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Antipodal Distance Transitive Covers of Complete Graphs

CHRIS D. GODSIL, ROBERT A. LIEBLER AND CHERYL E. PRAEGER

A distance-transitive antipodal cover of a complete graphKn possesses an automorphism group
that acts 2-transitively on the fibres. The classification of finite simple groups implies a classification
of finite 2-transitive permutation groups, and this allows us to determine all possibilities for such a
graph. Several new infinite families of distance-transitive graphs are constructed.

c© 1998 Academic Press

1. INTRODUCTION

This paper is a contribution towards the determination of all finite distance-transitive graphs.
We obtain a classification of all the antipodal distance-transitive graphs having as antipodal
quotient a complete graphKn. Such a graph necessarily has diameter 2 or 3 (see for example
[2, Proposition 4.2.2 (ii)]). Those of diameter 2 are simply the complete multipartite graphs
Kr,...,r with n parts of sizer , and the heart of the classification lies in finding all the examples
with diameter 3. In the diameter 3 case, the original graph0 and the antipodal quotient have
the same valency, and0 is said to be acoverof its antipodal quotient.

We offer the 3-fold cover ofK5 that appears in Figure l as a motivating example. The
antipodal quotientK5 is obtained by identifying vertices falling on lines through the centre of
radial symmetry of the figure. More formally, this graph is the line graph of the Petersen graph
or equivalently, the graph based on the involutions in the alternating groupA5, two involutions
being adjacent if their product has order 3.

A 2-fold cover of Kn that is not bipartite is equivalent to a regular 2-graph, see [21] or
[2, Theorem 1.5.3], and a result of Gardiner [8, Proposition 4.5] asserts that an(n − 1)-fold
cover ofKn is equivalent to a Moore graph of valencyn. Results of Gardiner [8], Taylor [22]
and Aschbacher [1] together imply the classification of distance-transitiver -fold covers ofKn

unless 3≤ r ≤ n− 2, and thus we need only deal withr in this range.
The classification of the finite 2-transitive permutation groups is fundamental to our effort.

Indeed our Lemma 2.6 shows that any such graph gives rise to two 2-transitive permutation
groups and we play these two permutation groups off against each other to obtain our Main
Theorem.

MAIN THEOREM. Suppose G is a distance-transitive automorphism group of the finite
graph X. Suppose further that X is antipodal with fibres of size r≥ 2 and antipodal quotient
the complete graph Kn. Take x to be a vertex of X. Let H be the stabilizer of x in G and let C
be the kernel of the action of H on the fibre containing x. Then either X has diameter2 and
is the complete multipartite graph Kr,...,r with n parts of size r, or X has diameter3 and one
of the following occurs.

(1) X is bipartite and equals K2⊗Kn = (Kn,n minus a matching), r= 2 and G≤ 2×Sn.
(2) X appears in[8], r = n− 1, n= 7, and G≤ S7.
(3) X appears in[22], r = 2 and

(a) n = 22m−1± 2m−1, G ≤ 2× Sp(2m, 2), for m≥ 3.
(b) n = 32a+1+ 1, G≤ 2× Aut(R(q)), for a ≥ 1.
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FIGURE 1. The 3-fold cover ofK5 admittingS5

(c) n = 176, Hi S≤ G ≤ 2× Hi S or n= 276, Co3 ≤ G ≤ 2× Co3.
(d) n = q3+ 1, G≤ 2× P0U (3,q2), for q > 3.
(e) n = q + 1, G≤ 2× P6L(2,q), for q ≡ 1(mod 4).

(4) X appears in Example3.4, and one of the following holds, where q= pe for some prime
p, r is an odd prime having p as a primitive root, and G contains the simple socle of
Aut X.

(a) n = q + 1, r divides q− 1, r − 1 divides e, Aut X= P0O(3,q); or
(b) n = q3+ 1, r divides q2− 1, r − 1 divides2e, and Aut X= P0U (3,q2).

(5) X appears in Example3.5, r = 3, n= q3+1 where q= pe for some prime p, and one
of the following holds.

(a) PSU(3,q2) ≤ G ≤ Aut X= P0U (3,q2), and q− 1≡ p+ 1≡ 0(mod 3); or
(b) PSU(3,q2) ≤ G ≤ Aut X= P6U (3,q2), and q+ 1≡ 0(mod 9); or
(c) SU(3,q2) ≤ G ≤ Aut X= 6U (3,q2), and q+ 1≡ ±3(mod 9).

(6) X is a graph appearing in Example3.6, r divides q, n= q2d, C ≤ Sp(2d,q) is a
transitive linear group and A0L(1,q) involves a2-transitive group of degree r.

Section 3 consists of a more detailed construction of each instance in this theorem. The
graphs in the orthogonal case of Example 3.4 belong to a family of distance regular graphs
constructed by Mathon [18] (see also [2, Table 6.10 (A3), and 12.5.3]) and were already
known to be distance-transitive (see [2, 12.5.3, Remark (iii)]). To the best of our knowledge,
the graphs in the unitary case of Example 3.4 and in Example 3.5 were first constructed in the
course of work on this classification. They were first described via a coset graph construction
(see Lemma 2.7) and later were given a geometric description by Brouweret al. [3] where
a family of distance regular graphs containing this family of distance-transitive graphs was
constructed. The graphs in the classical case of Example 3.6 were constructed as distance
regular graphs by Thas [23] forq even and by Somma [20] for generalq. A generalization
of the Thas–Somma construction for distance regular graphs was given by Hensel [11] and
Godsil and Hensel [9]. The non-classical case of the construction of Example 3.6 yields graphs
which are newly recognized as being distance-transitive.

Although many technical terms are defined in Section 2, our graph theoretic terminology is
generally that of [2] and our group theoretic notation follows [7].

Recall that a groupG is calledalmost simpleif there is a non-Abelian simple subgroupT
such thatT G G ≤ AutT. In this caseT is the unique minimal normal subgroup ofG. A
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permutation group on a set� is calledaffineif it has a regular normal subgroupN which is
an elementary Abelianp-group, for some primep. A classical result of Burnside [4, Section
154] asserts that a finite 2-transitive permutation group is either almost simple or affine.

In view of Lemma 2.6, the groupsG which act distance-transitively onX must act 2-
transitively on the fibres ofX. Let K be the kernel of this action. Lemma 4.1 shows thatG is
almost simple ifK = 1. This case occupies Section 4 and leads (see Theorem 4.2) to (4) and
to (5) (a) and (b) of the Main Theorem. Section 5 treats the case whereK 6= 1 andG/K
is almost simple. It leads to (5) (c) of the Main Theorem, see Theorem 5.1. The remaining
possibility,K 6= 1, G/K affine, is the subject of Section 6. It leads (see Propositions 6.2 and
6.3) to (6) of the Main Theorem.

2. PRELIMINARIES

Ther th distance graph Xr of a graphX is the graph with the same vertex set asX, and with
two vertices adjacent if and only if they are at distancer in X. If X has diameterd andXr is
connected for allr such that 1≤ r ≤ d thenX is calledprimitive. OtherwiseX is imprimitive.
If a distance-transitive graphX is imprimitive andX2 is connected thenXd is not connected
[19]. Moreover, ifXi is not connected for somei , then eitherX2 is not connected orXd is not
connected. WhenX2 is not connected andd > 2, X is calledbipartite, and whenXd is not
connectedX is said to beantipodal.

Suppose now thatX is an antipodal distance-regular graph of diameterd. Then we may
partition its vertices into sets, calledfibres, such that any two distinct vertices in the same fibre
are at distanced and two vertices in different fibres are at distance less thand. We may therefore
define aquotientgraph which has the fibres ofX as its vertices, with two fibres adjacent if
and only if there is an edge joining them. This quotient graph is again distance-regular, and is
never antipodal. The fibres in an antipodal distance-regular graph all have the same size. The
size of a fibre will be referred to as theindexof the graph.

LEMMA 2.1. Suppose that X is an antipodal distance-transitive graph of diameter2 with
n ≥ 2 antipodal fibres of size r≥ 2. Then X= Kr,...,r , its antipodal quotient is the complete
graph Kn, and its automorphism group is the wreath product Sr o Sn.

PROOF. SinceX is antipodal of diameter 2, its antipodal quotient is the complete graphKn,
and each vertex in a fibreF is joined to every vertex ofV(X) \ F . HenceX = Kr,...,r as
claimed. 2

Suppose further thatX has diameterd ≥ 3. Then, given two distinct fibres either there are
no edges joining them or each vertex in one of the fibres has exactly one neighbour in the other.
In this caseX is said to be acoverof its antipodal quotient, and the natural mapping fromX
to its antipodal quotient is called acovering map. We have the following characterization of
antipodal distance-regular graphs of diameter 3 from [9].

LEMMA 2.2 ([10, LEMMA 3.1]). Suppose that X is a connected antipodal graph of index
r, diameter d≥ 3, and with antipodal quotient Kn. Then X is distance regular of diameter
three if and only if two non-adjacent vertices from different fibres always have the same number
of common neighbours.

We assume from now on thatX is a connected antipodal graph of indexr , diameter 3, and
with antipodal quotientKn. There are four parameters which are used to describe these graphs.
They are the numbern of vertices in the complete graph being covered, the indexr of the
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cover, the numbera1 of common neighbours of two adjacent vertices and the numberc2 of
common neighbours of two vertices at distance 2. These parameters are related by the identity

n− 2− a1 = (r − 1)c2. (1)

We will often refer to an antipodal distance-regular graph of diameter 3 as anantipodal cover
of a complete graph with parameters(n, r, c2).

NOTATION. The following notation will be used without further reference.X is an antipo-
dal cover of a complete graph with parameters(n, r, c2) and vertex setV(X), and6 is the
set of fibres ofX. If G is a group of automorphisms ofX andF ∈ 6, thenGF will be used
to denote the subgroup ofG fixing F as a set andGF

F will denote the group of permutations
of F induced byGF . The group of permutations of6 induced byG will be denotedG6 .
The kernel of the action ofAut(X) (respectivelyG) on 6 will be called thecovering group
(respectivelycovering group induced by G). Finally, for a vertexv of X, let F(v) be the fibre
of X containingv.

BecauseX is distance-regular with diameter 3, its adjacency matrix has minimal polynomial
of degree 4. BecauseX is a connected cover ofKn two of its eigenvalues are immediate. The
valencyn−1 occurs with multiplicity 1, and−1 occurs with multiplicityn−1. The remaining
two eigenvaluesθ andτ are the solutions of

x2− (a1− c2)x − (n− 1)= 0. (2)

The multiplicity of θ as an eigenvalue is

n(r − 1)τ

τ − θ . (3)

The fact that this quantity is an integer is a non-trivial constraint which must be satisfied by the
parameter set(n, r, c2). It will be referred to as themultiplicity condition. These considerations
allow us to identify the bipartite examples.

