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Abstract
In the list of possible scapegoats for the recent financial crises, mathematics, in particular mathematical finance has been ranked, without
a doubt, as the first among many and quants, as mathematicians are known in the industry, have been blamed for developing and using
esoteric models which are believed to have caused the deepening of the financial crisis. However, as Lo and Mueller (2010) state “Blaming
quantitative models for the crisis seems particularly perverse, and akin to blaming arithmetic and the real number system for accounting
fraud.” Throughout the history, mathematics and finance have always been in a close relationship. Starting from Babylonians, through
Thales, and then Fibonacci, Pascal, Fermat, Bernoulli, Bachelier, Wiener, Kolmogorov, Ito, Markowitz, Black, Scholes, Merton and many
others made huge contributions to the development of mathematics while trying to solve finance problems. In this paper, we present a brief
historical perspective on how the development of finance theory has influenced and in turn been influenced by the development of math-
ematical finance theory.
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Thales (624 e 547 BC)
,

d hos
One of the earliest examples of financial engineering can be
traced back to the philosopher Thales (624e547 BC) of
Miletus in ancient Greece. Following is from Politics, Book 1
(part XI) by Aristotle: “According to the story, he knew by his
skill in the stars while it was yet winter that there would be a
great harvest of olives in the coming year; so having little
money, he gave deposits for the use of all olive-presses in
Chios and Miletus, which he hired at a low price. When the
harvest-time came, and many wanted all at once and of a
sudden, he let them out at any rate he pleased. Thus he showed
the world that philosophers can easily be rich if they like, but
their ambition is another sort.”1 So 2500 years ago, what
Thales traded was nothing but a call option contract on oil
presses for the spring olive harvest. As Aristotle mentions,
Thales wanted to show that his knowledge as a mathematician
(as a philosopher or as an astronomer) was useful for the
whole society.
1 Aristotle, Politics, Book I, trans. B. Jowett in The Complete Works of

Aristotle: the Revised Oxford Translation, ed. Jonathan Barnes, Bollingen
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Leonardo Pisano Bigollo (1170 e 1250)

Blaise Pascal (1623 e 1662) and Pierre De Fermat (1607 e 1665)

58 E. Akyıldırım, H.M. Soner / Borsa I_stanbul Review 14 (2014) 57e63
In 1202, Leonordo of Pisa, commonly called Fibonacci, wrote
a very first book onfinancial engineering, LiberAbaci (TheBook
of Calculations). His seminal book not only introduced Hindu-
eArabic numbers to Europe but also, as Goetzmann (2004) ar-
gues, it calculated the present value of alternative cash flows in
addition to developing a general method for expressing invest-
ment returns, and solving a wide range of complex interest rate
problems. Goetzmann and Rouwenhorst (2005) consider the
following as one of the most sophisticated interest rate problem
from his book Liber Abaci: “A soldier is granted an annuity by
the king of 300 bezants per year, paid in quarterly installments of
75 bezants. The king alters the payment schedule to an annual
year-end payment of 300. The soldier is able to earn 2 bezants on
100 per month (over each quarter) on his investment. How much
is his effective compensation after the terms of the annuity
changed?”. Clearly, in order to solve this problem you must
know the value of money at different points in time. Another
problem “Barter of Merchandise and Similar Things” from
Liber Abaci which is closely related to today’s Law of One Price
(if two assets offer identical cash flows then they must have the
same price) is the following: “20 arms of cloth are worth 3 Pisan
pounds and 42 rolls of cotton are similarlyworth 5Pisan pounds;
it is sought how many rolls of cotton will be had for 50 arms of
cloth” (Sigler (2002), p. 180). Leonordo of Pisa has been one of
the most famous names in mathematics regarding his contribu-
tions to number theory and other related areas. However, he may
be considered even more influential in finance because of his
contributions to the foundations of credit and banking in Europe
through present value computations.
Girolamo Cardano (1501 e 1576)

Jacob Bernoulli (1655 e 1705) and Daniel Bernoulli (1700 e 1782)
Girolamo Cardano, prominent Italian Renaissance mathe-
matician, in 1565, published his treatise Liber de Ludo Aleae
(The Book of Games of Chance) which founded the elementary
theory of gambling. His interest in gambling not only enabled
him to survive during the poor times of unemployment but also
to derive basic rules of the probability. AndrewW. Lo considers
the following from his book, Liber de Ludo Aleae, as the foot-
prints of the notion of a fair game which is the essence of a
martingale, a precursor to the RandomWalk Hypothesis: “ The
most fundamental principle of all in gambling is simply equal
conditions, e.g., of opponents, of bystanders, of money, of situ-
ation, of the dice box, and of the die itself. To the extent to which
you depart from that equality, if it is in your opponent’s favour,
you are a fool, and if in your own, you are unjust.”
About a century after Cardano, in 1654, two French mathe-
maticians Blaise Pascal and Pierre De Fermat, on the solution of a
problem posed byChevalier deMéré (a French noblemanwith an
interest in gaming and gambling questions), established the first
foundations of the probability theory. The problem originally
posed was to decide whether or not to bet even money on the
occurrence of at least one “double six” during the 24 throws of a
pair of dice. A seemingly well-established gambling rule led de
Méré to believe that betting on a double six in 24 throwswould be
profitable, but his own calculations indicated just the opposite
(Apostol (1969)). In a series of letters exchanged, Pascal and
Fermat solved this problemand the problemofpoints (also known
as “the unfinished game”) which is essentially the same as the
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problemof pricing a digital call option onCoxeRosseRubinstein
tree. Hence, Pascal and Fermat can also be regarded as the first
mathematicians to develop a derivative pricing formula.

At the end of 17th and start of the 18th Century, Bernoulli
family from Switzerland, made important contributions to the
development of probability theory over a couple of generations.
Jacob Bernoulli (1655e1705) proved the first version of the law
of large numbers (if you perform the same experiment a large
number of times, then the observed mean will converge to the
expected mean) and core results on expected value in his book
Ars Conjectandi (The Art of Conjecturing) on combinatorics
and mathematical probability. In 1738, Daniel Bernoulli
(1700e1782) took an important step towards a theory of risks by
his paper Specimen theoriae novae de mensura sortis (Exposi-
tion of a New Theory on the Measurement of Risk) in which he
discusses the St. Petersburg paradox. The following passage
describing the St. Petersburg paradox is fromDaniel Bernoulli’s
publication (the translation appeared in Econometrica 22 (1954)
123e136):“My most honorable cousin the celebrated Nicolaus
Bernoulli, Professor utriusque iuris at the University of Basle,
once submitted five problems to the highly distinguished math-
ematician Montmort. These problems are reproduced in the
work L’analyse sur les jeux de hazard de M. de Montmort, p.
402. The last of these problems runs as follows: Peter tosses a
coin and continues to do so until it should land ”heads” when it
comes to the ground. He agrees to give Paul one ducat if he gets
”heads” on the very first throw, two ducats if he gets it on the
second, four if on the third, eight if on the fourth, and so on, so
that with each additional throw the number of ducats he must
pay is doubled. Suppose we seek to determine the value of Paul’s
expectation.” This game leads to a random variable with infinite
expected value and any rational gambler would enter the game
with a finite price of entry. However, the game seems to beworth
only a very small amount for rational investors compared to the
expected value of the game. Daniel Bernoulli solved this
paradox by introducing log utility function which has the
diminishing marginal utility concept in it. In his own words: “
The determination of the value of an item must not be based on
the price, but rather on the utility it yields. There is no doubt
that a gain of one thousand ducats is more significant to the
pauper than to a rich man though both gain the same amount.”
This seems to be the first time investment decision making is
evaluated based on a utility function other than linear utility.
Louis Bachelier (1870 e 1946)

