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a b s t r a c t

In this paper we consider splitting methods for the time integration of parabolic and
certain classes of hyperbolic partial differential equations,where one partial flow cannot be
computed exactly. Instead, we use a numerical approximation based on the linearization of
the vector field. This is of interest in applications as it allows us to apply splitting methods
to a wider class of problems from the sciences.

However, in the situation described, the classic Strang splitting scheme, while still
being amethod of second order, is not longer symmetric. This, in turn, implies that the con-
struction of higher ordermethods by composition is limited to order three only. To remedy
this situation, based on previous work in the context of ordinary differential equations, we
construct a class of Strang splitting schemes that are symmetric up to a desired order.

We show rigorously that, under suitable assumptions on the nonlinearity, these
methods are of second order and can then be used to construct higher order methods
by composition. In addition, we illustrate the theoretical results by conducting numerical
experiments for the Brusselator system and the KdV equation.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

In this paper we consider the time discretization of parabolic and certain classes of hyperbolic partial differential equa-
tions. More specifically, we assume that the considered problem can be written as the following abstract Cauchy problem

u′ = Au+ B(u), u(0) = u0 (1)

on some Banach space X , where A is a linear (but possibly unbounded) operator. In order that a solution to the initial value
problem (1) is well defined, we have to assume that A + B generates a one-parameter semigroup. To consider splitting
methods we further have to assume that A and B generate semigroups as well.

In this context splittingmethods can be applied if the partial flows generated byA and Bhave an analytical representation,
or if an efficient algorithm for finding their exact solution is known. For a review of splitting methods we refer the reader
to [1]. However, the assumption that the partial flow generated by the nonlinear operator B can be computed exactly is
usually a very strong requirement. Most partial differential equations which are drawn from the sciences do neither admit
an analytical solution nor can they be computed exactly in an efficient manner by some algorithm from the literature.
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To remedy this deficiency of classic splittingmethods, we propose and analyze splitting schemes which approximate the
partial flow generated by B, i.e.

u′ = B(u), (2)

by that of an inhomogeneous linear differential equation. That is, instead of Eq. (2), we consider the linearized problem given
by

u′ = b(u⋆)u+ d, (3)

where for consistency reasons we have to assume that

B(u) = b(u)u+ d.

That is, once a value u⋆ is substituted, the flow corresponding to (3) can be computed efficiently. That such a linearized
problem can be computed exactly is a much less stringent condition and thus splitting methods can potentially be applied
to a larger class of problems.

For the remainder of the paper let us denote the flow corresponding to Eq. (3) by ϕ
b(u⋆)
t . Note that this notation suggests

that, once u⋆ is fixed, the evolution equation given by (3) generates a semigroup. This assumption is not necessarily satisfied
for each u⋆ ∈ X (even if B generates a semigroup). We will discuss this point further at the beginning of Section 2. In the
framework developed there the flow ϕ

b(u⋆)
t can be written explicitly (for a u⋆ chosen in an appropriate subspace of X), by

employing the exponential and φ1 function, as follows

ϕ
b(u⋆)
t (u(0)) = etb(u⋆)u(0)+ tφ1 (tb(u⋆)) d, t ≥ 0, (4)

where the φ1 function is given by

φ1(z) =
ez − 1

z
. (5)

In this context we can formulate the (classic) Strang splitting scheme as follows

u1/2 = ϕ
b(u0)
τ
2


e

τ
2 Au0


,

u1 = Mτ (u0) = e
τ
2 Aϕ

b(u1/2)
τ


e

τ
2 Au0


.

(6)

Such a splitting scheme has been employed, for example, to numerically solve the Vlasov–Poisson equations (see e.g. [2,3])
or the Davey–Stewartson equation (see e.g. [4]). Note, however, that in both of these cases the underlying structure of the
equations guarantees that the Strang splitting scheme, as stated above, is still symmetric. Therefore, the usual construction
of composition methods (as described in [5], for example) can be carried out without modification.

However, for many problems arising in the sciences, such as nonlinear reaction–diffusion equations or the KdV equation
(both of which are discussed in Section 6), such a simplification cannot be assumed. Then the Strang splitting scheme above
is, unfortunately, no longer symmetric. The lacking symmetry of themethod does not severely affect performance; however,
if composition is used as a means to construct higher order methods, symmetry is usually a necessary condition.

To remedy this situation a family of Strang splitting schemes were introduced in the context of ordinary differential
equation (see [6]). The construction of these schemes is based on the fact that the Lie splitting algorithm

L τ
2
= ϕ

b(u0)
τ
2
◦ e

τ
2 A (7)

composed with its adjoint method, which we denote by L∗τ
2
, is a method of second order and symmetric. It is given by

Sτ = L∗τ
2
◦ L τ

2
. (8)

However, for our purpose it is more convenient to represent u1 = Sτu0 as the solution of the following implicit equation

u1 = e
τ
2 A ◦ ϕ

b(u1)
τ
2

(u1/2), u1/2 = L τ
2
u0.

Note that solving this equation is computationally not attractive in practice. Therefore, it has been suggested to employ i ∈ N
fixed-point iterations to compute an approximation to u1. Let us denote the resulting scheme by S(i)

τ . The corresponding
starting value (for the fixed-point iteration) is given by

S(1)
τ u0 = e

τ
2 A ◦ ϕ

b(u1/2)
τ
2

◦ ϕ
b(u0)
τ
2
◦ e

τ
2 A(u0). (9)

The one-stepmethods S(i)
τ are not symmetric but they are symmetric up to order i; that is, they satisfy the following relation

S(i)
τ

∗
= S(i)

τ + O

τ i


(for the non-stiff case this result can be found in [6]; for the stiff case we will consider this in more

detail in Section 2). Therefore, it is possible to construct composition methods of arbitrary (even) order, where i, and thus
the computational cost of S(i)

τ , increases linearly with the desired order p. For amore detailed descriptionwe refer the reader
to [6].
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In this paper, we will provide a rigorous convergence analysis which shows that for parabolic and certain classes of
hyperbolic partial differential equations the method S(i)

τ is of second order, if i ≥ 2. This analysis in the context of partial
differential equations is significantly more involved than the analysis provided in [6]. The assumptions we make in order to
prove the main result will be that the classic Strang splitting scheme given in Eq. (6) is convergent of order two (i.e., that
the classic Strang splitting scheme can be successfully applied to the problem under consideration) and that up to three
applications of b(ũ) and its derivatives to the exact solution are bounded in a suitable norm; here ũ is a generic function that
is, in a sense to be made precise, close to the exact solution u(t). Note that in the linear case this assumption is equivalent
to the fact that b3u(t) can be bounded; i.e., we have to bound three applications of the operator b to the exact solution. It
is useful to keep that in mind in order to compare the assumptions made here to, for example, [7], where an analysis of the
exact Strang splitting scheme in the linear case is provided.

To that end, we will discuss the fixed-point iteration in the stiff case (Section 2), and show second order convergence of
S(i)
τ for the hyperbolic (Section 3) and parabolic case (Section 4). In Section 5 we discuss the construction of higher order
composition methods. Finally, we will show in Section 6 that in the case of the KdV equation as well as the Brusselator
system the predicted behavior agrees well with the numerical experiments conducted.

2. Fixed-point iteration in the stiff case

The purpose of this section is to discuss the fixed-point iteration necessary to compute S(i)
τ , as outlined in Section 1, in

more detail. In the non-stiff case an appropriate step size τ can always be found such that the iteration converges. However,
in the present discussion it is necessary to employ a condition on the, in general, unbounded nonlinearity b. We will assume
that b(v)w satisfies a Lipschitz conditionwith respect to v in the Banach space (X, ∥ · ∥), whenever v andw are chosen from
a bounded subset of some subspace (V , ∥ · ∥V ), where the norm in V ⊂ X is stronger than that in X .

Note that all the convergence results in this paper are formulated in the Banach space X . However, the second Banach
space V is necessary as in most problems it is not possible to show the required Lipschitz results for arbitrary elements in
X . However, in many instances an assumption on the regularity of the initial value (i.e. u0 ∈ V ) does result in the same reg-
ularity of the solution at later times (i.e. u(t) ∈ V ). This, in turn, allows us to assume additional regularity in order to show
consistency in a weaker space X . A similar approach for the KdV equation can be found, for example, in [8]. In all the consid-
erations that follow, we assume that A, B, and b(u⋆), for u⋆ ∈ V , generate one-parameter semigroups on V as well as on X .

Before proceeding, let us note that for the Brusselator system (discussed in Section 6.1) using X = V = H2 would
constitute an appropriate choice as in this case the nonlinearity is polynomial in the solution (and, in particular, does not
include spatial derivatives of the solution). The multiplications necessary such that B and b form a self-map on V can be
carried out as H2 forms an algebra in two space dimensions (in addition to the Banach space structure). However, for the
KdV equation (discussed in Section 6.2) the spaces X and V have to be chosen to be distinct (see [8], where X = H1 and
V = H6, and Example 2).

Now, let us formulate a mathematically rigorous theorem that gives assumptions under which the fixed-point iteration
used to define Sτ converges.

Theorem 1. Let u0 ∈ V ⊂ X, and let NV be a closed neighborhood of u0 in V , such that the map

F(u) = e
τ
2 Aϕ

b(u)
τ
2

(u1/2) (10)

is a self-map on NV , and ϕ
b(u)
s (u1/2) ∈ NV for all u ∈ NV and 0 ≤ s ≤ τ/2. Recall that u1/2 is defined in (6). Further suppose that

the map b(·) is Lipschitz continuous for arguments in NV , i.e., there exists a constant L such that

∥b(v1)− b(v2)∥X←V ≤ L∥v1 − v2∥

for all v1, v2 ∈ NV . Then there exists a step size τ0 > 0, which depends only on the Lipschitz constant L and on bounds of the
partial flows, such that for all τ ∈ [0, τ0) the fixed-point iteration with starting value u1/2 converges to an element Sτu0 ∈ X. In
particular, it holds that

∥S(i)
τ u0 − Sτu0∥ ≤ (C1L)i−1τ i−1

∥S(1)
τ u0 − Sτu0∥, i ≥ 1. (11)

Proof. We have to consider the fixed-point iteration given by

u = F(u),

with starting values in NV . By employing the variation-of-constants formula, we can write

ϕ
b(v1)
τ
2

(u1/2) = ϕ
b(v2)
τ
2

(u1/2)+

 τ
2

0
e(

τ
2−s)b(v2) (b(v1)− b(v2)) ϕb(v1)

s (u1/2) ds

and by using the Lipschitz continuity of b, we get

∥F(v1)− F(v2)∥ ≤ C1Lτ∥v1 − v2∥,

since w = ϕ
b(v1)
s (u1/2) ∈ NV . Note that C1 does depend on the V norm of w.
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Thus, the fixed-point iteration with starting value u1/2 provides a sequence in NV , which is a Cauchy sequence in X , if τ0,
as given in the statement of the theorem, satisfies C1Lτ0 < 1. Since the fixed-point iteration converges in X and the Lipschitz
constant of F is proportional to τ , we obtain (11) by a standard induction argument. �

It should be duly noted that although the step size is limited by the above theorem this is not a CFL condition. In our case
the step size does only depend on local properties of b(u), the exact solution as well as the scheme under consideration.
However, the bound holds independently of the specific space discretization under consideration. In fact, the above result
is what one would expect for a stable numerical scheme; namely that the step size is limited by the Lipschitz constant of
the right-hand side.

Example 2. To illustrate Theorem 1 let us consider the following operators

A = 0, b(u)w = u∂xw.