COROLLARY 2.3. Let X be an antipodal cover of a complete graph with parameters
(n, r, c2). If X is bipartite, then r= 2 and X = K2⊗Kn (the complete bipartite graph
Kn,n minus the edges of a matching).

PROOF. A bipartite graph of valencyn− 1 has 1− n as a simple eigenvalue. Thusθ = 1,
τ = 1− n. Further, forX bipartite the parametera1 is zero, and it follows from (2) that
c2 = n− 2. It is easy to deduce the remaining parameters ofX and to see thatX = K2⊗ Kn

as claimed. 2

The importance of being able to characterize the bipartite examples is highlighted by the
following result due to Smith [19]. Note that each fibreF ∈ 6 is a block forG in its action
on the vertices ofX and the set of fibres forms a system of imprimitivity forG.

LEMMA 2.4 ([19]). Let X be a distance-transitive graph with diameter d. Then X is
imprimitive if and only if Aut X is imprimitive. More precisely, a subset B of V(X) is a block
for Aut X if and only if it is the vertex set of a connected component of one the graphs Xt , with
t = 2 or t = d.

In the case where there is a large Abelian covering group it turns out that each prime divisor
of the indexr also dividesn.
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THEOREM 2.5 ([9]). Suppose that X is an antipodal distance-regular graph of diameter
3 which is not bipartite, and that X has covering group K . Assume further that K is Abelian
and acts transitively on each fibre. If p is a prime divisor of r then p divides n.

PROOF. Partition the rows and columns of the adjacency matrixA of X according to the
fibres6. SinceX is a covering graph, each non-diagonalr × r block is a permutation matrix.
Label the vertices within a fibre by elements ofK . SinceK is an Abelian automorphism group
of X, the permutation appearing in anr × r block must centralizeK , and hence be inK , [25,
Proposition 4.4]. ThusA may be regarded as ann× n matrix with entries in{0} ∪K and only
the diagonal entries are 0.

Let 1 6= χ be a character ofK taking values inR := Z[ζp] the ring of integers with a
primitive pth root of unity adjoined. LetA(χ) ∈ Matn(R) be the image ofA underχ . In [16]
the matrixA(χ) is called the generalized intersection array associated withχ . The eigenvalues
τ, θ of A are also eigenvalues ofA(χ), sinceχ 6= 1. (Both actually occur sinceA(χ) is not a
scalar matrix.) Letπ = (1− ζp) be the prime ofR over(p) in Z. Then

A(χ) ≡ J − I (modπ ).

Supposeθ ≡6 τ moduloπ . Then just one of these eigenvalues is congruent ton− 1 modulo
π and its multiplicity must equalr −1, the number of choices forχ . The multiplicity condition
(3) now implies that(n− 1)τ = −θ , which leads toθ = 1− n, τ = −1. It follows thatX is
bipartite as in the proof of Corollary 2.3.

Thusθ ≡ τ ≡ n−1≡ −1 moduloπ and the multiplicity condition (3) impliesn(r −1)τ ∈
(π). Sinceτ /∈ (π) andr − 1 /∈ (p) it follows thatn ∈ (π) ∩ Z = (p). 2

We now make explicit the two 2-transitive actions involved in a distance-transitive subgroup
of automorphisms ofX.

LEMMA 2.6. Suppose G is a distance-transitive subgroup of Aut X. Then

(1) G acts2-transitively on6 and GF acts2-transitively on F for F∈ 6.
(2) Let x, y be adjacent vertices of X. Then Gxy acts transitively on F(y) \ {y}.
(3) The G-character afforded by X has constituents of degrees:1,n − 1,mθ ,mτ , where

mθ ,mτ are the non-trivial eigenvalue multiplicities of X given by condition(3).

PROOF. First, G acts transitively on the 1-arcs ofX, i.e., on the set of ordered pairs of
adjacent vertices. Since the fibres are blocks, and since any two fibres contain a pair of
adjacent vertices, we deduce thatG is 2-transitive on6. SinceG also acts transitively on the
set of ordered pairs of vertices at distance 3, and since any two distinct vertices in a fibreF
are at distance 3,GF acts 2-transitively on the set of vertices inF . Supposex, y are adjacent
vertices ofX. Becausey is the only vertex inF(y) that is adjacent tox, Gxy = Gx,F(y).
Moreover, the vertices inF(y)\{y} are all at distance 2 fromx, so they fall in a singleGx-orbit.
The second part follows fromF(y) being a set of imprimitivity for the action ofGx.

The assertion in (3) follows from the discussion above. 2

Graphs admitting 1-arc transitive groups can be constructed from group coset spaces in the
following fundamental way.

LEMMA 2.7. Suppose a non-normal subgroup H of a group G and an element g∈ G are
given. Let0(G, H, HgH) denote the graph with vertex set[G: H ] := {Hx|x ∈ G} and edges
the pairs{Hx, Hy} such that xy−1 ∈ HgH.
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(1) Assume that G acts faithfully on[G: H ] and g2 ∈ H and G = 〈H, g〉. Then
0(G, H, HgH) is a simple, undirected, connected graph which admits the group G
acting (by right multiplication) faithfully and transitively both on vertices and on arcs.

(2) Suppose G acts arc-transitively on a connected graph X, H is the stabilizer of a vertex
v, and g is a2-element interchangingv with some vertex adjacent tov in X. Then
X ∼= 0(G, H, HgH), and also g2 ∈ H and G= 〈H, g〉.

(3) Let X1 := 0(G, H, Hg1H) and X2 := 0(G, H, Hg2H) be two such graphs with G
acting faithfully on[G: H ]. If there exists an elementφ ∈ NAutG(H) such that gφ1 ∈
Hg2H, then X1 ∼= X2. Moreover, the converse is also true provided that G= Aut X1.

(4) Let M be a proper subgroup of G that properly contains H such that

(a) G = M ∪ MgH, and
(b) H g ∩ M ≤ H, and
(c) H ∩ H g acts transitively on03 := {Hm | m ∈ M \ H}.

Then0(G, H, HgH) is a cover of the complete graph on[G: M]. Moreover, G is a
distance-transitive subgroup of automorphisms of0(G, H, HgH).

PROOF. Proofs of the assertions in (1) and (2) can be found, for example, in[17, Section 1].
Next we prove (3). It is straightforward to verify that, forφ ∈ NAutG(H)such thatgφ1 ∈ Hg2H ,
the mapHx 7→ Hxφ , for x ∈ G, defines a graph isomorphism fromX1 to X2. For the
second assertion, assume thatG = Aut X1 and thatτ : X1 → X2 is an isomorphism. Then
τ ∈ Sym([G: H ]) andτ normalizes the common automorphism groupG. Further, sinceG is
transitive on vertices we may assume thatτ fixes the vertexH , and hence thatτ also normalizes
the stabilizer of this vertex inG, that isτ normalizesH . It follows that the image ofX1 under
τ is the graph0(G, H, Hgτ1 H), and henceHgτ1 H = Hg2H . Let φ be the automorphism of
G induced by the conjugation action ofτ on G. Thenφ ∈ NAutG(H) andgφ1 ∈ Hg2H .

Finally we prove (4). Sinceg and H generate all ofG, g /∈ M , so the assumption that
H ∩ H g acts transitively on03, implies that[G: H ] is the union of the fourH -invariant sets:

00 := {H}, 01 := {Hgh | h ∈ H}, 02 := {Hx | x /∈ gH ∪ M} and 03,

and only02 might possibly not be anH -orbit.
Sinceg2 ∈ H , H H g = (Hg2)g−1Hg = HgHg. Now H ≤ M , so the inclusion (4)(b) can

be multiplied on the left and right byH and rewrittenHgHgH ∩ M ≤ H . But the rightH -
cosets at distance at most 2 fromH in0(G, H, HgH) are precisely those inHgHgH∪HgH.
It follows that the vertices of03 are at distance at least three fromH in 0(G, H, HgH).

The inclusionH ⊇ HgHg∩ M can also be multiplied on the right byg to obtainHg ⊇
(HgHg∩ M)g = HgH ∩ Mg, sinceg2 ∈ H . Therefore,0(G, H, HgH) has but one edge
from H to Mg, namely{H, Hg}. Thus0(G, H, HgH) gives a matching between[M : H ]
and[M : H ]g that is(M ∩Mg)-invariant. The assumption thatH ∩ H g acts transitively on03
thus implies thatH ∩ H g also acts transitively on03g. From this and (4)(a) it follows that02
is anH -orbit, and it consists of all vertices of0(G, H, HgH) at distance 2 fromH .

SinceH has but four orbits on the vertices of0(G, H, HgH), and[G: M] is an antipodal
system of imprimitivity,0(G, H, HgH) is a distance-transitive antipodal graph of diameter
3. In particular0(G, H, HgH) is a cover of the complete graph on[G: M]. 2

Suppose the distance-transitive coverX has a non-trivial covering groupK . Then the orbits
of any subgroupN ≤ K form anequitable partitionπ of the vertices and the quotientX/π is
a distance-regular cover with indexr/|N|, see [9]. Our next result gives a sufficient condition
under which such a quotient of a distance-transitive graph is again distance-transitive.
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LEMMA 2.8. Take G,M, H, g to satisfy the conditions of Lemma 2.7. (4), so0(G, H, HgH)
is a distance-transitive cover of Kn. Assume that the covering group K is non-trivial,
and is properly contained in a group PG G, where P acts regularly on the vertices of
0(G, H, HgH). Let C be the centralizer of K in H and assume that

g ∈ PC and G= M ∪ MgC.

Suppose that C≤ H1 ≤ H, and that K H1 has a homomorphic image K H1/N which is a
2-transitive permutation group with K/(K ∩ N) as regular normal subgroup. Let denote
reduction modulo K∩ N. Then0(P H1, H1, H1gH1) is a distance-transitive cover of Kn of
index|K : K ∩ N|.

PROOF. Note thatG = P H and M = K H , and setG1 := P H1, M1 := K H1. The
assumptionG = M ∪ MgC implies thatC acts transitively on[G: M] \ {M} and hence also
on [P: M] \ {K }. This in turn implies thatG1 = M1 ∪ M1gH1.

Also, H g
1 ∩ M1 ≤ H ∩ M1 = H1 by Lemma 2.7.4, soH1

g ∩ M1 ≤ H1. SinceC ≤ N acts
transitively on the fibres6= {Hm: m ∈ M}, H1 induces the same group on03 asH1∩ H g

1 and
so the transitivity ofH1 on K/(K ∩ N) \ {K ∩ N} follows. This implies the third condition
of Lemma 2.7.4. 2

The classification of the finite 2-transitive permutation groups is fundamental. Of course,
this important consequence of the classification of finite simple groups is the result of the work
of many people but we only refer explicitly to the lists given in [5, 15]. Recall that, by a result
of Burnside [4, Section 154], a finite 2-transitive permutation group is either almost simple or
affine.

