27, 24, l] and other places; see also [12] for some

guidelines for applying category theory. Composition is denoted by “ ;” (semicolon) in

any category, and written in the diagrammatic order; identities are denoted by id,

possibly with subscripts. Our exposition proceeds in what Benabou [4] calls “naive

category theory,” without commitment to any particular foundation; indeed, nearly

any foundation that has been proposed for category theory is adequate for this

paper’.

2. Indexed categories

It may be surprising to realise that categories over a collection of indices are quite

common. In many natural examples, the categories in a family are uniformly defined,

in the sense that any index morphism induces a translation functor between the

corresponding component categories; moreover, the translation goes in the opposite

direction from the index morphism in these examples. Here is a simple example that is

still quite typical.

Example 1 (Many-sorted sets). Given a set S, there is a category SSET(S) of S-sorted

(or S-indexed) sets, with S-sorted functions as morphisms,

SSET(S)= [S-&et],

where Set is the category of sets, [S-Set] is the category of functors from S to Set with

S viewed as a discrete category and with natural transformations as morphisms under

vertical composition (cf. [27,11.4, p. 401). We may write X : S+Set as (Xs)sss, where

X,=X(s) for SE& and write g:X-+Yin SSET(S) as (gs:X,-+Y,),,s.

Since indices are sets, index morphisms are functions, and f: Sl +S2 induces

a functor SSET(f):SSET(S2)43SET(Sl) defined as follows:

l OIZ objects: Given XEISSET(S~)~, let SSET(f)(X)=f;X: Sl-tSet (noting that

X:S2-+Set), i.e. for sl~S1, let (SSET(f)(X)),, =Xftsl).

a on morphism: Given g = (gs2 : Xs2 + Y,,)s2 Es2 : X+ Y in SSET(S2), let

SSET(f)(g)=(g~(,I,:X~(sl)~Y/csl,)slE~1 :f;X+f; Y.

’ After reading a draft of this paper, John Gray pointed out that Gray [21] develops similar ideas for

fibred categories. In particular, his Theorem 4.2 and Proposition 4.1 yield our Theorem 1.
’ A reader who is nervous about foundations may, for example, check that each of our constructions can

be placed at an appropriate level in a hierarchy of universes such as that described in [27].

242 A. Tarlecki rt al

These induced functors are independent of how index morphisms are decomposed,

in the sense that SSET(f;j’)=SSET(j”‘);SSET(f); i.e. SSET is a (contravariant)

functor.

SSET : SeP-+Cat.

This motivates the following definition.

Definition 1. An indexed category C over an index category Ind is a functor

Ind”P-Cat. Given an index i~llndl, we may write Ci for the category C(i), and given

an index morphism U: i-j, we may write C, for the functor C(a) : C(j)+C(i). Also, we

may call Ci the ith component category of C, and C, the translation functor induced

by 0.

This presents a contravariant functor as a (covariant) functor from the opposite of

its source category. While it might seem equally reasonable to present it as a functor

from its source category to the opposite of its target category, this would give an

unnatural direction to the component morphisms of natural transformations between

such functors.

Often, we want to consider the components of an indexed category together in

a single “flattened” category obtained by forming a disjoint union of the components

and adding some new morphisms based on the index morphisms; this is the so-called

“Grothendieck construction” [23].

Example 1 (continued). Flattening the indexed category SSET : SeP+Cat yields the

category SSet = Flat(SSET) of many-sorted sets, defined as follows:

l Objects are many-sorted sets with an explicitly given sort set, i.e. they are pairs

(S, X), where S is a set (of sorts) and X: S-&et.

l Morphisms: A morphism from (S, X) to (S’, X’) is a pair (h g), where f: S+S’ is

a function and g :X + f; X’ is an S-sorted function (gs: Xs+X;(SJ)SES.
l Composition is defined componentwise, re-indexing the second component. Given

(J; y) : (S, X)+(S’, X’) and (.f’, g’): (S’, X’)-+(S”, X”), let

where 9=g;SSET(f)(g’)=(g,;g;,,,:X,s~Xl;,(f(s),)stS.

Definition 2. Given an indexed category C : Ind OP-+Cat, define the category Flat(C) as

follows:

l Objects are pairs (i, a), where iglIndl and aglCil.
l Morphisms from (i, a) to (j, b) are pairs (a, f), where g : i-j is a morphism in Ind

and f: a+C,(b) is a morphisms in Ci.

Tools for the semantics of computation: indexed categories 243

l Composition: Given morphisms (a, f) : (i, a)-+(j, 6) and (p, g) : (j, b)+
(k, c) in Flat(C), let

(o,f >;(P,g)=(a;p,f;C,(g)):(i,a)-t(k,c).

Such a flattened category has a functor extracting the first component of its pairs,

which is another important feature of the Grothendieck fibration.

Definition 3. Given an indexed category C : Ind Op-+Cat, define its projection functor

Proj,: Flat(C)+Ind

as follows:

o on objects: Given an object (i, a) in Flat(C), let Proj,((i, a))=i.
l on morphisms: Given a morphisms (rr, f) in Flat(C), let Proj,((0, f))= a.

We conclude this section with some further examples.

Example 2 (Many-sorted algebraic signatures). Given a set S, the category of S-sorted

algebraic signatures is the functor category

ALGSIG(S)=[S++Set],

where S + is the set of all finite nonempty sequences of elements of S, regarded as

a discrete category; equivalently, ALGSIG(S)=SSET(S+). Thus, an S-sorted alge-

braic signature is a family of sets (of operation symbols), one for each finite nonempty

sequence of elements of S; such a sequence represents the rank, i.e. the arity and result

sorts, of the operation symbols in the set that it indexes. An S-sorted algebraic

signature morphism is a renaming of operation symbols that preserves their rank.

The map S-S+ extends to a functor (_)’ : Set+Set, and the indexed category of

algebraic signatures is3

ALGSIG =(-)‘; SSET: SetoP+Cat.

The translation functor ALGSIG(f) : ALGSIG(S’)-+ALGSIG(S) induced by a func-

tion f:S+S’ extracts an S-sorted algebraic signature from an S’-sorted algeb-

raic signature using f to rename sorts: Given an S’-sorted algebraic signature C’

and a sequence sl...s,,~Sc, the operation symbols of rank sr. ..s, in the S-sorted

algebraic signature ALGSIG(f)(C’) are exactly the operation symbols of rank

f(sI)...f(s,)E(S’)+ from C’.

Flattening ALGSIG gives the usual category of algebraic signatures (e.g. [7]),

AlgSig = Flat(ALGSIG),

3This is slightly inaccurate, since it identifies the functor (-_)’ :%-Set with its opposite,

((__)’ yP: SeP-*SeP; although equal as functions, they are different as functors, i.e. as morphisms in Cat.

244 A. Tarlecki et al.

whose objects are pairs (S, (Cr)rsS+), where S is a set (of sorts) and each C,

is a set (of operation symbols of rank r). A morphism from (S, (Cr)rES+) to

pair (f; g), where f: S+S’ is a sort renaming and

is an operation symbol renaming that preserves rank (as

modified by f).

Example 3 (Many-sorted algebras). For our purposes, this is perhaps the prototypical

indexed category. Given an algebraic signature C, then ALG(C) has C-algebras as its

objects and C-homomorphisms as its morphisms. Given an algebraic signature

morphism cr: C-+C’, then ALG(o) is the usual o-reduct (or generalised forgetful)

functor

I.:ALG(C’)+ALG(C),

as defined, for example, in [7]. Thus, the category AlgSig of algebraic signature

provides indices for the indexed category of many-sorted algebras,

ALG : AlgSigop-+Cat.

An object in the flattened category Flat(ALG) of many-sorted algebras is a many-

sorted algebra with an explicitly given signature; and a morphism from (C, A) to

(C’, A ‘) is a signature morphism g : C +C’ and a C-homomorphism h:A+A’J,.

