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Abstract 

Tarlecki, A., R.M. Burstall and J.A. Goguen, Some fundamental algebraic tools for the semantics of 

computation: Part 3. Indexed categories, Theoretical Computer Science 91 (1991) 239-264. 

This paper presents indexed categories which model uniformly defined families of categories, and 

suggests that they are a useful tool for the working computer scientist. An indexed category gives rise 

to a singlejattened category as a disjoint union of its component categories plus some additional 

morphisms. Similarly, an indexed functor (which is a uniform family of functors between the 

components categories) induces a flattened functor between the corresponding flattened categories. 

Under certain assumptions, flattened categories are (co)complete if all their components are, and 

flattened functors have left adjoints if all their components do. Several examples are given. Although 

this paper is Part 3 of the series “Some fundamental algebraic tools for the semantics of computa- 

tion”, it is entirely independent of Parts 1 and 2. 

1. Introduction 

Category theory has played an important role in clarifying, generalising, and 

developing results in both the theory and practice of computing. Many examples 

*This work was partially supported by grants from the Polish Academy of Sciences, from the U.K. 

Science and Engineering Research Council, and by Linkiiping University (AT); and by Office of Naval 
Research Contracts NOO014-85-C-0417 and NOOOl4-86-C-0450, NSF Grant CCR-8707155, and a gift from 

the System Development Foundation (JAG). 

0304-3975/91/$03.50 c 1991-Elsevier Science Publishers B.V. All rights reserved 



240 A. Tarlrcki et al. 

occur in algebraic specification, which used initiality in the very beginning to explicate 

the concept of abstract data type [20], and later used final objects [41], left adjoints 

[40, S], colimits [S], comma categories [lS], 2-categories [14, 161, and sketches 

[22,2]. Some early applications of category theory to various topics may be found in 

the collection [28], and some recent applications to programming language semantics 

of 2-categories, Kleisli categories, and indexed categories may be found in [30, 311. 

Taylor [39] applies indexed category theory to recursive domains and polymorphism. 

Institutions [17, 181 use category theory to formalise the concept of logical system. 

Topics studied here include specification languages (Clear [S, 61, ASL [32], Extended 

ML [34]), implementations [3, 353, observational equivalence [33], free construc- 

tions [36,38], and model theory [37]. It is hard to see how this work could be done 

adequately without categorical tools. 

This paper is the third in a series [15, 161 intended to introduce fundamental 

concepts and techniques from category theory to the working computer scientist, but 

it is entirely independent of the previous parts. Its goal is to present indexed cate- 

gories. Many-sorted algebras are a prime example with which the reader may 

already be familiar: for each many-sorted algebraic signature C, there is a category 

Alg(C) of C-algebras, and a signature morphism 0: C+C’ induces a functor 

Alg(a):Alg(C’)+Alg(C), which we call a a-reduct. Thus, there is a functor 

Alg: AlgSigoP+Cat from the (index) category of signatures to the category of catego- 

ries. The mathematics literature [25] develops indexed categories “up to coherent 

isomorphism” and is not very accessible to the average computer scientist. In contrast, 

this paper develops “strict” indexed categories, which are defined “up to equality”, 

a special case that often arises in theoretical computer science. 

Any indexed category gives rise to a “flattened” category by taking the disjoint 

union of the component categories and adding reduct morphisms. A flattened indexed 

category has a projection functor, which maps each object to the index of the 

component category from which it came. This is the “fibred category” [23] presented 

by the indexed category. Benabou [4] argues that fibred categories formalise the same 

intuition as indexed categories, but are easier to work with and conceptually simpler. 

However, his argument does not apply to our strict indexed categories, which are 

simpler still, and are not proposed for use in foundations, but only as a tool for doing 

theoretical computer science. 

Colimits have been used to “put together” many different kinds of structure, 

including general systems [ll, 191, theories [6, 15, 161, and labelled graphs [9]. The 

dual concept of limit, particularly the special case of equaliser, has also been applied, 

for example to study unification in computing and in linguistics [13]. It is especially 

convenient to use these constructions when every diagram has a (co)limit, i.e. when the 

category is (co)complete. Section 3 shows that under certain conditions, if all compon- 

ent categories are (co)complete, then so is the flattened category. This simplifies 

(co)completeness proofs for some categories. 

Given two categories indexed over the same category, an indexed functor between 

them is a family of functors between their component categories that is consistent with 
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the functors induced by the index morphisms. An indexed functor induces a flattened 

functor between its flattened source and target categories. If all the components of an 

indexed functor have left adjoints, then so does the flattened functor. This can simplify 

proofs that some functors have left adjoints. See Section 4. 

Although these results may be in the folklore, they seem not to have been previously 

published’. We believe they deserve an exposition for the working computer scientist. 

We assume familiarity only with basic category theory and universal algebra; such 

material may be found in [7, 27, 24, l] and other places; see also [12] for some 

guidelines for applying category theory. Composition is denoted by “ ;” (semicolon) in 

any category, and written in the diagrammatic order; identities are denoted by id, 

possibly with subscripts. Our exposition proceeds in what Benabou [4] calls “naive 

category theory,” without commitment to any particular foundation; indeed, nearly 

any foundation that has been proposed for category theory is adequate for this 

paper’. 

2. Indexed categories 

It may be surprising to realise that categories over a collection of indices are quite 

common. In many natural examples, the categories in a family are uniformly defined, 

in the sense that any index morphism induces a translation functor between the 

corresponding component categories; moreover, the translation goes in the opposite 

direction from the index morphism in these examples. Here is a simple example that is 

still quite typical. 

Example 1 (Many-sorted sets). Given a set S, there is a category SSET(S) of S-sorted 

(or S-indexed) sets, with S-sorted functions as morphisms, 

SSET(S)= [S-&et], 

where Set is the category of sets, [S-Set] is the category of functors from S to Set with 

S viewed as a discrete category and with natural transformations as morphisms under 

vertical composition (cf. [27,11.4, p. 401). We may write X : S+Set as (Xs)sss, where 

X,=X(s) for SE& and write g:X-+Yin SSET(S) as (gs:X,-+Y,),,s. 

Since indices are sets, index morphisms are functions, and f: Sl +S2 induces 

a functor SSET(f):SSET(S2)43SET(Sl) defined as follows: 

l OIZ objects: Given XEISSET(S~)~, let SSET(f)(X)=f;X: Sl-tSet (noting that 

X:S2-+Set), i.e. for sl~S1, let (SSET(f)(X)),, =Xftsl). 

a on morphism: Given g = ( gs2 : Xs2 + Y,, )s2 Es2 : X+ Y in SSET(S2), let 

SSET(f)(g)=(g~(,I,:X~(sl)~Y/csl,)slE~1 :f;X+f; Y. 

’ After reading a draft of this paper, John Gray pointed out that Gray [21] develops similar ideas for 

fibred categories. In particular, his Theorem 4.2 and Proposition 4.1 yield our Theorem 1. 
’ A reader who is nervous about foundations may, for example, check that each of our constructions can 

be placed at an appropriate level in a hierarchy of universes such as that described in [27]. 
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These induced functors are independent of how index morphisms are decomposed, 

in the sense that SSET(f;j’)=SSET(j”‘);SSET(f); i.e. SSET is a (contravariant) 

functor. 

SSET : SeP-+Cat. 

This motivates the following definition. 