THEOREM 2.9. Suppose G is a finite2-transitive permutation group.

(1) Suppose G is almost simple and TG G ≤ AutT with T a non-Abelian simple group.
Then T is one of the following:

(a) alternating: T is An, of degree n≥ 5.
(b) linear: T = PSL(d,q), of degreeqd−1

q−1 , with d≥ 2 and(d,q) 6= (2,2)or (2,3).
(c) unitary: T is PSU(3,q2), of degree q3+ 1, with q≥ 3.
(d) symplectic: T= Sp(2m, 2), of degree 22m−1± 2m−1, with m≥ 3.
(e) Ree: T= R(q)′, of degree q3+ 1, with q= 32a+1 ≥ 3.
(f) Suzuki: T= Sz(q) of degree q2+ 1, with q= 22a+1 ≥ 8.
(g) sporadic:

(i) T = Mn of degree n, with n= 11,12,22,23,24;
(ii) T = PSL(2,11)of degree11; T = M11 of degree12; T = A7 of degree15;

T = Hi S of degree176; T = Co3 of degree276.

(2) Suppose G∼= Zn
p · H is an affine2-transitive permutation group of degree pn and let

the symbol◦ denote a central product. Then H satisfies one of the following:

(a) linear: n = cd, d≥ 2, and SL(d, pc) G H ≤ 0L(d, pc).
(b) symplectic: n= cd, d even, d≥ 4, and Sp(d, pc) G H ≤ Zpc−1 ◦ 0Sp(d, pc).
(c) G2 type: n= 6c, p= 2 and G2(2c)′ G H ≤ Z2c−1 ◦ Aut G2(2c).
(d) one-dimensional: H≤ 0L(1, pn).
(e) exceptional:

(i) pn = 92, 112, 192, 292 or 592, and SL(2,5) G H, or
(ii) pn = 24, and A6 or A7 G H, or pn = 36 and SL(2,13) G H.
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(f) extra-special:
(i) pn = 52, 72, 112 or 232 and Q8 G H, or

(ii) pn = 34, R= D8 ◦ Q8 G H, H/R≤ S5, and5 divides|H |.
We note some useful consequences of this remarkable theorem.

LEMMA 2.10. Let G be a2-transitive permutation group. Suppose that G is almost simple,
with minimal normal subgroup T . Then either T is2-transitive, or T is R(3)′ ∼= PSL(2,8)
acting primitively and with rank four on28points. (The non-trivial orbits of a point stabilizer
have length nine.) 2

LEMMA 2.11 ([10, CHAPTER 2.6]). Let G be the socle of an almost simple2-transitive
permutation group of degree n, and suppose that the Schur multiplier M(G) of G has order
at least3. Then G, n,M(G) are as in one of the columns of the following table.

PSL(m,q)
G A6 A7 Sz(8) PSL(3,4) M22 PSU(3,q2) and(q − 1,m) ≥ 3
n 6 or 10 7 or 15 6 21 22 q3 + 1 (qm − 1)/(q − 1)
M(G) 6 6 2· 2 4 · 4 · 3 12 (q + 1,3) (q − 1,m)

The next somewhat technical consequence of Theorem 2.9 is crucial for our analysis in
Section 4.

PROPOSITION 2.12. Suppose that G is a2-transitive permutation group on a set V of size
n, and that G is an almost simple group with socle T . Suppose further that, forv ∈ V , Gv has
a (not necessarily faithful) permutation representation onto a2-transitive permutation group
L of degree r, where3≤ r ≤ n− 2 and r(n− 1) divides|Gv|. Then T, n, r and L are given
in a line of the following table, where p is a prime, q= pe, and in lines 2 and 3 of the table r
is a prime and or (p) is the order of pmodr .

T n r L Comments
1 PSL(d,q) (qd − 1)/(q − 1) qd−1 ≥ ASL(d − 1,q) d ≥ 3
2 PSL(d,q) (qd − 1)/(q − 1) r Frob(r (r − 1)) r |(q − 1),or (p) = r − 1
3 PSU(3,q2) q3 + 1 r Frob(r (r − 1)) r |(q2 − 1),or (p) = r − 1
4 PSL(3,3) 13 3 or 4 S3 or S4
5 PSL(3,5) 31 5 S5
6 PSL(3,8) 73 28 R(3)
7 PSL(5,2) 31 8 A8
8 PSL(7,2) 127 63 PSL(6,2)

PROOF. If T = An thenGv has no permutation representation of degreer such that 3≤
r < n except in the case wheren = 5, and the conditions in line 2 hold withd = 2,q = 4 and
r = 3.

Suppose next thatT = PSL(d,q) with n = (qd − 1)/(q − 1), q = pe with p prime,
andd ≥ 2. ThenG/T andGv/Tv are both either cyclic or metacyclic with order dividing
(d,q − 1)eandTv is the semi-direct product of an elementary Abelian subgroupM of order
qd−1 by H , whereSL(d − 1,q) ≤ H ≤ GL(d − 1,q). FurtherM is a minimal normal
subgroup ofGv. There are three cases to consider.

Suppose first thatM acts non-trivially in the permutation representation ofGv of degreer .
Then, since it is a minimal normal subgroup,M acts faithfully and regularly, sor = qd−1.
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Sincer ≤ n− 2 we must haved ≥ 3, and the conditions of line 1 hold. Thus we may assume
that M acts trivially in the permutation representation of degreer .

If d = 2 thenGv/M is metacyclic of order dividing(q − 1)e, and is a subgroup of the
metacyclic group〈α〉 · 〈σ 〉, whereα has orderq − 1, σ has ordere, andασ = α p. It follows
that the socle of the 2-transitive groupL must be cyclic and hence regular, whencer is a prime
dividing q−1. Further, forGv/M to have a 2-transitive imageL, σ must permute transitively
by conjugation the non-trivial cosets of〈αr 〉 in 〈α〉. A small calculation shows that this is the
case if and only ifp is a primitive root modulor , that isor (p) = r − 1. This is line 2 of the
table (withd = 2).

Suppose now thatd ≥ 3. If SL(d − 1,q) is soluble, thend = 3 andq ≤ 3; since(n− 1)r
divides|Gv|, we must haveq = 3 andr = 3 or 4, as in line 4. Now assume thatSL(d−1,q) is
insoluble. IfSL(d−1,q) acts trivially in the permutation representation of degreer , thenL is
metacyclic of order dividing(q−1)e, and arguing as above we see that the conditions of line 2
hold. Finally suppose thatSL(d−1,q) acts non-trivially. Then sinceGL(d−1,q) is involved
in Tv it follows thatL hasPGL(d−1,q) as a normal subgroup. The natural 2-transitive action
of degreer = (qd−1− 1)/(q− 1) is ruled out by the requirement that(n− 1)r divide |Gv| in
all cases except the case on line 8 of the table. The only other 2-transitive representations of
such a groupL of degreer ≤ n− 2 occur for(d,q) = (3,5), (3,8), or (5,2) as in line 5, 6
or 7, respectively.

If T is one ofPSU(3,q2), R(q) or Sz(q), then the socle ofTv has ordern − 1; arguing
as in the previous paragraph we see that the socle ofTv must act trivially in the permuta-
tion representation of degreer ≤ n − 2. The groupsR(q) and Sz(q) are then eliminated
sinceGv/soc(Tv) has no 2-transitive representations, and in the case ofPSU(3,q2) the only
possibility for the groupL is a metacyclic groupFrob(r (r − 1))with r prime as in line 3.

Finally none of the symplectic and sporadic cases give examples becauseGv has no 2-
transitive representation, or because the degreer of such a permutation representation does
not satisfy the necessary conditions. 2

In Section 5 we require different information about 2-transitive permutation groups. At
one stage we need to know which simple socles of almost simple 2-transitive groups have the
property that a point stabilizer has an elementary Abelian quotient of order greater than 2.

PROPOSITION 2.13. Let T be the socle of an almost simple2-transitive permutation group
of degree n, and suppose that a point stabilizer Tv in this representation has an elementary
Abelian quotient of order r= r a

o ≥ 3 where ro is a prime dividing n. Then r= ro is an odd
prime, and either

(a) T = PSL(d,q), n = (qd − 1)/(q − 1), and r divides(d,q − 1); or
(b) T = PSU(3,q2), n = q3+ 1, and r divides(q + 1)/(3,q + 1).

PROOF. For T in Theorem 2.9 (1) (a), (d), or (g), the largest Abelian quotient ofTv has
order at most 2. ForT in Theorem 2.9 (1) (e) or (f), an elementary Abelian quotient ofTv is
cyclic of prime orderr dividing q − 1; however such primes do not dividen. Finally for T
in Theorem 2.9 (1) (b) or (c), an elementary Abelian quotient ofTv is cyclic of prime orderr ,
wherer dividesq− 1 or (q2− 1)/(3,q− 1), respectively. Sincer also dividesn, andr ≥ 3,
it follows thatr divides(d,q − 1) or (q + 1)/(3,q + 1), respectively. 2

Recall that the groupsH in Theorem 2.9 (2) may be regarded as subgroups ofGL(n, p) and
as such are calledtransitive linear groups. We need the following proposition which asserts that
an almost simple transitive linear group cannot also have a faithful 2-transitive representation
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of large degree. Note that the lower boundpa is sharp, since the groupH = GL(a, 2) has a
faithful 2-transitive action of degree 2a − 1.

PROPOSITION 2.14. Suppose that, for a prime p and integer a≥ 1, the group H≤
GL(a, p) is an almost simple transitive linear group. Then any faithful2-transitive represen-
tation of H has degree less than or equal to pa − 1.

PROOF. By assumption (sinceH is almost simple)H is one of the groups in Theorem 2.9
(2) (a)–(c), or (e) (ii) withpa > 5, and the non-Abelian simple socleSof H is isomorphic to
PSL(d, pc) (a = cd ≥ 2c), PSp(d, pc) (a = cd ≥ 4c, d even),G2(pc) (a = 6c, p = 2), or
A6 or A7 (pa = 16), respectively. In the first case faithful 2-transitive representations exist,
but for all of them the degree is at mostpa − 1. Similarly in the second case 2-transitive
representations exist (only) whenpc = 2 but their degree is again less than 2a. There is a
2-transitive representation in the third case only forG2(2)′ ∼= PSU(3,32) but its degree is 28
(less than 26), and in the final case the 2-transitive representations of the groupsA6 andA7 are
all of degree less than 16. 2

The following result plays an important role in Section 6. In the statement and proof we use
the notation from Theorem 2.9.2.

LEMMA 2.15. Let H ≤ GL(b, p) be a transitive linear group. Suppose that CG H and
H/C is isomorphic to a transitive linear subgroup of GL(a, p), where pa > 2 and a< b.