Similar “cryptomorphisms” occur in the specification literature, e.g. [26].

Example 4 (Diagrams). A diagram in a category T is a functor to T from a small source

category, say G, which is its shape. This is essentially equivalent to the more

elementary definition of a diagram as a graph with nodes labelled by objects of T and

edges labelled by morphisms of T having appropriate source and target (e.g. see [151).

Thus, the category FUNC(T)(G)= [G-+T] of functors from G to T is the category of

diagrams with shape G in T. Then

FUNC(T) : CaP-+Cat

is an indexed category with

l component categories: FUNC(T)(G)= [G+T];

l translation finctors: Q,: G-+G’ induces FUNC(T)(@): [G’-+T]-+[G-+T], a

functor defined on objects by FUNC(T)(@)(D’)= @; D’ for D’ : G’-+T.

Flattening FUNC(T) gives the category Func(T)=Flat(FUNC(T)) of functors into

T, or diagrams in T. A morphism from D : G+T to D’ : G’-+T in Func(T) is a functor

@ : G+G’ plus a natural transformation c(: D -+@;D’ (between functors in [G-+T]).

Goguen [l l] applies a similar category in General Systems Theory.

Example 5 (Theories). The notion of institution in [17] provides an appropriate

framework for considering theories in arbitrary logical systems. An institution I con-

sists of

(1) a category Sign (of signatures);

Tools for the semantics of computation: indexed categories 245

(2) functor Mod:Sign”P-+Cat (giving for each CEISignl a category Mod(Z) of

C-models);

(3) a functor Sen : Sign+Cat (giving for each CcISignl a discrete category Sen(2) of

C-sentences); and

(4) for each CEISignJ, a (satisfaction) relation +=r~ IMod(C)(x Sen(Z),

such that the following satisfaction condition holds for each a:C+C’ in Sign, each

m’ElMod(C’)l and q&en(C),

m’ k~,SenW(cp) * Mod@)@‘) bI cp.

Given CT: C-+,X’, we may write Sen(o) as just c and Mod(o) as __lO.

This definition involves two indexed categories: Mod, indexed by Sign, and Sen,

indexed by Sign”P. However, we want to focus here on the indexed category TH of

theories in I, which arises naturally in the study of specifications over I. Given

CEISignl, a C-presentation is a set of C-sentences, Y sSen(C). Any such Y generates

the set of its logical consequences,

CI,(Y)={cp&en(C)Ifor all mEIMod(C)l, rn+q whenever rnk Y}.

A C-theory is a C-presentation T that is closed under semantic consequence, i.e. such

that T= Clp(T). Let TH(C) denote the poset category of C-theories ordered by

inclusion. This extends to an indexed category

TH : SignoP + Cat

in which given a:C+Z’ and a C’-theory T’,

TH(a)(T’)={cp&en(C))a(cp)~T’}.

The satisfaction condition implies that this is a C-theory, and it is straightforward to

check that TH(o) is a functor, i.e. a monotone map.

Flattening this yields Th = Flat(TH), the usual category of theories in an institution

I [17]: its objects are pairs (C, T), where C is a signature and Tis a C-theory; and its

morphisms from (C, T) to (C’, T’) are signature morphisms a:C+C’ such that

ant’ for all VET.

We can define a somewhat larger indexed category of presentations. Given Z, let

PRES(Z) be the poset category of C-presentations in I. This yields an indexed

category

PRES : SignoP+ Cat,

where given 0: Z+C’ in Sign and Y’~sen(C’),

PRES(o)(Y’)={cp&en(C) I (key’}.

We can add some further morphisms to the component categories: given Z, let

PRES,(C) be the category of C-presentations preordered by the semantic conse-

quence relation, Y’ kr Y iff Y c C1,(Y’). This gives an indexed category

PRES, : SignoP-+Cat.

246 A. Turlecki et al.

The satisfaction condition implies that PRES, (0): PRES, (C’)+PRES,(C), defined

just as PRES(a) above, preserves semantic consequence.

TH is an indexed subcategory of PRES in a sense that will be made precise in

Example 8 of Section 4 below; similarly, PRES is an indexed subcategory of PRES k.

Example 6 (Institutions). We first recall the definition of institution morphism from

[17]. Given two institutions I = (Sign, Mod, Sen, (+z)zE,Sipn,) and I’= (Sign’, Mod’,

Sen’, (k6’)z’Eisipn’l)’ an institution morphism from I to I’ consists of

(1) a functor @ : Sign-Sign’;

(2) a natural transformation /3: Mod+@ ;Mod’; and

(3) a natural transformation cx : @ ; Sen’+Sen

such that the following satisfaction condition holds for each CEILSign\, mEJMod(C)J

and cp’ESen’(Q(C)),

Intuitively, I is “richer” than 1’: @ extracts simpler I’-signatures from more complex

I-signatures; p extracts simpler If-models from more complex l-models; and c1 trans-

lates I’-sentences to l-sentences, which is possible since I is more expressive.

Institutions and institution morphisms, with composition defined componentwise

in a rather straightforward manner, form a category [171. We wish to describe it using

indexed categories. It costs no more to generalise from logical systems in which the

meanings of sentences in models are true or false, to semantic systems in which the

meanings of sentences in models lie in an arbitrary category V. Following [lS]” after

[29], the category Room(V) of V-rooms is the comma category

Room(V)=(l-IlFUNG,,(V)),

where 1-I: Cat-Cat is the discretisation functor and FUNC,,,(V): DCaP+Cat

is the indexed category of functors into V restricted to discrete categories in DCat as

source (see Example 4). Thus, a V-room is a triple (M, R, S), where M is a cate-

gory, S is a discrete category, and R:(MI+[S+V]. A V-room morphism
(f, g): (M, R, S)+ (M’, R’, S’) consists of a functor f:M+M’ and a function

g : S’+S such that the following diagram commutes in Cat.

IMI 2 CS-+Vl

Ifl
I I

Y:(L)

IM’I F [S’-+V]
R’

4Goguen and Burstall [is, Proposition 161 define the category of V-rooms to be the comma category
(]_]“plV-), where l_l”p:Cat”P+Cat Op is the opposite of the discretisation functor and V- : DCath
Cat*” is the opposite of our FUNC,&V): DCaP -Cat. Consequently, a V-room is a triple (M, R, S),
where M is a category, S is a descrete category, and R: IMI-[S-V] is a morphism in CaP, i.e. R is

a functor from [S-V] to I M 1. This is a bug since R should go the opposite way.

Tools for the semantics of computation: indexed categories 241

That is, R’(f(m))=g;R(m) for all m~lM(, i.e.

R’(f(m))(s’) = NNg(s’))

for all rn~(Ml and s’ES’ (a ghost of the satisfaction condition).

The category of generalised institutions [18] with signature category Sign is the

functor category

INS(Sign) = [Sign”P+Room(V)].

This extends to an indexed category

INS : CatoP-+Cat,

where the translation functor INS(@): INS(Sign’)+INS(Sign) is defined on objects by

INS(@)(I’) = Wp; I’ for @ : Sign-Sign a functor and I’ : Sign’“P+Room(V). This

naturally extends to morphisms in INS(Sign’). Finally, the flattened category of

generalised institutions is Ins=Flat(INS). The reader may check that if V is Bool, the

category with exactly two morphisms, both identities, then this definition coincides

with the explicit definitions of institution and institution morphism given above.

3. Completeness of flattened categories

This section studies how limits and colimits in a flattened category relate to the

corresponding constructions in its index and component categories. Given a shape

category G, a category T is G-(co)complete if any diagram of shape G has a (co)limit in

T, and a functor is G-(co)continuous if it preserves the (co)limits of all diagrams of

shape G. Then T is (co)complete if it is G-(co)complete for all small G. Similzly,

a functor is (co)continuous if it preserves all small (co)limits.