Definition 1. An indexed category C over an index category Ind is a functor 

Ind”P-Cat. Given an index i~llndl, we may write Ci for the category C(i), and given 

an index morphism U: i-j, we may write C, for the functor C(a) : C( j)+C(i). Also, we 

may call Ci the ith component category of C, and C, the translation functor induced 

by 0. 

This presents a contravariant functor as a (covariant) functor from the opposite of 

its source category. While it might seem equally reasonable to present it as a functor 

from its source category to the opposite of its target category, this would give an 

unnatural direction to the component morphisms of natural transformations between 

such functors. 

Often, we want to consider the components of an indexed category together in 

a single “flattened” category obtained by forming a disjoint union of the components 

and adding some new morphisms based on the index morphisms; this is the so-called 

“Grothendieck construction” [23]. 

Example 1 (continued). Flattening the indexed category SSET : SeP+Cat yields the 

category SSet = Flat(SSET) of many-sorted sets, defined as follows: 

l Objects are many-sorted sets with an explicitly given sort set, i.e. they are pairs 

(S, X), where S is a set (of sorts) and X: S-&et. 

l Morphisms: A morphism from (S, X ) to (S’, X’) is a pair (h g), where f: S+S’ is 

a function and g :X + f; X’ is an S-sorted function ( gs: Xs+X;(SJ)SES. 
l Composition is defined componentwise, re-indexing the second component. Given 

(J; y) : (S, X)+(S’, X’) and (.f’, g’): (S’, X’)-+(S”, X”), let 

where 9=g;SSET(f)(g’)=(g,;g;,,,:X,s~Xl;,(f(s),)stS. 

Definition 2. Given an indexed category C : Ind OP-+Cat, define the category Flat(C) as 

follows: 

l Objects are pairs (i, a), where iglIndl and aglCil. 
l Morphisms from (i, a) to ( j, b) are pairs (a, f ), where g : i-j is a morphism in Ind 

and f: a+C,(b) is a morphisms in Ci. 
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l Composition: Given morphisms (a, f) : (i, a)-+( j, 6) and (p, g) : (j, b)+ 
(k, c) in Flat(C), let 

(o,f >;(P,g)=(a;p,f;C,(g)):(i,a)-t(k,c). 

Such a flattened category has a functor extracting the first component of its pairs, 

which is another important feature of the Grothendieck fibration. 

Definition 3. Given an indexed category C : Ind Op-+Cat, define its projection functor 

Proj,: Flat(C)+Ind 

as follows: 

o on objects: Given an object (i, a) in Flat(C), let Proj,((i, a))=i. 
l on morphisms: Given a morphisms (rr, f) in Flat(C), let Proj,( (0, f ))= a. 

We conclude this section with some further examples. 

Example 2 (Many-sorted algebraic signatures). Given a set S, the category of S-sorted 

algebraic signatures is the functor category 

ALGSIG(S)=[S++Set], 

where S + is the set of all finite nonempty sequences of elements of S, regarded as 

a discrete category; equivalently, ALGSIG(S)=SSET(S+). Thus, an S-sorted alge- 

braic signature is a family of sets (of operation symbols), one for each finite nonempty 

sequence of elements of S; such a sequence represents the rank, i.e. the arity and result 

sorts, of the operation symbols in the set that it indexes. An S-sorted algebraic 

signature morphism is a renaming of operation symbols that preserves their rank. 

The map S-S+ extends to a functor (_)’ : Set+Set, and the indexed category of 

algebraic signatures is3 

ALGSIG =(-)‘; SSET: SetoP+Cat. 

The translation functor ALGSIG( f) : ALGSIG( S’)-+ALGSIG(S) induced by a func- 

tion f:S+S’ extracts an S-sorted algebraic signature from an S’-sorted algeb- 

raic signature using f to rename sorts: Given an S’-sorted algebraic signature C’ 

and a sequence sl...s,,~Sc, the operation symbols of rank sr. ..s, in the S-sorted 

algebraic signature ALGSIG(f)(C’) are exactly the operation symbols of rank 

f(sI)...f(s,)E(S’)+ from C’. 

Flattening ALGSIG gives the usual category of algebraic signatures (e.g. [7]), 

AlgSig = Flat(ALGSIG), 

3This is slightly inaccurate, since it identifies the functor (-_)’ :%-Set with its opposite, 

((__)’ yP: SeP-*SeP; although equal as functions, they are different as functors, i.e. as morphisms in Cat. 
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whose objects are pairs (S, (Cr)rsS+ ), where S is a set (of sorts) and each C, 

is a set (of operation symbols of rank r). A morphism from (S, (Cr)rES+ ) to 

pair (f; g), where f: S+S’ is a sort renaming and 

is an operation symbol renaming that preserves rank (as 

modified by f). 

Example 3 (Many-sorted algebras). For our purposes, this is perhaps the prototypical 

indexed category. Given an algebraic signature C, then ALG(C) has C-algebras as its 

objects and C-homomorphisms as its morphisms. Given an algebraic signature 

morphism cr: C-+C’, then ALG(o) is the usual o-reduct (or generalised forgetful) 

functor 

I.:ALG(C’)+ALG(C), 

as defined, for example, in [7]. Thus, the category AlgSig of algebraic signature 

provides indices for the indexed category of many-sorted algebras, 

ALG : AlgSigop-+Cat. 

An object in the flattened category Flat(ALG) of many-sorted algebras is a many- 

sorted algebra with an explicitly given signature; and a morphism from (C, A) to 

(C’, A ‘) is a signature morphism g : C +C’ and a C-homomorphism h:A+A’J,. 

Similar “cryptomorphisms” occur in the specification literature, e.g. [26]. 

Example 4 (Diagrams). A diagram in a category T is a functor to T from a small source 

category, say G, which is its shape. This is essentially equivalent to the more 

elementary definition of a diagram as a graph with nodes labelled by objects of T and 

edges labelled by morphisms of T having appropriate source and target (e.g. see [ 151). 

Thus, the category FUNC(T)(G)= [G-+T] of functors from G to T is the category of 

diagrams with shape G in T. Then 

FUNC(T) : CaP-+Cat 

is an indexed category with 

l component categories: FUNC(T)(G)= [G+T]; 

l translation finctors: Q,: G-+G’ induces FUNC(T)(@): [G’-+T]-+[G-+T], a 

functor defined on objects by FUNC(T)(@)(D’)= @; D’ for D’ : G’-+T. 

Flattening FUNC(T) gives the category Func(T)=Flat(FUNC(T)) of functors into 

T, or diagrams in T. A morphism from D : G+T to D’ : G’-+T in Func(T) is a functor 

@ : G+G’ plus a natural transformation c( : D -+@;D’ (between functors in [G-+T]). 

Goguen [l l] applies a similar category in General Systems Theory. 

Example 5 (Theories). The notion of institution in [17] provides an appropriate 

framework for considering theories in arbitrary logical systems. An institution I con- 

sists of 

(1) a category Sign (of signatures); 
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(2) functor Mod:Sign”P-+Cat (giving for each CEISignl a category Mod(Z) of 

C-models); 

(3) a functor Sen : Sign+Cat (giving for each CcISignl a discrete category Sen(2) of 

C-sentences); and 

(4) for each CEISignJ, a (satisfaction) relation +=r~ IMod(C)( x Sen(Z), 

such that the following satisfaction condition holds for each a:C+C’ in Sign, each 

m’ElMod(C’)l and q&en(C), 

m’ k~,SenW(cp) * Mod@)@‘) bI cp. 

Given CT: C-+,X’, we may write Sen(o) as just c and Mod(o) as __lO. 

