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Abstract The hyperthermophilic archaeon Sulfolobus solfatari-
cus metabolises glucose and galactose by a �promiscuous� non-
phosphorylative variant of the Entner–Doudoroff pathway, in
which a series of enzymes have sufficient substrate promiscuity
to permit the metabolism of both sugars. Recently, it has been
proposed that the part-phosphorylative Entner–Doudoroff path-
way occurs in parallel in S. solfataricus as an alternative route
for glucose metabolism. In this report we demonstrate, by
in vitro kinetic studies of DD-2-keto-3-deoxygluconate (KDG) ki-
nase and KDG aldolase, that the part-phosphorylative pathway
in S. solfataricus is also promiscuous for the metabolism of both
glucose and galactose.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The hyperthermophilic archaeon Sulfolobus solfataricus

grows optimally at 80–85 �C and pH 2–4, utilising a wide range

of carbon and energy sources [1]. It has become one of the

most comprehensively researched model organisms of archaeal

sugar metabolism [2]. Central metabolism in this organism in-

volves a modified Entner–Doudoroff pathway [3], production

of acetyl-CoA by pyruvate:ferredoxin oxidoreductase [4] and

the citric acid cycle coupled to oxidative phosphorylation [5].

The modified Entner–Doudoroff pathway is a non-phosphory-

lative variant of the classical pathway and proceeds with no net

production of ATP.

It has recently been discovered that the non-phosphorylative

Entner–Doudoroff pathway in S. solfataricus is promiscuous

for the metabolism of both glucose and galactose (Fig. 1). Glu-

cose dehydrogenase first catalyses the NAD(P)-dependent oxi-
Abbreviations: KDG, DD-2-keto-3-deoxygluconate; KDGal, DD-2-keto-
3-deoxygalactonate; KDPG, DD-2-keto-3-deoxy-6-phosphogluconate;
KDPGal, DD-2-keto-3-deoxy-6-phosphogalactonate
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dation of both glucose and galactose, producing gluconate or

galactonate, respectively [6]. Gluconate dehydratase then

catalyses the dehydration of gluconate to DD-2-keto-3-deoxyg-

luconate (KDG) and galactonate to DD-2-keto-3-deoxygalacto-

nate (KDGal) [7]. Both these compounds are cleaved by KDG

aldolase to yield pyruvate and glyceraldehyde [6]. Glyceralde-

hyde dehydrogenase is then thought to oxidise glyceraldehyde

to glycerate, which is phosphorylated by glycerate kinase to

give 2-phosphoglycerate. A second molecule of pyruvate is

produced from this by the actions of enolase and pyruvate ki-

nase. This non-phosphorylative Entner–Doudoroff pathway is

also found in Aspergillus fungi, although in this case separate

enzymes exist for the metabolism of glucose and galactose

[8–10]. The discovery of metabolic pathway promiscuity in S.

solfataricus has been proposed to have physiological and evo-

lutionary significance [6].

Very recently, it has been reported that the part-phosphory-

lative Entner–Doudoroff pathway exists in parallel in S. solfa-

taricus as an alternative pathway for glucose metabolism [11]

(Fig. 1), a phenomenon that had previously been reported in

the hyperthermophilic archaeon Thermoproteus tenax [12]. In

this pathway, glucose is converted to KDG via glucose dehy-

drogenase and gluconate dehydratase, as occurs in the non-

phosphorylative pathway. KDG is then phosphorylated by

KDG kinase to produce DD-2-keto-3-deoxy-6-phosphogluco-

nate (KDPG), which undergoes an aldol cleavage to pyruvate

and glyceraldehyde-3-phosphate. This is performed by KDG

aldolase, which represents a bifunctional KDG/KDPG aldol-

ase. Glyceraldehyde-3-phosphate is converted by non-phos-

phorylating glyceraldehyde-3-phosphate dehydrogenase to

give 2-phosphoglycerate, which is converted to a second mol-

ecule of pyruvate via the actions of enolase and pyruvate ki-

nase. In S. solfataricus the genes encoding gluconate

dehydratase, KDG aldolase, KDG kinase and glyceralde-

hyde-3-phosphate dehydrogenase are found in a cluster. The

relevant enzyme activities have also been detected in cell ex-

tracts of the organism, providing convincing evidence that

the part-phosphorylative pathway exists alongside the non-

phosphorylative variant [11].