3.1. Limits

There is no hope for constructing limits in a flattened category unless its index and

component categories have limits. The only additional assumption needed is con-

tinuity of the translation functors.

Theorem 1. If C : Ind”P+Cat is an indexed category such that

(1) Ind is complete,

(2) Ci is complete for all indices iElInd[, and

(3) C,: Cj+Ci is continuous for all index morphisms r~: i-j,

then Flat(C) is complete.

Proof. It suffices to prove that Flat(C) has all products and equalisers (cf. [27,

Th.V.2.1, p. 1091).

Products: Given a family (i,, a,,) for n E N of objects in Flat(C), let i be a product in

Ind of the i, with projections z,, : i-t& for nsN, and let a be a product in Ci of C,(a,)

248 A. Tarlecki et al.

for nEN with projections fn: a-+C,“((a,) for HEN. Then we claim that (i, a) with

projections (z,,, f,): (i, a)-*(&,, a,) is a product in Flat(C) of the (i,, a,) for nEN.
Given an object (j, b) in Flat(C) with morphisms ((T,, g,): (j, b)--+(i,, a,> in

Flat(C) for HEN, there exists a unique index morphism a:j-+i such that (5; 71, =c,, in

Ind for all nEN. Moreover, continuity of C, guarantees that C,(a) with projections

Ca(fn):C,(a)+C,(C,,,(a,)) for neN is a product in Cj of C,(Cn,(a,,))=CO,(a,) for

nEN. Hence, there exists a unique morphism g: b-C,(a) such that g;C,(f,)=g,, in

Cj for each HEN. Then (a, g) : (j, h)-t(i, a) is a unique morphism in Flat(C) such

that (~,~);(~~,f,)=(a,,g,) for each nEN.
Equalisers: Given morphisms (al,fl), (02, f2): (i, a)-+(j, b) in Flat(C), let

O: k-i be an equaliser of 01, a2:i-tj in Ind. Notice that C,(C,,(b))=C,;,,(b)

=C,:.,(b)=C,(C,,(6)). Let f:c-C,(a) be an equaliser of C,(fl), C,(f2):C,(a)

-C,(C,,(b)) in C,. We claim that (a,f): (k, c>-+(i, a) is an equaliser of (al,fl),

(a2J2) in Flat(C). First observe that by construction we have

= <a, f > ; (02, ,f2).

Next consider (p, g) : (m, ii > + (i, u) such that

in Flat(C), i.e. p;ol =p;[~2 in Ind and g;C,(fl)=g;C,(f2)in C,. By construction,

there exists a unique index morphism 0: m-k such that 8; a=p in Ind. More-

over, since CO is continuous, C,(j’): C,(c)+Ce(Ca(a))=C,(a) is an equaliser of

C,(C,(fl))=C,(fl)andC,(C,(J‘2))=C,(f2):C,(a)-rC,,,,,,(b)in C,. Hence, there

is a unique morphism h: d-C,(c) such that h; C,(f)=g in C,. There-

fore, (8, h): (m, d)+(k, c> is a unique morphism in Flat(C) such that

<&h>;(O”)=(p,g). a

A sharper result can be proved in much the same way: a diagram D : G-Flat(C)

has a limit in Flat(C) whenever D;Proj,:G+Ind has a limit in Ind such that the

component category corresponding to the limit index is G-complete and the transla-

tion functors induced by index morphisms into the limit index are G-continuous.

3.2. Colimits

The construction of colimits in a flattened category is not quite so simple since the

proof of Theorem 1 does not directly dualise. This is because in constructing limits, it

was easy to translate the objects (and morphisms) of component categories against
index morphisms using translation functors, whereas the analogous construction for

colimits requires translation along index morphisms. The following property provides

this capability.

Tools for the semantics of computation: indexed categories 249

Definition 4. An indexed category C : IndoP -Cat is locally reversible if for each index
morphism g: i+j in Ind, the translation functor C, : Cj+Ci has a left adjoint. Given
U: i--+j in Ind, let us denote an arbitrary but fixed left adjoint to C,: Cj*Ci by
F,: Ci3Cj and denote the unit of this adjunction by q”:idci+F,;C,.

This does not require C to be “globally reversible” in the sense that the family of left
adjoints forms an indexed (by 1nd”P) category. In general, F,; p # F, ; F,. However, the
following fact holds.

Fact 1. Given a locally reversible indexed category C : IndoP+ Cat and index morphisms
(T: i-j and p :j-+k, there is a natural isomorphism

Proof. F,; F, is left adjoint to C,;, = C,; C, (cf. [27, Th. IV.8.1, p. 1011) and any two
left adjoints to the same functor are naturally isomorphic (cf. [27, Cor. IV.l.l, p. 831).
In fact, given aElCi[, then zO,,(a):F,,,(a)-+F,(F,(a)) is given by

and its inverse by

lL~(a)=((P’(a))#)” : F,(FO(a))-F,;,(a),

where f # denotes the morphism “adjoint” to f (the reader may determine the
adjunctions to which the sharps in this formula refer). q

Definition 5. Given a locally reversible indexed category C : IndoP+Cat and an index
morphism p : i-j, any morphism ((T, g) : (k, a)-(i, b) (with the same i) in Flat(C)

“lifts along p” to a morphism in Cj given by

Lemma 1. Under the notation and assumptions of Dejinition 5, given an index morphism
8: j-m in Ind and given a morphism (p;tI, f): (i, b)+(m, c) in Flat(C), then
f ” : F,(b)-+C,(c) is a morphism in Cj such that in Flat(C),

Proof. We check that in Ck

~“‘“(a);C,:,(L,((o,g>); f”)=s;C,(f):a-C,,,:,(c)

250 A. Tarlrcki rt al.

as follows.

VP(4;C,,,(~p(<~, s>);f”)

=~“‘“(a);C,;,(l,,,(a));C,;,(F,(g#);f#)

=?“(a);C,(rlP(F,(a));C,,,(F,(g#);f#)

=vlV)C&OF&))C,(F,(g%C,(f#))

=Ylb(U);Co(g#;~P(b);Cp(f#))

=f(4~c7(s#);G7(f‘)

=s;CcLf). 0

(Definition 5)

(proof of Fact 1)

(CO,, =C,;C,)

(naturality of $)

(.f= V(4; CPU”)I

kl=r?“(4;G(g#))

Corollary 1. Under the notation und assumptions of Dejinition 5

Proof. By Lemma 1, since @(b)# =idFp(h). q

We are now ready for the main result.

Theorem 2. If C : Ind”P+Cat is un indexed category such that

(1) Ind is cocomplete;

(2) Ci is cocompletefor all i~(Ind(; and

(3) C is locully reversible,

then Flat(C) is cocomplete.

Proof. Dually to the proof of Theorem 1, it suffices to prove that Flat(C) has all

coproducts and coequalisers.

Coproducts: Given a family (i,,, a,) for ncN of objects in Flat(C), let i with

injections g,, : i,-+i be a coproduct in Ind of the i, for nEN, and let a be a coproduct in

Ci of the FQn(a,) for nEN with injections ff : Fp,(un)+u for nEN. Now define

f;l=rlPn(u,);C,~(fR):u,-,C,n(u) for n6N. Then we claim that (i, a) with injections

(g,,,fn): (i,, u,)+(i, a) for nEN, is a coproduct in Flat(C) of the (in, a,) for nEN.

