Interaction Profiles of Amino Acid Side-Chain Analog Pairs within Membrane Environments

Vahid Mirjalili, Michael Feig.
Michigan State University, East Lansing, MI, USA.

The energetics of amino acid insertion into membranes has been studied extensively but relatively little is known about the association energetics of amino acids within biological membranes. Here, interactions between pairs of four amino acid analog (Asn, Ser, Phe, and Val) in the membrane environment are described from umbrella sampling molecular dynamics simulations. Association interaction free energy profiles as a function of bilayer insertion depth are presented and the physical characteristics of contact pairs are described. The results provide detailed insights into amino acid interactions within membrane environments with implications in the understanding of how membrane-bound peptides and proteins interact and for the association of transmembrane helices. Furthermore, the quantitative energy profiles presented here serve as a benchmark for the parameterization of more simplified models such as coarse-grained models or implicit models of membrane bilayers.

Room-Temperature Ionic Liquids Interacting with a Phospholipid Bilayer: A Comprehensive Neutron Scattering and Molecular Dynamics Study

Antonio Benedetto1, Miguel A. Gonzalez2, Pietro Ballone3.
1School of Physics, University College Dublin, Dublin, Ireland, 2School of Medical Sciences, The University of Sydney, Sydney, Australia, 3Institut Laue Langevin (ILL), Grenoble, France, 5Istituto Italiano di Tecnologia, Roma, Italy.

Recent experiments have shown that Room-Temperature Ionic Liquids (RTIL) can be incorporated into phospholipid bilayers, undermining their stability. These results have important implications concerning the toxicity of RTILs, but could also point to biotechnological applications. However, the experiments available up to now, provide limited access to the microscopic details on the RTIL-phospholipid interaction. Neutron Scattering (NS) and Molecular Dynamics (MD), instead, represent powerful tools for characterizing both the structure and dynamical properties at the microscopic level. Here we present a comprehensive NS and MD study on phospholipid bilayers in contact with water solution of prototypical RTILs, e.g. [bmina][Cl], [bmine][PF6], and [bmina][NTf2]. Neutron diffraction and reflectivity allow us to determine the changes in the membrane structure when different RTILs are added, while the dynamical properties have been determined by quasi-elastic neutron scattering. MD has been performed on the same systems using Gromacs. NS has been performed at ILL (France), ISIS (UK), and NIST (USA) large-scale facilities, whereas the MD on the supercomputer ICHEC (Ireland). Experimental results and MD predictions agree with each other, and provide a wealth of microscopic information on the RTIL-phospholipid interaction.

The Distributions and Orientations of Retinoids in Retinal Membranes Studied with All-Atom Molecular Dynamics Simulations

Jinju Lu1, Igor Vorobyov1, Toby W. Allen2,3.
1Department of Chemistry, University of California, Davis, Davis, CA, USA, 2School of Applied Sciences & Health Innovations Research Institute, RMIT University, Melbourne, Australia.

Understanding the transport of retinoids in lipid bilayers is essential to describe the binding to photoreceptors or retinoid-binding proteins involved in the visual cycle. Utilizing all-atom molecular simulations, we demonstrate how 11-cis retinal, all-trans retinal and all-trans retinol distribute and orient in lipid bilayers with different levels of unsaturation, head group and the presence of cholesterol, characteristic of retinal membranes. We have found that all-trans retinol is more depleted in the membrane core (with a sub-tentially lower density relative to retinal) and less flexible in its orientation (with a more parallel alignment to the membrane normal) than its retinal counterpart. We shall discuss how these results pertain to the vision cycle. In particular, the restricted distribution of retinol may assist the removal of all-trans retinol from the rod outer segment(ROS) membranes by facilitating its binding to certain retinoid-binding proteins. On the other hand, the higher accessibility of the membrane core to all-trans retinal and its flexible orientation may assist its release from bleached photoreceptors. Furthermore, we demonstrate that the presence of cholesterol increases the concentration of 11-cis retinal in the membrane core and will explain how this is consistent with the roles of plasma and disk membranes in the retinoid cycle.

Correlations of Specific Ionic Effects using Ion Channels and Surface Charge Measurements

Tori C. Roark1,2, V. Adrian Parsegian1.
1Physics, University of Massachusetts, Amherst, MA, USA, 2PPB/NICHD/NIH, Bethesda, MD, USA.