To date it has not been established whether this parallel

part-phosphorylative pathway in S. solfataricus is specific for

glucose or whether it exhibits a similar promiscuity to that

observed in the non-phosphorylative variant. This possibility

was investigated in the current work by in vitro studies of

KDG kinase and KDG aldolase.
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Entner–Doudoroff metabolism in Sulfolobus solfataricus. The non-phosphorylative pathway enzymes catalyse the metabolism of glucose and
galactose to pyruvate. The part-phosphorylative pathway (dashed arrows) exists in parallel as an alternative route for glucose metabolism.
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2. Materials and methods

2.1. Cloning of the KDG kinase gene
The gene encoding KDG kinase (gi:13816631) was located in the

published genome sequence of S. solfataricus [13] by homology searches
[14]. It was amplified from a genomic extract by PCR with a forward
primer designed to introduce an NdeI site (5 0-CATATGGTTGATG-
TAATAGCTTTGGGAGAGCC-30) and a reverse primer designed to
incorporate an XhoI site (5 0-CACTGATGTTTTCTCGAGAATATA-
TATTCATAAATGG-30). The amplified gene was cloned into theNdeI
and XhoI sites of the expression vector pET-19b (Novagen), which
incorporates a histidine tag (MGHHHHHHHHHHSSGHIDDDD-
KH) on the N-terminus of the protein.

2.2. Expression and purification of recombinant KDG kinase
The expression vector pET-19b containing the KDG kinase gene

was used to transform Escherichia coli BL21(DE3) (Novagen). Cells
were grown in LB medium at 37 �C for 20 h without induction and
were then harvested by centrifugation. An extract was prepared by
resuspending the cells in 50 mM Tris/HCl (pH 8.0) containing 5 mM
MgCl2 and passing them twice through a cell disruptor (One-shot
model, Constant Systems) at 200 MPa, followed by three 30 s bursts
of sonication using a 150-W Ultrasonic Disintegrator (MSE Scientific
Instruments). Debris was removed by centrifugation at 20000 · g for
30 min. KDG kinase was purified from the supernatant by His-bind re-
sin chromatography, following the recommended protocol (Novagen).
The eluted protein was dialysed overnight into 50 mM HEPES/KOH
(pH 7.5) containing 5 mM MgCl2. The protein was analysed by mass
spectrometry using a TofSpec-2E machine (Micromass). Protein con-
centrations were determined by the method of Bradford [15] using a
calibration curve constructed with bovine serum albumin. SDS–PAGE
analysis was performed with a 12% (w/v) gel [16], following standard
protocols [17].

2.3. KDG kinase assay
KDG and KDGal were synthesised using S. solfataricus gluconate

dehydratase [7] and purified and characterised as described previously
[6]. KDG kinase assays were performed in 100 ll of 50 mM HEPES/
KOH (pH 7.5 at 60 �C) containing 5 mM MgCl2, 10 mM ATP, 0–
25 mM KDG or KDGal and 5 ll of KDG kinase. Reactions were
heated at 60 �C for 10 min before being transferred to ice. 0.9 ml of
a development solution was then added, containing 50 mM sodium
pyrophosphate (pH 8.5), 5 mM EDTA, 10 mM sodium arsenate,
100 mM KCl, 10 mM LL-cysteine, 1 mM NAD, excess S. solfataricus
KDG aldolase and excess rabbit muscle glyceraldehyde-3-phosphate
dehydrogenase (Roche). The reactions were incubated at 35 �C for
30 min before their absorbance was measured at 340 nm. All appropri-
ate controls were performed to ensure the requirements for coupled
enzymatic analysis were met [18] and kinetic parameters were deter-
mined by the direct linear method [19].