Given an object (j, 6) and morphisms (on, g,,): (i,, a,)+(j, h) in Flat(C) for

neN, there exists a unique index morphism g: i-j such that g,,; CJ=(T, in Ind for all

nE N. Moreover, there is a unique g : u+C,(b) such thatff ;g=g.# : FOn(u,)-+C,(b) for

all nEN (gr is well defined since g,,: u,-+C,,,(C,(b))). Now because

l;l;Cpn(g)=~p”(Nln);Cp,,(fn#);Cp,(g)

= Vn(41); C,,(fn” ; 9)

= rl”-(G): q&L? 1

Tools for the semantics of computation: indexed categories 251

in Ci,, it follows that (a,g):(i, a)-(j,b) satisfies (p,,f,);(a,g)=((T,,g,) in

Flat(C) for all ncN. Moreover, (a, g) is the only morphism in Flat(C) with this

property: The uniqueness of o is obvious, and the uniqueness of g follows by its

construction from the fact that given g’ : a -*C,(b) with fn;CP,(g’) = gn for all nEN,

then fn# ; g’ = g.” for all nE N and, thus, g = g’.

Coequalisers: Given morphisms (al, fl), (a2, f2): (i, a)-+(j, b) in Flat(C), let

a:j+k be a coequaliser of al, 02: i+j in Ind. Then in Ck there are morphisms

(cf. Definition 5)

&(<aLfl)), L,((a2,f2)):F,,,,(a)~F,(b).

Let f” : F,(b)+c be their coequaliser in Ck and let f=v]“(b);C,(f#):b+C,(c)

in Cj. We now claim that (o,f):(j,b)+(k,) c is a coequaliser in Flat(C) of the

morphisms (al, fl), (a2, f2): (i, a)-+(j, b). First notice that by Lemma 1, in

Flat(C) we have

(al,fl);(a,f)=(~l;~,~“1;“(a));(id,,~,((al,fl));f#)

=(a2;a,r”2;0(a));(idk, U<a2,f2));f#)

=<a2,f2);(o,.f).

Now consider a morphism (p, g): (j, b)+(m, d) such that in Flat(C)

(al,fl>;(P,9)=(02,52);(p,g),

i.e. such that al ;~=a2;p in Ind and fl ;C,,(g)=f2;C,,(g) in Ci. Then by construc-

tion, there exists a unique index morphism 19: k +m such that a; f3= p in Ind. More-

over, by Lemma 1

Ylul;o(,);C,,:,(~,((~l,fl));g#)=fl;C,,(g)

=f2 ; co2 (9)

=r1”2:a(,);Co2;o(La((02,f2);9#)

in Ci (recall that al;a=r~2;a and that g#: F,(a)+C,(d)). Hence, the properties of

adjunction imply L,((a2, f2));g#=L,((al, jl));g”. Thus, there exists a unique

morphism k:c+Ce(d) such thatf”;k=g# in Ck.

Now (0, k) : (k, c)+(m, d) satisfies (a,f); (0, k) = (p, g) in Flat(C), since in Cj

we havef;C,(k)=~“(b); C,(f" ; k)=rf(b);C,(g#)=g. Moreover, (g, k) is the only

morphism in Flat(C) with this property: the uniqueness of g is obvious; and the

uniqueness of k follows from its construction (iff; C,(k’)=g for some k’: c+C,(d),

thenf#;k’=g#, and thus k=k’). 0

A sharper result can be proved in much the same way: a diagram D: G-+Flat(C)

has a colimit in Flat(C) whenever D ; Projc : G-+Ind has a colimit in Ind such that the

252 A. Tarlecki et al.

component category corresponding to the colimit index is G-cocomplete and all the

translation functors induced by the index morphisms in the colimiting cocone have

left adjoints.

3.3. Applications

We can use these theorems to check the completeness and/or cocompleteness for

some interesting categories. The results are already known, but our proofs are more

direct.

Example 1 (continued). Consider again the indexed category SSET:SeP+Cat of

many-sorted sets. It is well known that for any set S, the category SSET(S) of S-sorted

sets is both complete and cocomplete, and of course the index category Set is also both

complete and cocomplete. Moreover, it is not hard to see that the functor

SSET(f) : SSET(S’)+SSET(S) is continuous for any index morphism (i.e. function)

f: S+S’, and that it has a left adjoint (sending an S-sorted set (Xs)srS to the S’-sorted

set (H 1X, If(s)=s’>)dd, where u denotes disjoint union). Thus, Theorems 1 and 2

imply that the (flattened) category of many-sorted sets SSet =Flat(SSET) is both

complete and cocomplete.

Example 2 (continued). Consider the indexed category ALGSIG: SetoP-+Cat of

many-sorted algebraic signatures. Again, the index category and all component

categories are both complete and cocomplete, and the translation functors are

continuous and have left adjoints (this follows from the definition

ALGSIG = (_)’ ; SSET since SSET has all these properties). Thus, the category of

algebraic signatures AlgSig = Flat(ALGSIG) is both complete and cocomplete.

Example 3 (continurd). Consider the indexed category ALG : AlgSigoP+Cat of many-

sorted algebras. Again, the index category is complete and cocomplete (by Example 2

above), as are all component categories, and the translation (forgetful) functors are

continuous and have left adjoints (the existence of left adjoints to these forgetful

functors is a nontrivial, but familiar, property; see [i’] for an expository presentation).

Also, cocompleteness of the category of Z-algebras is not quite obvious: to form

a coproduct of C-algebras, form their disjoint union and then freely complete it to

a C-algebra; coequalisers are not very hard. Theorems 1 and 2 now imply that the

category Flat(ALG) of many-sorted algebras is both complete and cocomplete. This

provides an appropriate framework for operations like the amalgamated union of

algebras over different signatures, as used for example in [lo].

Example 4 (continued). Let T be any category and consider again the indexed

category FUNC(T):CaP-+Cat of functors into (or diagrams in) T. The index

category Cat is both complete and cocomplete. If T is complete, then so are all the

component categories. For, given GEICatl, limits in FUNC(T)(G)= [G-+T] are

Tools .for the semantics of computation: indexed categories 253

constructed “pointwise” as limits in T “parameterised” by (objects of) G (cf. [27, V.3,

p. 1121). Moreover, the translation functors in FUNC(T) preserve limits constructed

in this way. Thus, Func(T)=Flat(FUNC(T)) is complete whenever T is.

Dually, if T is cocomplete, then the component categories are also cocomplete and

the translation functors are cocontinuous. But to apply Theorem 2, we need the

translation functors to have left adjoints; unfortunately, in general they do not.

It is interesting to compare this with Kan extensions (cf. [27,X]). Given a

functor @ : G-+G’ and a diagram F : G+T, then a left Kan extension of F along @

is an object F’EIFUNC(T)(G’)(free over FEIFUNC(T)(G)I with respect to

the functor FUNC(T)(@) : FUNC(T)(G’)+FUNC(T)(G), with unit morphism

qF:F+@; F’, a natural transformation between functors in [G+T]. If every dia-

gram F: G+T has a left Kan extension along @, then the translation functor

FUNC(T)(@): FUNC(T)(G’)-tFUNC(T)(G) has a left adjoint. Dualising the con-

struction of a right Kan extension [27, Th.X.l, pp. 23341, we obtain the following

proposition.

Proposition 1. Given @ : G+G’, and F : G+T, and n’E I G’I, let (@ J n’) be the comma
category of objects @-over n’ (cf: [27, pp. 46-7]), and let P,,, : (@ 1_ n’)+G be the obvious
projection functor, and let D,. = P,, ; F : (@ 1 n’)-+T. Now suppose thatfor each n’E 1 G’I,
the diagram D,,. : (@ 1 n’)+T has a colimit F’(n’)eITI. Then the assignment n’++F’(n’)

extends to a functor F’: G’+T, using the colimit property of F’(n’) for n’ElG’[
in the usual way. Moreover, there is a natural transformation ylF: F-+@; F’ such that
qF,n: F+F’(@(n)) is the morphism in the colimiting coconefor F’(@(n)) corresponding to

the object (n, id,,,,)El(@ 1 @(n))l f or each nelGI. Finally, F’ with the unit qF is a left
Kan extension of F along Cp.

Proposition 2. Given a functor @ : G+G’ with G small and a cocomplete category T,

any functor F: G-T has a left Kan extension along @.

