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For a pair (s, t) of vertices of a graph G, let &(s, t) denote the maximal number 
of edge-disjoint paths between s and t. Let (So, t,), (sir t2), (s,, t3) be pairs of 
vertices of G and k > 2. It is shown that if A (s. t.) > 2k + 1 for each i= 1, 2, 3, G 0 I A 
then there exist 2k + 1 edge-disjoint paths such that one joins s, and t,, another 
joins s1 and t, and the others join s) and t,. As a corollary, every (2k + l)-edge- 
connected graph is weakly (k + 2)-linked for k > 2, where a graph is weakly k- 
linked if for any k vertex pairs (sir ti), 1 f i & k, there exist k edge-disjoint paths 
P,, P, ,..., P, such that Pi joins si and t, for i = 1, 2 ,..., k. 

1. INTRODUCTION 

A graph is weakly k-linked if for any k vertex pairs (sl, t,), 
(s2, t&..., (sk, tk) there exist k pairwise edge-disjoint paths P,, Pz,..., P, such 
that Pi joins si and ti for i = 1, 2 ,..., k. 

Several works have been devoted to characterize a weakly k-linked graph. 
An obvious necessary condition for a graph G to be weakly k-linked is that 
G is k-edge-connected. This condition, however, cannot be a sufficient 
condition if k is even [5]. 
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Cypher showed that (k + 2)-edge-connected graphs are weakly k-linked 
for k = 3, 4, 5 [2]. Recently it was proved by Okamura that 3-edge- 
connectedness is sufficient for a graph to be weakly 3-linked [4]. It follows 
immediately from Menger’s theorem that (2k + 1)-edge-connected graphs are 
weakly (k + I)-linked for k > 1. Thomassen conjectured that if k is odd, k- 
edge-connected graphs are weakly k-linked and if k is even, (k + l)-edge- 
connected graphs are weakly k-linked [5]. 

In this paper we show the following: For a pair (s, t) of vertices of a graph 
G, let &(s, t) denote the maximal number of edge-disjoint paths between s 
and t. Let (si , t,), (s,, I,), (So, t3) be pairs of vertices of G and k > 2. Then 
we show that if &(si, ti) > 2k + 1 for each i = 1, 2, 3, then there exist 2k + 1 
edge-disjoint paths such that one joins s, and t,, another joins sp and t, and 
the others join s3 and t,. This extends Okamura’s result and proves a special 
case of a conjecture of Thomassen. 

As a corollary we have that every (2k + I)-edge-connected graph is 
weakly (k + 2)-linked for k > 2. 

Our corollary for k = 2 says that every j-edge-connected graph is weakly 
4-linked. This result is best possible in the sense that there exists a 4-edge- 
connected graph which is not weakly 4-linked. Recently the same result for 
weakly 4-linkedness was obtained, independently, by Enomoto and Saito [3]. 

2. PRELIMINARIES 

Let G = (V, E) be an undirected finite graph, where V is the vertex set and 
E is the edge set. Multiple edges may exist. Let P be a path between u E V 
and u E V. We sometimes say that P runs from u to ZI, though there is no 
notion of direction for a path. We do not distinguish between P and E(P), 
the edge set of P, when no confusion arises. 

Two paths P, and P, of G are edge-disjoint if they have no common edge. 
G is k-edge-connected if at least k edges must be removed to disconnect G. 
The following fact is known as Menger’s theorem: A graph is k-edge- 
connected if and only if there are k pairwise edge-disjoint paths between any 
two vertices of G. A graph is weakly k-linked if for any k vertex pairs 
(s,, ti), (sz, tz) ,..., (sk, tk) there exist k pairwise edge-disjoint paths 
p, 3 p, ,-.., P, such that Pi joins si and ti for i = 1,2,..., k. Throughout this 
paper “disjoint” means edge-disjoint. 

In order to state Cypher’s lemma, we introduce his notation. Let (Si, ti) be 
vertex pairs of G for i = 1, 2,..., k. We use a sequence of integers n,, n2 ,..., nk 
to indicate that there are n, disjoint paths from si to fi for i = 1, 2,..., k. If 
these paths for several pairs are all disjoint, we indicate this by using 
parentheses to group the associated integers. If an integer n appears i times 
successively in the sequence, the n’s can be abbreviated to n”‘. It is easy to 
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t2 t2 

FIG. I. 1,3+(1. 1). 

see that if there is a path from s, to t, and three disjoint paths from s, to t,, 
then we can always find two disjoint paths, one from s1 to t, and the other 
from s2 to t,. We write this as “ 1, 3 -+ (1, 1)” or “1, 3 + (l(‘))“, where “+” 
means “imply”. See Fig. 1. This simple example shows an essential method 
of our discussion of the next section, where we construct desired paths from 
path segments which have already been guaranteed to exist. 

