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a b s t r a c t

In 1954, Tutte conjectured that every bridgeless graph has a nowhere-zero 5-flow. Letω(G)
be the minimum number of odd cycles in a 2-factor of a bridgeless cubic graph G. Tutte’s
conjecture is equivalent to its restriction to cubic graphs with ω ≥ 2. We show that if a
cubic graph G has no edge cut with fewer than 52ω(G) − 3 edges that separates two odd
cycles of a minimum 2-factor of G, then G has a nowhere-zero 5-flow. This implies that if a
cubic graphG is cyclically n-edge connected and n ≥ 5

2ω(G)−3, thenG has a nowhere-zero
5-flow.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

This paper is about flows on finite graphs. Let M = (V , E) be a graph with vertex set V and edge set E. Each edge is
incident to precisely two different vertices, i.e. multiple edges may occur but there are no loops.
An orientation D ofM is an assignment of a direction to each edge, and for v ∈ V ,D−(v) (D+(v)) is the set of edges whose

head (tail) is incident to v. The oriented graph is denoted by D(M), d−D(M)(v) = |D−(v)| and d+D(M)(v) = |D+(v)| denote the
indegree and outdegree of vertex v in D(M), respectively.
Let k ≥ 2 be a positive integer and ϕ : E −→ {0, 1, . . . , k− 1} be a function. If for all v ∈ V ,∑

e∈D+(v)

ϕ(e) =
∑
e∈D−(v)

ϕ(e), (1)

then (D, ϕ) is a k-flow onM . If, in addition, ϕ(e) 6= 0, for all e ∈ E, then (D, ϕ) is a nowhere-zero k-flow onM . In such a case,
we say thatM has a nowhere-zero k-flow.
If a graph has a nowhere-zero k-flow, then it has one for every k′ ≥ k. Tutte [7] proved that a graph G has a nowhere-zero

k-flow (D, ϕ) if and only if it has a flow (D′, ϕ′) such that for every edge e, |ϕ′(e)| is one of 1, . . . , k − 1. Thus determining
for which number k a graph has a nowhere-zero k-flow is a problem about graphs, not directed graphs.
Tutte [8] raised the problem to determine the smallest number k for which a graph has a nowhere-zero k-flow, and he

formulated the 5-Flow Conjecture.

Conjecture 1 ([8]). Every bridgeless graph has a nowhere-zero 5-flow.
The 5-Flow Conjecture is equivalent to its restriction to cubic graphs, cf. [3]. By Petersen’s theorem, every bridgeless cubic

graph G has a 2-factor and the oddness ω(G) is the minimum number of odd cycles in a 2-factor of G. Clearly, the oddness
must be an even number, and it is well known (cf. [3]) that a cubic graph G has a nowhere-zero 4-flow if and only if it is
edge 3-colorable (i.e.ω(G) = 0). Hence the 5-Flow Conjecture is equivalent to its restriction to bridgeless cubic graphs with
ω ≥ 2.
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Many papers deal with the structure of a possible counterexample to the 5-Flow Conjecture. A connected graph G =
(V , E) that contains two disjoint cycles is cyclically n-edge connected if there is no edge cut E ′ ⊂ E with fewer than n edges
such that two components of G− E ′ contain cycles. The maximum number k so that G is cyclically k-edge connected is the
cyclic connectivity of G and it is denoted by n∗G. Kochol [4,5] showed that the length of a shortest cycle in a possible minimum
counterexample is at least 9, and that it is cyclically 6-edge connected. This paper proves the following theorems.

Theorem 1. Every cubic graph G with cyclic connectivity n∗G ≥
5
2ω(G)− 3 has a nowhere-zero 5-flow.

Aminimum 2-factor of a cubic graph G = (V , E) has precisely ω(G) odd cycles. Let ω(G) ≥ 2, F2 be a minimum 2-factor,
and let mG(F2) be the maximum number k such that there is no edge cut E ′ ⊂ E with fewer than k edges such that two
components of G−E ′ contain odd cycles ofF2. We definem∗G = max{mG(F2)|F2 is a minimum 2-factor of G} to be the cyclic
factor connectivity of G. For graphs Gwith ω(G) = 0 definem∗G = ∞.
Since n∗G ≤ m

∗

G Theorem 1 is a direct consequence of the following theorem.