2.4. Synthesis of KDPG and DD-2-keto-3-deoxy-6-phosphogalactonate

(KDPGal)
Biotransformations were performed with 100 mg KDG or KDGal

and 350 mg ATP in 50 ml of 50 mM HEPES/KOH (pH 7.0 at 50 �C)
containing 5 mM MgCl2. One mg recombinant S. solfataricus KDG
kinase was added and the reactions were incubated at 50 �C for 20 h
with shaking. After this time, products were purified by DOWEX
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1 · 8 anion exchange chromatography with 0–0.1 M HCl as eluant.
The pooled product was adjusted to pH 7.0 using NaOH and was then
dried. Salt was removed by selective precipitation of KDPG and KDP-
Gal in 80% (v/v) ethanol. KDPG and KDPGal were analysed by mass
spectrometry using an LCT machine (Micromass) and 1H NMR spec-
troscopy using an Avance 300 machine (Bruker).

2.5. KDG aldolase assay
Recombinant KDG aldolase was prepared and purified as described

previously [6]. The cleavage of KDPGandKDPGal wasmonitored by a
continuous assay with Bacillus stearothermophilus LL-lactate dehydroge-
nase (Sigma–Aldrich) as coupling enzyme, as described previously [6].
Kinetic parameters were determined by the direct linear method [19].
Table 1
Kinetic parameters of KDG kinase from S. solfataricus at 60 �C

Substrate Km (mM) kcat (s
�1) kcat/Km

(s�1 mM�1)

ATPa 2.8 (±0.2) 3.8 (±0.2) 1.4
KDGb 3.6 (±0.1) 5.0 (±0.1) 1.4
3. Results

3.1. Cloning and expression of KDG kinase

The gene encoding KDG kinase was identified in the genome

of S. solfataricus based on homology searches. The gene

appears in a cluster along with genes for gluconate dehydratase,

KDG aldolase and non-phosphorylating glyceraldehyde-3-

phosphate dehydrogenase [11]. No consensus Shine–Dalgarno

sequence was found upstream of the start site, although a

TATA box promoter element (Box A), TTAAAA, was found

24–29 bp upstream and a polypyrimidine termination se-

quence, TTTTTCC, was found 16–23 bp downstream of the

gene. Based on other genes in Sulfolobus species, this suggests

that the KDG kinase gene is expressed as a monocistronic tran-

script, despite its location 9 bp downstream of the KDG aldol-

ase gene [20,21]. The gluconate dehydratase and KDG aldolase

genes contain regulatory elements consistent with their expres-

sion as the first and second genes of a polycistronic transcript

[7]. The possibility to regulate KDG kinase gene transcription

independently of the gluconate dehydratase and KDG aldolase

genes may be crucial to whether the organism uses the part-

phosphorylative or non-phosphorylative pathway, as discussed

later.

The KDG kinase gene encodes a 313 amino acid polypeptide

with a theoretical molecular weight of 34875 Da. In this work,

the protein was successfully expressed in E. coli with a histidine

tag on the N-terminus of the protein. This tag facilitated the

efficient purification of the protein in a single chromatography

step, despite it only comprising a small percentage of total sol-

uble protein (Fig. 2). Mass spectrometric analysis of the puri-
Fig. 2. Purification of recombinant KDG kinase. This SDS–PAGE gel
shows samples from throughout the purification of KDG kinase. 1,
whole cell sample; 2, soluble cell extract; 3, His-bind chromatography
unbound sample; 4, His-bind chromatography eluted sample.
fied protein revealed a molecular weight of 37513 Da, which is

consistent with the expected size of KDG kinase with a histi-

dine tag after the N-terminus methionine has been processed

by E. coli. This analysis provides a valuable confirmation that

the protein has been expressed correctly in E. coli.

3.2. KDG kinase kinetics

The activity of KDG kinase was confirmed in the current

work by coupling the reaction to the reduction of NAD+ using

KDG aldolase and glyceraldehyde-3-phosphate dehydroge-

nase. The assay gave a precise assessment of kinase activity

and was used to determine the kinetic parameters for the phos-

phorylation of KDG and KDGal (Table 1). Both compounds

were good substrates for the enzyme, and were phosphorylated

with similar catalytic efficiency, providing good evidence that

they are both natural substrates during metabolism of glucose

or galactose via the part-phosphorylative pathway. Recombi-

nant KDG kinase was used for the preparative synthesis of

KDPG and KDPGal, the purity and identity of which were

confirmed by mass spectrometry and 1H NMR spectroscopy,

giving data consistent with those reported in the literature

[22,23]. These compounds were subsequently used for the ki-

netic analysis of the KDG aldolase.