Molecular crowding by polyethylene glycols (PEGs) has been employed in a wide range of inquiries into molecular structure and dynamics. Investigating the partitioning of crowded polymers into biological nanopores reveals properties also seen in, e.g., DNA ejection and compaction into viral capsids, as well as in facilitated molecule transport. Capitalizing on our previous work on the partitioning of binary PEG mixtures into the membrane Alpha-Hemolysin nanopore, we have now studied partitioning of mono- and polydisperse polymer solutions into comparably sized, yet differently structured, diffusion channels. We find that in the presence of large non-partitioning PEG 3400, the small, otherwise equipartitioning PEG 200 partitions disproportionately. Specifically, with 15% PEG 3400, an added 15% PEG 200 reduces channel conductance by 65% (compared with channel conductance in polymer-free solutions), while 15% PEG 200 alone reduces channel conductance by only 45%. We employed open-channel noise analysis to investigate channel diffusion properties of individual polymers, and to compare them with their properties in bulk water solution. In this way we demonstrate and quantify crowding-assisted transport through nanopores in mixed-polymer systems.

The Charging the Quantum Capacitance of Graphene with a Single Biological Ion Channel

Peter J. Burke.
EECS, University of California, Irvine, Irvine, CA, USA.

Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. The Dirac point of the graphene FETs is not affected by changes in the solution pH or KCl concentration after it is covered by SLBs. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin...
A. current pulses are observed through the lipid bilayers from the graphene to the electrolyte. By careful measurement and analysis of the appropriate circuit elements in an equivalent circuit model, we confirm that the ion channel current in our setup directly charges the quantum capacitance of the graphene, a qualitatively different type of interaction than tradition SLBs with metal electrodes.

2533-Pos Board B225
Mechanics of F-Actin-Membrane Composites Investigated by Atomic Force Microscopy
Corrina Kramer, Daniela Morick, Ingo Mey, Claudia Steinem.
Georg-August University, Institute of Organic and Biomolecular Chemistry, Goettingen, Germany.

The cortical cytoskeleton attached to the plasma membrane is an essential mechanical component within the cell. It regulates fundamental processes including cell division, motility and shape. In order to investigate how the individual components of the cortical cytoskeleton contribute to the mechanical properties of the plasma membrane, a model system was established. Pore spanning lipid bilayers (PSLBs) containing a specific receptor lipid were prepared on porous silicon nitride substrates. Subsequently, F-actin was bound to the PSLBs both directly via electrostatic interaction or via the linker protein ezrin.

Fluorescence microscopy was utilized to visualize the prepared PSLBs and the F-actin binding. Indentation experiments were performed by atomic force microscopy (AFM) to elucidate the mechanical properties of the PSLBs. The apparent spring constants of the PSLBs were extracted from the measured force-indentation curves. In our system, the determined apparent spring constants directly correlate with the lateral tension of the PSLBs. We assumed the lateral tension as a function of F-actin coverage.

2534-Pos Board B226
Using Hydrodynamic Flow to Concentrate Membrane-Associated Proteins in Free Fluid Lipid Bilayers
Aurelia R. Honerkamp-Smith1, Peter Jonsson2, Raymond E. Goldstein1.
1Applied Mathematics, University of Cambridge, Cambridge, United Kingdom; 2Chemistry, University of Cambridge, Cambridge, United Kingdom.

Biological organisms generally maintain their lipid membrane composition so that the membranes are fluid at the growth temperature. This means that the lipids they contain can be moved by hydrodynamic flow in the fluid surrounding a cell [1]. Some organisms use flow deriving from their own movement to preferentially concentrate external proteins in the lipid membrane surface [2]. It has previously been shown that lipid-anchored proteins protruding from a supported lipid bilayer can be concentrated or dispersed by fluid flow applied to the membrane surface [3]. Here we investigate the effect of similar applied microfluidic flow on free, non-supported bilayers containing a low concentration of protruding proteins.

References

2535-Pos Board B227
Integrins and Urokinase Receptors Show Distinct Mechanisms of Protein Sequestration in Raft-Mimicking Lipid Mixtures: Influence of Blayer Asymmetry, Ligand Binding, and Cholesterol Content
Yifan Ge1, Noor Hussain1, Amanda P. Siegel2, Rainer Jordan3, Christoph A. Naumann1.
1Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA; 2Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA; 3Chemistry, Technical University Dresden, Dresden, Germany.

Lipid heterogeneities, such as lipid rafts, are widely considered to be important for the functionality of membrane proteins by causing protein sequestration. However, the underlying mechanisms of such sequestration processes remain unknown.