(1) If H ≤ 0L(1, pb), then C has a non-trivial cyclic p′-subgroup C1 normalized by H.
(2) If a > 1 and H 6≤ 0L(1, pb), then C contains one of the groups SL(d, pc), Sp(d, pc)′

or G2(2c)where b= cd (with d≥ 2), cd (with d≥ 4), or6c (with c> 1), respectively,
and|H/C| divides c(pc − 1).

(3) If a = 1 and H 6≤ 0L(1, pb), p is odd and Z(C) is non-trivial and has order prime to
p.

PROOF. Suppose first thatH ≤ 0L(1, pb). If b = 2, thena = 1, p is odd, andH/C ∼=
GL(1, p). In this case the subgroupC1 := C∩GL(1, p2) has order divisible by(p+1)/2> 1
and is normalized byH . Suppose now thatb > 2. If there is ap-primitive prime divisorp1
of pb − 1, takeC1 to be the Sylowp1-subgroup ofH . Otherwisepb = 26, a equals 2 or 3,
and the subgroupC1 of order 3 inH ∩ GL(1,26) is characteristic inC.

Next suppose thatH is one of the groups appearing in Theorem 2.9 (2) (a)–(c) (butH 6≤
0L(1, pb)) and letT be the normal subgroup ofH there indicated. If the smallest degree of
a (not necessarily faithful) representation ofT overGF(p) is less thanb, thenT = SL(2,3)
and (3) holds. Otherwise, the assumption thata < b implies thatT ≤ C, from which (2)
follows. Note that ifC ≥ G2(2)′ thena dividesb = 6 and 2a > 2; but this means that 2a − 1
does not divide|H/C|, so in the case ofG2(2c) we must havec > 1.

There are two more types in Theorem 2.9 (2), namely 2.9 (2) (e)exceptionaland 2.9 (2) (f)
extra special. In these casesp = 2 only if H = A6 or A7, and these groups have minimal
2-modular degree 4, so are excluded by the hypothesisa < b. Thusp is odd, and eitherb = 2,
or pb = 34 or 36. In each casea = 1 andL has centre of order at least 2. 2

We close this section with a technical result which plays a central role in the construction
of the new affine examples in Example 3.6, the first instance of which occurs forp = 2,a =
2,b = 3,c = 1.

LEMMA 2.16. Let p be a prime, a< b and let q= pc where c|(a, b). Suppose c divides
s := (pa−1)(q−1,a/c)/(q−1)and s divides b. Then there is a subgroup G≤ A0L(1, pb)

having a homomorphic image that is a2-transitive group of degree pa.
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PROOF. Write V for the additive group ofGF(pb) viewed as aGF(q)-vector space. Let
σ be an automorphism ofGF(pb) of orders. Sincec dividess, σ fixes GF(q). Suppose
x ∈ GF(pb) generates a normal basis forGF(pb) overGF(q). Then the cyclicK 〈σ 〉-module
S≤ V generated byx has dimensions and is free. Sincep does not divides, V is completely
reducible and every irreducibleK 〈σ 〉-module appears inS. ThusV has a submoduleW of
GF(q)-codimensiona/c for whichσ acts faithfully onV/W. Since the order of the group of
GF(q)-scalars thatσ induces onV/W is (q− 1)/(q− 1,a/c), the groupH := 〈σ,GF(q)?〉
acts as a Singer group onV/W. 2

3. EXPLICIT GRAPH CONSTRUCTIONS

We now give explicit constructions of the graphs arising in the Main Theorem, beginning
with those having the extreme values for the indexr . Since the diameter 2 case is fully
described in Lemma 2.1, we discuss only the graphs having diameter 3.

EXAMPLE 3.0 (BIPARTITE). If X is an antipodal distance-regular graph of diameter three,
and is also bipartite, then Lemma 2.3 implies thatr = 2 andX = K2⊗ Kn = Kn,n minus the
edges of a matching. Its automorphism group isSn × Z2.

EXAMPLE 3.1 (GARDINER). Here (see [8, Proposition 4.6]) the indexr = n − 1, and
n ∈ {3,7,57}. If n = 3, X = C6, a cycle of length 6, with automorphism groupD12. If
n = 7, X = 6·K7 is the subgraph induced on the vertices at distance two from a chosen vertex
in the Hoffman Singleton graph, andX has automorphism groupS7. A result of M. Aschbacher
[1] implies that there is no distance-transitive example whenn = 57. (In fact it follows from a
result of G. Higman (which is discussed in [6]) that there is not even a vertex-transitive Moore
graph of valency 57.)

EXAMPLE 3.2. The distance-transitive covers ofKn which have index 2 and are not bipartite
were classified by Taylor [22], see also [2, Theorem 1.5.3]. The possible values forn and the
automorphism group 2· G are as follows.

Type n 2 · G Comments
symplectic 22m−1 ± 2m−1 2 · Sp(2m, 2) m≥ 3
Ree q3 + 1 2 · Aut(R(q)) q = 32a+1 > 3
Higman–Sims 176 2· Hi S
Conway 276 2· Co3
unitary q3 + 1 2 · P0U (3,q2) q > 3
linear q + 1 2 · P6L(2,q) 4|(q − 1)
affine 22d 2 · ASp(2d, 2)

The classification of the graphs in Example 3.2 and the structure ofG follow from [22,
Theorems 1 and 2]. Information about the splitting of the automorphism group 2·G can be
deduced from [22, Theorem 2.1], and we are grateful to Taylor for his advice in settling the
question of splitting for each of the cases above. In all cases 2·G can be represented as a group
of (n−m) × (n−m) monomial matrices over the real numbers acting on a certain set ofn
equiangular lines inRn−m, wherem is one of the multiplicities given by equation (3), and the
centre of the group isZ = {I ,−I }. In line 4, for example,G = Co3 splits overZ because
−I is outside the derived group (see also [2, 11.4.H]). Moreover the 176 equiangular lines in
22 dimensions on which 2·Hi S acts are a subset of the 276 equiangular lines forCo3 in 23
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dimensions, and since 2·Co3 splits we have that 2·Hi S splits also. In lines 1, 2 and 5 of the
table, the group 2·G must split since in these casesG has Schur multiplier of odd order. In the
linear case the parametersa1 andc2 are both equal to(q − 1)/2, and equation (2) yields that
both possibilities for the multiplicitym are equal to(q + 1)/2. Since in this case(q + 1)/2
is odd, the group 2·P6L(2,q) splits overZ (see the remark following [22, Theorem 2.1]).
Finally in the affine case the group 2·G does not split.

The graphs occurring in the last line of this table do indeed appear in the Main Theorem as
special cases under case 6. The graphs occurring in lines 5 and 6 of the table could also be
described using the construction of Example 3.4 below. (Note thatP6L(2,q) ∼= P0O(3,q).)
For the orthogonal case in Example 3.4, if we taker = 2 (which is not allowed in Example 3.4)
and if we require thatq ≡ 1(mod 4), then we obtain the graphs in the linear case above, and
their automorphism groups are 2·P0O(3,q) rather thanP0O(3,q). Similarly for the unitary
case in Example 3.4, if we taker = 2 (which again is not allowed in Example 3.4) and if we
require thatq > 3, then we obtain the graphs in the unitary case above, and their automorphism
groups are 2·P0U (3,q2) rather thanP0U (3,q2).

There is a 3-fold cover ofK5 mentioned in the introduction. It appears in Example 3.4 below
with G = P0O(3,4) but we take this opportunity to illustrate the graph coset construction
method of Lemma 2.7 for this small example.

EXAMPLE 3.3 (PETERSEN). Let G = S5 the symmetric group on{1, . . . ,5}, let M = S4
be the stabilizer inG of 1 and letH be a Sylow 2-subgroup ofM . Takeg = (1,2) ∈ G.
Then the hypotheses of Lemma 2.7 (4) hold. We comment only on properties (4) (b) and
(c). Now H = 〈(2345), (35)〉, soH g = 〈(1345), (35)〉and H g ∩ M = H g ∩ H = 〈(35)〉,
whence conditions (4) (b) and (c) of Lemma 2.7 hold. Thus0(G, H, HgH) is an antipodal
G-distance-transitive 3-fold cover ofK5; it is isomorphic to the line graph of the Petersen
graph.

The next examples possess an almost simple automorphism group that acts faithfully on6

and are dealt with in Section 4. For this reason they are similar to the unitary, Ree and symplectic
examples of Taylor. First we recall the groups involved and their underlying geometry.

Let p be a prime and setq = pe. The isometry group of an irreducible ternary quadratic
form overGF(q) is O(3,q). The set of singular points of the form is an oval inPG(2,q)
whose full isometry group is calledP0O(3,q). When the coefficient field is extended to
GF(q2) and the form is extended to a Hermitian form with respect to the involutory field
automorphismρ, the isometry group becomesSU(3,q) and the singular points form a unital
in PG(2,q2) whose full isometry group isP0U (3,q). We point out that all of this holds in
arbitrary characteristic although standard treatments of these groups, for example in Huppert
[13, Theorem II.10.12], ignore the even characteristic case.

Following [13], we work with a basis with respect to which the Hermitian form is

〈v,w〉 = v1wq
3 + v2w

q
2 + v3w

q
1 . (4)

In addition, we extend the Frobenius field automorphismσ : a 7→ ap to act on matrices with
respect to this basis. The reader is cautioned that there is no simple characteristic-free relation
betweenσ andρ.

We shall next construct two families of graphs, the first of which embeds in the second like
the oval in the unital. Let� be the associated oval or unital and letF beGF(q) or GF(q2),
respectively. Then|�| = q + 1 orq3+ 1, respectively. Further, let

G(�) = P0O(3,q) or P0U (3,q2),

S(�) = PGO(3,q) or PGU(3,q2) respectively.
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We shall refer to these two cases as the orthogonal case and the unitary case, respectively.
Chooseα, β to be distinct elements of� that are fixed byσ . We may takeα, β to be the span
of the first basis vector and the span of the last basis vector in Huppert’s basis (except when
G(�) = P0O(3,2e)). ThenG(�)αβ = 〈S(�)αβ, σ 〉 whereS(�)αβ = G(�)αβ ∩ S(�) is
the groupW modulo scalars and

W =
〈 h 0 0

0 k 0
0 0 h−q

 : h, k ∈ F?
〉
. (5)

In general,S(�)αβ = 〈s〉 is cyclic of orderq−1 orq2−1, respectively. The Sylowp-subgroup
P(�) of S(�)α has orderq or q3, respectively. AlsoS(�)α = P(�)S(�)αβ andG(�)α =
P(�)G(�)αβ = P(�)S(�)αβ·〈σ 〉. The next construction refers to�,G(�), S(�), σ, α, β, s
andW as introduced in this discussion.