This definition involves two indexed categories: Mod, indexed by Sign, and Sen, 

indexed by Sign”P. However, we want to focus here on the indexed category TH of 

theories in I, which arises naturally in the study of specifications over I. Given 

CEISignl, a C-presentation is a set of C-sentences, Y sSen(C). Any such Y generates 

the set of its logical consequences, 

CI,(Y)={cp&en(C)Ifor all mEIMod(C)l, rn+q whenever rnk Y}. 

A C-theory is a C-presentation T that is closed under semantic consequence, i.e. such 

that T= Clp(T). Let TH(C) denote the poset category of C-theories ordered by 

inclusion. This extends to an indexed category 

TH : SignoP + Cat 

in which given a:C+Z’ and a C’-theory T’, 

TH(a)(T’)={cp&en(C))a(cp)~T’}. 

The satisfaction condition implies that this is a C-theory, and it is straightforward to 

check that TH(o) is a functor, i.e. a monotone map. 

Flattening this yields Th = Flat(TH), the usual category of theories in an institution 

I [17]: its objects are pairs (C, T), where C is a signature and Tis a C-theory; and its 

morphisms from (C, T) to (C’, T’) are signature morphisms a:C+C’ such that 

ant’ for all VET. 

We can define a somewhat larger indexed category of presentations. Given Z, let 

PRES(Z) be the poset category of C-presentations in I. This yields an indexed 

category 

PRES : SignoP+ Cat, 

where given 0: Z+C’ in Sign and Y’~sen(C’), 

PRES(o)(Y’)={cp&en(C) I (key’}. 

We can add some further morphisms to the component categories: given Z, let 

PRES,(C) be the category of C-presentations preordered by the semantic conse- 

quence relation, Y’ kr Y iff Y c C1,(Y’). This gives an indexed category 

PRES, : SignoP-+Cat. 
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The satisfaction condition implies that PRES, (0): PRES, (C’)+PRES,(C), defined 

just as PRES(a) above, preserves semantic consequence. 

TH is an indexed subcategory of PRES in a sense that will be made precise in 

Example 8 of Section 4 below; similarly, PRES is an indexed subcategory of PRES k. 

Example 6 (Institutions). We first recall the definition of institution morphism from 

[17]. Given two institutions I = (Sign, Mod, Sen, ( +z)zE,Sipn,) and I’= (Sign’, Mod’, 

Sen’, (k6’)z’Eisipn’l)’ an institution morphism from I to I’ consists of 

(1) a functor @ : Sign-Sign’; 

(2) a natural transformation /3: Mod+@ ;Mod’; and 

(3) a natural transformation cx : @ ; Sen’+Sen 

such that the following satisfaction condition holds for each CEILSign\, mEJMod(C)J 

and cp’ESen’( Q(C)), 

Intuitively, I is “richer” than 1’: @ extracts simpler I’-signatures from more complex 

I-signatures; p extracts simpler If-models from more complex l-models; and c1 trans- 

lates I’-sentences to l-sentences, which is possible since I is more expressive. 

Institutions and institution morphisms, with composition defined componentwise 

in a rather straightforward manner, form a category [ 171. We wish to describe it using 

indexed categories. It costs no more to generalise from logical systems in which the 

meanings of sentences in models are true or false, to semantic systems in which the 

meanings of sentences in models lie in an arbitrary category V. Following [lS]” after 

[29], the category Room(V) of V-rooms is the comma category 

Room(V)=(l-IlFUNG,,(V)), 

where 1-I: Cat-Cat is the discretisation functor and FUNC,,,(V): DCaP+Cat 

is the indexed category of functors into V restricted to discrete categories in DCat as 

source (see Example 4). Thus, a V-room is a triple (M, R, S), where M is a cate- 

gory, S is a discrete category, and R:(MI+[S+V]. A V-room morphism 
(f, g): (M, R, S)+ (M’, R’, S’) consists of a functor f:M+M’ and a function 

g : S’+S such that the following diagram commutes in Cat. 

IMI 2 CS-+Vl 

Ifl 
I I 

Y:(L) 

IM’I F [S’-+V] 
R’ 

4Goguen and Burstall [is, Proposition 161 define the category of V-rooms to be the comma category 
(]_]“plV-), where l_l”p:Cat”P+Cat Op is the opposite of the discretisation functor and V- : DCath 
Cat*” is the opposite of our FUNC,&V): DCaP -Cat. Consequently, a V-room is a triple (M, R, S), 
where M is a category, S is a descrete category, and R: IMI-[S-V] is a morphism in CaP, i.e. R is 

a functor from [S-V] to I M 1. This is a bug since R should go the opposite way. 
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That is, R’(f(m))=g;R(m) for all m~lM(, i.e. 

R’(f(m))(s’) = NNg(s’)) 

for all rn~(Ml and s’ES’ (a ghost of the satisfaction condition). 

The category of generalised institutions [18] with signature category Sign is the 

functor category 

INS(Sign) = [Sign”P+Room(V)]. 

This extends to an indexed category 

INS : CatoP-+Cat, 

where the translation functor INS(@): INS(Sign’)+INS(Sign) is defined on objects by 

INS(@)(I’) = Wp; I’ for @ : Sign-Sign a functor and I’ : Sign’“P+Room(V). This 

naturally extends to morphisms in INS(Sign’). Finally, the flattened category of 

generalised institutions is Ins=Flat(INS). The reader may check that if V is Bool, the 

category with exactly two morphisms, both identities, then this definition coincides 

with the explicit definitions of institution and institution morphism given above. 

3. Completeness of flattened categories 

This section studies how limits and colimits in a flattened category relate to the 

corresponding constructions in its index and component categories. Given a shape 

category G, a category T is G-(co)complete if any diagram of shape G has a (co)limit in 

T, and a functor is G-(co)continuous if it preserves the (co)limits of all diagrams of 

shape G. Then T is (co)complete if it is G-(co)complete for all small G. Similzly, 

a functor is (co)continuous if it preserves all small (co)limits. 

3.1. Limits 

There is no hope for constructing limits in a flattened category unless its index and 

component categories have limits. The only additional assumption needed is con- 

tinuity of the translation functors. 

Theorem 1. If C : Ind”P+Cat is an indexed category such that 

(1) Ind is complete, 

(2) Ci is complete for all indices iElInd[, and 

(3) C,: Cj+Ci is continuous for all index morphisms r~: i-j, 

then Flat(C) is complete. 

Proof. It suffices to prove that Flat(C) has all products and equalisers (cf. [27, 

Th.V.2.1, p. 1091). 

Products: Given a family (i,, a,,) for n E N of objects in Flat(C), let i be a product in 

Ind of the i, with projections z,, : i-t& for nsN, and let a be a product in Ci of C,(a,) 
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for nEN with projections fn: a-+C,“((a,) for HEN. Then we claim that (i, a) with 

projections (z,,, f,): (i, a)-*(&,, a,) is a product in Flat(C) of the (i,, a,) for nEN. 
Given an object (j, b) in Flat(C) with morphisms ((T,, g,): (j, b)--+(i,, a,> in 

Flat(C) for HEN, there exists a unique index morphism a:j-+i such that (5; 71, =c,, in 

Ind for all nEN. Moreover, continuity of C, guarantees that C,(a) with projections 

Ca(fn):C,(a)+C,(C,,,(a,)) for neN is a product in Cj of C,(Cn,(a,,))=CO,(a,) for 

nEN. Hence, there exists a unique morphism g: b-C,(a) such that g;C,(f,)=g,, in 

Cj for each HEN. Then (a, g) : (j, h)-t(i, a) is a unique morphism in Flat(C) such 

that (~,~);(~~,f,)=(a,,g,) for each nEN. 
Equalisers: Given morphisms (al,fl), (02, f2): (i, a)-+(j, b) in Flat(C), let 

O: k-i be an equaliser of 01, a2:i-tj in Ind. Notice that C,(C,,(b))=C,;,,(b) 

=C,:.,(b)=C,(C,,(6)). Let f:c-C,(a) be an equaliser of C,(fl), C,(f2):C,(a) 

-C,(C,,(b)) in C,. We claim that (a,f): (k, c>-+(i, a) is an equaliser of (al,fl), 

(a2J2) in Flat(C). First observe that by construction we have 

= <a, f > ; (02, ,f2). 