Theorem 2. Let G be a bridgeless cubic graph. If m∗G ≥
5
2ω(G)− 3, then G has a nowhere-zero 5-flow.

2. Balanced valuations and flow partitions

Bondy [1] and Jaeger [2] introduced the concept of balanced valuations. A balanced valuation of a graphM = (V , E) is a
function w from the vertex set V into the real numbers such that for all X ⊆ V : |

∑
v∈X w(v)| ≤ |∂M(X)|, where ∂M(X) is

the set of edges with precisely one end in X . For v ∈ V let dM(v) be the degree of v in the undirected graphM . The following
theorem relates integer flows to balanced valuations.

Theorem 3 ([2]). Let M = (V , E) be a graph with orientation D and k ≥ 3. Then M has a nowhere-zero k-flow (D, ϕ) if and only
if there is a balanced valuationw of M withw(v) = k

k−2 (2d
+

D(M)(v)− dM(v)), for all v ∈ V .

In particular, Theorem 3 says that a cubic graph G has a nowhere-zero 4-flow (nowhere-zero 5-flow) if and only if there
is a balanced valuation of Gwith values in {±2} ({± 53 }).
LetM = (V , E) be a multigraph. If X ⊆ E, thenM[X] denotes the graph whose vertex set consists of all vertices of edges

of X and whose edge set is X . Likewise if X ⊆ V , thenM[X] is the graph whose vertex set is X and whose edge set consists
of those edges incident to two vertices of X . In both instances the subgraphM[X] is called the subgraph ofM induced by X .
Let Ei ⊆ E, and (Di, ϕi) be flows on M[Ei], i = 1, 2. The sum (D1, ϕ1) + (D2, ϕ2) is the flow (D, ϕ) on M[E1 ∪ E2] with

orientation
D := D1|{e|ϕ1(e)≥ϕ2(e)} ∪ D2|{e|ϕ2(e)>ϕ1(e)}, and

ϕ(e) :=
{
ϕ1(e)+ ϕ2(e) if e received the same direction in D1 and D2
|ϕ1(e)− ϕ2(e)| otherwise,

for e ∈ E1 ∪ E2.
Let G = (V , E) be a bridgeless cubic graph, and F2 be a 2-factor of G with odd cycles C1, C2, . . . , C2t , and even cycles

C2t+1, . . . , C2t+` (t ≥ 0, ` ≥ 0), and let F1 be the complementary 1-factor.
A canonical 4-coloring of G (with respect to F2) colors the edges of F1 with color 1, the edges of the even cycles with 2

and 3, alternately, and the edges of the odd cycles with colors 2 and 3 alternately, except one edge which is colored 0. Then,
there are precisely 2t vertices z1, z2, . . . , z2t where color 2 is missing.
LetMG = (V , E(MG)) be the graph obtained from G by adding two edges fi and f ′i between z2i−1 and z2i for i = 1, . . . , t .

Extend c to a proper edge coloring of MG by coloring f ′i with color 2 and fi with color 4. Let C
′

1, . . . C
′
s be the 2-factor of MG

induced by the edges of colors 1 and 2 (s ≥ 1), and for i = 1, . . . , t let C ′′i be the 2-cycle induced by the edges fi and f
′

i . We
construct a nowhere-zero 4-flow onMG as follows:
For 1 ≤ i ≤ 2t + ` let (Di, ϕi) be a nowhere-zero flow on the directed cycle Ci with ϕi(e) = 2 for all e ∈ E(Ci).
For 1 ≤ i ≤ s let (D′i, ϕ

′

i ) be a nowhere-zero flow on the directed cycle C
′

i with ϕ′i (e) = 1 for all e ∈ E(C
′

i ).
For 1 ≤ i ≤ t let (D′′i , ϕ

′′

i ) be a nowhere-zero flow on the directed cycle C
′′

i (choose D
′′

i such that f
′

i receives the same
direction as in D′i) with ϕ′′i (e) = 1 for all e ∈ {fi, f

′

i }. Then

(D, ϕ) =

2t+∑̀
i=1

(Di, ