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We propose a new gradient projection algorithm that compares favorably with the fastest
algorithms available to date for �1-constrained sparse recovery from noisy data, both in
the compressed sensing and inverse problem frameworks. The method exploits a line-
search along the feasible direction and an adaptive steplength selection based on recent
strategies for the alternation of the well-known Barzilai–Borwein rules. The convergence of
the proposed approach is discussed and a computational study on both well conditioned
and ill-conditioned problems is carried out for performance evaluations in comparison with
five other algorithms proposed in the literature.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

There has been a vast amount of recent literature dedicated to algorithms for sparse recovery, both in the context of
inverse imaging problems and of compressed sensing. As an alternative to the usual quadratic penalties used in regularization
theory for ill-posed or ill-conditioned inverse problems, the use of �1-type penalties has been advocated in order to recover
regularized solutions having sparse expansions on a given basis or frame, such as e.g. a wavelet system [14]. Denoting by
x ∈ R

p the vector of coefficients describing the unknown object, by y ∈ R
n the vector of (noisy) data and by K the linear

operator (n × p matrix) modeling the link between the two, the inverse problem amounts to finding a regularized solution
of the equation K x = y. When it is known a priori that x is a sparse vector, one can resort to the following penalized
least-squares strategy [9], also referred to as the lasso after Tibshirani [29]:

x̄(λ) = arg min
x

‖K x − y‖2 + 2λ‖x‖1 (1)

where λ is a positive regularization parameter regulating the balance between the penalty and the data misfit terms. The
norm ‖ · ‖ denotes the usual �2 norm whereas ‖x‖1 = ∑p

i=1 |xi | is the �1 norm of the vector x.
In compressed sensing (also called compressive sampling), the aim is to reconstruct a sparse signal or object from a small

number of linear measurements [6,7,16]. The recovery of such an object can then be achieved by searching for the sparsest
solution to the linear system K x = y representing the measurement process, or equivalently by looking for a solution with
minimum “�0-norm.” To avoid the combinatorial complexity of the latter problem, one can use as a proxy a convex �1-norm
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minimization strategy. When the data y are affected by measurement errors, the problem is reformulated as a penalized
least-squares optimization analogous to (1).

Let us observe that problem (1) is equivalent to the constrained minimization problem:

x̃(ρ) = arg min‖x‖1�ρ
‖K x − y‖2 (2)

for a certain ρ . One can show that x̄(λ) and x̃(ρ) are piecewise linear functions of λ and ρ . One always has that x̄(λ) = 0
for λ � λmax ≡ maxi |(K T y)i |. The relationship between λ and ρ is given by λ = maxi |(K T (y − K x̃(ρ)))i | and ρ = ‖x̄(λ)‖1
[15].

2. Iterative minimization algorithms

Several iterative methods for solving the minimization problems (1) or (2) have been proposed in the literature. For the
purpose of comparison with our new acceleration scheme, we will focus on the following algorithms:

1. The Iterative Soft-Thresholding Algorithm (“ISTA”) proposed in [8,14,19] goes as follows: x(k+1) = Sλ[x(k) + r(k)] where
r(k) = K T (y − K x(k)) is the residual in step k and the (nonlinear) soft-thresholding operator acts componentwise as
(Sλ[x])i = xi − λ sgn(xi) if |xi | > λ and zero otherwise. For any initial vector x(0) and under the condition ‖K‖ < 1,
this scheme has been shown to converge to the minimizer x̄(λ) defined by (1) [14]. When reinterpreted as a forward–
backward proximal scheme, convergence can be seen to hold also for ‖K‖ <

√
2 [10].

2. The Fast Iterative Soft-Thresholding Algorithm (“FISTA”), proposed in [2], is a variation of ISTA. Defining the operator T
by T (x) = Sλ[x + K T (y − K x)], the FISTA algorithm is:

x(k+1) = T

(
x(k) + t(k) − 1

t(k+1)

(
x(k) − x(k−1)

))
, (3)

where x(0) = 0, t(k+1) = 1+
√

1+4(t(k))2

2 and t(0) = 1. It has virtually the same complexity as the ISTA algorithm, but can
be shown to have better convergence properties.

