A Sufficient Condition for a Graph to Be Weakly k-Linked

томio Hirata
Department of Information and Computer Sciences Toyohashi University of Technology, Toyohashi 440, Japan
Kiyohito Kubota
NEC Corporation, Tokyo, Japan
AND
Osami Saito
Department of Information and Computer Sciences, Toyohashi University of Technology, Toyohashi 440, Japan
Communicated by the Editors

Received July 22, 1983

For a pair (s, t) of vertices of a graph G, let $\lambda_{G}(s, t)$ denote the maximal number of edge-disjoint paths between s and t. Let $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(s_{3}, t_{3}\right)$ be pairs of vertices of G and $k>2$. It is shown that if $\lambda_{G}\left(s_{i}, t_{i}\right) \geqslant 2 k+1$ for each $i=1,2,3$, then there exist $2 k+1$ edge-disjoint paths such that one joins s_{1} and t_{1}, another joins s_{2} and t_{2} and the others join s_{3} and t_{3}. As a corollary, every $(2 k+1)$-edgeconnected graph is weakly $(k+2)$-linked for $k \geqslant 2$, where a graph is weakly k linked if for any k vertex pairs $\left(s_{t}, t_{i}\right), 1 \leqslant i \leqslant k$, there exist k edge-disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ such that P_{i} joins s_{i} and t_{i} for $i=1,2, \ldots, k$.

1. Introduction

A graph is weakly k-linked if for any k vertex pairs $\left(s_{1}, t_{1}\right)$, $\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)$ there exist k pairwise edge-disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ such that P_{i} joins s_{i} and t_{i} for $i=1,2, \ldots, k$.

Several works have been devoted to characterize a weakly k-linked graph. An obvious necessary condition for a graph G to be weakly k-linked is that G is k-edge-connected. This condition, however, cannot be a sufficient condition if k is even [5].

Cypher showed that $(k+2)$-edge-connected graphs are weakly k-linked for $k=3,4,5$ [2]. Recently it was proved by Okamura that 3-edgeconnectedness is sufficient for a graph to be weakly 3-linked [4]. It follows immediately from Menger's theorem that $(2 k+1)$-edge-connected graphs are weakly $(k+1)$-linked for $k \geqslant 1$. Thomassen conjectured that if k is odd, k -edge-connected graphs are weakly k-linked and if k is even, $(k+1)$-edgeconnected graphs are weakly k-linked [5].

In this paper we show the following: For a pair (s, t) of vertices of a graph G, let $\lambda_{G}(s, t)$ denote the maximal number of edge-disjoint paths between s and t. Let $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(s_{3}, t_{3}\right)$ be pairs of vertices of G and $k \geqslant 2$. Then we show that if $\lambda_{G}\left(s_{i}, t_{i}\right) \geqslant 2 k+1$ for each $i=1,2,3$, then there exist $2 k+1$ edge-disjoint paths such that one joins s_{1} and t_{1}, another joins s_{2} and t_{2} and the others join s_{3} and t_{3}. This extends Okamura's result and proves a special case of a conjecture of Thomassen.

As a corollary we have that every $(2 k+1)$-edge-connected graph is weakly $(k+2)$-linked for $k \geqslant 2$.

Our corollary for $k=2$ says that every 5 -edge-connected graph is weakly 4 -linked. This result is best possible in the sense that there exists a 4 -edgeconnected graph which is not weakly 4 -linked. Recently the same result for weakly 4 -linkedness was obtained, independently, by Enomoto and Saito [3].

2. Preliminaries

Let $G=(V, E)$ be an undirected finite graph, where V is the vertex set and E is the edge set. Multiple edges may exist. Let P be a path between $u \in V$ and $v \in V$. We sometimes say that P runs from u to v, though there is no notion of direction for a path. We do not distinguish between P and $E(P)$, the edge set of P, when no confusion arises.