EXAMPLE 3.4 (FAITHFUL). The graphs in this construction arer -fold covers of the com-
plete graph on�, so n= |�|, wherer satisfies:

(1) r is an (odd) prime dividing|S(�)αβ |, and in the unitary case we require thatr ≥ 5,
(2) r − 1 divides|Aut F|, and
(3) p is a primitive root modulor .

Let L(�) = 〈sr 〉be the unique subgroup ofS(�)αβ of indexr , and letH(�) = P(�)L(�)·〈σ 〉.
Further letg be any 2-element inNG(�)(L(�)·〈σ 〉) \ G(�)αβ . If in the case whereG(�) =
P0O(3,q) we have(q − 1)/r ≤ 2, then we also require thatg normalizeG(�)αβ ; in all
other situations this is a consequence of the requirement thatg ∈ N(L(�) · 〈σ 〉). Then the
graphX(�) := 0(G(�), H(�), H(�)gH(�)) is a distance-transitive cover ofKn of index
r . Further (see Theorem 4.3)X(�) is independent of the choice of the 2-elementg, and
Aut X(�) = G(�).

To prove thatX = X(�) is indeed an example we verify the conditions of Lemma 2.7. For
typographic simplicity we suppress some references to�. First let M = Gα. An important
consequence of the three conditions in Example 3.4 is thatM has a homomorphism onto the
2-transitive Frobenius groupFrob(r (r − 1)) of degreer with kernel PL ·〈σ r−1〉, and one of
the stabilizers inM in this 2-transitive representation is the subgroupH .

Observe thatG = G(�) acts faithfully on� = [G: M] since� spans the underlying
projective space. Now[M : H ] has odd order andg is a 2-element interchangingα andβ
so g2 ∈ H . Also G = 〈H, g〉 sinceM is the only maximal subgroup ofG containingH .
Consequently part (1) of Lemma 2.7 holds.

Lemma 2.7 (4) (a) follows from the facts thatM = PGαβ andH containsP. To see that
Lemma 2.7 (4) (b) holds requires more care. First observe thatH g∩M ≤ M ∩Mg = Gαβ =
〈Sαβ, σ 〉, and soH g ∩ M ∩ S ≤ Sαβ . SinceSαβ is cyclic, its subgroupH g ∩ M ∩ S is
characteristic and hence (sinceg normalizesGαβ ) is equal to(H g ∩ M ∩ S)g which equals
H ∩Mg ∩ S. Then sinceL ≤ H ∩Mg ∩ S≤ H ∩ S= PL, it follows thatH g ∩M ∩ S= L.
Further,σ g ∈ 〈L , σ 〉 by the definition ofg, and alsoσ g ∈ H g ∩ M . SinceL ≤ H g ∩ M it
follows that we also haveσ ∈ H g∩M , and henceH g∩M = 〈H g∩M∩S, σ 〉 = 〈L , σ 〉 ≤ H ,
as required.

Finally we prove that Lemma 2.7 (4) (c) holds. The automorphismσ acts onSαβ = 〈t〉 as
the pth-power map. Thusσ i leaves the cosetHt invariant if and only ift pi−1 ∈ H ∩ Sαβ , that
is if and only if r divides pi − 1, which is the case if and only ifr − 1 dividesi (sincep is a
primitive root modulor ). It follows that〈σ 〉, and hence alsoH ∩ H g, act transitively on the
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FIGURE 2. Unitary groups and scalarsZ, a := (q + 1,3)

non-trivial cosets ofH in M . This completes the proof thatX is indeed a distance transitive
cover ofKn of indexr .

It turns out that, if conditions (1)–(3) of Example 3.4 hold in the unitary case withr = 3,
then the construction above yields an example if and only ifq ≡ 1(mod 3). In that case the
proof above goes through unchanged. If on the other hand these conditions hold forr = 3 but
q ≡ −1(mod 3), then the graphX of Example 3.4 is disconnected and is the disjoint union of
three copies of the complete graphKq3+1. However, there are two variants of the construction
of Example 3.4 which between them produce examples in this situation. To emphasize the
special nature of the caser = 3 we have chosen to present all three of these constructions
together in Example 3.5 below.

First we explain some of the reasons why the caser = 3 is so different from the case of
larger primesr , by giving more details about the subgroups of the unitary groups.

Consider a three-dimensional vector space over the fieldF = GF(q2), equipped with a
Hermitian form with respect to the involutory field automorphismρ. We may choose a basis
with respect to which the Hermitian form is given by equation (4). The group of matrices
preserving this form is called the unitary groupU (3,q2). The subgroupZU of non-singular
scalar matrices inU (3,q2) has orderq+1. Further, the subgroup of determinant 1 matrices in
U (3,q2) has indexq+ 1 and is called the special unitary groupSU(3,q2); and the subgroup
ZSU of non-singular scalar matrices inSU(3,q2) has ordera := (3,q + 1). Also the central
productZU ◦ SU(3,q2) has indexa in U (3,q2). It seems to be a combination of the facts
that ZSU 6= 1 andZU ◦ SU(3,q2) 6= U (3,q2) whenq + 1 is divisible by 3 which makes
the constructions behave so differently whenr = 3 andq ≡ −1(mod 3). These subgroup
inclusions are represented in Figure 1. Figure 1 also shows the general unitary groupGU(3,q2)

which is the central product ofU (3,q2) and the full groupZGU ∼= F∗ of non-singular scalar
matrices.

The other groups which appear in the graph construction are6U (3,q2) = SU(3,q2)〈σ 〉and
0U (3,q2) = GU(3,q2)〈σ 〉, where as aboveσ is the Frobenius field automorphismσ : a 7→ ap
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extended to act on the matrices inGU(3,q2). Note thatGU(3,q2)/ZGU ∼= U (3,q2)/ZU

and this group is denotedPGU(3,q2). Note also that the group0U (3,q2) acts on� with
kernelZGU and the stabilizer inGU(3,q2) of the pointsα andβ is the subgroupW defined
in equation (5).

We now prepare for the construction. We use the notation introduced before Example 3.4
for the groupsS, P, the elementσ , and the pointsα, β of �. Let L0 be the unique subgroup
of Sαβ of index 3, and ifq + 1 ≡ 0 (mod 9)let L1 be the unique subgroup ofSαβ of index
9. In the case whereq + 1≡ ±3 (mod 9),SU(3,q2)αβ = W ∩ SU(3,q2) is cyclic of order
q2 − 1, and in this case we letL2 be the unique subgroup ofSU(3,q2)αβ of index 3. In this
case also, we useP to denote the unique Sylowp-subgroup ofSU(3,q2)α (of orderq3).

EXAMPLE 3.5 (UNITARY, r = 3). The graphs in this construction are 3-fold covers of the
complete graph on�where|�| = n = q3+1. The graphX is defined asX := 0(G, H, HgH)
whereG is a group given in one of the lines of the table below,H is the subgroupH = PL·〈σ 〉
of G whereL is as in the table, andg is a 2-element inNG(L ·〈σ 〉) \ Gαβ .

G L q
P0U (3,q2) L0 q − 1≡ p+ 1≡ 0(mod 3)
P6U (3,q2) L1 q + 1≡ 0(mod 9)
6U (3,q2) L2 q + 1≡ ±3(mod 9)

The graphX := 0(G, H, HgH) is a distance-transitive cover ofKn of index 3. Further
(see Theorems 4.3 and 5.2), whenq > 2, X is independent of the choice of the 2-elementg,
andAut X= G.

To prove thatX is indeed an example we verify the conditions of Lemma 2.7. As we
mentioned above, the proof forq,G, L in line 1 is the same as that for the graphs in Example 3.4.
The details of proof forq,G, L in line 2 are entirely analogous. Consider the case whereq,G, L
are as in line 3. Then as 9 does not divide|SU(3,q2)αβ |, it follows thatL, and hence alsoH ,
intersectZSU trivially. Thus G acts faithfully on the coset space[G: H ]. Similar arguments
to those in the proof for the graphs in Example 3.4 can then be used to verify all the other
conditions of Lemma 2.7.(1) and (4). In fact some aspects of the verification are made easier
by the fact that in this case|PL| is not divisible by 3.

Note that in Example 3.4 and in lines 1 and 2 of Example 3.5, it follows from the parameter
restrictions thatq ≥ 4. However, in line 3 of Example 3.5, we may haveq = 2. The example
obtained in this case is the same as the graph constructed in Example 3.6 below withq = 3
n = 1.

The final examples possess an affine 2-transitive group acting on the fibres6 and the kernel
of the action on6 is non-trivial. For this reason they are similar to the affine examples of
Taylor. This case is the subject of Section 6. Although these graphs can be presented as a
group coset construction we prefer a more geometric approach.

EXAMPLE 3.6 (AFFINE). Let p be a prime andq = pe. The isometry group of a non-
degenerate(2n+ 2)-ary alternate bilinear form overGF(q) is Sp(2n+ 2,q). Fix a point∞
in the associated projective geometryPG(2n+ 1,q) and consider the embedded affine space
A having∞⊥ as hyperplane at infinity. The classical examples have theq2n+1 points of A
as vertices. The fibres of these graphs are the affine lines in the direction∞. Two vertices
x, y are adjacent if and only ifx ∈ y⊥. The required transitivity follows from Witt’s Theorem
applied toSp(2n+ 2,q). These graphs are uniquely determined by their parameters (see
Propositions 6.2 and 6.3).
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Note that the unipotent radicalP of Sp(2n+ 2,q)∞ acts vertex transitively, and that the
stabilizer of a vertex contains a groupC ∼= Sp(2n,q) acting trivially on the associated fibre
F . MoreoverAut(X)FF = A0L(1,q).

Whenever a subgroupG1 ≤ A0L(1,q) has a 2-transitive permutation representation of
degreer properly dividingq, as in Lemma 2.16, Lemma 2.8 gives anr -fold distance-transitive
cover ofKq2d having a symplectic group acting on the fibres. The first instance of such a graph
is the 4-fold cover ofK82 having point stabilizerSp(2,8)·3 whereN = GF(2) ≤ GF(8) in
Lemma 2.8.

Note that some classical examples cover others. By the above construction, each of the
groupsG1 := Sp(2d + 2,qe),G2 := Sp(2de+ 2,q) yields a covering ofKq2de. But the
covering indices areqe andq, respectively and the associated covering groupsK1 andK2 are
the additive groups ofGF(qe) andGF(q), respectively. TakingN to be the kernel of the
natural map fromA0L(1,qe) to A0L(1,q) in Lemma 2.8 we see that the first graph covers
the second.

4. FAITHFUL

For the rest of the paper we use the notation introduced in Section 2 after Lemma 2.2.
Suppose that the groupG acts distance-transitively onX, let v ∈ X be a vertex in the fibre
F ∈ 6, setH := Gv, and letK denote the kernel of the action ofG on6 (that is,K is the
covering group induced byG). Because the classification has already been done whenr = 2
or n− 1, as discussed earlier, we assume further that 3≤ r ≤ n− 2.

Throughout this section suppose thatK is trivial so the groupG acts faithfully on6. We
shall show that the only graphs satisfying this hypothesis are those in (4) of the Main Theorem.

LEMMA 4.1. The group G is almost simple.

PROOF. SinceK = 1, G andG6 are isomorphic. Assume by way of contradiction thatG
is affine. Then there is an elementary Abelian normal subgroupN of G acting regularly on
6. Therefore, there is a primep and integere such that

n = |N| = pe,

and (sinceN is regular)G = GF N. SinceN is regular on6 it follows that N hasr orbits
of length n on vertices, and sinceN is normal inG theseN-orbits comprise a system of
imprimitivity for G on vertices. Since 3≤ r < n theseN-orbits are neither the connected
components of the graphX2 nor those of the graphX3, contradicting Lemma 2.4. 2

THEOREM 4.2. The graph X is one of the graphs in Example 3.3, 3.4, or 3.5 (lines 1 or 2).

PROOF. Let T be the socle ofG. ThenGF has a permutation representation onto a 2-
transitive subgroupL of the symmetric groupSym(F) of degreer , and the hypotheses of
Proposition 2.12 hold. ThusT , n, r andL are as in one of the lines of the table in Proposi-
tion 2.12. Note that, sinceT is transitive on6 and6 is the unique non-trivial block system
by Lemma 2.4, it follows thatT is transitive on vertices. Moreover, sinceG is transitive on
the arcs ofX, by Lemma 2.7.2 we haveX ∼= 0(G,Gv,GvgGv) whereg is a 2-element in
NG(Gvw) \ Gvw and{v,w} is an edge.

Suppose next thatT = PSL(d,q) with n = (qd − 1)/(q − 1). There are several lines in
the table of Proposition 2.12 corresponding to these groups and we treat them in turn. First let
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r = qd−1 with d ≥ 3 as in line 1 of the table in Proposition 2.12. Then Equation (1) may be
written as

(n− 1)− (r − 1)c2 = a1+ 1

and substituting the given values forr andn on the left here, we deduce that

(qd−1− 1)

(
q

q − 1
− c2

)
= a1+ 1> 0.

This implies thatc2 = 1. From [9, Theorem 3.4(d)] it follows that(n − r )2 ≤ n − 1, and
therefore

qd−1− 1≤ q(q − 1).

This is not possible for any values ofq > 1 andd with d ≥ 3. Suppose next thatr is an odd
prime divisor ofq−1 as in line 2 of the table in Proposition 2.12. Ifd = 2 thenT ∼= P�(3,q),
and we shall see thatX is one of the graphs of Example 3.4. We use the notation of Example 3.4
for the subgroupsM , H andL (note thatM is defined just below Example 3.4). Certainly we
may chooseF so thatGF is the subgroupM ∩ G with M as in Example 3.4, and sinceT is
vertex-transitive,Tv = Gv ∩ T is the unique subgroup ofTF = M ∩ T of indexr . Thus we
may choosev so thatGv is H ∩G with H as in Example 3.4, and we may choosew adjacent to
v such thatTvw is the subgroupT ∩L with L as in Example 3.4. ThenT ∩L ≤ Gvw ≤ 〈L , σ 〉,
and the 2-elementg ∈ NG(Gvw)\Gvw satisfies the conditions required in Example 3.4. Thus
X is one of the graphs of Example 3.4. (Note here that ifq = 4 thenT ∼= A5, r = 3, andX is
the line graph of the Petersen graph, as in Example 3.3, see [2, p. 222].)

On the other hand ifd ≥ 3 then forF ′ ∈ 6 \ F , the subgroupGvF ′ is transitive onF ′.
This can be seen easily by considering the action of the preimageS := SL(d,q) of T on the
underlying vector spaceV . The action ofT on6 is permutationally isomorphic to the action
of Son the 1-spaces inV . Moreover, for a 1-spaceUF corresponding to the fibreF , the action
induced byTF on F is permutationally isomorphic to the action ofSUF on a block system
on the non-zero vectors inUF comprisingr blocks of length(q − 1)/r . Clearly, for distinct
1-spacesU,U ′, and for a non-zero vectoru ∈ U , the stabilizerSuU′ is still transitive on the
non-zero vectors ofU ′. It follows from this (choosingU = UF , U ′ corresponding to the fibre
F ′, and choosingu in the block inUF corresponding tov) thatTvF ′ is transitive onF ′. This
contradicts the fact thatGvF ′ fixes the unique point inF ′ adjacent tov in X. For the values of
d,q, n, andr in lines 4–8, Equation (1) yields the possibilities fora1 andc2, and from these
the eigenvaluesτ andθ may be computed to test the multiplicity condition (3). In no case is
the expression (3) an integer.

Finally suppose thatT is PSU(3,q2) with n = q3 + 1 (q ≥ 3), andq andr as in line 3
of the table of Proposition 2.12. As in the previous case, ifr ≥ 5, we may choose the fibre
F , the vertexv ∈ F , and a vertexw adjacent tov in such a way that, forM, H andL as in
Example 3.4, we haveGF = G ∩ M , Gv = G ∩ H , Gvw = G ∩ 〈L , σ 〉, and hence also the
2-elementg satisfies the requirements of Example 3.4. It follows thatX is one of the graphs of
Example 3.4. Similarly, ifr = 3 andq ≡ 1 (mod 3), arguing in the same way we see thatX is
one of the graphs of Example 3.5 (forq,G, L in line 1 of the table in Example 3.5). Consider
now the case wherer = 3 and 3 dividesq + 1. HereT has index 3 inPGU(3,q2). Again
we may chooseF so thatGF is the stabilizer of the pointα of the unital�, using the notation
introduced before Example 3.4. SinceT is vertex-transitive,Gv must be a subgroup of index
3 in GF andGv must intersectT in a subgroup of index 3 inGF ∩ T . This is only possible if
G ∩ PGU(3,q2) = PSU(3,q2) andq + 1 is divisible by 9. ReplacingG by a conjugate in
P0U (3,q2) if necessary, we may assume thatG ≤ P6U (3,q2). Thus we may choose the
verticesv ∈ F , andw, such thatGv = PL1·〈σ i 〉 andGvw = L1·〈σ i 〉 for some integeri , where
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P, L1 are as in Example 3.5 (in line 2 of the table). Then alsog satisfies the requirements of
Example 3.5, and it follows thatX is again one of the graphs of Example 3.5. 2

We end this section by determining the full automorphism groups of the graphs in Exam-
ple 3.4 and in Example 3.5 (lines 1 and 2).

THEOREM 4.3.

(a) Let X= 0(G, H, HgH) be a graph constructed in Example3.4, or in Example3.5(for
the groups in line1 of the table). Then Aut X is P0O(3,q) in the orthogonal case, and
P0U (3,q2) in the unitary case.

(b) If X = 0(G, H, HgH) is a graph constructed in Example3.5, with the groups as in
line 2 of the table, then Aut X is P6U (3,q2).

Moreover, in either case the graph X is independent of the choice of the2-element g.

PROOF. Let X be one of the graphs in Example 3.4 or Example 3.5 defined in terms of the
groupG = P0O(3,q), P0U (3,q2) or P6U (3,q2). Let V denote the vertex set of ordernr
wheren = q + 1 orq3+ 1, letT denote the socle ofG, and setA = Aut X. By construction
G ≤ A, and in the unitary caseG = P0U (3,q2)∩Sym(V). SinceX is antipodal,A preserves
the set6 of n fibres of sizer . Let F ∈ 6, andv ∈ F .

Our first step is to show thatT has trivial centralizer inA. Let C be the centralizer ofT in
Sym(V). ThenC is semi-regular on vertices and|C| is equal to the number of fixed vertices
of Tv (see for example [25, Exercise 4.5′]). HenceC = 〈c〉 is cyclic of orderr . Moreover the
C-orbit containingv is the fibreF containingv. Thus the set ofC-orbits is6 and soC acts
on V with n orbits of lengthr . Suppose thatT × C ≤ A. ThenX affords four irreducible
characters of bothT × C and T having degrees as in Lemma 2.6.2. Since the irreducible
characters ofT×C all have the formχT⊗χC, for irreducible charactersχT of T andχC of C,
X affords at most fourC-characters and their multiplicities are determined by Lemma 2.6.2.
However, sinceC hasn orbits of lengthr , X affordsn copies of the regular representation of
C. It follows thatmθ = mτ = n and thatr = 3. Moreover, theθ -eigenspace of the adjacency
matrix A(X) affords a non-trivial representation ofC, and consequently is spanned by vectors
of the form:

xv = v + ωvc + ωvc2; v ∈ V

whereω is an appropriate complex cube root of unity. But now, forw adjacent tov, thewth
entry of Axv = θxv on the one hand equals 1+ 0+ 0, (asw is not adjacent tovc or vc2

) and
on the other hand equals 0 (asw is not in the support ofxv). This contradiction shows that
C ∩ A = 1.

By [9] the covering groupK (the kernel of the action ofA on6) is semiregular and hence is
either trivial or cyclic of orderr . Suppose thatK = Zr . ThenAut K ∼= Zr−1, and it follows
that the derived subgroupA′ of A centralizesK . In particular the socleT of G centralizesK ,
contradicting the fact we have just proved thatCA(T) = 1. ThusK = 1 and soAacts faithfully
on6. SinceG is 2-transitive on6, A is isomorphic to a 2-transitive permutation group of
degreen containingG6 ∼= G. If A contains the alternating groupAn, then AF = An−1 or
Sn−1, which has no transitive representation of degreer (3≤ r ≤ n− 2) unlessn = 5,r = 3;
but in this case we haveA = G ∼= S5 as required. Thus we may assume thatA does not
containAn. It now follows from Theorem 2.9 thatA = G. (Note that in the orthogonal case
G ∼= P0L(2,q), and in the case whereG = P6U (3,q2) with r = 3 and 9 dividingq + 1,
we know thatA∩ P0U (3,q2) = G.)
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From what we have just proved about their automorphism groups, any isomorphism between
two of the graphs under consideration must be between graphsX1 = 0(G, H, Hg1H) and
X2 = 0(G, H, Hg2H), for the same groupG and subgroupH . Using the notation of
Example 3.4 or 3.5, the elementsg1 and g2 are 2-elements inNG(L · 〈σ 〉) \ Gαβ . Note
that NG(L · 〈σ 〉) containsL · 〈σ 〉 as a subgroup of index 2. AlsoGαβ = Sαβ · 〈σ 〉 has
a homomorphism ontoZr · Zr−1 and it follows that its subgroupL · 〈σ 〉 of index r is self-
normalizing inGαβ . Thus, for a givenG andH , all choices for the 2-elementsg1, g2 determine
the same double cosetHg1H = Hg2H , and hence the same graphX1 = X2. 2

5. UNFAITHFUL AND NEARLY SIMPLE

We continue the notation and assumptions introduced in the first paragraph of Section 4.
Further, we assume throughout this section that the covering groupK G G is non-trivial and
thatG6 ∼= G/K is almost simple, and therefore appears in Theorem 2.9.1. Case 4 (b) (iii) of
the Main Theorem arises under this hypothesis.