Next consider ( p, g) : (m, ii > + (i, u) such that 

in Flat(C), i.e. p;ol =p;[~2 in Ind and g;C,(fl)=g;C,(f2)in C,. By construction, 

there exists a unique index morphism 0: m-k such that 8; a=p in Ind. More- 

over, since CO is continuous, C,(j’): C,(c)+Ce(Ca(a))=C,(a) is an equaliser of 

C,(C,(fl))=C,(fl)andC,(C,(J‘2))=C,(f2):C,(a)-rC,,,,,,(b)in C,. Hence, there 

is a unique morphism h: d-C,(c) such that h; C,(f)=g in C,. There- 

fore, (8, h): (m, d)+(k, c> is a unique morphism in Flat(C) such that 

<&h>;(O”)=(p,g). a 

A sharper result can be proved in much the same way: a diagram D : G-Flat(C) 

has a limit in Flat(C) whenever D;Proj,:G+Ind has a limit in Ind such that the 

component category corresponding to the limit index is G-complete and the transla- 

tion functors induced by index morphisms into the limit index are G-continuous. 

3.2. Colimits 

The construction of colimits in a flattened category is not quite so simple since the 

proof of Theorem 1 does not directly dualise. This is because in constructing limits, it 

was easy to translate the objects (and morphisms) of component categories against 
index morphisms using translation functors, whereas the analogous construction for 

colimits requires translation along index morphisms. The following property provides 

this capability. 
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Definition 4. An indexed category C : IndoP -Cat is locally reversible if for each index 
morphism g: i+j in Ind, the translation functor C, : Cj+Ci has a left adjoint. Given 
U: i--+j in Ind, let us denote an arbitrary but fixed left adjoint to C,: Cj*Ci by 
F,: Ci3Cj and denote the unit of this adjunction by q”:idci+F,;C,. 

This does not require C to be “globally reversible” in the sense that the family of left 
adjoints forms an indexed (by 1nd”P) category. In general, F,; p # F, ; F,. However, the 
following fact holds. 

Fact 1. Given a locally reversible indexed category C : IndoP+ Cat and index morphisms 
(T: i-j and p :j-+k, there is a natural isomorphism 

Proof. F,; F, is left adjoint to C,;, = C,; C, (cf. [27, Th. IV.8.1, p. 1011) and any two 
left adjoints to the same functor are naturally isomorphic (cf. [27, Cor. IV.l.l, p. 831). 
In fact, given aElCi[, then zO,,(a):F,,,(a)-+F,(F,(a)) is given by 

and its inverse by 

lL~(a)=((P’(a))#)” : F,(FO(a))-F,;,(a), 

where f # denotes the morphism “adjoint” to f (the reader may determine the 
adjunctions to which the sharps in this formula refer). q 

Definition 5. Given a locally reversible indexed category C : IndoP+Cat and an index 
morphism p : i-j, any morphism ((T, g) : (k, a)-(i, b) (with the same i) in Flat(C) 

“lifts along p” to a morphism in Cj given by 

Lemma 1. Under the notation and assumptions of Dejinition 5, given an index morphism 
8: j-m in Ind and given a morphism (p;tI, f): (i, b)+(m, c) in Flat(C), then 
f ” : F,(b)-+C,(c) is a morphism in Cj such that in Flat(C), 

Proof. We check that in Ck 

~“‘“(a);C,:,(L,((o,g>); f”)=s;C,(f):a-C,,,:,(c) 



250 A. Tarlrcki rt al. 

as follows. 

VP(4;C,,,(~p(<~, s>);f”) 

=~“‘“(a);C,;,(l,,,(a));C,;,(F,(g#);f#) 

=?“(a);C,(rlP(F,(a));C,,,(F,(g#);f#) 

=vlV)C&OF&))C,(F,(g%C,(f#)) 

=Ylb(U);Co(g#;~P(b);Cp(f#)) 

=f(4~c7(s#);G7(f‘) 

=s;CcLf). 0 

(Definition 5) 

(proof of Fact 1) 

(CO,, =C,;C,) 

(naturality of $) 

(.f= V(4; CPU” )I 

kl=r?“(4;G(g#)) 

Corollary 1. Under the notation und assumptions of Dejinition 5 

Proof. By Lemma 1, since @(b)# =idFp(h). q 

We are now ready for the main result. 

Theorem 2. If C : Ind”P+Cat is un indexed category such that 

(1) Ind is cocomplete; 

(2) Ci is cocompletefor all i~(Ind(; and 

(3) C is locully reversible, 

then Flat(C) is cocomplete. 

Proof. Dually to the proof of Theorem 1, it suffices to prove that Flat(C) has all 

coproducts and coequalisers. 

Coproducts: Given a family (i,,, a,) for ncN of objects in Flat(C), let i with 

injections g,, : i,-+i be a coproduct in Ind of the i, for nEN, and let a be a coproduct in 

Ci of the FQn(a,) for nEN with injections ff : Fp,(un)+u for nEN. Now define 

f;l=rlPn(u,);C,~(fR):u,-,C,n(u) for n6N. Then we claim that (i, a) with injections 

(g,,,fn): (i,, u,)+(i, a) for nEN, is a coproduct in Flat(C) of the (in, a,) for nEN. 

Given an object (j, 6) and morphisms (on, g,,): (i,, a,)+( j, h) in Flat(C) for 

neN, there exists a unique index morphism g: i-j such that g,,; CJ=(T, in Ind for all 

nE N. Moreover, there is a unique g : u+C,(b) such thatff ;g=g.# : FOn(u,)-+C,(b) for 

all nEN (gr is well defined since g,,: u,-+C,,,(C,(b))). Now because 

l;l;Cpn(g)=~p”(Nln);Cp,,(fn#);Cp,(g) 

= Vn(41); C,,(fn” ; 9) 

= rl”-(G): q&L? 1 
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in Ci,, it follows that (a,g):(i, a)-(j,b) satisfies (p,,f,);(a,g)=((T,,g,) in 

Flat(C) for all ncN. Moreover, (a, g) is the only morphism in Flat(C) with this 

property: The uniqueness of o is obvious, and the uniqueness of g follows by its 

construction from the fact that given g’ : a -*C,(b) with fn;CP,(g’) = gn for all nEN, 

then fn# ; g’ = g.” for all nE N and, thus, g = g’. 

Coequalisers: Given morphisms (al, fl), (a2, f2): (i, a)-+( j, b) in Flat(C), let 

a:j+k be a coequaliser of al, 02: i+j in Ind. Then in Ck there are morphisms 

(cf. Definition 5) 

&(<aLfl)), L,((a2,f2)):F,,,,(a)~F,(b). 