3.3. KDG aldolase kinetics

The KDG aldolase from S. solfataricus has been reported to

have a dual activity with KDG and KDPG [11]. In the current

work, this dual activity was investigated further by kinetic

analysis in the cleavage direction. Unexpectedly, it was discov-

ered that the enzyme could also cleave KDPGal, with similar

efficiency to KDPG (Table 2). Interestingly, the observed Km

values of the enzyme with the phosphorylated substrates were

significantly lower than those for KDG and KDGal [6]. This

gives the enzyme a significantly improved catalytic efficiency

with the phosphorylated compounds and may have crucial

importance for metabolism in the organism, as discussed later.
KDGalb 8.1 (±0.2) 5.4 (±0.1) 0.7

The production of KDPG and KDPGal were measured by coupling to
NADH formation using KDG aldolase and glyceraldehyde-3-phos-
phate dehydrogenase, as described in Section 2.
aReactions were carried out in the presence of 20 mM KDG.
bReactions were performed with 10 mM ATP.

Table 2
Kinetic parameters of KDG aldolase from S. solfataricus at 60 �C

Substrate Km (mM) kcat (s
�1) kcat/Km

(s�1 mM�1)

KDPG 0.10 (±0.01) 61.9 (±0.4) 643
KDPGal 0.17 (±0.01) 34.8 (±0.2) 207
KDGa 25.7 (±1.2) 28.2 (±1.4) 1.1
KDGala 9.9 (±0.4) 6.8 (±0.2) 0.7

Reactions were performed by coupling the KDG aldolase cleavage to
the reduction of pyruvate by Bacillus stearothermophilus LL-lactate
dehydrogenase, as described in Section 2.
aThese values were reported previously [6].
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This feature of the KDG aldolase reaction was not revealed by

previous analysis in which the enzyme was assayed only in the

condensation direction using only racemic glyceraldehyde-3-

phosphate [11]. The phosphorylated compounds KDPG and

KDPGal have a higher proportion of open-chain form in solu-

tion in comparison to KDG and KDGal [24], where no open-

chain form of the sugars can be detected by NMR [25]. This is

likely to have implications for the observed kinetic parameters

of the aldolase cleavage reaction, which must operate via the

open-chain form of the sugar.
4. Discussion

The work reported here provides added significance to the

previously described phenomenon of �metabolic pathway pro-

miscuity� [6,7], and presents it in the light of a recent report on

the discovery of the part-phosphorylative Entner–Doudoroff

pathway in S. solfataricus [11]. In vitro kinetic studies of

KDG kinase and KDG aldolase have provided further confir-

mation that the part-phosphorylative pathway occurs in paral-

lel with the non-phosphorylative pathway in this organism,

and also demonstrate that the part-phosphorylative variant

is promiscuous for the metabolism of both glucose and galac-

tose. These observations have potential physiological and evo-

lutionary significance, in addition to providing a fascinating

insight into the unusual features of central metabolism in this

hyperthermophilic archaeon.

S. solfataricus KDG kinase has been successfully produced

in recombinant form and the kinetics of its phosphorylation

of KDG and KDGal have been investigated. A recent report

of the structure of KDG kinase from Thermus thermophilus,

which has 35% amino acid identity to the S. solfataricus en-

zyme, provides some insight into the structure of the S. solfa-

taricus KDG kinase [14]. The enzyme is a member of the PfkB

family of carbohydrate kinases, which includes ribokinase,

adenosine kinase and 6-phosphofructokinase [26]. In these en-

zymes an aspartate residue is predicted to play a critical role in

the transfer of the c-phosphate of ATP to a substrate hydroxyl

group, and this aspartate is conserved in S. solfataricus KDG

kinase (D258). There is a close degree of structural and mech-

anistic homology between members of the PfkB family,

although a variety of different multimeric assemblies are found

[14]. The precise nature of the interactions of the S. solfataricus

enzyme with KDG, KDGal and ATP, and its subunit assem-

bly, will await a full biochemical and structural investigation

of the enzyme.