3. The GPSR algorithm proposed in [20].
4. The SPARSA algorithm proposed in [30].
5. The Projected Steepest Descent (“PSD”) method proposed in [15]: x(k+1) = PΩ [x(k) + β(k)r(k)], with β(k) = ‖r(k)‖2/

‖K r(k)‖2. PΩ denotes the projection onto the �1-ball Ω of radius ρ .

Figs. 1–4 provide a visual way to compute the performance of these algorithms in two problem examples. Note that these
are the same as in [25], where the reader can find comparisons to yet other methods, including e.g. the �1-ls method, an
interior point algorithm proposed in [24].

3. Gradient projection with adaptive steplength selection

In this section we describe the acceleration scheme we propose for solving the optimization problem (2). This problem is
a particular case of the general problem of minimizing a convex and continuously differentiable function f (x) over a closed
convex set Ω ⊂ R

p . Here Ω = {x ∈ R
p, ‖x‖1 � ρ}. A gradient projection method for solving this problem can be stated as

in Algorithm GP.
Some comments about the main steps of Algorithm GP are in order.
First of all, it is worth to stress that any choice of the steplength αk in a closed interval is permitted. This is very

important from a practical point of view since it allows to make the updating rule of αk problem-related and oriented at
optimizing the performance.

If the projection performed in step 2 returns a vector h(k) equal to x(k) , then x(k) is a stationary point and the algorithm
stops. When h(k) �= x(k) , it is possible to prove that d(k) is a descent direction for f in x(k) and the backtracking loop in
step 5 terminates with a finite number of runs; thus the algorithm is well defined [3–5].

The nonmonotone line-search strategy implemented in step 5 ensures that f (x(k+1)) is lower than the maximum of the
objective function in the last M iterations [23]; of course, if M = 1 then the strategy reduces to the standard monotone
Armijo rule [3].

Concerning the convergence properties of the algorithm, the following result can be derived from the analysis carried
out in [4,5] for more general gradient projection schemes: if the level set Ω0 = {x ∈ Ω: f (x) � f (x(0))} is bounded, then
every accumulation point of the sequence {x(k)} generated by Algorithm GP is a stationary point of f (x) in Ω . We observe
that the assumption is trivially satisfied for problem (2) since in this case the feasible region Ω is bounded.

Now, we may discuss the choice of the steplengths αk ∈ [αmin,αmax]. Steplength selection rules in gradient methods
have received an increasing interest in the last years from both the theoretical and the practical point of view. On the one
hand, following the original ideas of Barzilai and Borwein (BB) [1], several steplength updating strategies have been devised
to accelerate the slow convergence exhibited in most cases by standard gradient methods, and a lot of effort has been put
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Algorithm GP (Gradient projection method).

Choose the starting point x(0) ∈ Ω , set the parameters β, θ ∈ (0,1), 0 < αmin < αmax and fix a positive integer M .
For k = 0,1,2, . . . do the following steps:

Step 1. Choose the parameter αk ∈ [αmin,αmax];
Step 2. Projection: h(k) = PΩ(x(k) − αk∇ f (x(k)));

If h(k) = x(k) then stop, declaring that x(k) is a stationary point;
Step 3. Descent direction: d(k) = h(k) − x(k);
Step 4. Set λk = 1 and fmax = max0� j�min(k,M−1) f (x(k− j));
Step 5. Backtracking loop:

If f (x(k) + λkd(k)) � fmax + βλk∇ f (x(k))T d(k)
then

go to Step 6;
Else

set λk = θλk and go to Step 5;
Endif

Step 6 Set x(k+1) = x(k) + λkd(k) .