Even though the category of all diagrams in T need not be cocomplete when T is,

the category of small diagrams has this property.

Proposition 3. Let Scat be the category of all small categories, let T be a category, and
let

SFUNC(T): SCatoP+Cat

be the indexed category of small diagrams in T, defined as the restriction of FUNC(T)

to SCatoP. Then the category SFunc(T)=Flat(SFUNC(T)) of small diagrams in T is

cocomplete whenever T is.

Example 5 (continued). Given an institution I, consider the indexed category of

theories in I, TH : SignoP+Cat. Given Z~ISignl, clearly THr is a complete lattice, i.e. is

complete and cocomplete as a category. Moreover, it is not hard to see that given

a signature morphism c : C+Z’, then TH, : TH,, +THz has a left adjoint which maps

254 A. Tarlecki et al

a C-theory T to the C’-theory generated by the set {a(q) 1 (PET} of C’-sentences. Thus,

Theorem 2 implies that the flattened category Th=Flat(TH) of theories in I is

cocomplete whenever the category Sign of signatures is cocomplete. It is even easier to

see that the categories Pres= Flat (PRES) and Pres, = Flat(PRES,) are cocomplete

whenever Sign is. A similar result holds for completeness, but is less interesting.

Example 6 (continued). Given an arbitrary category V, consider the indexed category

INS : Cat@‘+Cat of institutions. Recall that INS(Sign) = [Sign”“+Room(V)] for

Sign61 Cat I. Arguments as in Example 4 above show that Ins= Flat(INS) is complete

provided that the category Room(V) is complete. For this we can use the following

general result on comma categories (its dual is stated in [3], and proved in detail in

[37]; a slightly weaker result is given in [27, Lemma in V.61 and [15, Prop. 21).

Lemma 2. Given categories A, B, K undfitnctors F : A-K and G : B+K, fA and B are

complete and if G : B+K is continuous, then (F 1 G) is complete.

Recall that we defined Room(V)=(1-I 1 FUNCD,,(V)), where 1-j : Cat +Cat and

FUNCDi,,(V): DCat”?‘+Cat. Since Cat is complete and DCat, the category of discrete

categories, is cocomplete (hence, DCat Op is complete), the only thing to check is the

continuity of FUNCoi,,(V). This follows from the construction of colimits in DCat

and limits in Cat: The coproduct in DCat of any family of discrete categories S, for

nEN is just their disjoint union S=uJnth’ S,. It is not hard to see that the functor

category [S-+V] is (isomorphic to) the product of the categories [S,-V], for ngN.

Then, the coequaliser in DCat of any two functors F, G : Sl +S2 is given as the natural

quotient functor H:S2-+S2/-, where = is the least equivalence on (objects of) S2

such that F(s)= G(s) for all s~S1; and S2/= is the quotient (discrete) category. Again,

it is not hard to see that the functor category [(SZ/=)+V] is isomorphic to

the subcategory of [S2+V] that contains as objects all functors D : S2+V such that

F ; D = G ; D, and similarly for morphisms. The isomorphism is given by the functor

FUNC,,,(V)(H): [(S2/-)+V]+[S2+V].

Thus, FUNC,,,(V)(H) is an equaliser in Cat of the functors FUNCDisc(V)(F) and

FUNC.isc(V)(G).
Summing up, FUNCDi,,(V) maps coproducts in DCat to products in Cat and

coequalisers in DCat to equalisers in Cat. Hence, FUNCDi,,(V) is continuous as

a functor from DCatoP to Cat. Thus, by Lemma 2, Room(V) is complete and, thus, the

category Ins of institutions is complete.

Since morphisms in Ins have richer institutions as their source, limits, not colimits,

are appropriate for “putting institutions together,” and, hence, the completeness of Ins

is relevant.

255 Tools for the semantics of computation: indexed categories

4. Indexed functors

Definition 6. An indexed jiinctor F from one Ind-indexed category C : TndoP-rCat to

another D : IndoP-+Cat is

a functor Fi: Ci~Di such

Iud:

I 0

a natural transformation F : C+D, i.e. for each iElInd1,

that Fj; D, = C, ; Fi for each ~7 : i-j in Ind.

Cat:

CiF’Di

c<

I I

DO

Cj-Dj

F,

This gives a category INDEXEDCAT(Ind) of Ind-indexed categories, with the

obvious vertical composition of morphisms.

Example 7 (Powerset functor). Given a set S, let us define the S-sorted powerset

functor P,:SSET(S)+SSET(S) as follows: Ps maps an S-sorted set (Xs)seS to the

S-sorted set (2xs),,s of the powersets of its components; and Ps maps an S-sorted

function (gs: X,+ Ys)ses to the S-sorted family (2:: 2XS+2YS)SES of the corres-

ponding image functions, 2:(A) = { gs()) x XEA} for any A&X, and s~S. It is not hard

to see that P = (Ps)sejset, forms an indexed functor P : SSET-SSET.

Example 8. Recall that Example 5 defined three indexed categories

TH: SignoP -+ Cat,

PRES : SignoP+Cat,

PRES k : SignoP+ Cat,

where THr is a subcategory of PRESr for each C~jSignl, which in turn is a sub-

category of (PRES k)r. It is not hard to see that the families of inclusion functors, from

THz to PRESz and from PRES, to (PRES\h indexed by signatures CEISignl form

indexed functors, from TH to PRES and from PRES to PRES k.

This motivates the following definition. An indexed category C:IndoP+Cat is an

indexed subcategory of D : IndoP+Cat (they must have the same category of indices) iff

Di is a subcategory of Ci for each igJIndJ, and the family of inclusion functors forms an

indexed functor from D to C. This can be somewhat generalised by considering

indexed subcategories D over a subcategory of indices of C.

Flattening extends from indexed categories to indexed functors.

256 A. Tarlecki et al.

Definition 7. Let Ind be a category. Then the Jattened finctor,

F1atlnd : INDEXEDCAT(Ind)+ Cat,

is defined as follows:

l on objects: Given C: IndoP-rCat, then Flat,,d(C) is the flattened category of Defini-

tion 2.

l on morphisms: Given an Ind-indexed functor F : C+D (for C, D : IndoP+ Cat), then

the functor Flatr,,+(F): Flat,,d(C)-+Flat,,d(D) is defined as follows:

0 on objects: Given (i, U)EIFhtl,d(C)I, let Flat,,,(F)((& a))= (i, Fi(U)).

l on morphisms: Given a morphism (a, f) : (i, a)-+(j, b) in Flat,,d(C), let

Flat,,d(F)((o,f))=(a, Fi(f)) : (i, Fi(a))+(j, F,(b)) in Flat,,(D), recalling that

D,(Fj(b))= Fi(C,(b)).
We may write Flat instead of FIat,,d. It is straightforward to show that it is a functor.

Intuitively, flattened indexed functors leave the first element of their arguments

unchanged, but use it to select the appropriate component category for the indexed

functor to operate upon. In a sense, flattening an indexed functor forms the disjoint

union of its components. The similarity of Definition 6 to the definitions of Example 4

(the category of functors into a fixed target category) suggests the following:

Example 9 (Indexed categories). The indexed category of indexed categories is defined

by
INDEXEDCAT = OP; FUNC(Cat) : CatDP+Cat,

where OP : CatoP+CatoP maps a category K to its opposite Kop, and maps a functor

F:K+M to its opposite FoP:KOP +MoP. (It makes a nice puzzle to define

OP = ((-)Op)Dp.) Thus, given Inde/ Cat 1, let

INDEXEDCAT(Ind) = [IndoP+ Cat]

as in Definition 6, and given @ : Ind-+Ind’ and C’ : (Ind’)“P-+Cat, let

INDEXEDCAT(Wp; C’ : IndoP+Cat.