Two paths P_{1} and P_{2} of G are edge-disjoint if they have no common edge. G is k-edge-connected if at least k edges must be removed to disconnect G. The following fact is known as Menger's theorem: A graph is k-edgeconnected if and only if there are k pairwise edge-disjoint paths between any two vertices of G. A graph is weakly k-linked if for any k vertex pairs $\left(s_{1}, t_{1}\right), \quad\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)$ there exist k pairwise edge-disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ such that P_{i} joins s_{i} and t_{i} for $i=1,2, \ldots, k$. Throughout this paper "disjoint" means edge-disjoint.

In order to state Cypher's lemma, we introduce his notation. Let $\left(s_{i}, t_{i}\right)$ be vertex pairs of G for $i=1,2, \ldots, k$. We use a sequence of integers $n_{1}, n_{2}, \ldots, n_{k}$ to indicate that there are n_{i} disjoint paths from s_{i} to t_{i} for $i=1,2, \ldots, k$. If these paths for several pairs are all disjoint, we indicate this by using parentheses to group the associated integers. If an integer n appears i times successively in the sequence, the n 's can be abbreviated to $n^{(i)}$. It is easy to

Fig. 1. $1,3 \rightarrow(1,1)$.
see that if there is a path from s_{1} to t_{1} and three disjoint paths from s_{2} to t_{2}, then we can always find two disjoint paths, one from s_{1} to t_{1} and the other from s_{2} to t_{2}. We write this as " $1,3 \rightarrow(1,1)$ " or " $1,3 \rightarrow\left(1^{(2)}\right)$ ", where " \rightarrow " means "imply". See Fig. 1. This simple example shows an essential method of our discussion of the next section, where we construct desired paths from path segments which have already been guaranteed to exist.

The following lemma was given by Cypher.
Lemma 1. [2]. $2 p+1,\left(1^{(p)}, q\right) \rightarrow\left(1^{(p+1)}, q-2\right)$, where $p \geqslant 1$ and $q \geqslant 3$.

In the next section we shall prove
Theorem. $\quad 2 k+1^{(3)} \rightarrow(1,1,2 k-1)$, where $k \geqslant 2$.
Using Cypher's lemma, we have Corollaries 1 and 2.
Corollary 1. $2 k+1^{(k+2)} \rightarrow\left(1^{(k+2)}\right)$, where $k \geqslant 1$.
Proof.

$$
\begin{aligned}
2 k+1^{(k+2)} & \rightarrow 2 k+1^{(k-1)},(1,1,2 k-1) \\
& \rightarrow 2 k+1^{(k-2)},(1,1,1,2 k-3) \\
& \vdots \\
& \rightarrow\left(1^{(k+2)}\right) .
\end{aligned}
$$

Corollary 2. If a graph G is $(2 k+1)$-edge-connected, G is weakly $(k+2)$-linked, where $k \geqslant 2$.

3. Proof of Theorem

In this section we shall prove our Theorem, i.e., $2 k+1^{(3)} \rightarrow(1,1,2 k-1)$. Let $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right)$, and $\left(s_{3}, t_{3}\right)$ be three vertex pairs of G, and let $P_{1}^{j}, P_{2}^{j}, \ldots, P_{2 k+1}^{j}$ be pairwise disjoint paths from s_{j} to t_{j} for $j=1,2,3$. In particular we call each P_{i}^{3} a rib. We begin with the $2 k+1$ ribs and examine how the paths from s_{1} to t_{1} intersect the ribs using a marking procedure as follows. The procedure consists of three steps. We denote by \bar{P} the set $\left\{P_{i}^{\prime} \mid 1 \leqslant i \leqslant 2 k+1\right\}$.

Step 1. Let G^{\prime} be the subgraph of G that consists of the $2 k+1$ ribs. For each $P_{i}^{1}, 1 \leqslant i \leqslant 2 k+1$, we do the following:

Proceed along P_{i}^{1} from s_{1}. If we reach t_{1} without encountering an edge of G^{\prime}, i.e., P_{i}^{1} contains no edge of G^{\prime}, then output "yes" and stop. Otherwise mark with " \bar{s}_{1} " the first edge of G^{\prime} encountered. Starting from t_{1}, proceed along P_{i}^{1} until encountering an edge of G^{\prime} and mark the edge " \bar{t}_{1}." Note that an edge may have both " \bar{s}_{1} " and " \bar{i}_{1}."

Step 2. As soon as there exists a rib with more than two edges marked " \bar{s}_{1} ", we do the following:

Call this rib R and assume that R contains in order the \bar{s}_{1}-marked edges $e_{1}, e_{2}, \ldots, e_{n}$. Let $P\left[s_{1} ; e_{i}\right] \in \bar{P}$ be the path along which we had proceeded when e_{i} was marked " \bar{s}_{1}." Define $e_{i}\left[s_{1}\right]$ to be the end-vertex of e_{i} that is closer to s_{1} on $P\left[s_{1} ; e_{i}\right]$. Analogously $P\left[t_{1} ; e\right]$ and $e\left[t_{1}\right]$ are defined for a $\bar{t}_{1}-$ marked edge e. If the subpath of R between $e_{1}\left[s_{1}\right]$ and $e_{n}\left[s_{1}\right]$ contains an edge marked " T_{1}," output "yes" and stop. Otherwise for each e_{i}, $2 \leqslant i \leqslant n-1$, alter the label of e_{i} to " $\overline{\tilde{s}}_{1}$ " and proceed further along $P\left[s_{1} ; e_{i}\right]$ from e_{i} toward t_{1} until encountering an edge e of G^{\prime}. Mark e " \bar{s}_{1}." See Fig. 2.

Fig. 2. Marking configurations.

Step 3. As soon as there exists a rib with more than two edges marked " i_{1} " we do the following:

Call this rib R and assume that R contains in order the \bar{i}_{1}-marked edges $e_{1}, e_{2}, \ldots, e_{n}$. If the subgraph of R between $e_{1}\left[t_{1}\right]$ and $e_{n}\left[t_{1}\right]$ contains an edge marked " \bar{s}_{1} " output "yes" and stop. Otherwise for each $e_{i}, 2 \leqslant i \leqslant n-1$, alter the label of e_{i} to " \dot{t}_{1} " and proceed further along $P\left[t_{1} ; \boldsymbol{c}_{i}\right]$ from e_{i} toward s_{1} until encountering an edge e of G^{\prime}. Mark e " \bar{i}_{1}." Let R^{\prime} be the rib containing the edge e. If R^{\prime} contains an edge marked " " $\overline{\mathcal{F}}_{1}$ " and the subpath of R^{\prime} between $e_{x}\left[s_{1}\right]$ and $e_{y}\left[s_{1}\right]$ contains e, then output "ycs" and stop, where e_{x} and e_{y} are the \bar{s}_{1}-marked edges of R^{\prime}. Note that if a rib has a $\overline{\bar{s}}_{1}$-marked edge, there are exactly two \bar{s}_{1}-marked edges in the rib and all $\overline{\bar{s}}_{1}$-marked edges of the rib lie between these two \bar{s}_{1}-marked edges.

Lemma 2. If the marking procedure produces an output of "yes," then there are $2 k+2$ pairwise disjoint paths, one from s_{1} to t_{1} and the others from s_{3} to t_{3}.

Proof. Suppose the procedure outputs "yes" in Step 2. When this happens, there is a rib with more than two \bar{s}_{1}-marked edges $e_{1}, e_{2}, \ldots, e_{n}$ and a \bar{t}_{1}-marked edge e lies between $e_{1}\left[s_{1}\right]$ and $e_{n}\left[s_{1}\right]$. Therefore we have a structure shown in Fig. 3. p_{a}, P_{b}, and P_{c} are portions of $P\left[s_{1} ; e_{1}\right], P\left[s_{1} ; e_{n}\right]$, and $P\left[s_{1} ; e_{i}\right]$, respectively, where $e_{i}(2 \leqslant i \leqslant n-1)$ is a $\overline{s_{1}}$-marked edge closest to e on R. P_{d} is a portion of $P\left[t_{1} ; e\right]$. Now we reroute R using P_{a} and P_{b} so that the new route of R runs through $s_{1} . P_{c}, P_{d}$, and possibly, a portion of R together give a path from s_{1} to t_{1}, P_{a}, P_{b}, and P_{c} might have, on their half ways, $\overline{\bar{s}}_{1}$-marked edges, i.e., edges of other ribs.

To ensure that P_{a}, P_{b}, and P_{c} are disjoint from other ribs, we do " s_{1} shuntings" as follows. Let R be a rib with a $\overline{\bar{s}}_{1}$-marked edge, and let e_{x} and e_{y} be the outermost \bar{s}_{1}-marked edges on R. Note that at any one point in the

Fig. 3. Structure for Step 2.

FIG. 4. $\quad s_{1}$-shunting.
execution of the marking procedure, a $\overline{\bar{s}_{1}}$-marked edge cannot be an outermost marked edge on a rib. We say that we do a s_{1}-shunting for R if we reroute R as follows. The new route starts at s_{3}, proceeds along R to $e_{x}\left[s_{1}\right]$, follows $P\left[s_{1} ; e_{x}\right]$ to s_{1}, and then follows $P\left[s_{1} ; e_{y}\right]$ to $e_{y}\left[s_{1}\right]$ and proceeds along R to t_{3}, where we assume e_{x} is closer to s_{3} than e_{y} on R. See Fig. 4. A t_{1}-shunting is analogously defined.

Returning to our proof, we repeat s_{1}-shuntings as often as we can. Now we have new $2 k+1$ ribs from s_{3} to t_{3}; some ribs have new routes through s_{1} and the others remain untouched. It is easy to see that these new ribs are pairwise disjoint and P_{c} and P_{d} are disjoint from these new ribs. Thus we have the $2 k+2$ desired paths.

The similar argument deals with the case when "yes" is produced in Step 3. The only exception is that not only s_{1}-shuntings but t_{1}-shuntings will be done. There are two places in Step 3 where "yes" is produced. Suppose that "yes" is produced when a \bar{s}_{1}-marked edge is ascertained to be in a rib R with more than two \bar{t}_{1}-marked edges. We do s_{1}-shuntings as often as we can, and then do t_{1}-shuntings as well. Suppose that "yes" is produced when an edge e newly marked " $\bar{\tau}_{1}$ " is ascertained to be in a rib R^{\prime} with a $\overline{\bar{s}}_{1}$-marked edge. In this case, before doing shuntings we must put the marking configuration of " \bar{s}_{1} " and " $\overline{\bar{s}}_{1}$ " on the ribs back to that of the first moment when more than two \bar{s}_{1}-marks were attached to R^{\prime} so that e lay among them. Note that the marking configuration of " \bar{i}_{1} " and " $\overline{\bar{t}_{1}}$ " on the ribs is not changed. It follows easily that in either case there are $2 k+2$ desired paths.
Q.E.D.

Hence if the marking procedure produces an output of "yes," Theorem is immediately verified by observing

$$
2 k+1^{(3)} \rightarrow 2 k+1(1,2 k+1) \rightarrow(1,1,2 k-1)
$$

Fig. 5. The $2 k+5$ disjoint paths.
The first implication is from Lemma 2 and the second one is from Lemma 1. Therefore we deal with, henceforth, the case when the procedure terminates without producing "yes."

Since the marking procedure terminates without "yes," there are exactly $2 k+1 \bar{s}_{1}$-marks and exactly $2 k+1 \bar{t}_{1}$-marks attached on the ribs and each rib has at most two \bar{S}_{1}-marks and at most two \bar{t}_{1}-marks. Therefore there is at least one rib that has both a \bar{s}_{1}-mark and a \bar{t}_{1}-mark. Let P_{1}^{3} be such a rib.