The following lemma was given by Cypher. 

LEMMA 1. [2]. 2p+ 1, (1’P’,q)+(l(pf’),q-2), where p> 1 and 
s> 3. 

In the next section we shall prove 

THEOREM. 2k+ lC3’ -(l, 1,2k- l), where k>2. 

Using Cypher’s lemma, we have Corollaries 1 and 2. 

COROLLARY 1. 2k+ lckf2)+ (Itkt2)), where k> 1. 

ProoJ 

2k + l’k+2’ + 2k + 1”-“, (1, 1,2k - 1) 

-+ 2k + I’k-2’, (1, 1, 1, 2k - 3) 

(k+2) 
*Cl >- 

COROLLARY 2. If a graph G is (2k + 1)-edge-connected, G is weak& 
(k + 2)-linked, where k > 2. 



88 HIRATA, KUBOTA, AND SAITO 

3. PROOF OF THEOREM 

In this section we shall prove our Theorem, i.e., 2k + lc3’ + (1, 1,2k - 1). 
Let (s,, ti), (sz, tz), and (s3, f3) be three vertex pairs of G, and let 
Pj,) Pj, )...) P$&, be pairwise disjoint paths from sj to tj for j = 1, 2, 3. In 
particular we call each Pi a rib. We begin with the 2k + 1 ribs and examine 
how the paths from s, to t, intersect the ribs using a marking procedure as 
follows. The procedure consists of three steps. We denote by p the set 
(P,’ 1 1 < i < 2k + 1). 

Step 1. Let G’ be the subgraph of G that consists of the 2k + I ribs. For 
each P), 1 < i < 2k + 1, we do the following: 

Proceed along Pi from s,. If we reach t, without encountering an edge of 
G’, i.e., P,! contains no edge of G’, then output “yes” and stop. Otherwise 
mark with “Si” the first edge of G’ encountered. Starting from t,, proceed 
along P,! until encountering an edge of G’ and mark the edge “I, .” Note that 
an edge may have both “S,” and V, .” 

Step 2. As soon as there exists a rib with more than two edges marked 
“S,“, we do the following: 

Call this rib R and assume that R contains in order the S,-marked edges 
e,, e,,..., e,. Let P[s, ; ei] E p be the path along which we had proceeded 
when ei was marked “S, .” Define ei[s, ] to be the end-vertex of e, that is 
closer to s, on P[s, ; ei]. Analogously P[t, ; e] and e[t,] are defined for a I,- 
marked edge e. If the subpath of R between e,[s,] and e,[s,] contains an 
edge marked “fi ,” output “yes” and stop. Otherwise for each ei, 
2<i,<n- 1, alter 
from e, toward t, 
Fig. 2. 

the label of e, to “fi” and proceed further along P[sl ; e,] 
until encountering an edge e of G’. Mark e “5, .” See 

FIG. 2. Marking configurations. 
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Step 3. As soon as there exists a rib with more than two edges marked 
“- ” we do the following: t 13 

Call this rib R and assume that R contains in order the i,-marked edges 
e, , e, ,..., e,. If the subgraph of R between e,[t,] and e,[t,] contains an edge 
marked “Sl ,” output “yes” and stop. Otherwise for each ei, 2 < i < n - 1, 
alter the label of e, to “il” and proceed further along P[t, ; ei] from e, toward 
s, until encountering an edge e of G’. Mark e “1, .” Let R’ be the rib 
containing the edge e. If R’ contains an edge marked “f,” and the subpath of 
R ’ between e,[s, ] and e,[sl] contains e, then output “yes” and stop, where e, 
and e, are the S,-marked edges of R’. Note that if a rib has a f,-marked 
edge, there are exactly two s,-marked edges in the rib and all g,-marked 
edges of the rib lie between these two s,-marked edges. 

LEMMA 2. If the marking procedure produces an output of ‘yes,” then 
there are 2k $ 2 pairwise disjoint paths, one from s, to t, and the others from 
s, to t,. 