Since the groupK F induced byK on F is a non-trivial normal subgroup of the 2-transitive
group(GF )

F , it follows thatK is transitive onF (and hence on each of the fibres); and since
X is a cover of its antipodal quotientKn it follows that K acts faithfully and regularly onF .
Hence,K F is a regular normal subgroup of the 2-transitive group(GF )

F , and soK ∼= Za
ro

is
an elementary Abelianro-group for some primero. It follows thatr = r a

o , (GF )
F is an affine

2-transitive group, and by Theorem 2.5 the primero dividesn. Since(GF )
F is 2-transitive,

it follows thatGF , and hence alsoG, act transitively by conjugation on ther − 1 non-trivial
elements ofK . LetC be the kernel of thisG-action, that is,C = CG(K ). SinceK is Abelian,
K ≤ C. Further, letN be the normal subgroup ofG containingK such thatN/K is the
non-Abelian simple socle ofG/K .

THEOREM 5.1. The subgroup N= SU(3,q2), with r = 3, n = q3 + 1, and q ≡
±3(mod 9), and the graph X is one of the graphs of Example 3.5.

PROOF. Suppose first thatC = K . ThenG/K is isomorphic to a subgroup ofGL(a, p)
with G/K acting transitively on ther − 1= r a

o − 1 non-zero vectors. AlsoG/K is an almost
simple group which has a faithful 2-transitive action on6 of degreen > r , contradicting
Proposition 2.14. HenceC 6= K . It follows thatC/K contains the non-Abelian simple socle
of G/K , that isC containsN.

Suppose next that the derived subgroupN′ of N is a proper subgroup ofN. SinceN/K is a
non-Abelian simple group andN/N′ is Abelian, it follows thatN = K N′ andK 6≤ N′. Then,
sinceK is a minimal normal subgroup ofG we haveK ∩ N′ = 1, and henceN = K × N′,
andN ′ ∼= N/K is simple. We claim that(N′F )F = K F ∼= K . (Note that a consequence of
this is that the hypotheses of Proposition 2.13 hold forN′.) SinceN G G, the set ofN′-orbits
on vertices forms a system of imprimitivity forG in X. Moreover, sinceN is transitive on6,
so also isN′. Thus theN′-orbits are not the antipodal blocks and so by Lemma 2.4 (sinceX is
not bipartite),N′ is transitive on vertices. In particular,N′F is transitive onF and commutes
with K . SinceK F is Abelian and regular, it is self-centralizing in the symmetric group onF ,
(see [25, 4.4]). It follows that(N′F )F = K F ∼= K , as claimed.

It now follows from Proposition 2.13 that either (a)N′ = PSL(d,q), n = (qd−1)/(q−1),
andr divides(d,q−1), or (b)N ′ = PSU(3,q2), n = q3+1, andr divides(q+1)/(3,q+1).
In case (a), sincer ≥ 3, we haved ≥ 3 and so, forF ′ ∈ 6\{F}, the subgroupGvF ′ is transitive
on F ′, contradicting the fact that this group fixes the unique point ofF ′ adjacent tov in 0.
Thus case (b) holds. NowN′ is transitive on vertices and is 2-transitive on6. Moreover,N′v
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is the unique subgroup of indexr in N′F (whence ifr = 3 then 9 dividesq+ 1). This implies
that N′v is transitive on6 \ {F} and hence on then − 1 vertices adjacent tov. It therefore
follows that X ∼= 0(N′, N′v, N′vgN′v) for some 2-elementg as in Lemma 2.7.1, and thence
that X is one of the graphs constructed in Example 3.4, or in Example 3.5 with the groups as
in line 1 or 2 of the table. However, by Theorem 4.3, the automorphism group ofX is then
P0U (3,q2) or P6U (3,q2), and in particularAut X acts faithfully on6. This contradicts
the fact thatK 6= 1.

Thus N = N ′. Then K ≤ Z(N) ∩ N ′, that is, K is contained in the Schur multiplier
M(N/K ) of the simple groupN/K . Since|K | = r ≥ 3, the groupN/K , n, andM(N/K )
are as in one of the columns of the table in Lemma 2.11. Since we have that|K | = r = r a

o
divides|M(N/K )|, and also thatro dividesn, one of the following must hold:

G A6 A7 PSL(3,4) M22 PSU(3,q2) PSL(m,q)
n 6 15 21 22 q3 + 14 (qm − 1)/(q − 1)
r 3 3 3 4 r = 3,3|q + 1 r = ro, ro | (m,q − 1)

In the cases ofA6, A7, andM22, we find all possibilities fora1 andc2 from equation (1),
and for each of these, we find the eigenvaluesθ andτ and check the multiplicity condition (3).
In no case is the multiplicity condition satisfied. This procedure in the case ofPSL(3,4)
leads to the unique possibility:c2 = 9 anda1 = 1. However, by [2, Theorem 1.2.3] no such
graph exists. In the case ofPSL(m,q), m ≥ r ≥ 3 and we obtain a contradiction by arguing
as in the previous paragraph. ThusN/K = PSU(3,q2), and henceN = SU(3,q2). Now
NF is an extension of a normal subgroup of orderq3 by a cyclic group of orderq2 − 1, and
henceNv is its unique subgroup of indexr = 3. SinceNv acts faithfully on the vertices of
0, Nv does not contain the centreK of N, and henceq + 1 ≡ ±3 (mod 9). Further,Nv is
transitive on6 \ {F} and hence also on the vertices adjacent tov. By Lemma 2.7, it follows
that X ∼= 0(N′, N′v, N′vgN′v) for some 2-elementg as in Lemma 2.7.1, and henceX is one of
the graphs constructed in Example 3.5 with the groups as in line 3 of the table there.2

Finally, we determine the automorphism groups of the graphs arising in Theorem 5.1.

THEOREM 5.2. Let X = 0(G, H, HgH) be a graph constructed in Example3.5, with
q,G, H satisfying line3 of the table, and with q> 2. Then Aut X= G = 6U (3,q2).
Moreover, the graph X is independent of the choice of the2-element g.

PROOF. Let X be one of the graphs in Example 3.5 defined in terms of the groupG =
6U (3,q2), wherer = 3 andq ≡ ±3 (mod 9). LetV denote the vertex set of ordernr
wheren = q3 + 1, let S denote the normal subgroupSU(3,q2) of G, and setA = Aut X.
By constructionG ≤ A. Since X is antipodal,A preserves the set6 of n fibres of size
r = 3. Let F ∈ 6, andv ∈ F . Since the kernel of the action ofA on fibres contains
K ∼= Z3 and is semiregular on vertices, it follows that the kernel is equal toK . Thus the
permutation groupA6 = A/K induced byA on6 is a 2-transitive subgroup ofSn containing
G/K = P6U (3,q2). In particular, sinceq3 + 1 is not a prime power whenq > 2, A6 is
almost simple. Letsoc(A6) denote its socle. Note that the extension ofK by soc(A6) does
not split sinceN does not split overK . It follows thatK ⊆ A′ ∩Z(A′) (whereA′ is the derived
subgroup ofA), and hence thatK is contained in the Schur multiplier ofsoc(A6). Using the
facts thatn− 1 is a cube, and|K | = 3, it follows from Lemma 2.11 thatA6 ≤ P0U (3,q2),
and hence that|A: G| = 1 or 3.

Consider the group0U (3,q2), and recall our discussion just before Example 3.5 of its
subgroups, and in particular Figure 1. We use some of the notation introduced there. LetT
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be the quotient of0U (3,q2) obtained by factoring out the 3′-Hall subgroupC of the group
ZGU of non-singular scalar matrices. ThenT is an extension of a cyclic group of order 3 by
P0U (3,q2). We may identifyA with a subgroup ofT andG with the image of6U (3,q2)

under the quotient map (since6U (3,q2) ∩ ZGU ∼= Z3). With this identification,K is the
cyclic normal subgroup ofT of order 3. LetW̄ denote the image of the subgroupW (defined in
equation (5)) under the quotient map, that isW̄ = W/(W ∩C). ThenW̄ has order 3(q2− 1),
andT = GW̄.

Suppose for a contradiction thatA = T . Let v be the vertex ofX such thatGv = H =
PL2·〈σ 〉, with P, L2 as in Example 3.5. ThenTv = PW̄·〈σ 〉 (identifying P, L2 andσ with
their images inT). We may therefore now identify the vertex setV with the set[T : Tv] of right
cosets ofTv, with T acting by right multiplication. There is a fibreF ′ such thatGvF ′ = L2·〈σ 〉
and we have thatGvF ′ = Gvw wherew is the unique vertex ofF ′ adjacent tov in X. Then
TvF ′ = W̄·〈σ 〉. However, the vertices inF ′ are the three cosets ofTv with coset representatives
in W̄, andTvF ′ therefore acts transitively on these three vertices. This contradicts the fact that,
as a subgroup of automorphisms ofX, TvF ′ should fixw. HenceA = G as claimed.

To see that the graphX is independent of the choice of 2-elementg, suppose thatX2 =
0(G, H, Hg2H) is a second graph constructed as in Example 3.5, with a second 2-element
g2 ∈ N(L2 · 〈σ 〉). An isomorphismϕ from X to X2 is an element of the symmetric group
Sym(V) which normalizes the common automorphism groupG. However it follows from the
discussion above thatG has trivial centralizer inSym(V), thatNSym(V)(G) ≤ NSym(V)(S) =
T , and thatNT (G) = G, whenceG is self-normalizing inSym(V). Henceϕ ∈ G, and so
X2 = Xϕ = X. 2

6. AFFINE

We continue to use the notation and assumptions introduced in the first paragraph of Section
4, but we putH := GF . Further, we assume that the covering groupK G G is non-trivial and
that G6 ∼= G/K is an affine 2-transitive group. Case (6) of the Main Theorem arises under
this hypothesis.

Recall that ap-group is calledspecialif it is non-Abelian and has but one proper non-trivial
characteristic subgroup and it is calledextra specialif that subgroup has orderp.

LEMMA 6.1. There is a prime p such that r= pa, n = pb (where b> a ≥ 1) and the
maximal normal p-subgroup P of G acts regularly on the vertices of X. The group P is
either elementary Abelian or special of exponent p. Moreover K is the only proper non-trivial
H-invariant subgroup of P.