The kinetics of the KDG aldolase-catalysed cleavage of

KDPG and KDPGal reported herein provides strong evidence

that both compounds are natural substrates of the enzyme.

Previously, activity with phosphorylated substrates had only

been demonstrated by the condensation of pyruvate and race-

mic glyceraldehyde-3-phosphate, which does not provide abso-

lute proof of the physiologically relevant activity [11]. From an

evolutionary perspective, the discovery that the KDG aldolase

from S. solfataricus has favourable KDPG aldolase activity

was unexpected. Previously, all known KDPG aldolases have

been found to be only distantly related to the N-acetylneuram-

inic acid aldolase subfamily, of which the S. solfataricus KDG

aldolase is a member [27].

S. solfataricus KDG aldolase provides a powerful model for

the structural basis of substrate promiscuity, both in terms of
its lack of stereocontrol at the C4 position [6] and in its dual

activity with phosphorylated and non-phosphorylated com-

pounds. In previous work the high-resolution crystal structure

of the enzyme has been determined, in addition to structures of

the enzyme with pyruvate, KDG and KDGal bound in the ac-

tive site as Schiff-base intermediates [28]. This work led to

rationalisation of the enzyme�s promiscuous substrate recogni-

tion, and provided an insight into its mechanism. In the future,

attempts will be made to resolve the structure of enzyme-sub-

strate complexes with KDPG and KDPGal. This should help

to explain the enzyme�s activity with phosphorylated com-

pounds, and the lack of stereocontrol it displays with these

substrates.

It has previously been demonstrated that enzymic activities

of both the non-phosphorylative and part-phosphorylative

Entner–Doudoroff pathways are present in cell extracts of

S. solfataricus [11]. This �pathway parallelism� has unknown

physiological significance and raises interesting questions

about the regulation of the two pathways in the organism.

It is clear from the comparison of the catalytic efficiency of

KDG aldolase with KDPG (kcat/Km = 643 mM�1 s�1) and

KDG (kcat/Km = 1.1 mM�1 s�1) that cleavage of the phos-

phorylated substrate would be significantly favoured in a sit-

uation where both compounds are present. It therefore seems

that if the KDG kinase is present and active then central

metabolism will occur via the part-phosphorylative route.

However, the KDG kinase gene sequence has consensus pro-

moter and termination sequences consistent with its produc-

tion as a single transcript. This is unexpected, given the

presence of the gene in an Entner–Doudoroff gene cluster,

and may imply that transcription of this enzyme gene is reg-

ulated independently of the other genes of the pathway. Un-

der certain conditions it is possible that the gene is also

transcribed as a polycistronic transcript, along with the glu-

conate dehydratase and KDG aldolase genes. In addition

to possible transcript level control, the local concentration

of ATP will have a critical effect on whether KDG and

KDGal are phosphorylated, or cleaved directly by KDG

aldolase. The Km of the kinase for ATP of 2.8 mM is high

compared to the likely intracellular concentration, and it is

possible that the non-phosphorylative pathway would be fa-

voured under starvation conditions, which could produce

pyruvate to allow the citric acid cycle to function without

ATP input. Further investigation is required to establish the

relative contribution of the two pathways to glycolytic flux,

and how they are regulated.

It is clear from the current report that regardless of

whether S. solfataricus uses the part-phosphorylative or the

non-phosphorylative Entner–Doudoroff pathway, then the

same enzymes can be used for the metabolism of glucose

and its C4 epimer galactose. This situation is unusual, and

in other microorganisms separate pathways of specific en-

zymes exist for the metabolism of the two sugars. The exis-

tence of a promiscuous central metabolic pathway in S.

solfataricus may indicate a primitive evolutionary feature in

this hyperthermophilic archaeon, or may be an adaptation

to survival in its extreme environment [6]. The presence of

parallel Entner–Doudoroff pathways in S. solfataricus, both

of which are promiscuous for the metabolism of glucose

and galactose, is a remarkable example of the unusual fea-

tures and versatility of central carbohydrate metabolism in

hyperthermophilic archaea.
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