In this casewe chooseX = L1(R) andV = W 1,1(R). Now in Section 3.2we are interested to apply the above theorem to some
u(kτ). Let us use u0 to denote this value for a fixed k. Then for a sufficiently small δ > 0, we take for NV the corresponding
ball of radius δ. To verify the assumptions of Theorem 1 let us note that clearly, for τ sufficiently small, F is a self-map in
NV . This follows from the fact that F(u) is the solution of an advection equation with velocity u at time τ/2. (This can be
elaborated, for example, with the method of characteristics.) Furthermore, by the same argument, since both u1/2 and u lie
in NV , we follow that

ϕb(u)
s u1/2 ∈ NV ,

which is needed in the proof of Theorem 1.

In the next section we will employ heavily the following result; it states that a time step conducted by applying Sτ to
some u0 results in a value that is different from u0 by at most an order of τ . For the convenience of the reader we state and
prove this well-known result in the next theorem.

Corollary 3. If the Lie splitting algorithm (7) is consistent of order 1 and τ is chosen such that the fixed-point
iteration (10) converges, then

∥Sτ (u0)− u0∥ ≤ Cτ ,

where the constant C is independent of τ .
Proof. From Eq. (9) we know that S(1)

τ is the composition of two Lie steps. Therefore, it holds that

∥S(1)
τ (u0)− u0∥ ≤ C2τ .

By employing standard estimates for the fixed-point iteration, we get

∥S(i)
τ (u0)− u0∥ ≤ ∥S(1)

τ (u0)− u0∥

i−1
k=0

(C1Lτ)k ≤
C2

1− C1Lτ
τ ,

for any i ≥ 2. This bound gives the desired result, since under the assumptions of convergence of the fixed-point iteration
we know that C1Lτ < 1 (see Theorem 1). �

For later use, we formulate a result on the nonlinear operatorMτ .

Lemma 4. Let uk, uk ∈ V . Then we have

Mτuk −Mτuk = e
τ
2 Aeτb(uk+1/2)e

τ
2 A(uk − uk)+ Rk, (12)

where the remainder Rk satisfies the bound

∥Rk∥ ≤ Cτ∥uk − uk∥

with a constant C that depends on ∥uk∥V and ∥uk∥V .
Proof. From (6) we infer the representation (12) with remainder

Rk = e
τ
2 A


eτb(uk+1/2) − eτb(uk+1/2)


e

τ
2 Auk + τe

τ
2 A


φ1(τb(uk+1/2))− φ1(τb(uk+1/2))


d.

The result follows by applying the variation-of-constants formula several times and from the Lipschitz continuity of b, see
the proof of Theorem 1. �

3. Convergence for hyperbolic differential equations

First, we study how the spatial regularity of the initial value influences the temporal regularity of the solution. This will
give us an idea of the required regularity assumptions on the initial value, which is needed for the schemes described here
to be convergent of second order. To accomplish this, in Section 3.1, a suitable toy model is analyzed. In Section 3.2 we will
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derive, for the hyperbolic case, the conditions underwhich the splitting scheme S(i)
τ , for i ≥ 2, is convergent of order two.We

will formulate a condition that depends on the regularity of the exact solution. More formally, we have to bound a number
of applications of b(u⋆) and its derivatives to the exact solution and assume that the (classic) Strang splitting scheme Mτ is
convergent of order two. For hyperbolic systems which do not change the regularity of the initial value this is equivalent to
assuming some regularity for the initial value.

3.1. Regularity in time

An interesting question is how much regularity on the initial value is required such that a scheme can be convergent of
second order in time. To elaborate on this question let us consider the following (nonlinear) advection equation

∂tu(t, x)+ u(t, 0)∂xu(t, x) = 0. (13)

The solution of this toy model can be written as

u(t, x) = u0 (x− v(t)) , (14)

where the advection speed depends on the solution as follows

v(t) =
 t

0
u(σ , 0) dσ .

Now, let us investigate the time regularity of the solution u(t, x). To that end let us assume that the initial value satisfies
u0 ∈ C1,α for some α ∈ (0, 1). From (13) we deduce that u(t, x) is at least once differentiable in time. The resulting function
∂tu(t, ·) lies in C0,α; this can be easily deduced from Eq. (14). Our goal is to show that

|(∂tu)(t, x)− (∂tu)(s, x)|
|t − s|β

is not bounded for any β > α as s tends to t . Rewriting the above expression we get

(∂tu)(t, x)− (∂tu)(s, x) = (u(t, 0)− u(s, 0)) ∂xu(t, x)+ u(s, 0) ((∂xu)(t, x)− (∂xu)(s, x)) .

The first term is Lipschitz continuous in time and therefore can be bounded. However, for the second term we can write

|(∂xu)(t, x)− (∂xu)(s, x)|
|t − s|β

=
|u′0(x− v(t))− u′0(x− v(s))|

|t − s|β
,

where by defining z = x− v(t) and w = x− v(s) and using the estimate

|z − w| =

 t

s
u(σ , 0) dσ

 ≥ min
σ∈[0,t]

|u(σ , 0)| |t − s|

we get

|u′0(x− v(t))− u′0(x− v(s))|
|t − s|β

≥

|u′0(z)− u′0(w)| · min
σ∈[0,t]

|u(σ , 0)|β

|z − w|β
.

If we now choose a u0 ∈ C1,α that nowhere can be improved to a better Hölder exponent β > α and is bounded away
from zero (which then also holds true for u(t, ·)), then the term on the right-hand side diverges as z tends to w and thus we
have shown that the regularity of u(t, x) in time is at most C1,α . That such an initial value exists is shown in [9].

As a numerical approximation to the solution of (13), we consider the exact solution of

∂tu(t, x) = u


τ
2 , 0


∂xu(t, x) (15)

on the interval [0, τ ]. This is not a practical numericalmethod aswe have, in general, no algorithm that allows us to compute
v(τ/2) exactly. However, it can be seen as the limit of a scheme, where we approximate v by approximating u(t, 0) in some
suitable manner. In this case the numerical solution, i.e. the exact solution of Eq. (15), is given by the midpoint rule, i.e.

u1 = u0

x− τu


τ
2 , 0


,

which has to be compared to the exact solution, given in (14). By using the method of characteristics we can estimate the
error as follows

∥u(τ , x)− u1∥ ≤ τL
u 

τ
2 , 0


−

1
τ

 τ

0
u(t, 0)dt

 ,

where L is the Lipschitz constant of u0. Therefore, the numerical scheme can be seen as the midpoint rule approximating an
integral. It is well-known that the midpoint rule yields an approximation with a local error of size Cτmin(3,k+α), if and only
if the integrand lies in Ck,α .
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3.2. Convergence of the iterated Strang splitting scheme

The discussion in the previous section shows that we can expect the Strang splitting scheme to be second order accurate
in time only if we require that u0 ∈ C2,1. In the framework discussed in Section 1 this means that we have to bound at least
three applications of the operator b(u⋆) to the exact solution. In fact our assumption, which wewill state in this section, will
turn out to be slightly more complicated due to the fact that we have to bound certain derivatives of b(·) as well.

Before stating the assumption that is used to prove the consistency result, we recall the following fact. Let U,W , and Z
be Banach spaces and f : U ×W → Z a function, which is Fréchet differentiable with respect to the first component. Then
it holds that

∥(∂1f )(u0, w)d∥Z ≤ ∥(∂1f )(u0, w)∥Z←U∥d∥U .

Thus, we can separate the condition on the function f from the direction of the derivative. We will see below that this fact
simplifies the condition needed to establish the correct order of the scheme significantly.

Note that, clearly, this also holds true if the function f is linear in the second component and we employ the notation
outlined in Section 1. In this instancewe have f (u, w) = b(u)w and thusW = V and Z = X . In fact, we assume the following
bounds

sup
t∈[0,T ]

bi(ũ)u(t)X ≤ C, i ≤ 3, (16a)

sup
t∈[0,T ]

bi(ũ)b′(ũ)bj(ũ)u(t)X←V ≤ C, i+ j ≤ 2, (16b)

sup
t∈[0,T ]

bi(ũ)b′′(ũ)bj(ũ)u(t)X←V2 ≤ C, i+ j ≤ 1, (16c)

where i, j ∈ N. The functions ũ are generic, i.e. different occurrences of such functions do not need to be indistinguishable,
linear combinations of the exact solution u(s) as well as L τ

2
(u(s)) and Sτ (u(s)) for some s ∈ [0, T ].

The following theorem shows consistency under the additional assumption that the (classic) Strang splitting schemeMτ

is of the expected order.

Theorem 5 (Consistency). Let us consider the following abstract initial value problem

u′ = Au+ b(u)u+ d, u(0) = u0

and suppose that assumption (16) is satisfied. If, in addition, the Strang splitting scheme Mτ is consistent of order two, we can
conclude that S(i)

τ , for i ≥ 2, is consistent of order two, i.e.

∥S(i)
τ u0 − u(τ )∥ ≤ Cτ 3.

Proof. First, let us consider a single time step of the implicit scheme Sτ , i.e. u1 = Sτu0, which can be written as (note that u0
is not to be confused with the initial value; it is the exact solution at a point in time to which a splitting operator is applied)

u1 = e
τ
2 A ◦ ϕ

b(u1)
τ
2
◦ ϕ

b(u0)
τ
2
◦ e

τ
2 A(u0).

Now let us proceed by comparing our method, i.e. Sτ , to the Strang splitting schemeMτ . The difference can be estimated as
followse τ

2 A ◦ ϕ
b(u1/2)
τ ◦ e

τ
2 A(u0)− e

τ
2 A ◦ ϕ

b(u1)
τ
2
◦ ϕ

b(u0)
τ
2
◦ e

τ
2 A(u0)

 ≤ e τ
2 A

 ϕ
b(u1/2)
τ (v0)− ϕ

b(u1)
τ
2
◦ ϕ

b(u0)
τ
2

(v0)


with v0 = e

τ
2 Au0. By substituting t = τ into (4), we can write the semiflow ϕb(u⋆)

τ as

ϕb(u⋆)
τ (u0) = eτb(u⋆)u0 + τφ1 (τb(u⋆)) d.

Therefore, we have to compare

ϕ
b(u1)
τ
2
◦ ϕ

b(u0)
τ
2

(v0) = e
τ
2 b(u1)e

τ
2 b(u0)v0 +

τ
2


e

τ
2 b(u1)φ1


τ
2 b(u0)


+ φ1


τ
2 b(u1)


d (17)

to the following expression

ϕ
b(u1/2)
τ (v0) = eτb(u1/2)v0 + τφ1


τb(u1/2)


d. (18)

Let us first compare the homogeneous parts. By expanding this part in Eq. (18) we get

eτb(u1/2) = I + τb(u1/2)+
τ2

2 b2(u1/2)+ τ 3b3(u1/2)φ3

τb(u1/2)


,
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where the φk functions are defined recursively by

φk(τ z) =
1
k!
+ τ zφk+1 (τ z) ,

φ0(τ z) = eτ z .

To expand Eq. (17) let us first define g(τ ) = e
τ
2 b(u1)e

τ
2 b(u0). Then

g ′(τ ) =
1
2

(b(u1)g(τ )+ g(τ )b(u0)) ,

g ′′(0) =
1
4


b2(u1)+ 2b(u1)b(u0)+ b2(u0)


,

which gives the desired expansion

e
τ
2 b(u1)e

τ
2 b(u0) = I +

τ

2
(b(u0)+ b(u1))+

τ 2

8


b2(u1)+ 2b(u1)b(u0)+ b2(u0)


+ R3,

where

R3 = τ 3
3

i=0

ci

 1

0
(1− θ)2bi(u1)e

θτ
2 b(u1)e

θτ
2 b(u0)b3−i(u0) dθ

for appropriately chosen constants ci. Now we have to compare the corresponding terms of equal order.
Terms of first order. By employing the fundamental theorem of calculus we can show that

b

u0 + θ(u1/2 − u0)


− b(u0) =

 θ

0

d
dη

b

u0 + η(u1/2 − u0)


dη

=

 θ

0
b′


u0 + η(u1/2 − u0)


(u1/2 − u0) dη

= θb′ (u0) (u1/2 − u0)+

 θ

0
(θ − η) b′′


u0 + ηv1/2


(v1/2, v1/2) dη,

where v1/2 = u1/2 − u0. For θ = 1 this gives the following operator identity

b

u1/2


= b(u0)+ b′ (u0) (u1/2 − u0)+

 1

0
(1− η) b′′


u0 + ηv1/2


(v1/2, v1/2) dη.

The same expansion can be carried out for b(u1). Finally, we have to bound

b(u1/2)−
1
2


b(u0)+ b(u1)


= b′(u0)


u1/2 −

1
2 (u0 + u1)


+ R2,

where for the sake of brevity the remainder term is denoted by R2. This remainder can be bounded by assumption (16).
Furthermore, to estimate the expression above, we have to use the fact that ∥u1/2 −

1
2 (u0 + u1)∥ ≤ Cτ 2. This follows easily

by employing the triangle inequality and Theorem 1 (note that u0, u1/2 ∈ V ).
Terms of second order.We have to estimate

b2(u1)+ 2b(u1)b(u0)+ b2(u0)− 4b2(u1/2)

=

b2(u1)− b2(u1/2)


+


b2(u0)− b2(u1/2)


+ 2


b(u1)b(u0)− b2(u1/2)


.

A bound for the first and the second term can easily be found. The third term can be rewritten as

2

b(u1)− b(u1/2)


b(u0)+ 2b(u1/2)


b(u0)− b(u1/2)


which together with the estimate

b(u0)− b(u1/2)

u0

 ≤ sup
η∈[0,1]

∥b′

u0 + η(u1/2 − u0)


u0∥∥u0 − u1/2∥,

Corollary 3 as well as assumption (16) is sufficient to show the desired bound.
Terms of third order. We have to bound R3 as well as b3(u1/2)φ3(τb(u1/2)). The first bound is immediate, for the second

we note that since the commutator

b3(u1/2), φ3(τb(u1/2))


vanishes, the desired result follows easily.

Finally, let us compare the two inhomogeneous terms which are given by

φ1

τb(u1/2)


= I + τb


u1/2


φ2


τb(u1/2)


= I + τ

2 b

u1/2


+ τ 2b2


u1/2


φ3


τb(u1/2)
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and
1
2


e

τ
2 b(u1)φ1


τ
2 b(u0)


+ φ1


τ
2 b(u1)


=

1
2


I + e

τ
2 b(u1)


+

τ
8


e

τ
2 b(u1)b(u0)+ b(u1)


+

τ2

8


e

τ
2 b(u1)b2(u0)φ3


τ
2 b(u0)


+ b2 (u1) φ3


τ
2 b(u1)


= I + τ

8


b(u0)+ 3b(u1)


+

τ2

8


b2(u1)φ2


τ
2 b(u1)


+

1
2b(u1)φ1


τ
2 b(u1)


b(u0)


+

τ2

8


e

τ
2 b(u1)b2(u0)φ3


τ
2 b(u0)


+ b2 (u1) φ3


τ
2 b(u1)


.

The term of first order vanishes and the term of second order is easily shown to yield an additional order. In addition, we
can easily bound the remainder terms.

To show second order consistency of Sτ we have to estimate

∥Sτu0 − u(τ )∥ ≤ ∥Sτu0 −Mτu0∥ + ∥Mτu0 − u(τ )∥, (19)

where the first term on the right-hand side of (19) has the right order by the argument provided above. Furthermore, the
appropriate bound for the second term follows from the assumption that the (classic) Strang splitting scheme is consistent
of order two.

Therefore, we have shown consistency for Sτ . The extension of this result to S(i)
τ , for i ≥ 2, follows immediately from

Theorem 1. �

In the previous theorem we have established consistency and are thus in a position to show convergence. Before stating
the result we formulate a nonlinear stability assumption that enables us to control the numerical solution obtained by the
iterated Strang splitting in V : for T > 0 there exist constants R > 0 and C > 0 such that for all τ > 0 and n ∈ N with
0 ≤ nτ ≤ T and all vj ∈ V with ∥vj∥V ≤ R it holds n

j=1

e
τ
2 Aϕ

b(vj)
τ/2


V←V

≤ C . (20)

Much effort has been devoted to provide an analysis of nonlinear stability for a variety of partial differential equations
found in the literature (see e.g. [3] for the Vlasov–Poisson equations, [10] for the Schrödinger–Poisson and cubic nonlinear
Schrödinger equations, and [8] for the KdV equation). For our examples presented in Section 6, assumption (20) can easily
be verified (see also Example 2).

Theorem 6 (Convergence in the Hyperbolic Case). Suppose that the assumptions (16) and (20) are satisfied, and that Mτ is second
order convergent. Then, the iterated Strang splitting applied to (1) is convergent of order two, i.e., for i ≥ 2, it holds that

S(i)
τ

k
u0 − u(kτ)

 ≤ Cτ 2,

where C depends on the problem and the final time T , but not on k and τ for 0 ≤ kτ ≤ T .
Proof. For fixed τ > 0 and integer k ≥ 0, let

uk = (Mτ )
k (u0) and uk =


S(i)
τ

k
(u0)

denote the numerical solutions, obtained with k steps (of length τ ) by the classic and the iterated Strang splitting,
respectively. Then we have

∥S(i)
τ uk − u((k+ 1)τ )∥ ≤ ∥S(i)

τ uk −Mτuk∥ + ∥Mτuk − u((k+ 1)τ )∥.

By using the assumption that the classic Strang splitting scheme is convergent of order two, we can show the desired bound
for the second term. Therefore, we once again proceed by comparing S(i)

τ to Mτ . For this purpose, let us write

S(i)
τ uk −Mτuk = S(i)

τ uk −Mτuk +Mτuk −Mτuk

and denote ek = uk − uk. Employing Lemma 4 this shows that

ek+1 =

S(i)
τ −Mτ


uk + e

τ
2 Aeτb(uk+1/2)e

τ
2 Aek + Rk (21)

with ∥Rk∥ ≤ Cτ∥ek∥. As we can control the V norm of the numerical solution uk by assumption (20), we can estimate
S(i)
τ −Mτ


uk

 ≤ Cτ 3

with the help of Theorem 5. Recursion (21) has thus the form of the error recursion for the classic Strang splitting. Since this
method is convergent, we infer the stability of this recursion. By successively eliminating the ek from the linear part (the
second term in Eq. (21)) and treating Rk as a perturbation, we obtain a non-linear recursion for ek. Now, we can easily show
the desired result by applying Gronwall’s inequality. �
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4. Convergence for parabolic differential equations

Let us note that Theorems 5 and 6 have an immediate extension to the parabolic case. Due to the parabolic smoothing
property we can weaken assumption (16). Following the ideas presented in [7], we can show second order convergence
even if the right-hand side of (16) is replaced by C/tα for 0 ≤ α < 1. However, we will not work this out in detail here.

For notational simplicity, we consider only the particular case where the nonlinearity b(u) is a bounded operator. Note
that in this case, we can take X = V . As A is the generator of an analytic semigroup, we can choose (by standard arguments)
an equivalent norm on X , again denoted by ∥ · ∥, such thateτA

 ≤ 1, τ ≥ 0, and
ϕb(u)

τ

 ≤ 1+ Cτ

for ∥u∥ ≤ R and |τ | ≤ τ0 with a constant C that depends on b, R, and τ0. These bounds imply at once the stability assumption
(20).

The following theorem states second order convergence of the iterated Strang splitting in this situation.

Corollary 7 (Convergence in the Parabolic Case). Let A be the generator of an analytic semigroup and B a bounded operator.
Further assume that the classic Strang splitting Mτ is second order convergent. Then, for i ≥ 2, the iterated Strang splitting is
convergent of order two, i.e., it holds that

S(i)
τ

k
u0 − u(kτ)

 ≤ Cτ 2,

where C depends on the problem and the final time T , but not on k and τ for 0 ≤ kτ ≤ T .

Proof. To show this corollary, we only have to verify the assumptions of Theorem 6. However, this is immediate from the
discussion above. �

5. High order composition methods

In the previous sections we have exclusively considered the iterated Strang splitting scheme S(i)
τ . Now, we will describe

how this (almost) symmetric Strang splitting scheme can be used to construct splittingmethods of higher order. To that end
we will first discuss composition for a symmetric one-step method.

Suppose that a symmetric one-step method Φτ is of even order p. Then a method of order p + 2 can be constructed by
composition (see e.g. [5, p. 43]). More specifically, under suitable conditions on γ1, γ2, γ3, the method Φγ3τ ◦ Φγ2τ ◦ Φγ1τ

is of order p + 2. Therefore, we are able to construct methods of arbitrarily high even order. For p = 2, i.e. starting with
Strang splitting, the corresponding fourth order method is the well-known triple jump scheme. The cost, in terms of a
single evaluation of the Strang splitting scheme, is given by 3p/2−1, where p is the desired order of the composition method
constructed.

That such an approach can be extended to the case of the almost symmetric Strang splitting method S(i)
τ has been shown,

in the case of non-stiff ordinary differential equations, in [6]. In this sectionwewill extend the results presented in the before
mentioned paper to the time integration of partial differential equations. Recall that if the following system of equations is
satisfied

γ1 + γ2 + γ3 = 1, (22)

γ
p+1
1 + γ

p+1
2 + γ

p+1
3 = 0, (23)

the composition results in a scheme of order at least p+ 1. By a symmetry argument we can then deduce that the order is
indeed p + 2. This symmetry argument requires that Φ∗τ − Φτ = O


τ p+3


, where we have used Φ∗τ to denote the adjoint

method of Φτ , and γ1 = γ3 (see [6]).
The single real solution that simultaneously satisfies (22) and (23) is given by

γ1 = γ3 =
1

2− 21/(p+1)
, γ2 = −21/(p+1)γ1.

Note that in order to perform this scheme we have to compute at least one negative time step. In fact, this is shown to be
necessary if the desired order of the composition method is strictly larger than two (see e.g. [11]). While it is possible to
take negative time steps in the case of hyperbolic equations, in parabolic problems this almost certainly leads to numerical
instabilities as, for example, roundoff errors are exponentially amplified in each backward step. To remedy this situation
in [12,13] it has been pointed out that the system of equations given by (22) and (23) admits complex solutionswith positive
real part. We will discuss the efficiency ramifications of using complex values in the entire computation in Section 6.1.

Now, let us turn to the main result of this section. That is, we will indicate how the analysis conducted above can be
extended from the non-stiff ordinary differential equations considered in [6] to the partial differential equations considered
in this paper. For such an analysis appropriate regularity assumptions are indispensable. In particular we have to control the
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remainder terms in the expansions. Now, under the assumption that the symmetric splitting scheme is consistent of order
p, it holds that the local errors ei of Φγiτ satisfy

e1 = C(u0) (γ1τ)p+1 + τ p+2R1(u0),

e2 = C(u(γ1τ)) (γ2τ)p+1 + τ p+2R2(u(γ1τ)),

e3 = C(u((γ1 + γ2)τ )) (γ3τ)p+1 + τ p+2R3(u((γ1 + γ2)τ )),

where Ri(·) denotes the (bounded) remainder term. Note that this, in fact, requires additional applications of the b operator
as computed in the previous section. However, it should be clear that if the solution is sufficiently regular, such an expansion
can be accomplished by the straightforward, but tedious, extension of Sections 3 and 4. Then it is possible to generalize the
proof given above by employing Corollary 3. Let Ei denote the full errors, i.e.

E1 = Φγ1τ (u0)− u(γ1τ),

E2 = Φγ2τ ◦ Φγ1τ (u0)− u((γ1 + γ2)τ ),

E3 = Φγ3τ ◦ Φγ2τ ◦ Φγ1τ (u0)− u(τ ).

Nowwe can employ the same argument as is provided in [5, Chapter II.4] to show that the composition method is in fact of
order p+ 1.

To conclude this section, let us note that the argument provided establishes that, under suitable assumptions on the
regularity of the solution, the composition method is of order p + 1. Due to the fact that S(p+2)

τ is symmetric up to order
p+ 2, the method is in fact of order p+ 2.

6. Numerical simulations

Having established the theoretical convergence rates for the Strang splitting scheme S(i)
τ and its composition in the

previous sections, we now turn our attention to illustrate these results by conducting numerical simulations. To that endwe
have chosen the well-known Brusselator as a parabolic system. The Brusselator consists of two coupled reaction–diffusion
equations and provides a valuable prototype formany similar, but often considerablymore complicated, systems thatmodel
the interaction of chemical species. As an example for a hyperbolic system we have chosen the KdV equation in a single
dimension. This equation is then split in such a manner that the Burgers type nonlinearity can be treated as a position-
dependent but linear advection. For each of these examples a C++ program has been written that employs the fftw library
and is parallelized using OpenMP.

6.1. A parabolic system: the Brusselator

As an example of a parabolic system we consider the Brusselator (see e.g. [14, p. 152]). This system is given by

∂tu = α1u+ (uv − β) u+ δ,

∂tv = α1v − u2v + γ u,

where u(t, x, y) and v(t, x, y) are the two unknowns that usually represent the concentration of chemical species. We have
chosen the reaction parameters as β = 4.4, γ = 3.4, δ = 1, and employ a relatively weak diffusion with α = 10−2.
The equations above have to be supplemented by suitable initial conditions. For the purpose of the numerical simulations
conducted in this section, the following initial values are used

u0(x, y) = 22y(1− y)3/2 (1+ cos(10πx)) ,

v0(x, y) = 27x(1− x)3/2 (1+ sin(10πx))

and all computations are carried out on the domain [0, 1]2 with periodic boundary conditions.
In the context of the splitting scheme outlined in Section 1, let us define

A

u
v


=


α1u
α1v


.

The corresponding flow can be computed efficiently by employing two discrete Fourier transforms. In addition, the
nonlinearity is represented by (note that this choice is not unique)

b (u⋆, v⋆) =


u⋆v⋆ − β 0

γ −u2
⋆


and

d =

δ
0


.
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Fig. 1. Order plot for the Brusselator integrated up to T = 0.25 with 210 grid points per dimension (in total we have 221 grid points). The error at the
final time (measured in the discrete infinity norm) is computed by comparing the numerical solution for a given τ with a reference solution for which a
sufficiently small time step is chosen. For the triple jump and implicit triple jump scheme complex arithmetics is employed. In addition, for each scheme
a line with slope equal to the expected order is displayed as well.

Fig. 2. Work-precision plot for the Brusselator integrated up to T = 0.25 with 210 grid points per dimension (in total we have 221 grid points). The error at
the final time (measured in the discrete infinity norm) is computed by comparing the numerical solution for a given τ with a reference solution for which
a sufficiently small time step is chosen.

Thus, we have to compute the solution of a linear system in two variables which can be done analytically. Note that in this
case we could, in fact, find, by a rather tedious calculation, an analytical solution for the complete nonlinearity. However,
this is no longer possible if one considers either additional variables, i.e. additional chemical species, or alternatively a more
complicated nonlinearity. In such a case, the splitting scheme outlined here would not suffer any further difficulty or even
a loss of efficiency as the nonlinearity in question still reduces to a linear system that is easily solved by standard methods.

In the numerical simulation we will compare three splitting schemes: the (classic) Strang splitting scheme Mτ which
is expected to be of order two; the naive triple jump scheme which is constructed by composition from Mτ . Since Mτ is
not symmetric we expect this to be a third order scheme. Finally, we will consider the triple jump scheme constructed by
composition from S(4)

τ . Since S(4)
τ is symmetric up to order fourwe expect that this approach results in a fourth order scheme.

In fact, this is the main motivation for our approach as it enables us to construct high order (for example, fourth or sixth
ordermethods) by employing thewell known composition rules. The numerical results shown in Fig. 1 confirm the expected
order for all numerical schemes considered.

From Fig. 1 we can clearly see that if similar step sizes are taken the error made by the fourth order iterated triple jump
scheme is significantly less than the error of both the third order triple jump scheme as well as the second order (classic)
Strang splitting scheme. However, to discusswhether the high order schemes constructed here can also provide a significant
gain in efficiency we have to plot the simulation time as a function of the error. This is done in Fig. 2.

It is shown that for high precision requirement (or equivalently long integration times) the use of the fourth order
iterated triple jump scheme (with 4 iterations, i.e. S(4)

τ ) results in a significant increase in efficiency. However, due to the
overhead involved in the use of complex arithmetics for small precision requirements and short integration intervals the
Strang splitting scheme is clearly the preferred choice. Also note that our fourth order scheme is superior to the naive triple
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jump scheme for almost any precision requirements that go beyond the region where the (classic) Strang splitting scheme
is superior in terms of efficiency.