We now execute s_{1}-shuntings and t_{1}-shuntings as often as we can. Then we have new $2 k+1$ pairwise disjoint ribs. We call these new ribs $P_{1}^{3}, \ldots, P_{2 k+1}^{3}$ again, since no confusion arises. We have also two disjoint paths, P_{11} from s_{1} to a vertex of P_{1}^{3} and P_{12} from t_{1} to a vertex of P_{1}^{3}, such that these paths are disjoint from the new ribs. P_{11} and P_{12} may be of length 0 . Though there may be other paths emanating from s_{1} or t_{1}, which were not used by shuntings, we can ignore them in our proof.

Let v_{1} and v_{2} be the vertices of P_{1}^{3} shared also by P_{11} and P_{12}, respectively. We assume, by symmetry, that v_{1} is closer to s_{3} than v_{2} on P_{1}^{3}. We decompose P_{1}^{3} into three pieces, P_{13} from s_{3} to v_{1}, P_{14} from v_{1} to v_{2} and P_{15} from v_{2} to t_{3}. See Fig. 5. Now we have $2 k+5$ pairwise disjoint paths $P_{11}, \ldots, P_{15}, P_{2}^{3}, \ldots, P_{2 k+1}^{3}$. In the following we examine, using the marking procedure, how the paths from s_{2} to t_{2} intersect these $2 k+5$ paths.

Execute the marking procedure with the $2 k+5$ paths instead of the previous ribs. This time we proceed along $P_{1}^{2}, \ldots, P_{2 k+1}^{2}$ instead of $P_{1}^{1}, \ldots, P_{2 k+1}^{1}, \bar{s}_{2}\left(\overline{\bar{s}}_{2}\right)$-marks and $\bar{t}_{2}\left(\overline{\bar{t}}_{2}\right)$-marks are attached to edges of the $2 k+5$ paths. Note that we treat each $P_{1 j}, 1 \leqslant j \leqslant 5$, as if it were a rib, i.e., we possibly attach marks on $P_{1 j}$ as well as on $P_{i}^{3}, 2 \leqslant i \leqslant 2 k+1$. The similar argument for $\bar{s}_{1}\left(\bar{t}_{1}\right)$-marking shows that if the procedure produces an output of "yes," then we immediately have a ($1,1,2 k-1$)-solution. Thus we have only to consider the case when the procedure terminates without producing "yes." In this case each $P_{1 j}$, and also each P_{i}^{3}, has at most two \bar{s}_{2}-marks and at most two \bar{t}_{2}-marks.

(a)

(b)

Fig. 6. Illustrations for Case 1.

Let C_{1} be the graph composed of P_{11}, \ldots, P_{15}, and let $C_{i}=P_{i}^{3}$ for $i=2,3, \ldots, 2 k+1$. We call each C_{i} a complex. First we consider the case when C_{1} has either more than two \bar{s}_{2}-marks or more than two \vec{t}_{2}-marks. In the following discussion we assume that $s_{2}\left(t_{2}\right)$-shuntings are done whenever they are necessary.

Case 1. C_{1} has either more than two \bar{s}_{2}-marks or more than two \bar{t}_{2} marks.

We assume, by symmetry, that C_{1} has more than two \bar{s}_{2}-marks. We claim that there are two disjoint paths, one from s_{1} to t_{1} and the other from s_{2} to either s_{3} or t_{3}, such that they are disjoint from $C_{2}, C_{3}, \ldots, C_{2 k+1}$. Clearly the claim holds if either P_{13} or P_{15} has a \bar{S}_{2}-mark. Thus we assume all \bar{s}_{2}-marks of C_{1} are on P_{11}, P_{12} or P_{14}. Since each of these three paths has at most two \bar{s}_{2}-marks, we always find the two required paths in the manner illustrated in Fig. 6a, where a broken line indicates the path from s_{1} to t_{1} and a dot and dash line the path from s_{2} to s_{3}.