Proof. Suppose the procedure outputs “yes” in Step 2. When this 
happens, there is a rib with more than two S,-marked edges e, , e2 ,..., e, and a 
F,-marked edge e lies between e, [s,] and e,[s,]. Therefore we have a 
structure shown in Fig. 3. pPa, P,, and P, are portions of P[s, ; e,], P[s, ; e,], 
and P[sl; e,], respectively, where e, (2 Q i < n - 1) is a s,-marked edge 
closest to e on R. Pd is a portion of P[tl ; e]. Now we reroute R using P, and 
P, so that the new route of R runs through s, . P,, P,, and possibly, a 
portion of R together give a path from s 1 to t, . P, , P, , and P, might have, 
on their half ways, f,-marked edges, i.e., edges of other ribs. 

To ensure that P,, P,, and P, are disjoint from other ribs, we do “sI- 
shunting? as follows. Let R be a rib with a s’,-marked edge, and let e, and eY 
be the outermost s,-marked edges on R. Note that at any one point in the 

FIG. 3. Structure for Sten 2. 
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t3 

FIG. 4. s,-shunting. 

execution of the marking procedure, a s’,-marked edge cannot be an 
outermost marked edge on a rib. We say that we do a s,-shunting for R if we 
reroute R as follows. The new route starts at So, proceeds along R to e,[s,], 
follows P[s, ; e,] to s,, and then follows P[s, ; e,] to ey[s,] and proceeds 
along R to t,, where we assume e, is closer to s3 than eY on R. See Fig. 4. 
A t,-shunting is analogously defined. 

Returning to our proof, we repeat s,-shuntings as often as we can. Now we 
have new 2k + 1 ribs from So to t, ; some ribs have new routes through s, 
and the others remain untouched. It is easy to see that these new ribs are 
pairwise disjoint and P, and P, are disjoint from these new ribs. Thus we 
have the 2k + 2 desired paths. 

The similar argument deals with the case when “yes” is produced in 
Step 3. The only exception is that not only s,-shuntings but t,-shuntings will 
be done. There are two places in Step 3 where “yes” is produced. Suppose 
that “yes” is produced when a S,-marked edge is ascertained to be in a rib R 
with more than two I,-marked edges. We do s,-shuntings as often as we can, 
and then do t,-shuntings as well. Suppose that “yes” is produced when an 
edge e newly marked “Ii” is ascertained to be in a rib R’ with a f,-marked 
edge. In this case, before doing shuntings we must put the marking 
configuration of “5,” and “ii” on the ribs back to that of the first moment 
when more than two S,-marks were attached to R’ so that e lay among them. 
Note that the marking configuration of “I,” and “tl” on the ribs is not 
changed. It follows easily that in either case there are 2k + 2 desired paths. 

Q.E.D. 

Hence if the marking procedure produces an output of “yes,” Theorem is 
immediately verified by observing 

2k+ 1’3)+2k+ 1(1,2k+ l)+(l, 1.2k- 1). 
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3 
‘Zk+l 

FIG. 5. The 2k + 5 disjoint paths. 

The first implication is from Lemma 2 and the second one is from 
Lemma 1. Therefore we deal with, henceforth, the case when the procedure 
terminates without producing “yes.” 

Since the marking procedure terminates without “yes,” there are exactly 
2k + 1 s;-marks and exactly 2k + 1 Ii-marks attached on the ribs and each 
rib has at most two s;-marks and at most two Ii-marks. Therefore there is at 
least one rib that has both a s,-mark and a t,-mark. Let Pf be such a rib. 

We now execute s,-shuntings and t,-shuntings as often as we can. Then we 
have new 2k + 1 pairwise disjoint ribs. We call these new ribs Pf ,..., Pi,, , 
again, since no confusion arises. We have also two disjoint paths, P,, from 
s1 to a vertex of Pi and P,, from t, to a vertex of P:, such that these paths 
are disjoint from the new ribs. P,, and P,, may be of length 0. Though there 
may be other paths emanating from s, or t,, which were not used by 
shuntings, we can ignore them in our proof. 

Let u1 and v2 be the vertices of Pf shared also by P,, and P,*, respec- 
tively. We assume, by symmetry, that v, is closer to s3 than v2 on Pf . We 
decompose Pi into three pieces, P,, from sj to vi, P,, from v, to v2 and P,, 
from v2 to t,. See Fig. 5. Now we have 2k + 5 pairwise disjoint paths 
p 1, >***3 p,,, p:,...,p;k+,. In the following we examine, using the marking 
procedure, how the paths from s2 to t, intersect these 2k + 5 paths. 