6.2. A hyperbolic system: the KdV equation

As an example of a hyperbolic system we consider the KdV (Korteweg–de Vries) equation in a single dimension. It is
given by

∂tu(t, x)+ ∂3
x u(t, x)+ u(t, x)∂xu(t, x) = 0.

It is shown in [15,16] that for sufficiently regular initial values the regularity of the solution to the KdV equation is not
diminished as it is evolved in time (although this does not rule out the appearance of high frequency oscillations). For the
purpose of this section, we will consider two initial values with extremely different dynamical behavior.

First, let us consider the following initial value

u0(x) = u(0, x) =
12

cosh2 x
. (24)

The exact solution is a soliton that travels to the right with speed 4, i.e., the solution is given by (see e.g. [17])

u(t, x) = u0(x− 4t).

For our numerical studies we consider the domain [−20, 20] in order to limit artifacts which originate from the fact that
periodic boundary conditions are imposed on the domain of finite length that is used in the numerical simulations. We
integrate up to a final time T = 0.4.

Second, we consider an initial value where oscillations appear. The so called Schwartzian initial value is given by (see
e.g. [4])

u0(x) =
12x tanh |x|
|x| cosh2 x

. (25)

In this instance we integrate only up to T = 0.05 and employ the domain [−4π, 4π ] with periodic boundary conditions
(following the same argument as given above).

Now let us turn our attention to the splitting scheme employed. In the framework of Section 1 the linear problem is
defined as

A = −∂3
x

and can be solved efficiently by employing two discrete Fourier transforms. Instead of the full nonlinearity we numerically
compute the evolution corresponding to

b (u⋆) = u⋆(x)∂x, d = 0. (26)

This is significantly less involved than the case with the full Burgers type nonlinearity. In fact, [4] states that using the full
nonlinearity invalidates splitting as a viable approach to numerically solve the KP (Kadomtsev–Petviashvili) equation (note
that, compared to the KdV equation, the two dimensional KP equation includes an additional diffusive term in the second
variable). However, the linear problem given by Eq. (26) can be computed numerically to high precision, for example, by
using the (exact) exponential of a finite difference stencil (as it is often done in the context of exponential integrators, for
example). We intended to employ the Expokit package to compute the exponential of a seven-point stencil that is used
to approximate the first derivative. However, in case of the soliton solution the results were not satisfactory except for very
small step sizes. Therefore, we used the SUNDIALS CVODE solver, with a prescribed tolerance of 10−12, for this example.1

The numerical results are shown in Fig. 3 (for the soliton initial value given in Eq. (24)) and in Fig. 4 (for the Schwartzian
initial value given in Eq. (25)). Note that the numerical simulations match the predicted orders of the schemes studied very
well. Thus, we conclude that the data obtained are clearly consistent with the analysis conducted in Sections 3 and 5.

7. Conclusion and outlook

We have rigorously shown that the proposed iterated Strang splitting scheme is of second order in time and due to its
symmetry properties can be used to construct methods of arbitrary (even) order by composition. The main assumption we
have made is that the classic Strang splitting method is convergent of order two (i.e., we deal with a problem for which
applying a splitting scheme of second order is sensible). Further, a technical assumption on the nonlinearity is made. This
assumption reduces, in the linear limit, to the statement that we have to bound an appropriate number of application of the

1 Unfortunately, to our knowledge, there are no packages that are written in C++ available to compute the matrix exponential. We have tried both
Expokit as outlined above and the (unsupported) matrix exponential provided by the SPARSEKIT package (using our own Fortran to C bindings). Even
though the source code of SPARSEKIT is much more readable, it is only able to compute an approximation up to a tolerance of 10−6 . This, is even true for
the diagonal example provided as part of the package. None of these packages are parallelized. However, let us mention here, for the sake of completeness,
that there are a number of Python and Matlab implementations available.
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Fig. 3. Order plot for the KdV equation integrated up to T = 0.4 with 210 grid points for the soliton initial value given in (24). The error at the final time
(measured in the discrete L2 norm) is computed by comparing the numerical solution for a given τ with a reference solution for which a sufficiently small
time step has been chosen. In addition, for each scheme a line with slope equal to the expected order is displayed as well.

Fig. 4. Order plot for the KdV equation integrated up to T = 0.05 with 211 grid points for the Schwartzian initial value given in (25). The error at the final
time (in the discrete L2 norm) is computed by comparing the numerical solution for a given τ with a reference solution for which a sufficiently small time
step has been chosen. In addition, for each scheme a line with slope equal to the expected order is displayed as well.

operator in question to the exact solution (assumptions of a similar type have been used in much of the literature to show
convergence of splitting methods for linear partial differential equations).

In addition, we have provided an argument demonstrating that our iterated Strang splitting can be used, similar to the
case of ordinary differential equations, to construct higher order methods by composition if sufficient regularity of the exact
solution can be assumed. This has been verified up to order four for both the Brusselator system (a parabolic problem) and
the KdV equation (a hyperbolic partial differential equation). In both instances the iterated fourth order method is shown to
provide superior performance, in case of medium to high precision requirements (or equivalently long integration times),
as compared to the (classic) Strang splitting. In addition, we observe superior performance for high precision requirements
when the iterated fourth order method is compared to the (classic) triple jump scheme (which is a method of order three).
We also conclude that the necessity of using complex precision arithmetics, in the case of parabolic problems, does not
negate the performance gain we expect from higher order methods.

In this paper we have only considered methods of order up to four. However, composition can be used to construct
methods of arbitrary (even) order. To provide a clear picture of the efficiency gain expected for such high order methods,
longer integration times as well as more complicated partial differential equations have to be considered. Since we have not
considered parallelization and other computing aspects in this paper, we will consider such investigations as a subject of
further research.
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