Flattening yields the category IndexedCat = Flat(INDEXEDCAT) of indexed catego-

ries, with its objects an index category and an indexed category over it, and its

morphism from (Indl, Cl : Indl”P+Cat) to (Ind2, C2 : Ind20P-+Cat) pairs (@, F),

where @ : Indl -+IndZ is a functor and F : Cl +Wp; C2 is a natural transformation.

For example, let us consider the relationship between the indexed categories of

many-sorted algebras (Example 3) and of many-sorted sets (Example 1). First, there is

a functor Sorts : AIgSig+ Set, which maps a signature to its set of sorts (in fact, this is

the projection functor of Definition 3). Then, given an algebraic signature C, there is

a forgetful functor (e.g. [7])

Ur : Alg(C)+SSET(Sorts(C)),

Tools for the semantics of computation: indexed categories 25-l

which maps a C-algebra to its many-sorted carrier. It is not hard to check that the

family U = (U,X)ZcIAlgSigl forms a natural transformation U : ALG +SortsOP; SSET, so

that (Sorts, U) : (AlgSig, ALG) + (Set, SSET) is a morphism of indexed categories.

Let us note that Fiat = (Flatlnd)l,d,Icatl as defined in Definition 7 is also an indexed

functor, from the Cat-indexed category INDEXEDCAT to the constant Cat-indexed

category that assigns the category Cat to each index (and the identity functor on Cat

to each index morphism).

Part of our original motivation for looking more carefully at indexed categories was

to reduce a family of adjunctions (between component categories) to a single adjunc-

tion (between flattened categories); a somewhat parallel motive appears in “getting

a charter from a parchment” [18].

Definition 8. Let U : C+D be an Ind-indexed functor. Then U has a left adjoint locally

iff Ui: Ci-*Di has a left adjoint for each index +Indj.

Theorem 3. Given an Ind-indexedfunctor U : C-+D, which has a left adjoint locally, then
Flat(U): Flat(C)+Flat(D) has a left adjoint.

Proof. Given an object (i, a) in Flat(C), then Ui: Ci+Di has (let us say) left adjoint

Fi: Di+Ci with unit pi: idc,+Fi;Ui. NOW we claim that (i, Fi(a)) is a free object in

Flat(D) over (i, a) with respect to the functor Flat(U), having as its unit (idi,
vi(a)) : (i, a)-(i, Ui(Fi(a))) =Flat(U)((i, Fi(a))). For, let (j, b) be an object in

Flat(D), let (a,f):(i, a)+Flat(U)((j, b))=(j, Ui(b)) be a morphism in Flat(C),

and let f” :Fi(c)~b be the unique morphism in Di such that rli(a);Ui(f”)=fin Ci.

Then (o,f#): (i, Fi(a))+(j, b) is the only morphism in Flat(D) such that (idi,
si(U)>;Flat(U)((a,f#))=(a,f) in Flat(C). 0

Example 10. The AlgSig-indexed forgetful functor U : ALG+SortsoP; SSET was de-

fined in Example 9, and it is well known that each U,: ALG(C)-+SSET(Sorts(C)) has

a left adjoint. Theorem 3 implies that the flattening of these forgetful functors,

Flat(U) : Flat(ALG)-+Flat(Sorts”P; SSET),

has a left adjoint obtained by flattening the local left adjoints.

Example 11. There is a Sign-indexed inclusion functor from the indexed category TH

of theories to the indexed category PRES of presentations in an arbitrary institution

I (cf. Example 8). It is clear from the definitions in Example 5 (where these categories

were defined) that for each signature C~ISignl, the inclusion functor from THz to

PRESz has a left adjoint (i.e. THz is a reflexive subcategory of PRESB in the sense of

[27, V.3, pp. 88-91). In fact, the left adjoint is the closure operator Clr: PRES,+TH,

defined in Example 5. Theorem 3 now implies that the category Th=Flat(TH) of

258 A. Turlrcki et al.

theories in I is a reflective subcategory of Pres = Flat(PRES), the category of presenta-

tions in I.

Theorem 3 suggests a different way to prove the cocompleteness of flattened

categories. Given a shape category G and a target category T, the diagonal jiinctor

AF:T-+[G+T]

is defined as follows:

l on objects: Given tEJTJ, At(t) be the “constant” diagram, i.e. the functor that maps

each object of G to t and each morphism in G to the identity on t.

l on morphisms: Given f:tl+t2 in T, let A:(f): Ag(tl)-+A$t2) be the “constant”

natural transformation, A:(f), =f for each nEJGI.

Fact 2. Given categories G and T, then T is G-cocomplete iff the diagonal jiinctor
AF:T+[G+T] has a left udjoint.

Proof. Given a diagram D: G-+T, the free object over D with respect to A: is

a colimit of D; the unit is the colimiting cocone on D; and vice versa, the colimit of

D is a free object over D with respect to A:. 0

Now we follow this hint in proving a slightly stronger form of Theorem 2.

Theorem 2’. Given a category G, let C : Ind OP+Cat be an indexed category such that

(1) Ind is G-cocomplete;
(2) Ci is G-cocompletefor all ielInd(; and
(3) G is locally reversible.

Then Flat(C) is G-cocomplete.

Proof. C gives rise to an Ind-indexed category DIAG,” of G-diagrams in C as follows:

l Component categories: Given iElInd1, then DIAGg(i)= [G+Ci].

l Translation functors: Given O: i-j in Ind, define the functor DIAGz(a): [G-t

Cj]-+[G+Ci] on objects by DIAGE(a)(D)=D;C, for D:G+C,; it extends to

morphisms in [G-*Cj] in the obvious way.

Now, we have the diagonal Ind-indexed functor

A$ C+DIAGZ

defined by (A~)i=A~i:Ci+[G+Ci] for iE(Indj. (It is not hard to check that this is

indeed an indexed functor.) Moreover, by assumption 2 and Fact 2, AZ, has a left

adjoint for each iclIndl. Hence, by Theorem 3,

Flat(Az): Flat(C)+Flat(DIAGE)

Tools for the semantics of computation: indexed categories 259

has a left adjoint. We can identify Flat(DIAGE) with a subcategory of [G+Flat(C)]

which, roughly, contains the G-diagrams in Flat(C) that fit entirely into one of

the component categories of C: a diagram D: G-Flat(C) is in Flat(DIAGE) iff

D ; Projc : G-+Ind is a constant functor, and a diagram morphism 6 is in

Flat(DIAGz) iff 6 horizontally composed with Proj, yields a constant natural

transformation.

The corresponding faithful functor J: Flat(DIAGE)+[G+Flat(C)] may be de-

fined as follows:

l on objects: Given (~,D)EIFI~~(DIAGE)I (’ 1.e. ielInd[and D:G-+Ci), the G-dia-

gram J((i, D)):G+Flat(C) is defined as follows:

l on objects: J((i, D))(n)=(i, D(n)) for n~lG\.

l on morphisms: J((i, D))(e)=(id,, D(e)) for any morphism e in G.

l on morphisms: Given a morphism (y, a): (i, D)-+(j, E) in FIat(DIAGg), where

y: i-j is an index morphism and rx:D+E;C, is a morphism in [G-C,], then

J((y, LX)): J((i, D))+J((j, E)) is the natural transformation defined by

J((Y, ~)h)=(y, 44): (6 W)>+<j, E(4) for dGI.
It is not hard to see that J((y, a)) is indeed a natural transformation, and that J is

a faithful functor.

The following identifies Flat(DIAGg with its image under J in [G-Flat(C)] and

refers to J as an inclusion functor. Unfortunately, Flat(DIAGz) is in general a proper

subcategory of [G-Flat(C)], and so the proof of Theorem 2’ is not yet finished. One

can directly check that

AC Flat(C) = FWA~); J.

Since we already know that Flat(AE) has a left adjoint, to show that A&,(,) has a left

adjoint it is enough to prove that J has a left adjoint (cf. [27, Th. V.&l, p. 1011). Thus,

the following lemma will complete the proof.