(source: Wikimedia Commons)
At the turn of the 20th Century, March 29, 1900, a French
doctoral student Louis Bachelier defended his thesis “Thé-
orie de la Spéculation” (Theory of Speculation) which is
today recognized as the birth certificate of the modern
mathematical finance. His exceptional work has been pub-
lished in one of the most influential French scientific jour-
nals, Annales Scientiques de lÉcole Normale Supérieure. He
is credited with being the first person to derive the mathe-
matics of Brownian motion and to apply its trajectories for
modeling stock price dynamics and calculating option prices.
Schachermayer and Teichmann (2008) compare the option
pricing formulas derived by Louis Bachelier and Black-
eMertoneScholes and show that the prices coincide very
well. They also present that Bachelier’s model yields good
short-time approximations of prices and volatilities. His
pioneering work regarding the financial markets also led to
the development of what is known today as Efficient Market
Hypothesis and related theories like capital asset pricing
model. He writes in his thesis: “ The influences that deter-
mine the movements of the exchange are innumerable; past,
current and even anticipated events that often have no
obvious connection with its changes . it is thus impossible
to hope for mathematical predictability.” and notes the main
idea in a single sentence: “The mathematical expectation of
the speculator is zero.” In honor of his great contributions to
the development of stochastic calculus and mathematical
finance, a group of prominent financial mathematician
formed The Bachelier Finance Society in 1996 to provide
academia and practitioners the opportunity to meet and ex-
change ideas.
Norbert Wiener (1894 e 1964)

(source: Research Laboratory of Electronics at MIT)
Most of the exciting innovations in the modern history of
mathematical finance are rooted in the discovery of the
Brownian motion by Scottish botanist Robert Brown. In 1827,
he observed rapid oscillatory motion of microscopic particles
in a fluid resulting from their collision with atoms or mole-
cules in the fluid. However, as mentioned above, Bachelier
was the first to define Brownian motion mathematically and
used one dimensional version t1Bt; t � 0 to model stock
price dynamics. Unaware of Bachelier’s work, Albert Einstein
also derived the equations for Brownian motion and applied it
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on the kinetic theory of heat in thermodynamics. However,
Norbert Wiener is the first to provide the rigorous mathe-
matical construction of Brownian motion therefore it is also
called as Wiener process. He proved the existence of Brow-
nian motion(BM) and constructed the Wiener measure which
describes the probability distribution of BM. It has been used
to describe many physical phenomena because of its many
interesting properties: It is continuous everywhere but no-
where differentiable. It is self-similar in law i.e. if one zooms
in or zooms out on a Brownian motion, it is still a Brownian
motion. It is one of the best known Lévy processes (càdlàg
stochastic processes with stationary independent increments)
and also it is a martingale.
Andrey N. Kolmogorov (1903 e 1987)

(source: Oberwolfach Photo Collection)
It was until the publication of Russian mathematician
Andrey Nikolaevich Kolmogorov’s seminal book “Founda-
tions of the Theory of Probability” in 1933 that probability
was seen something related to mathematics but somehow
different from it. However, Kolmogorov, similar to Euclid’s
construction of geometry, created a new formulation of
probability theory from fundamental axioms and therefore
fully integrated integrated probability into mathematics. He
relied on measure theory, that was developed by Émile Borel,
Henri Lebesgue and many others in the beginning of 20th
Century, to set the following axioms: 1) The probability of an
event is a non-negative real number, 2) the probability that
some elementary event in the entire sample space will occur is
1, 3) The probability of the union of mutually exclusive events
is the sum of the probability of the individual events. In his
1933 book, he also introduced the idea of conditional expec-
tation and equivalent measures which enabled financial
mathematicians to produce formulas for derivative prices.
Kolmogorov today is considered as one of the most brilliant
mathematicians that the world has ever known and it is not
possible to summarize his mathematical heritage in a para-
graph here but his fundamental contributions not only in
probability theory but also in statistical mechanics, stochastic
processes, information theory, nonlinear dynamics, mathe-
matical statistics have found many interesting applications in
finance and economics.
One of the most widely used mathematical formula by
financial engineers today, Ito’s Lemma, was derived by Japa-
nese mathematician Kiyoshi Ito in his spectacular paper: “On
stochastic differential equations (1951)”. In his attempts to
model Markov processes, Itô (in his famous 1942 paper “On
stochastic processes”) constructed stochastic differential
equations of the form

dXt ¼ mðXtÞdtþ sðXtÞdWt;

where W is a standard Wiener process and later, in his 1951
paper, he showed that for any twice differentiable function f
the following holds

df ðXtÞ ¼ f 0ðXtÞdXt þ 1

2
f 00ðXtÞd½X;X�t:

Clearly, Ito’s lemma presents a way to construct new SDE’s
from the given ones. It can be considered as the stochastic cal-
culus counterpart of the chain rule in Newtonian calculus. Ito’s
formula has been applied not only in different branches of
mathematics but also in conformal field theory in physics, sto-
chastic control theory in engineering, population genetics in
biology, and in many other various fields. Another extremely
useful theorem in mathematical finance, Ito’s representation
theorem, states that any square integrable martingale of a
Brownian filtration has a continuous version. Ito is considered as
the father of stochastic integration and stochastic differential
equations which lay the foundations of stochastic calculus. In
2006, because of his extraordinary work and outstanding con-
tributions, Carl Friedrich Gauss Prize for Applications of Math-
ematics was awarded for the first time to Kiyoshi Ito. In a speech
given marking his Kyoto prize in 1998, Ito gives a wonderful
description of mathematical beauty: “In precisely built mathe-
matical structures, mathematicians find the same sort of beauty
others find in enchanting pieces of music, or in magnificent ar-
chitecture. There is, however, one great difference between the
beauty of mathematical structures and that of great art. Music by
Mozart, for instance, impresses greatly even those who do not
know musical theory; the cathedral in Cologne overwhelms
spectators even if they know nothing about Christianity. The
beauty in mathematical structures, however, cannot be appreci-
atedwithout understanding of a group of numerical formulae that
express laws of logic. Only mathematicians can read “musical
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scores” containing many numerical formulae, and play that
“music” in their hearts. Accordingly, I once believed that without
numerical formulae, I could never communicate the sweet mel-
ody played in my heart. Stochastic differential equations, called
“to Formula,” are currently in wide use for describing phenom-
ena of random fluctuations over time. When I first set forth sto-
chastic differential equations, however, my paper did not attract
attention. It was over ten years after my paper that other math-
ematicians began reading my “musical scores” and playing my
“music” with their “instruments.” By developing my “original
musical scores” into more elaborate “music,” these researchers
have contributed greatly to developing “Ito Formula”.”

Around the same time Kiyoshi It�o was constructing the
foundations of stochastic calculus, Harry Markowitz published
his paper “Portfolio Selection” which is considered as the first
influential work of mathematical finance capturing the imme-
diate attention outside academia. His 1952 the Journal of
Finance paper “Portfolio Selection” together with his 1959 book
“Portfolio Selection: Efficient Diversification of Investments”
laid the groundwork for what is today referred to as MPT,
“modern portfolio theory”. Prior to Markowitz’s work, investors
formed portfolios by evaluating the risks and returns of indi-
vidual stocks. Hence, this lead to construction of portfolios of
securitieswith the same risk and return characteristics. However,
Markowitz argued that investors should hold portfolios based on
their overall risk-return characteristics by showing how to
compute the mean return and variance for a given portfolio.
Markowitz introduced the concept of efficient frontier which is a
graphical illustration of the set of portfolios yielding the highest
level of expected return at different levels of risk. These concepts
also opened the gate for James Tobin’s super-efficient portfolio
and the capital market line and also William Sharpe’s formal-
ization of the capital asset pricing model (CAPM). In the area of
linear programming, Harry Markowitz developed “sparse ma-
trix” techniques for solving very large mathematical optimiza-
tion problems. In simulation, he created a computer language
SIMSCRIPT togetherwith BernardHauser andHerbKarrwhich
has been widely used to program computer simulations of
manufacturing, transportation, and computer systems as well as
war games (Wikipedia). In 1989, Markowitz received The John
von Neumann Award from the Operations Research Society of
America for his work in portfolio theory, sparse matrix tech-
niques and SIMSCRIPT. In 1990, he shared Nobel Prize for
Economics for his work in portfolio theory.
Myron Scholes (1941 e)
(source: Wikimedia Commons)
A major breakthrough came in 1973 when Fischer Black
and Myron Scholes published the paper “The Pricing of
Options and Corporate Liabilities” in the Journal of Political
Economy and Robert Merton published the paper “On the
pricing of corporate debt: the risk structure of interest rates”
in the Bell Journal of Economics and Management Science”.
These papers introduced a new methodology for the valua-
tion of financial instruments and in particular developed
the BlackeScholes model for pricing European call and
put options. At the same time another breakthrough on the
industry side was the foundation of the Chicago Board Op-
tions Exchange to become the first marketplace for trading
listed options. Even beyond the imagination of the cele-
brated authors above, the market was so quick to adapt these
models. By 1975, almost all traders were valuing and
hedging option portfolios by using the BlackeScholes model
built in their hand calculators. From a tiny market trading
only 16 option contracts in 1973, the derivatives market has
grown enormously in notional amount to trillions of dollars.
In addition to huge explosion in the derivatives market,
BlackeScholeseMerton work also played a significant role
in the expansion of financial mathematics literature. Finan-
cial engineers today mainly use two approaches for the
calculation of option prices. In the first approach, option
price can be found as the risk neutral expected value of
the discounted option pay-off. In the second approach the
option price is the solution of the famous BlackeScholes
PDE