PROOF. Arguing as in the second paragraph of Section 5 we see thatK = Za
p is an ele-

mentary Abelianp-group, for some primep and somea ≥ 1, and thatK acts faithfully and
regularly on each fibre. Moreover,p dividesn by Theorem 2.5. Therefore, sinceG6 is affine,
we haven = pb for someb > a. The maximal normalp-subgroupP of G acts regularly on
6 so Px ≤ K ∩ H = 1. The groupH acts onP by conjugation and theH -conjugacy classes
of elements inP reflect the fourH -orbits onX. Since any characteristic subgroup ofP must
be a union ofH -conjugacy classes the last sentence follows from Lemma 2.4. In particular
this means thatK ≤ Z(P).

Suppose thatP does not have exponentp. Takes ∈ P of order p2. Thens /∈ K and
Q = 〈K , s〉 is Abelian. Also the group〈qp: q ∈ Q〉 ≤ K is generated bysp. But now the
stabilizer inH of the blockFs 6= F must centralize 16= sp ∈ K , and therefore fix bothx and
xsp

in F , contrary to Lemma 2.6.
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Thus,P has exponentp and if not Abelian, all of its proper non-trivial characteristic groups
coincide withK , in particular,K = P

′ = 8(P) = Z(P) and soP is special. 2

Recall from the notation introduced at the beginning of Section 4 thatv ∈ X is in the fibre
F . Identify vertices ofX with elements ofP, by identifyingvg ∈ X with g ∈ P. The fibres
are labelled by (elements of) cosets of the covering groupK and form the unique non-trivial
system of imprimitivity for the action ofG on X.

Let C = CH (K ) denote the kernel of the action ofH on F . Then the transitive linear group
H6 ∼= H has the transitive linear groupH F ∼= H/C as a homomorphic image. Note that the
hypotheses of Lemma 2.15 hold forH andC, and henceC satisfies one of the three alternative
conclusions of that lemma. In particularC 6= 1.

PROPOSITION 6.2. Suppose P is elementary Abelian. Then p= 2, C ≤ Sp(2d, 2c)

where b= 2cd, and C is a transitive linear group. If a= c, then X is a classical example in
Example 3.6.

PROOF. Suppose thatC has a non-trivial Abelian characteristicp′-subgroupC1. Then
C1 is a normal subgroup ofGF , and sinceGF is transitive on6 \ {F}, it follows that the
only vertices fixed byC1 are ther vertices ofF , and hence thatCP(C1) = K . Hence
P1 := 〈[x, z]: x ∈ P, z ∈ C1〉 is non-trivial. SinceC1 is a p′-group,P1 intersectsK trivially
and soP1 acts faithfully on6. SinceC1 is H -invariant,P1 is anH -invariant complement to
K in P contrary to Lemma 6.1. Therefore Lemma 2.15 (2) holds.

RegardH as aGF(p)-linear group by way of its action onP. Then H leaves invariant
theGF(p)-subspaceK and acts as a transitive linear group onP/K (∼= 6) and onK (∼= F).
Moreover,H acts indecomposably onP, since the orbits of anH -invariant complement toK
in P would provide a second system of imprimitivity for the action ofG contrary to Lemma
6.1. By definition,C centralizes thea dimensionalGF(p)-subspaceK . Thus there is a
GF(p)-basis ofP and group homomorphismφ: C → GL(b, p) with respect to which the
elements ofC ≤ Aut(P) = GL(b+ a, p) have the form:(

φ(`) h(`)
0 Ia

)
, ` ∈ C. (6)

It follows that the first cohomology groupH1(C, P/K ) is non-trivial. Results of Higman
[12, Lemma 4], Jones and Parshall [14] imply thatp = 2 andC ≤ Sp(2d, 2c), b = 2cd. By
Theorem 2.9,C hasSp(2d, 2c)′ or G2(2c) as a normal subgroup, and the first cohomology
groupsH1(C, P/K ) for these groupsC are known to be one-dimensional overGF(2c), see
[14]. This implies that the set of possible functionsh(`) appearing in (6) are all equivalent
under conjugation by matrices of the formdiag(Ib, f Ia/c), f ∈ GF(2c) (where we interpret
f Ia/c as an element ofGL(a, 2)). Whena = c it follows that any two such groupsC1 andC2
are conjugate under these matrices. This implies that the associated graphs are isomorphic.2

PROPOSITION 6.3. If P is special, then p is odd, C≤ Sp(2d, pc) where b= 2cd and
d ≥ 1, and C is a transitive linear group. Moreover if a= c, then the graph is a classical
example in Example 3.6.

PROOF. Since groups of exponent 2 are elementary Abelian, Lemma 6.1 implies thatp
is odd. If a = 1, thenP is extra-special. The extra-special groups are classified (cf. [13,
Theorem 13.7]) and the only ones of exponentpwhich have automorphism groups transitive on
P/K are such thatAut P/Op(Aut P) = Sp(2d, p) with b = 2d. ThusC ≤ H ≤ Sp(2d, p),
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and H is a transitive linear group. In particular,H 6≤ 0L(1, p2d), and hence part 2 or 3 of
Lemma 2.15 holds. In either caseC is a transitive linear group and Proposition 6.3 holds with
c = 1. note that theexceptionalgroups in Theorem 2.9 (2) (e) (i) and theextra specialgroups
in Theorem 2.9 (2) (f) (i) arise here.

Now suppose thata > 1. SinceC normalizesP and acts trivially onK it acts onP/K in such
a way as to leave invariant the non-trivial bi-additive form afforded by the commutator map of
P. This commutator form appears as anH -invariant skew symmetric element of theGF(p)-
vector spaceP/K⊗P/K . By Schur’s lemma, the centralizer inAut(P/K )of the full isometry
group of this form isGF(pc) for somec dividing a. Again whena = c the form and therefore
the isomorphism type ofP is unique. The inner automorphism group ofP is isomorphic to
P/K and so its full automorphism group has the structure ofA0Sp(2d, pc) whereb = 2cd.
But sincep is odd, H1(H, P/K ) = 0 by [14], for each possible transitive linear groupH .
This implies that there is only one conjugacy class of possible groupsH ≤ A0Sp(d,q) and
uniqueness follows. As in the previous paragraphH 6≤ 0L(1, p2d), and so sincea > 1, part
2 of Lemma 2.15 holds and henceC is as claimed. 2

ACKNOWLEDGEMENTS

C.D.G. gratefully acknowledges support from the National Sciences and Engineering Coun-
cil of Canada, grant no. OGP0009439. R.A.L. gratefully acknowledges the support of NSA
grant no. MDA904-94-2024 and NSF grant no. DMS-9622458. C.E.P. gratefully acknowl-
edges support from the Australian Research Council. Thanks go to Matt Chapman and xypic
for Figure 1.

REFERENCES

1. }}M. Aschbacher, The nonexistence of rank three permutation groups of degree 3250 and subdegree
57,J. Algebra19 (1971), 538–540.

2. }}A. E. Brouwer, A. M. Cohen and A. Neumaier,Distance-regular Graphs, Springer, Berlin, 1989.
3. }}A. E. Brouwer, C. D. Godsil and H. A. Wilbrink, Isomorphisms between antipodal distance-regular

graphs of diameter three, unpublished manuscript, 1991.
4. }}W. Burnside,Theory of Groups of Finite Order, 2nd edn, Dover, New York, 1955.
5. }}P. J. Cameron, Finite permutation groups and finite simple groups,Bull. London Math. Soc.13

(1981), 1–22.
6. }}Peter J. Cameron, Automorphism groups of graphs, in:Selected Topics in Graph Theory II, L. W.

Beineke and R. J. Wilson (eds), Academic Press, London, 1983, pp. 89–127.
7. }}J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson,Atlas of Finite Groups,

Clarendon Press, Oxford, 1985.
8. }}A. Gardiner, Antipodal covering graphs,J. Combin. TheoryB16 (1974), 255–273.
9. }}C. D. Godsil and A. D. Hensel, Distance regular covers of the complete graph,J. Combinatorial

TheoryB56 (1992), 205–238.
10. }}D. Gorenstein and R. Lyons, The local structure of finite groups of characteristic 2 type,Memoirs

Amer. Math. Soc.276(1983), 1–731.
11. }}A. D. Hensel, Antipodal distance regular graphs, Masters thesis, University of Waterloo, 1988.
12. }}D. G. Higman, Flag-transitive collineation groups of finite projective spaces,Illinois J. Math. 6

(1962), 79–96.
13. }}B. Huppert,Endliche Gruppen I. Springer, Berlin, 1967.
14. }}W. Jones and B. Parshall, On the 1-cohomology of finite groups of Lie type, in: W. R. Scott and

F. Gross (eds),Proceedings of the Conference on Finite Groups, Academic Press, New York, 1976,
pp. 313–327.



478 C. D. Godsilet al.

15. }}M. W. Liebeck, The affine permutation groups of rank three,Proc. London Math. Soc.54 (1987),
477–516.

16. }}R. A. Liebler, Relations among the projective geometry codes, in:Finite Geometries and Designs,
London Mathematical Society Lecture Notes Series, vol 49, Cambridge University Press, 1981,
pp. 221-225.

17. }}P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime valency,J. Graph Theory8 (1984),
55–68.

18. }}R. A. Mathon, Three-class association schemes, in:Proc. Conf. Alg. Aspects Comb., Sem. Toronto
1975,Congressus Numer.13 (1975), 123–155.

19. }}D. H. Smith, Primitive and imprimitive graphs,Quart. J. Math. Oxford22 (1971), 551–557.
20. }}C. Somma, An infinite family of perfect codes in antipodal graphs,Rend. Mat. Appl.3 (1983),

465–474.
21. }}D. E. Taylor and R. Levingston, Distance-regular graphs, in:Combinatorial Mathematics, Proc.

Canberra 1977, Lecture Notes in Mathematics, vol 686, Springer, Berlin 1978, pp. 313–323.
22. }}D. E. Taylor, Two-graphs and doubly transitive groups,J. Combin. TheoryA61 (1992), 113–122.
23. }}J. A. Thas, Two infinite classes of perfect codes in metrically regular graphs,J. Combin. TheoryB23

(1977), 236–238.
24. }}H. N. Ward, On Ree’s series of simple groups,Trans. Am. Math. Soc121(1966), 62–89.
25. }}H. Wielandt,Finite Permutation Groups, Academic Press, New York, 1964.

Received 25 June 1997 and accepted 11 February 1998

C. D. GODSIL

Department of Combinatorics and Optimization,
University of Waterloo,

Waterloo, Ontario N2L 3G1,
Canada

ROBERT A. LIEBLER

Department of Mathematics,
Colorado State University,

Fort Collins,
Colorado 80523,

U.S.A.

CHERYL E. PRAEGER

Department of Mathematics,
University of Western Australia,

Nedlands,
W.A. 6907,

Australia