Let P be the path from s_{1} to t_{1} found in the above claim. If there is a $\bar{t}_{2^{-}}$ mark not on P, we immediately have a ($1,1,2 k-1$)-solution. Thus we consider only the case when all \bar{t}_{2}-marks are on P. Then we can reroute P using two paths, each from t_{2} to an end-vertex of a \bar{t}_{2}-marked edge, such that there is a path from t_{2} to either s_{3} or t_{3} which is disjoint from the rerouted path P. See Fig. 6b. Hence we have a $(1,1,2 k-1)$-solution.

Next we consider the remaining case.
Case 2. $\quad C_{1}$ has at most two \bar{S}_{2}-marks and at most two \bar{t}_{2}-marks.
In this case every complex has at most two \bar{s}_{2}-marks and at most two $\bar{t}_{2}{ }^{-}$ marks. Thus it follows immediately that at least one complex has both a $\bar{S}_{2}{ }^{-}$ mark and a \bar{t}_{2}-mark. If a complex other than C_{1} is such a complex, we have

Fig. 7. Constructions of the two paths for Case 2.
a $(1,1,2 k-1)$-solution. Therefore we assume that only C_{1} is such a complex. Observe, under this assumption, that there are two complexes different from C_{1} such that one has two \bar{s}_{2}-marks and the other has two $\bar{t}_{2^{-}}$ marks, since $k \geqslant 2$.

If either a \bar{s}_{2}-mark or a \bar{t}_{2}-mark is on P_{13} or P_{15}, then we have a $(1,1,2 k-1)$-solution. Thus we can assume that all \bar{s}_{2}-marks and all \bar{t}_{2} marks of C_{1} are on P, the path from s_{1} to t_{1} composed of P_{11}, P_{12} and P_{14}. Let e_{x} and e_{y} be a \bar{s}_{2}-marked edge and a \bar{t}_{2}-marked edge of P, respectively. By symmetry, there are four essentially distinct configurations of e_{x} and e_{y} on the path; (Case 2a) $e_{x}, e_{y} \in P_{11}$, (Case 2b) $e_{x} \in P_{11}, e_{y} \in P_{14}$, (Case 2c) $e_{x}, e_{y} \in P_{14}$ and (Case 2 d) $e_{x} \in P_{11}, e_{y} \in P_{12}$. Case 2 c requires no further discussion. For each remaining case we can always constuct two disjoint paths, one from s_{1} to t_{1} and the other from s_{2} to t_{2}, at the cost of at most two ribs. Figure 7 a illustrates the construction of the desired paths for Cases 2 a and 2 b , and Fig. 7b for Case 2d. In these figures a broken line indicates the path from s_{1} to t_{1} and a dot and dash line the path from s_{2} to t_{2}. Therefore we have a ($1,1,2 k-1$)-solutions. This completes the proof of theorem.

Remark. The referee notified us that Corollary 2 also follows from Okamura's result combined with the following theorem of W. Mader (which has not yet been published): If x and y are vertices in a $(k+2)$-edgeconnected graph G, then G has a path P between x and y such that $G-E(p)$ is k-edge-connected.

Acknowledgments

[^0]
References

1. C. Berge, "The Theory of Graphs and Its Application," Wiley, New York, 1966.
2. A. Cypher, An Approach to k paths problem, in "Proceedings, 12th Annual ACM Symposium on Theory of Computing" pp. 211-217, 1980.
3. H. Еnomoto and A. Saito, Weakly 4 -linked graphs, private communication.
4. II. Okamura, Multicommodity flows in graphs II, Japan. J. Math., to appear.
5. C. Thomassen. 2-linked graphs, Europ. J. Combin. 1 (1980). 371-378.

[^0]: The authors would like to thank Professor N. Honda of Toyohashi University of Technology for his encouragement and guidance. We also thank Professors H. Enomoto and T. Asano of the University of Tokyo for their valuable comments.