vV

vt
þ 1

2
s2S2

v2V

vS2
þ rS

vV

vS
� rV ¼ 0 ð1Þ

where V is the option value, S is the underlying asset, s is the
volatility and r is the risk free interest rate. FeynmaneKac
Theorem establishes the connection between these two ap-
proaches by showing that a classical solution to a linear
parabolic PDE has a stochastic representation in terms of an
expected value. However, their contributions are not
restricted to option pricing formulas. For instance, Fischer
Black is also famous for the development of Black-
eDermaneToy, BlackeKarasinski, BlackeLitterman, and
TreynoreBlack financial models among many other models
together with his co-authors. Robert Merton is also well
known for Merton model, JarroweTurnbull model, ICAPM,
and Merton’s portfolio problem. In 1997 the Royal Swedish
Academy of Sciences awarded the Nobel Prize for Eco-
nomics to Merton and Scholes, Fischer Black having died a
couple of years earlier. The best summary for their significant
contribution is given by Rubinstein (1992): “the Black &
Scholes model is widely viewed as one of the most successful
in the social sciences and perhaps, including its binomial
extension, the most widely used formula, with embedded
probabilities, in human history”.

BlackeScholeseMerton work has led to enormous
research activity within mathematical finance and it is rapidly



Robert Merton (1944 e)

(source: Wikimedia Commons)
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growing every day. It is a futile attempt to give a compre-
hensive account of this activity here but we want to touch a
recent topic in financial economics and mathematics i.e. robust
hedging. Robustness may have different meanings in different
frameworks but in the most general terms it refers to the
quality or state of being sturdy and strong in form, constitu-
tion, or construction. In economics, robustness is associated
with the sustainability of an economic model under different
assumptions, parameters, and initial conditions and also the
effectiveness of a financial system under different markets and
market conditions. Woodward (2006) classifies four different
notions of robustness in economics. Inferential robustness
refers to the idea that there are different degrees to which
inference from some given data may depend on various
auxiliary assumptions, and derivational robustness refers to
whether a given theoretical result depends on the different
modeling assumptions. Measurement robustness means trian-
gulation of a quantity or a value by (causally) different means
of measurement. Causal robustness, on the other hand, con-
cerns causal dependencies in the world (Kuorikoski, Lehtinen,
& Marchionni, 2007). This word has gained further popularity
and importance thanks to the book “Robustness” written by
two leading macroeconomists Lars Peter Hansen (co-winner
of the 2013 Nobel Prize in Economics) and Thomas J. Sargent
(co-winner of the 2011 Nobel Prize in Economics). They
develop robust control techniques with applications to a va-
riety of problems in dynamic macroeconomics. These tech-
niques help macroeconomists and decision makers when
economic models are not fully trustable or when there are
misspecifications or wrong (or sometimes too strong) as-
sumptions in economic modeling.