Let f” : F,(b)+c be their coequaliser in Ck and let f=v]“(b);C,(f#):b+C,(c) 

in Cj. We now claim that (o,f):( j,b)+(k, ) c is a coequaliser in Flat(C) of the 

morphisms (al, fl), (a2, f2): (i, a)-+(j, b). First notice that by Lemma 1, in 

Flat(C) we have 

(al,fl);(a,f)=(~l;~,~“1;“(a));(id,,~,((al,fl));f#) 

=(a2;a,r”2;0(a));(idk, U<a2,f2));f#) 

=<a2,f2);(o,.f). 

Now consider a morphism (p, g): (j, b)+(m, d) such that in Flat(C) 

(al,fl>;(P,9)=(02,52);(p,g), 

i.e. such that al ;~=a2;p in Ind and fl ;C,,(g)=f2;C,,(g) in Ci. Then by construc- 

tion, there exists a unique index morphism 19: k +m such that a; f3= p in Ind. More- 

over, by Lemma 1 

Ylul;o(,);C,,:,(~,((~l,fl));g#)=fl;C,,(g) 

=f2 ; co2 (9) 

=r1”2:a(,);Co2;o(La((02,f2);9#) 

in Ci (recall that al;a=r~2;a and that g#: F,(a)+C,(d)). Hence, the properties of 

adjunction imply L,((a2, f2));g#=L,((al, jl));g”. Thus, there exists a unique 

morphism k:c+Ce(d) such thatf”;k=g# in Ck. 

Now (0, k) : (k, c)+(m, d) satisfies (a,f); (0, k) = (p, g) in Flat(C), since in Cj 

we havef;C,(k)=~“(b); C,(f" ; k)=rf(b);C,(g#)=g. Moreover, (g, k) is the only 

morphism in Flat(C) with this property: the uniqueness of g is obvious; and the 

uniqueness of k follows from its construction (iff; C,(k’)=g for some k’: c+C,(d), 

thenf#;k’=g#, and thus k=k’). 0 

A sharper result can be proved in much the same way: a diagram D: G-+Flat(C) 

has a colimit in Flat(C) whenever D ; Projc : G-+Ind has a colimit in Ind such that the 
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component category corresponding to the colimit index is G-cocomplete and all the 

translation functors induced by the index morphisms in the colimiting cocone have 

left adjoints. 

3.3. Applications 

We can use these theorems to check the completeness and/or cocompleteness for 

some interesting categories. The results are already known, but our proofs are more 

direct. 

Example 1 (continued). Consider again the indexed category SSET:SeP+Cat of 

many-sorted sets. It is well known that for any set S, the category SSET(S) of S-sorted 

sets is both complete and cocomplete, and of course the index category Set is also both 

complete and cocomplete. Moreover, it is not hard to see that the functor 

SSET(f) : SSET(S’)+SSET(S) is continuous for any index morphism (i.e. function) 

f: S+S’, and that it has a left adjoint (sending an S-sorted set (Xs)srS to the S’-sorted 

set (H 1X, If(s)=s’> )dd, where u denotes disjoint union). Thus, Theorems 1 and 2 

imply that the (flattened) category of many-sorted sets SSet =Flat(SSET) is both 

complete and cocomplete. 

Example 2 (continued). Consider the indexed category ALGSIG: SetoP-+Cat of 

many-sorted algebraic signatures. Again, the index category and all component 

categories are both complete and cocomplete, and the translation functors are 

continuous and have left adjoints (this follows from the definition 

ALGSIG = (_)’ ; SSET since SSET has all these properties). Thus, the category of 

algebraic signatures AlgSig = Flat(ALGSIG) is both complete and cocomplete. 

Example 3 (continurd). Consider the indexed category ALG : AlgSigoP+Cat of many- 

sorted algebras. Again, the index category is complete and cocomplete (by Example 2 

above), as are all component categories, and the translation (forgetful) functors are 

continuous and have left adjoints (the existence of left adjoints to these forgetful 

functors is a nontrivial, but familiar, property; see [i’] for an expository presentation). 

Also, cocompleteness of the category of Z-algebras is not quite obvious: to form 

a coproduct of C-algebras, form their disjoint union and then freely complete it to 

a C-algebra; coequalisers are not very hard. Theorems 1 and 2 now imply that the 

category Flat(ALG) of many-sorted algebras is both complete and cocomplete. This 

provides an appropriate framework for operations like the amalgamated union of 

algebras over different signatures, as used for example in [lo]. 

Example 4 (continued). Let T be any category and consider again the indexed 

category FUNC(T):CaP-+Cat of functors into (or diagrams in) T. The index 

category Cat is both complete and cocomplete. If T is complete, then so are all the 

component categories. For, given GEICatl, limits in FUNC(T)(G)= [G-+T] are 
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constructed “pointwise” as limits in T “parameterised” by (objects of) G (cf. [27, V.3, 

p. 1121). Moreover, the translation functors in FUNC(T) preserve limits constructed 

in this way. Thus, Func(T)=Flat(FUNC(T)) is complete whenever T is. 

Dually, if T is cocomplete, then the component categories are also cocomplete and 

the translation functors are cocontinuous. But to apply Theorem 2, we need the 

translation functors to have left adjoints; unfortunately, in general they do not. 

It is interesting to compare this with Kan extensions (cf. [27,X]). Given a 

functor @ : G-+G’ and a diagram F : G+T, then a left Kan extension of F along @ 

is an object F’EIFUNC(T)(G’)( free over FEIFUNC(T)(G)I with respect to 

the functor FUNC(T)(@) : FUNC(T)(G’)+FUNC(T)(G), with unit morphism 

qF:F+@; F’, a natural transformation between functors in [G+T]. If every dia- 

gram F: G+T has a left Kan extension along @, then the translation functor 

FUNC(T)(@): FUNC(T)(G’)-tFUNC(T)(G) has a left adjoint. Dualising the con- 

struction of a right Kan extension [27, Th.X.l, pp. 23341, we obtain the following 

proposition. 

Proposition 1. Given @ : G+G’, and F : G+T, and n’E I G’I, let (@ J n’) be the comma 
category of objects @-over n’ (cf: [27, pp. 46-7]), and let P,,, : (@ 1_ n’)+G be the obvious 
projection functor, and let D,. = P,, ; F : (@ 1 n’)-+T. Now suppose thatfor each n’E 1 G’I, 
the diagram D,,. : (@ 1 n’)+T has a colimit F’(n’)eITI. Then the assignment n’++F’(n’) 

extends to a functor F’: G’+T, using the colimit property of F’(n’) for n’ElG’[ 
in the usual way. Moreover, there is a natural transformation ylF: F-+@; F’ such that 
qF,n: F+F’(@(n)) is the morphism in the colimiting coconefor F’(@(n)) corresponding to 

the object (n, id,,,,)El(@ 1 @(n))l f or each nelGI. Finally, F’ with the unit qF is a left 
Kan extension of F along Cp. 

Proposition 2. Given a functor @ : G+G’ with G small and a cocomplete category T, 

any functor F: G-T has a left Kan extension along @. 

Even though the category of all diagrams in T need not be cocomplete when T is, 

the category of small diagrams has this property. 

Proposition 3. Let Scat be the category of all small categories, let T be a category, and 
let 

SFUNC(T): SCatoP+Cat 

be the indexed category of small diagrams in T, defined as the restriction of FUNC(T) 

to SCatoP. Then the category SFunc(T)=Flat(SFUNC(T)) of small diagrams in T is 

cocomplete whenever T is. 