Lemma 2. The inclusion finctor J has a left adjoint, i.e. Flat(DIAGz) is a rejlexiue

subcategory of [G-Flat(C)] (cf [27, V.3, pp. 88-91 for the de$nition and basic facts
about rejlexiue subcategories).

Proof of Lemma 2. Given a G-diagram D : G+Flat(C), we are to find its reflection in

Flat(DIAGE), i.e. a G-diagram R(D): G+Flat(C) in Flat(DIAGg) together

with a diagram morphism qn: D-R(D) such that for any diagram D’ in

Flat(DIAGE) and morphism 6:D-+D’ there exists a unique 6# : R(D)+D’ in

Flat(DIAGz) such that qn;6# =6 in [G+Flat(C)].

So, given an arbitrary diagram D: G--+Flat(C), where D(n)= (i,, a,) for nelGI, and

D(e)=(e,, fe>:(&, a,,)+<L, a,) for e: n+m in G, let i be a colimit in Ind of

D ; Proj, : G-rind, with injections P,, : i,-+i for nel GI (Ind is G-cocomplete by assump-

tion 1). Now define R(D): G+Flat(C) as follows:

l on objects: R(D)(n)=(i, F,“(u,)) for nE\GI.
l on morphisms: R(D)(e)=(idi, Lp,((oe,fe))): (i, F,,“(u,,))+(i, F,,,,(u,)) for

e:n+m in G.

260 A. Tarlecki et al.

Recall that indeed &_((a,, se>): Fa,;p,(un)= Fp,(an)+Fp,(um) (see Definition 5).

Let us check that R(D) is a functor, i.e. it preserves identities and composition. It is

obvious that it preserves identities (Definition 5 implies that L&(id,, id,,))=

F,,,(ida,) = idFom~amj). For composition, given e : n-m and d : m-+k in G, we have to show

that in Ci

L,_((a,,f,));L,,((~d,fd))=Lpr((~e,fe);(~d,fd)).

This may be checked by going back to Ci,. On the one hand, in Cim we have

rlP”(a,);C,“(LPk((~.e,fe);(~d,fd)))

=qP”(‘“); CPn(LP,((a,; ad?fe; co,(fd)>)) (Corollary 1, &,=a,; ad; Pk)

=fe ; cck (h) ; Ge :bd (VP” (4)I;

on the other hand, in Ci,, we have

rl”“(a,);Cpn(L,,(([Te,fe));Lp~((~d,fd)))

=fe; Coe(r?P-(um)); c,o(c,_(L,,((ad,fd))))

=f,;c,~(fd);Co,(Cad(YIPk(uk))).

(Corollary 1, pn = ge ; p,)

(Corollary 1, p,,, = bd; pk)

Hence, in Ci,,

which by properties of adjunctions implies that indeed

Clearly, R(D) is in Flat(DIAG2). Having defined R(D) as above, there is an obvious

waytodefiney,:D-,R(D):forn~~G~,letv],(n)=(p,,~Pn(u,)):(i,,u,)-,(i,F,n(u,)).

We have to check that qr, is a natural transformation. Given e : n-+m in G, we need to

show that

i.e. that

Since a,; P,,,=P~ by construction, the only thing to check is that

which follows directly from Corollary 1. Now we claim that R(D) is a reflection of D in

Flat(DIAGE) with unit vD:D-+R(D). Given a diagram D’ in Flat(DIAGg and a

diagram morphism 6 : D-D’, say that D’(n) = (j, b,) for nil G 1, and D’(e) = (idj, g,)

Tools for the semantics of computation: indexed categories 261

for e:n+m in G with ge:b,+b, in Cj (such an index je)Ind) exists since D’ is in

Flat(DIAGg). Also, say that J(n)= (O,, h,) : (i,, a,)+(j, b,) for nc[GI.

By construction, there exists a unique index morphism y : i-+j such that P,, ; y = 0, for

each ne\GJ. We now define the diagram morphism 6’ :R(D)-+D’ by d”(n)=

(y, hR):(i, F,“(a,))+(j, b,) for nElGI, where hz: F,_(a,,)+C,(b,) is the unique

morphism in Ci that satisfies @“(a,); Cpn(hf) = h, : a,+Cp,(Cy(b,)). First, let us check

that 6# is indeed a morphism in Flat(DIAGE); the nontrivial part is to verify that 6’

is a natural transformation, i.e. for any e: n-+m in G that

s#(n);D’(e)=R(D)(e);G#(m),

or, equivalently, that

(~,hR);(idj,g,)=(idi, Lp,,,(<~e,fe>)>;(~,h,#).

We must prove that in Ci

h,#;C,(g,)=L,_((a,,f,));h,#.

To see this, note that by construction in Ci,,

~““(a,); Cpn(h: ; Cy(se))= h,; G&e),

and by Lemma 1 (since P,, = a,; p,)

rlP”(a,);C,n(L,,(((re,fe));h,#)=f,;C,e(h,).

However, since 6 : D+D’ is a natural transformation,

D(e);d(m)=a(n);D’(e),

i.e.

(ae,fe>; (em9 hm)=(en, h); (idj, se>,
which implies that

fe;C,~(h,)=h,;Ce,(ge).

Hence, putting these equations together,

V(a,);C,n(h,# ;C,(g,))=vlP”(a,);Cp,(L,,((a,,f,));h,#).

Thus indeed,

h,# ;C,(ge)=Lp,,((~e,fe));hm#.

We now claim that 6# : R(D)+D’ is a unique morphism in Flat(DIAG2) such that

nn;6# =6. First, we have to Verify that qD(n);d#(n)=6(n) for nclGI, i.e. that

262 A. Tarlecki et al.

or equivalently, that

which is clearly true. Moreover, the construction guarantees that 6#(n) is the only

morphism in Flat(C) such that Proj,(G#(n))=y and ~]o(n);S#(n)=6(n). Since the

uniqueness of y is obvious, this gives the uniqueness of 6# and completes the proof of

Lemma 2 and, hence, of Theorem 2’. 0

We do not apologise for giving a second proof of this theorem; on the contrary, we

feel its details are worth examining, especially the “reflection lemma” (Lemma 2).

5. Summary

This paper has presented indexed categories and given examples supporting the

view that they are a useful tool for structuring and clarifying certain constructions and

proofs in computer science. Given an indexed category C, we have constructed

a “flattened” category Flat(C) containing the components of C. We have also

introduced indexed functors, and shown how to flatten them. Finally. we have shown

that flattening preserves the important properties of completeness, cocompleteness,

and existence of left adjoints.

Acknowledgment

Thanks to David Rydeheard, we suggested to us that indexed categories might be

useful in specification theory, also to John Gray, Mike Fourman, and the anonymous

referees of Theoretical Computer Science for their comments on an early version of the

paper, and to Eleanor Kerse for her excellent typing.

References

[l] M.A. Arbib and E.G. Manes, Arrows, Structures and Functors: The Categorical Imperative (Academic

Press, New York, 1975).

[2] M. Barr and C. Wells, The formal description of data types using sketches, in: M. Main, A. Melton, M.
Mislove and D. Schmidt, eds., Mathematical Foundations of Programming Language Semantics,
Lecture Notes in Computer Science, Vol. 298 (Springer, Berlin, 1988).

[3] C. Beierle and A. Voss, Implementation specifications, in: H.-J. Kreowski, ed., Recent Trends in Data
Type Specification, Informatik Fachberichte 116 (Springer, Berlin, 1985) 39953.

[4] J. Benabou, Fibred categories and the foundations of naive category theory. J. Symbolic Logic 50

(1985) 10-37.

[5] R.M. Burstall and J.A. Goguen, Putting theories together to make specifications, in: Pror. Fifth
Internat. Cor$ on Artjjicial Intelligence (1977) 1045-1058.