As it is clear from the recent developments in the eco-
nomics history, robustness is growing to be more a prominent
concept which also needs some mathematical background. It
appeared in Mathematical Finance first in the form of robust
pricing and hedging of options and it can be traced back to
the seminal paper, Pricing with Smile (1994), by Bruno
Dupire. The standard approach to option pricing is to assume
that the underlying asset price is the solution of a stochastic
differential equation and then risk neutrality arguments yield
that the price of a contingent claim is given by the discounted
expected value of the contingent payoff under the equivalent
martingale measure. To reiterate once again, in the classical
option pricing methodology first a model is proposed for the
behavior of underlying asset and then a fair price and asso-
ciated hedging strategy is derived from this model. However,
Dupire, in his ground-breaking article, only assumes that the
underlying asset price follows a diffusion and that there are
call options traded with all possible maturities and all
possible strikes. By reverse engineering, he extracts the un-
derlying asset distributions from the observed call option
prices and any other financial products with payoff contin-
gent on the final value of the asset can be priced and hedged
from these distributions. The intuition behind this approach is
quite well-founded: Call options today are so liquid that they
can be treated as primary assets to price more sophisticated
derivative instruments. In a similar vein, Hobson (1998)
obtains the model independent bounds and the associated
hedging strategies on the prices of exotic derivatives and in
particular the look-back option by inferring the information
about the potential distribution of asset prices from the call
prices. Robust hedging has been an active area of research
over the past decade and we refer the reader to the excellent
survey of Hobson (The Skorokhod Embedding Problem and
Model-Independent Bounds for Option Prices, ParisPrinceton
Lectures on Mathematical Finance, Springer, (2010)) for
further information.

As it is explained in detail above, robust hedging in
Mathematical Finance refers to using liquidly traded financial
instruments to reduce the risk that is under consideration. The
Chicago Board Options Exchange (CBOE), Volatility Index
(VIX) calculation is a good example of robust hedging. VIX is
created to calculate the implied volatility of options on the
S&P 500 index (SPX), the core index for U.S. equities, for the
next 30 calendar days. A wide range of strike prices for SPX
put and call options are utilized to calculate VIX. It is also
referred as the fear index by the common media and leading
financial publications. As the CBOE states “since volatility
often signifies financial turmoil, VIX is often referred to as the
‘investor fear gauge’ ”. Inevitably, this measure is closely
observed by both buy and sell sides of the market as it pro-
vides crucial information about investor sentiment that can be
helpful in evaluating potential market turning points. In 2004,
CBOE introduced the first exchange-traded VIX futures con-
tract and two years later, in 2006, CBOE launched VIX op-
tions which is considered as the most successful new product
in exchange history.

One closely related problem to the robust hedging problem
in mathematics and economics is the MongeeKantorovich
optimal transport problem. This problem was first formulated
by Monge (1781) to move the soil during the construction of
the building of forts and roads with minimal transport ex-
penses. Mathematically, given two measures n and m of equal
mass, we search for an optimal transport map S i.e. an optimal
bijection of Rd so that S#n ¼ m i.e.

Z
Rd

4ðSðxÞÞdnðxÞ ¼
Z
Rd

4ðSðxÞÞdmðxÞ ð2Þ



63E. Akyıldırım, H.M. Soner / Borsa I_stanbul Review 14 (2014) 57e63
for all continuous functions 4. Then objective is to minimize
Z
Rd

cðx;4ðSðxÞÞÞdnðxÞ ð3Þ

for a given cost function c, over all bijections S.
Kantorovich relaxed this problem by considering

minimize

Z
Rd�Rd

cðx; yÞQðdx;dyÞ ð4Þ

over all probability measures Q˛Mðn;mÞ, i.e.,
ðProjxÞ#Q¼ n;

�
Projy

�
#Q¼ m; ð5Þ

or equivalently, for every Borel sets A;B3Rd;

Q
�
A�Rd

�¼ nðAÞ; Q
�
Rd �B

�¼ mðBÞ: ð6Þ
In this formulation, it is a linear program and easily admits

a solution. Moreover, its convex dual is given by,

maximize

�Z
gðxÞ nðdxÞ þ

Z
hðyÞ mðdyÞ

�

over all g˛L1
�
Rd; n

�
; h˛L1

�
Rd;m

�
satisfying

gðxÞ þ hðyÞ � cðx; yÞ; c x; y:

The connection between MongeeKantorovich and robust
hedging problems is explained in Dolinsky and Soner (2013)
in the following way. An optimal connection need to be
constructed between two measures i.e. the initial and final
distributions of a stock process in robust hedging problems. In
general, however, the cost functional depends on the whole
path of this connection and not simply on the final value.
Hence, one needs to consider processes instead of simply the
maps S. The probability distribution of this process has pre-
scribed marginals at final and initial times. Thus, it is in direct
analogy with the Kantorovich measure.
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