Example 5 (continued). Given an institution I, consider the indexed category of 

theories in I, TH : SignoP+Cat. Given Z~ISignl, clearly THr is a complete lattice, i.e. is 

complete and cocomplete as a category. Moreover, it is not hard to see that given 

a signature morphism c : C+Z’, then TH, : TH,, +THz has a left adjoint which maps 
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a C-theory T to the C’-theory generated by the set {a(q) 1 (PET} of C’-sentences. Thus, 

Theorem 2 implies that the flattened category Th=Flat(TH) of theories in I is 

cocomplete whenever the category Sign of signatures is cocomplete. It is even easier to 

see that the categories Pres= Flat (PRES) and Pres, = Flat(PRES,) are cocomplete 

whenever Sign is. A similar result holds for completeness, but is less interesting. 

Example 6 (continued). Given an arbitrary category V, consider the indexed category 

INS : Cat@‘+Cat of institutions. Recall that INS(Sign) = [Sign”“+Room(V)] for 

Sign61 Cat I. Arguments as in Example 4 above show that Ins= Flat(INS) is complete 

provided that the category Room(V) is complete. For this we can use the following 

general result on comma categories (its dual is stated in [3], and proved in detail in 

[37]; a slightly weaker result is given in [27, Lemma in V.61 and [15, Prop. 21). 

Lemma 2. Given categories A, B, K undfitnctors F : A-K and G : B+K, fA and B are 

complete and if G : B+K is continuous, then (F 1 G) is complete. 

Recall that we defined Room(V)=( 1-I 1 FUNCD,,(V)), where 1-j : Cat +Cat and 

FUNCDi,,(V): DCat”?‘+Cat. Since Cat is complete and DCat, the category of discrete 

categories, is cocomplete (hence, DCat Op is complete), the only thing to check is the 

continuity of FUNCoi,,(V). This follows from the construction of colimits in DCat 

and limits in Cat: The coproduct in DCat of any family of discrete categories S, for 

nEN is just their disjoint union S=uJnth’ S,. It is not hard to see that the functor 

category [S-+V] is (isomorphic to) the product of the categories [S,-V], for ngN. 

Then, the coequaliser in DCat of any two functors F, G : Sl +S2 is given as the natural 

quotient functor H:S2-+S2/-, where = is the least equivalence on (objects of) S2 

such that F(s)= G(s) for all s~S1; and S2/= is the quotient (discrete) category. Again, 

it is not hard to see that the functor category [(SZ/=)+V] is isomorphic to 

the subcategory of [S2+V] that contains as objects all functors D : S2+V such that 

F ; D = G ; D, and similarly for morphisms. The isomorphism is given by the functor 

FUNC,,,(V)(H): [(S2/- )+V]+[S2+V]. 

Thus, FUNC,,,(V)(H) is an equaliser in Cat of the functors FUNCDisc(V)(F) and 

FUNC.isc(V)(G). 
Summing up, FUNCDi,,(V) maps coproducts in DCat to products in Cat and 

coequalisers in DCat to equalisers in Cat. Hence, FUNCDi,,(V) is continuous as 

a functor from DCatoP to Cat. Thus, by Lemma 2, Room(V) is complete and, thus, the 

category Ins of institutions is complete. 

Since morphisms in Ins have richer institutions as their source, limits, not colimits, 

are appropriate for “putting institutions together,” and, hence, the completeness of Ins 

is relevant. 
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4. Indexed functors 

Definition 6. An indexed jiinctor F from one Ind-indexed category C : TndoP-rCat to 

another D : IndoP-+Cat is 

a functor Fi: Ci~Di such 

Iud: 

I 0 

a natural transformation F : C+D, i.e. for each iElInd1, 

that Fj; D, = C, ; Fi for each ~7 : i-j in Ind. 

Cat: 

CiF’Di 

c< 

I I 

DO 

Cj-Dj 

F, 

This gives a category INDEXEDCAT(Ind) of Ind-indexed categories, with the 

obvious vertical composition of morphisms. 

Example 7 (Powerset functor). Given a set S, let us define the S-sorted powerset 

functor P,:SSET(S)+SSET(S) as follows: Ps maps an S-sorted set (Xs)seS to the 

S-sorted set (2xs),,s of the powersets of its components; and Ps maps an S-sorted 

function (gs: X,+ Ys)ses to the S-sorted family (2:: 2XS+2YS)SES of the corres- 

ponding image functions, 2:(A) = { gs( ) ) x XEA} for any A&X, and s~S. It is not hard 

to see that P = ( Ps)sejset, forms an indexed functor P : SSET-SSET. 

Example 8. Recall that Example 5 defined three indexed categories 

TH: SignoP -+ Cat, 

PRES : SignoP+Cat, 

PRES k : SignoP+ Cat, 

where THr is a subcategory of PRESr for each C~jSignl, which in turn is a sub- 

category of (PRES k)r. It is not hard to see that the families of inclusion functors, from 

THz to PRESz and from PRES, to (PRES\h indexed by signatures CEISignl form 

indexed functors, from TH to PRES and from PRES to PRES k. 

This motivates the following definition. An indexed category C:IndoP+Cat is an 

indexed subcategory of D : IndoP+Cat (they must have the same category of indices) iff 

Di is a subcategory of Ci for each igJIndJ, and the family of inclusion functors forms an 

indexed functor from D to C. This can be somewhat generalised by considering 

indexed subcategories D over a subcategory of indices of C. 

Flattening extends from indexed categories to indexed functors. 
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Definition 7. Let Ind be a category. Then the Jattened finctor, 

F1atlnd : INDEXEDCAT(Ind)+ Cat, 

is defined as follows: 

l on objects: Given C: IndoP-rCat, then Flat,,d(C) is the flattened category of Defini- 

tion 2. 

l on morphisms: Given an Ind-indexed functor F : C+D (for C, D : IndoP+ Cat), then 

the functor Flatr,,+(F): Flat,,d(C)-+Flat,,d(D) is defined as follows: 

0 on objects: Given (i, U)EIFhtl,d(C)I, let Flat,,,(F)((& a))= (i, Fi(U)). 

l on morphisms: Given a morphism (a, f) : (i, a)-+( j, b) in Flat,,d(C), let 

Flat,,d(F)((o,f))=(a, Fi(f)) : (i, Fi(a))+( j, F,(b)) in Flat,,(D), recalling that 

D,(Fj(b))= Fi(C,(b)). 
We may write Flat instead of FIat,,d. It is straightforward to show that it is a functor. 

Intuitively, flattened indexed functors leave the first element of their arguments 

unchanged, but use it to select the appropriate component category for the indexed 

functor to operate upon. In a sense, flattening an indexed functor forms the disjoint 

union of its components. The similarity of Definition 6 to the definitions of Example 4 

(the category of functors into a fixed target category) suggests the following: 

Example 9 (Indexed categories). The indexed category of indexed categories is defined 

by 
INDEXEDCAT = OP; FUNC(Cat) : CatDP+Cat, 

where OP : CatoP+CatoP maps a category K to its opposite Kop, and maps a functor 

F:K+M to its opposite FoP:KOP +MoP. (It makes a nice puzzle to define 

OP = ((-)Op)Dp.) Thus, given Inde/ Cat 1, let 

INDEXEDCAT( Ind) = [ IndoP+ Cat] 

as in Definition 6, and given @ : Ind-+Ind’ and C’ : (Ind’)“P-+Cat, let 

INDEXEDCAT( Wp; C’ : IndoP+Cat. 