Tools for the semantics of computation: indexed categories 263

[6] R.M. Burstall and J.A. Goguen, The semantics of Clear, a specification language, in: Proc. 1978

Cophenhagen. Winier School on Abstract Software Development, Lecture Notes in Computer Science,

Vol. 86 (Springer, Berlin, 1980) 292-332.

[7] R.M. Burstall and J.A. Goguen, Algebras, theories and freeness: an introduction for computer

scientists, in: Proc. 1981 Marktoberdorf NATO Summer School (Reidel, 1982) 329-350.

[S] H.-D. Ehrich, On the theory of specification, implementation and parameterisation of abstract data

types. J. Assoc. Comput. Mach. 29 (1982) 206-227.

[9] H. Ehrig, H.-J. Kreowski, A. Maggiolo-Schettini and J. Winkowski, Transformation of structures: an

algebraic approach. Math. Systems Theory 14 (1981) 305-334.

[lo] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specification I: Equations and Initial Algebra
Semanrics. EATCS Monographs on Theoretical Computer Science, (Springer, Berlin, 1985).

[l l] J.A. Goguen, Mathematical representation of hierarchically organised systems, in: E. Attinger, ed.,

Global Systems Dynamics (S. Karger, 1971) 112-128.

1121 J.A. Goguen, A categorical manifesto. Technical Monograph PRG-72, Programming Research

Group, University of Oxford, 1989; also submitted for publication.

[13] J.A. Goguen, What is unification? - a categorical view of substitution, equation and solution, in:

M. Nivat and H. Ai’t-Kaci, eds., Resolution of Equations in Algebraic structures, (Academic Press,

New York, 1989) 217-261; also, Technical Report SRI-CSL-88-2R2, SRI International, Computer

Science Lab, 1988.

[14] J.A. Goguen and R.M. Burstall, CAT, a system for the structured elaboration of correct programs

from structured specifications, Technical Report CSL-118, SRI International, Computer Science Lab,

1980.

1151 J.A. Goguen and R.M. Burstall, Some fundamental algebraic tools for the semantics of computation,

part 1: comma categories, colimits, structures and theories, Theoret. Comput. Sci. 31 (1984) 175-209.

[16] J.A. Goguen and R.M. Burstall, Some fundamental algebraic tools for the semantics of computation,

part 2: signed and abstract theories. Theoret. Comput. Sci. 31 (1984) 263-295.

[17] J.A. Goguen and R.M. Burstall, Institutions: abstract model theory for computer science, Report

CSLI-85-30, Center for the Study of Language and Information at Stanford University, 1985; Earlier

version: Introducing institutions, in: E. Clarke, ed. Proc. Logics of Programming Workshop, Lecture

Notes in Computer Science, Vol. 164 (Springer, Berlin, 1984) 221-256.

[lS] J.A. Goguen and R.M. Burstall, A study in the foundations of programming methodology: specitica-

tions, institutions, charters and parchments, in: Proc. Summer Workshop on Category Theory and
Computer Programming, Lecture Notes in Computer Science, Vol. 240 (Springer, Berlin, 1985)

313-333.

[19] J.A. Goguen and S. Ginali, A categorical approach to general systems theory, in: G. Klir, ed., Applied
General Sysrems Research (1978) 257-270.

[20] J.A. Goguen, J.W. Thatcher and E.G. Wagner, An initial algebra approach to the specification,

correctness and implementation of abstract data types. IBM Research, Report RC 6487, 1976; also in:

R.T. Yeh, ed., Current Trends in Programming Methodology 4. Data Structuring (Prentice-Hall,
Englewood Cliffs, NJ, 1978) 80-149.

1211 J.W. Gray, Fibred and cofibred categories, in: S. Eilenberg, D.K. Harrison, S. MacLane and H. RGhrl,
eds., Proc. Conf: Categorical Algebra (Springer, Berlin, 1966) 21-83.

1221 J.W. Gray, Categories aspects of data type constructors. Theoret. Comput. Sci. 50 (1987) 103-135.

1231 A. Grothendieck, Catbgories fibrbes et descente, in: RevQtements ttales et groupe fondamental,
Seminaire de Geomhtrie Algebraique du Bois-Marie 1960/61, ExposC VI, Institut des Hautes etudes

Scientifiques, Paris (1963): reprinted in Lecture Notes in Mathematics, Vol. 224 (Springer, Berlin,
1971) 145-194.

1241 H. Herrlich and G.E. Strecker, Category Theory (Allen & Bacon, Rockleigh, 1973).

1251 P.T. Johnstone and R. Par& Indexed categories and their applications, Lecture Notes in Mathematics,

Vol. 661 (Springer, Berlin, 1978).

[26] S. Kamin and M. Archer, Partial implementations of abstract data types: a dissenting view of errors,

in: Proc. Conf: Semantics of Data Types, France, Lecture Notes in Computer Science, Vol. 173,
(Springer, Berlin, 1984) 317-336.

[27] S. MacLane, Categories for the Working Mathematician (Springer, Berlin, 1971).

264 A. Tarlecki et al

[2S] E.G. Manes, ed., Proc. 1974 Conf. Cafeg0r.v Theory Applied to Computation and Control, Lecture

Notes in Computer Science, Vol. 25 (Springer, Berlin, 1975).

1291 B. Mayoh, Galleries and institutions, Technical Report DAIMI PB-191, Aarhus University, 1985.

[30] E. Moggi, Computational lambda-calculus and monads. Technical Report ECS-LFCS-88-66, Labor-

atory for Foundations of Computer Science, University of Edinburgh, 1988.

1311 E. Moggi, A category-theoretic account of program modules. Technical Report, Laboratory for

foundations of Computer Science, University of Edinburgh, 1989.

[32] D.T. Sannella and A. Tarlecki, Building specifications in an arbitrary institution, in: Proc. Symp.

Semantics of Data Types, Lecture Notes in Computer Science, Vol. 173 (Springer, Berlin, 1984)

3377356. Full version: Specifications in an arbitrary institution, Inform. and Comput. 76 (1988)

1655210.

[33] D.T. Sannella and A. Tarlecki, On observational equivalence and algebraic specifications. J. Comput.

System Sci. 34 (1987) 150-178; Extended abstract in: Proc. TAPSOFTSS, Lecture Notes in Computer

Science, Vol. 185 (Springer, Berlin, 1985) 308-322.

[34] D.T. Sannella and A. Tarlecki, Extended ML: an institution independent framework for formal

program development, in: Proc. of Summer Workshop on Category Theory and Computer Pro-

gramming, Lecture Notes in Computer Science, Vol. 240 (Springer, Berlin, 1985) 3644389.

1353 D.T. Sannella and A. Tarlecki, Towards formal development of programs from algebraic specifica-

tions: implementations revisited. ,4cta Inform. 25 (1988) 233-281; Extended abstract in: Proc.

TAPSOFT ‘87, Lecture Notes in Computer Science, Vol. 249 (Springer, Berlin, 1987) 96-l 10.

1361 A. Tarlecki, On the existence of free models in abstract algebraic institutions. Theoret. Comput. Sci. 37

(1985) 269-301.

[37] A. Tarlecki, Bits and pieces of the theory of institutions, in: Proc. Summer Workshop on Category

Theory and Computer Programming, Lecture Notes in Computer Science, Vol. 240 (Springer, Berlin,

1985) 334-363.

1381 A. Tarlecki, Quasi-varieties in abstract algebraic institutions, J. Comput. System Sci. 33 (1986)

333-360.

1391 P. Taylor, Recursive domains, indexed category theory and polymorphism. Ph.D. thesis, Department

of Pure Mathematics and Mathematical Statistics, University of Cambridge, 1986.

1401 J.W. Thatcher, E.G. Wagner and J.B. Wright, Data type specification: parameterisation and the

power of specification techniques, Transactions on Programming Languages and Systems 4 (1982)

711-732.

[41] M. Wand, Final algebra semantics and data type extensions, J. Comput. System Sci. 19 (1979) 27-44.