Execute the marking procedure with the 2k + 5 paths instead of the 
previous ribs. This time we proceed along Pf,..., Pzk+, instead of 
p:,...&+,. S,(s=)-marks and i,(&)-marks are attached to edges of the 
2k + 5 paths. Note that we treat each P,j, 1 <j< 5, as if it were a rib, i.e., 
we possibly attach marks on P,j as well as on Pf, 2 < i < 2k + 1. The similar 
argument for s;(I,)-marking shows that if the procedure produces an output 
of “yes,” then we immediately have a (1, 1,2k - 1 )-solution. Thus we have 
only to consider the case when the procedure terminates without producing 
“yes.” In this case each P,j, and also each P,‘, has at most two s;-marks and 
at most two t,-marks. 
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(a) (b) 

FIG. 6. Illustrations for Case 1. 

Let C, be the graph composed of Pi, ,..., Pi,, and let Ci = Pj for 
i = 2, 3,..., 2k + 1. We call each Ci a complex. First we consider the case 
when C, has either more than two &-marks or more than two &marks. In 
the following discussion we assume that s,(t,)-shuntings are done whenever 
they are necessary. 

Case 1. C, has either more than two s;-marks or more than two i,- 
marks. 

We assume, by symmetry, that C, has more than two s;-marks. We claim 
that there are two disjoint paths, one from s, to t, and the other from s2 to 
either s, or t,, such that they are disjoint from C,, C, ,..., CZk+ r. Clearly the 
claim holds if either P,, or P,, has a s;-mark. Thus we assume all s;-marks 
of C, are on PI,, P,, or P,,. Since each of these three paths has at most two 
fz-marks, we always find the two required paths in the manner illustrated in 
Fig. 6a, where a broken line indicates the path from s, to t, and a dot and 
dash line the path from s2 to s3. 

Let P be the path from s, to t, found in the above claim. If there is a i,- 
mark not on P, we immediately have a (1, 1,2k - I)-solution. Thus we 
consider only the case when all i,-marks are on P. Then we can reroute P 
using two paths, each from t, to an end-vertex of a &marked edge, such that 
there is a path from t, to either s3 or t, which is disjoint from the rerouted 
path P. See Fig. 6b. Hence we have a (1, 1,2k - 1 )-solution. 

Next we consider the remaining case. 

Case 2. C, has at most two s;-marks and at most two I,-marks. 

In this case every complex has at most two s;-marks and at most two iz- 
marks. Thus it follows immediately that at least one complex has both a S;- 
mark and a &mark. If a complex other than C, is such a complex, we have 
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t3 t3 

(a) lb) 

FIG. 7. Constructions of the two paths for Case 2. 

a (1, 1, 2k - l)-solution. Therefore we assume that only C, is such a 
complex. Observe, under this assumption, that there are two complexes 
different from C, such that one has two s;-marks and the other has two I,- 
marks, since k > 2. 

If either a s;-mark or a I,-mark is on P,, or P,,, then we have a 
(1, 1,2k - 1)-solution. Thus we can assume that all s;-marks and all i,- 
marks of C, are on P, the path from s, to t, composed of PLI, P,, and P,,. 
Let e, and e,, be a s;-marked edge and a i,-marked edge of P, respectively. 
By symmetry, there are four essentially distinct configurations of e, and ey 
on the path; (Case 2a) e,, ey E P,,, (Case 2b) e, E PI1, ey E P14, (Case 2c) 
e X, ey E P,, and (Case 2d) e, E P,,, e,, E P,,. Case 2c requires no further 
discussion. For each remaining case we can always constuct two disjoint 
paths, one from s, to t, and the other from s2 to t,, at the cost of at most 
two ribs. Figure 7a illustrates the construction of the desired paths for 
Cases 2a and 2b, and Fig. 7b for Case 2d. In these figures a broken line 
indicates the path from s, to t, and a dot and dash line the path from s, to 
t,. Therefore we have a (1, 1, 2k - 1)-solutions. This completes the proof of 
theorem. 

Remark. The referee notified us that Corollary 2 also follows from 
Okamura’s result combined with the following theorem of W. Mader (which 
has not yet been published): If x and y are vertices in a (k + 2)-edge- 
connected graph G, then G has a path P between x and y such that G - E(p) 
is k-edge-connected. 
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