End

Algorithm SS (Steplength selection for GP).

if k = 0 then

set α0 ∈ [αmin,αmax], τ1 ∈ (0,1) and a nonnegative integer Mα ;

else

if s(k−1)T
z(k−1) � 0 then

αk = αmax;
else

α
(1)

k = max{αmin,min{ s(k−1) T
s(k−1)

s(k−1) T z(k−1)
, αmax}};

α
(2)

k = max{αmin,min{ s(k−1) T
z(k−1)

z(k−1) T z(k−1)
, αmax}};

if α
(2)

k /α
(1)

k � τk then

αk = min{α(2)
j , j = max{1,k − Mα}, . . . ,k};

τk+1 = τk ∗ 0.9;
else

αk = α
(1)

k ;
τk+1 = τk ∗ 1.1;

endif

endif

endif

into explaining the effects of these strategies [11–13,18,21,22,32]. On the other hand, numerical experiments on randomly
generated, library and real-life test problems have confirmed the remarkable convergence rate improvements involved by
some BB-like steplength selections [12,13,20,21,28,31,32]. Thus, it seems natural to equip a gradient projection method with
a steplength selection that takes into account the recent advances on the BB-like updating rules.

First of all we must recall the two BB rules usually exploited by the main steplength updating strategies. To this end, by
denoting with I the p × p identity matrix, we can regard the matrix B(αk) = (αk I)−1 as an approximation of the Hessian
∇2 f (x(k)) and derive two updating rules for αk by forcing quasi-Newton properties on B(αk):

αBB1
k = arg min

αk∈R

∥∥B(αk)s(k−1) − z(k−1)
∥∥ and αBB2

k = arg min
αk∈R

∥∥s(k−1) − B(αk)
−1z(k−1)

∥∥, (4)

where s(k−1) = x(k) − x(k−1) and z(k−1) = ∇ f (x(k)) − ∇ f (x(k−1)). In this way, the steplengths

αBB1
k = s(k−1)T

s(k−1)

s(k−1)T z(k−1)
, αBB2

k = s(k−1)T
z(k−1)

z(k−1)T z(k−1)
(5)

are obtained.
At this point, inspired by the steplength alternations successfully implemented in recent gradient methods [21,32], we

propose a steplength updating rule for GP which adaptively alternates the values provided by (5). The details of the GP
steplength selection are given in Algorithm SS. This rule decides the alternation between two different selection strategies
by means of the variable threshold τk instead of a constant parameter as done in [21] and [32]. This trick makes the choice
of τ0 less important for the GP performance and, in our experience, seems able to avoid the drawbacks due to the use of
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Fig. 1. Approximation isochrones in the case of the Gaussian random matrix for t = 6,12, . . . ,60 seconds.

the same steplength rule in too many consecutive iterations. In the following we denote by GPSS Algorithm GP equipped
with the steplength selection SS.

We end this section by describing the setting for the GPSS parameters used in the computational study of this work:

• line-search parameters: M = 1 (monotone line-search), θ = 0.5, β = 10−4;
• steplength parameters: αmin = 10−10, αmax = 1010, α0 = max{αmin,min{‖PΩ(x(0) − ∇ f (x(0)))‖−1∞ ,αmax}}, τ1 = 0.5,

Mα = 2.

In our experience the above setting often provides satisfactory performance; however, it cannot be considered optimal for
every application and a careful parameter tuning is always advisable.

4. Numerical experiments

To assess the performances of our GPSS algorithm and estimate the gain in speed it can provide with respect to Algo-
rithms 1 to 5, we perform some numerical tests. To this purpose we adopt the methodology proposed in [25] and based on
the notion of approximation isochrones. It improves on the comparisons made for a single value of λ or ρ , i.e. for a single
level of sparsity of the recovered object.