Flattening yields the category IndexedCat = Flat(INDEXEDCAT) of indexed catego- 

ries, with its objects an index category and an indexed category over it, and its 

morphism from (Indl, Cl : Indl”P+Cat) to (Ind2, C2 : Ind20P-+Cat) pairs (@, F), 

where @ : Indl -+IndZ is a functor and F : Cl +Wp; C2 is a natural transformation. 

For example, let us consider the relationship between the indexed categories of 

many-sorted algebras (Example 3) and of many-sorted sets (Example 1). First, there is 

a functor Sorts : AIgSig+ Set, which maps a signature to its set of sorts (in fact, this is 

the projection functor of Definition 3). Then, given an algebraic signature C, there is 

a forgetful functor (e.g. [7]) 

Ur : Alg(C)+SSET(Sorts(C)), 
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which maps a C-algebra to its many-sorted carrier. It is not hard to check that the 

family U = (U,X )ZcIAlgSigl forms a natural transformation U : ALG +SortsOP; SSET, so 

that (Sorts, U) : ( AlgSig, ALG) + (Set, SSET) is a morphism of indexed categories. 

Let us note that Fiat = (Flatlnd)l,d,Icatl as defined in Definition 7 is also an indexed 

functor, from the Cat-indexed category INDEXEDCAT to the constant Cat-indexed 

category that assigns the category Cat to each index (and the identity functor on Cat 

to each index morphism). 

Part of our original motivation for looking more carefully at indexed categories was 

to reduce a family of adjunctions (between component categories) to a single adjunc- 

tion (between flattened categories); a somewhat parallel motive appears in “getting 

a charter from a parchment” [18]. 

Definition 8. Let U : C+D be an Ind-indexed functor. Then U has a left adjoint locally 

iff Ui: Ci-*Di has a left adjoint for each index +Indj. 

Theorem 3. Given an Ind-indexedfunctor U : C-+D, which has a left adjoint locally, then 
Flat(U): Flat(C)+Flat(D) has a left adjoint. 

Proof. Given an object (i, a) in Flat(C), then Ui: Ci+Di has (let us say) left adjoint 

Fi: Di+Ci with unit pi: idc,+Fi;Ui. NOW we claim that (i, Fi(a)) is a free object in 

Flat(D) over (i, a) with respect to the functor Flat(U), having as its unit (idi, 
vi(a)) : (i, a)-(i, Ui(Fi(a))) =Flat(U)((i, Fi(a))). For, let (j, b) be an object in 

Flat(D), let (a,f):(i, a)+Flat(U)(( j, b))=( j, Ui(b)) be a morphism in Flat(C), 

and let f” :Fi(c)~b be the unique morphism in Di such that rli(a);Ui(f”)=fin Ci. 

Then (o,f#): (i, Fi(a))+( j, b) is the only morphism in Flat(D) such that (idi, 
si(U)>;Flat(U)((a,f#))=(a,f) in Flat(C). 0 

Example 10. The AlgSig-indexed forgetful functor U : ALG+SortsoP; SSET was de- 

fined in Example 9, and it is well known that each U,: ALG(C)-+SSET(Sorts(C)) has 

a left adjoint. Theorem 3 implies that the flattening of these forgetful functors, 

Flat(U) : Flat(ALG)-+Flat(Sorts”P; SSET), 

has a left adjoint obtained by flattening the local left adjoints. 

Example 11. There is a Sign-indexed inclusion functor from the indexed category TH 

of theories to the indexed category PRES of presentations in an arbitrary institution 

I (cf. Example 8). It is clear from the definitions in Example 5 (where these categories 

were defined) that for each signature C~ISignl, the inclusion functor from THz to 

PRESz has a left adjoint (i.e. THz is a reflexive subcategory of PRESB in the sense of 

[27, V.3, pp. 88-91). In fact, the left adjoint is the closure operator Clr: PRES,+TH, 

defined in Example 5. Theorem 3 now implies that the category Th=Flat(TH) of 
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theories in I is a reflective subcategory of Pres = Flat(PRES), the category of presenta- 

tions in I. 

Theorem 3 suggests a different way to prove the cocompleteness of flattened 

categories. Given a shape category G and a target category T, the diagonal jiinctor 

AF:T-+[G+T] 

is defined as follows: 

l on objects: Given tEJTJ, At(t) be the “constant” diagram, i.e. the functor that maps 

each object of G to t and each morphism in G to the identity on t. 

l on morphisms: Given f:tl+t2 in T, let A:(f): Ag(tl)-+A$t2) be the “constant” 

natural transformation, A:(f), =f for each nEJGI. 

Fact 2. Given categories G and T, then T is G-cocomplete iff the diagonal jiinctor 
AF:T+[G+T] has a left udjoint. 

Proof. Given a diagram D: G-+T, the free object over D with respect to A: is 

a colimit of D; the unit is the colimiting cocone on D; and vice versa, the colimit of 

D is a free object over D with respect to A:. 0 

Now we follow this hint in proving a slightly stronger form of Theorem 2. 

Theorem 2’. Given a category G, let C : Ind OP+Cat be an indexed category such that 

(1) Ind is G-cocomplete; 
(2) Ci is G-cocompletefor all ielInd(; and 
(3) G is locally reversible. 

Then Flat(C) is G-cocomplete. 

Proof. C gives rise to an Ind-indexed category DIAG,” of G-diagrams in C as follows: 

l Component categories: Given iElInd1, then DIAGg(i)= [G+Ci]. 

l Translation functors: Given O: i-j in Ind, define the functor DIAGz(a): [G-t 

Cj]-+[G+Ci] on objects by DIAGE(a)(D)=D;C, for D:G+C,; it extends to 

morphisms in [G-*Cj] in the obvious way. 

Now, we have the diagonal Ind-indexed functor 

A$ C+DIAGZ 

defined by (A~)i=A~i:Ci+[G+Ci] for iE(Indj. (It is not hard to check that this is 

indeed an indexed functor.) Moreover, by assumption 2 and Fact 2, AZ, has a left 

adjoint for each iclIndl. Hence, by Theorem 3, 

Flat(Az): Flat(C)+Flat(DIAGE) 
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has a left adjoint. We can identify Flat(DIAGE) with a subcategory of [G+Flat(C)] 

which, roughly, contains the G-diagrams in Flat(C) that fit entirely into one of 

the component categories of C: a diagram D: G-Flat(C) is in Flat(DIAGE) iff 

D ; Projc : G-+Ind is a constant functor, and a diagram morphism 6 is in 

Flat(DIAGz) iff 6 horizontally composed with Proj, yields a constant natural 

transformation. 

The corresponding faithful functor J: Flat(DIAGE)+[G+Flat(C)] may be de- 

fined as follows: 

l on objects: Given (~,D)EIFI~~(DIAGE)I (’ 1.e. ielInd[ and D:G-+Ci), the G-dia- 

gram J((i, D)):G+Flat(C) is defined as follows: 

l on objects: J((i, D))(n)=(i, D(n)) for n~lG\. 

l on morphisms: J((i, D))(e)=(id,, D(e)) for any morphism e in G. 

l on morphisms: Given a morphism (y, a): (i, D)-+( j, E) in FIat(DIAGg), where 

y: i-j is an index morphism and rx:D+E;C, is a morphism in [G-C,], then 

J((y, LX)): J( (i, D))+J(( j, E)) is the natural transformation defined by 

J((Y, ~)h)=(y, 44): (6 W)>+<j, E(4) for dGI. 
It is not hard to see that J((y, a)) is indeed a natural transformation, and that J is 

a faithful functor. 