For values of λ in a given interval λmin � λ � λmax, one computes the minimizer x̄(λ) of (1). When the number of
nonzero components in x̄(λ) is not too large, this can be done by means of the direct (noniterative) homotopy method [27]
or LARS algorithm [17]. Then, for a fixed and given computation time, one runs one of the algorithms for each value of λ

(or ρ). The relative error e(k) = ‖x(k)(λ) − x̄(λ)‖/‖x̄(λ)‖ reached at the end of the computation is plotted as a function of
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Fig. 2. The same as Fig. 1 but in a semi-log plot.

λ and hence this plot is just the approximation isochrone showing the degree of accuracy reached in the given amount of
computing time for each value of λ. A set of such plots allow to quickly grasp the performances of a given algorithm in
various parameter regimes and to easily compare it with other methods; it reveals in one glance under which circumstances
the algorithms do well or fail. The paper [25] also demonstrates the fact that the relative performances of the algorithms
may strongly depend on the specific application one considers, and in particular on the properties of the linear operator K
modeling the problem.

We test the different algorithms on two different operators arising typically either from a compressed sensing or from
an inverse problem. In both cases the matrix K is of size 1848 × 8192. In the first case, the elements of K are taken from a
Gaussian distribution with zero mean and variance such that ‖K‖ = 1. This matrix is rather well conditioned and can serve
as a paradigm of compressed sensing applications. It is applied to a sparse vector and perturbed by additive Gaussian noise
(about 2%) to yield the data y. The second matrix models a severely ill-conditioned linear inverse problem that finds its
origin in a problem of seismic tomography described in detail in [26].

For both operators, the minimizer x̄(λ) is computed for 50 different values of λ (or equivalently, 50 different values
of ρ). Then, for each iterative algorithm, we make plots having the relative error e(k) on the vertical axis and log2 λmax/λ

on the bottom horizontal axis (on the top horizontal axis the value of ρ = ‖x̄‖1 is also reported). The number of nonzero
components m in x̄(λ) is indicated by vertical dashed lines. In each plot we report the isochrone lines that correspond to a
given amount of computer time. In this way one can see how close, for the different values of λ, the iterates approach the
minimizer after a given time. Let us remark that although the reported computing times are of course specific to a given
computer and implementation, the overall behavior of the isochrones should be fairly general. For example, the fact that
they get very close to each other in some places can be interpreted as a bottleneck feature of the algorithm.

In Fig. 1, we report the results for the ISTA, FISTA, GPSR, SPARSA, PSD and our new algorithm GPSS for the case of the
Gaussian random matrix. The proposed GPSS algorithm compares favorably with the other five, especially for small values
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Fig. 3. Approximation isochrones for the seismic inverse problem for t = 1, . . . ,10 minutes.

of λ. Experiments made by varying the parameter M showing no significant difference, we report here only the results
obtained with M = 1 (monotonic line search). However, the behavior for large penalties is not clearly visible in Fig. 1. It is
better demonstrated when using a logarithmic scale for the relative error on the vertical axes as reported in Fig. 2.

In Figs. 3 and 4, we report the results for the case of the ill-conditioned matrix arising from the seismic inverse problem.
Clearly, for this operator, ISTA, GPSR and PSD have a lot of difficulty in approaching the minimizer for small values of λ (lines
not approaching e = 0). The FISTA algorithm appears to work best for small penalty parameters whereas GPSS and SPARSA
compete for the second place in such instance. From Fig. 4, we see that the GPSS and SPARSA algorithms are performing
best for large values of λ.

The reported encouraging numerical results call of course for further experiments, but we believe that they are suffi-
ciently representative to allow honest extrapolation to reliable conclusions holding more generally. As seen, the proposed
GPSS algorithm performs well for the compressed sensing problem: for small values of λ, it clearly outperforms the other
algorithms (see Fig. 1) whereas it is still competitive for larger values of λ. In the ill-conditioned inversion problem, GPSS
an SPARSA appear to perform better than all other tested algorithms for large values of λ, whereas they are challenged by
the FISTA method for smaller values.
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Fig. 4. The same as in Fig. 3 in a semi-log plot.
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