The following identifies Flat(DIAGg with its image under J in [G-Flat(C)] and 

refers to J as an inclusion functor. Unfortunately, Flat(DIAGz) is in general a proper 

subcategory of [G-Flat(C)], and so the proof of Theorem 2’ is not yet finished. One 

can directly check that 

AC Flat(C) = FWA~); J. 

Since we already know that Flat(AE) has a left adjoint, to show that A&,(,) has a left 

adjoint it is enough to prove that J has a left adjoint (cf. [27, Th. V.&l, p. 1011). Thus, 

the following lemma will complete the proof. 

Lemma 2. The inclusion finctor J has a left adjoint, i.e. Flat(DIAGz) is a rejlexiue 

subcategory of [G-Flat(C)] (cf [27, V.3, pp. 88-91 for the de$nition and basic facts 
about rejlexiue subcategories). 

Proof of Lemma 2. Given a G-diagram D : G+Flat(C), we are to find its reflection in 

Flat(DIAGE), i.e. a G-diagram R(D): G+Flat(C) in Flat(DIAGg) together 

with a diagram morphism qn: D-R(D) such that for any diagram D’ in 

Flat(DIAGE) and morphism 6:D-+D’ there exists a unique 6# : R(D)+D’ in 

Flat(DIAGz) such that qn;6# =6 in [G+Flat(C)]. 

So, given an arbitrary diagram D: G--+Flat(C), where D(n)= (i,, a,) for nelGI, and 

D(e)=(e,, fe>:(&, a,,)+<L, a,) for e: n+m in G, let i be a colimit in Ind of 

D ; Proj, : G-rind, with injections P,, : i,-+i for nel GI (Ind is G-cocomplete by assump- 

tion 1). Now define R(D): G+Flat(C) as follows: 

l on objects: R(D)(n)=(i, F,“(u,)) for nE\GI. 
l on morphisms: R(D)(e)=(idi, Lp,((oe,fe))): (i, F,,“(u,,))+(i, F,,,,(u,)) for 

e:n+m in G. 
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Recall that indeed &_((a,, se>): Fa,;p,(un)= Fp,(an)+Fp,(um) (see Definition 5). 

Let us check that R(D) is a functor, i.e. it preserves identities and composition. It is 

obvious that it preserves identities (Definition 5 implies that L&(id,, id,,))= 

F,,,(ida,) = idFom~amj). For composition, given e : n-m and d : m-+k in G, we have to show 

that in Ci 

L,_((a,,f,));L,,((~d,fd))=Lpr((~e,fe);(~d,fd)). 

This may be checked by going back to Ci,. On the one hand, in Cim we have 

rlP”(a,);C,“(LPk((~.e,fe);(~d,fd))) 

=qP”(‘“); CPn(LP,((a,; ad?fe; co,(fd)>)) (Corollary 1, &,=a,; ad; Pk) 

=fe ; cck (h) ; Ge :bd (VP” (4 )I; 

on the other hand, in Ci,, we have 

rl”“(a,);Cpn(L,,(([Te,fe));Lp~((~d,fd))) 

=fe; Coe(r?P-(um)); c,o(c,_(L,,((ad,fd)))) 

=f,;c,~(fd);Co,(Cad(YIPk(uk))). 

(Corollary 1, pn = ge ; p,) 

(Corollary 1, p,,, = bd; pk) 

Hence, in Ci,, 

which by properties of adjunctions implies that indeed 

Clearly, R(D) is in Flat(DIAG2). Having defined R(D) as above, there is an obvious 

waytodefiney,:D-,R(D):forn~~G~,letv],(n)=(p,,~Pn(u,)):(i,,u,)-,(i,F,n(u,)). 

We have to check that qr, is a natural transformation. Given e : n-+m in G, we need to 

show that 

i.e. that 

Since a,; P,,,=P~ by construction, the only thing to check is that 

which follows directly from Corollary 1. Now we claim that R(D) is a reflection of D in 

Flat(DIAGE) with unit vD:D-+R(D). Given a diagram D’ in Flat(DIAGg and a 

diagram morphism 6 : D-D’, say that D’(n) = ( j, b,) for nil G 1, and D’(e) = (idj, g,) 
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for e:n+m in G with ge:b,+b, in Cj (such an index je)Ind) exists since D’ is in 

Flat(DIAGg). Also, say that J(n)= (O,, h,) : (i,, a,)+( j, b,) for nc[GI. 

By construction, there exists a unique index morphism y : i-+j such that P,, ; y = 0, for 

each ne\GJ. We now define the diagram morphism 6’ :R(D)-+D’ by d”(n)= 

(y, hR):(i, F,“(a,))+(j, b,) for nElGI, where hz: F,_(a,,)+C,(b,) is the unique 

morphism in Ci that satisfies @“(a,); Cpn(hf ) = h, : a,+Cp,(Cy(b,)). First, let us check 

that 6# is indeed a morphism in Flat(DIAGE); the nontrivial part is to verify that 6’ 

is a natural transformation, i.e. for any e: n-+m in G that 

s#(n);D’(e)=R(D)(e);G#(m), 

or, equivalently, that 

(~,hR);(idj,g,)=(idi, Lp,,,(<~e,fe>)>;(~,h,#). 

We must prove that in Ci 

h,#;C,(g,)=L,_((a,,f,));h,#. 

To see this, note that by construction in Ci,, 

~““(a,); Cpn(h: ; Cy(se))= h,; G&e), 

and by Lemma 1 (since P,, = a,; p,) 

rlP”(a,);C,n(L,,(((re,fe));h,#)=f,;C,e(h,). 

However, since 6 : D+D’ is a natural transformation, 

D(e);d(m)=a(n);D’(e), 

i.e. 

(ae,fe>; (em9 hm)=(en, h); (idj, se>, 
which implies that 

fe;C,~(h,)=h,;Ce,(ge). 

Hence, putting these equations together, 

V(a,);C,n(h,# ;C,(g,))=vlP”(a,);Cp,(L,,((a,,f,));h,#). 

Thus indeed, 

h,# ;C,(ge)=Lp,,((~e,fe));hm#. 

We now claim that 6# : R(D)+D’ is a unique morphism in Flat(DIAG2) such that 

nn;6# =6. First, we have to Verify that qD(n);d#(n)=6(n) for nclGI, i.e. that 
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or equivalently, that 

which is clearly true. Moreover, the construction guarantees that 6#(n) is the only 

morphism in Flat(C) such that Proj,(G#(n))=y and ~]o(n);S#(n)=6(n). Since the 

uniqueness of y is obvious, this gives the uniqueness of 6# and completes the proof of 

Lemma 2 and, hence, of Theorem 2’. 0 

We do not apologise for giving a second proof of this theorem; on the contrary, we 

feel its details are worth examining, especially the “reflection lemma” (Lemma 2). 

5. Summary 

This paper has presented indexed categories and given examples supporting the 

view that they are a useful tool for structuring and clarifying certain constructions and 

proofs in computer science. Given an indexed category C, we have constructed 

a “flattened” category Flat(C) containing the components of C. We have also 

introduced indexed functors, and shown how to flatten them. Finally. we have shown 

that flattening preserves the important properties of completeness, cocompleteness, 

and existence of left adjoints. 
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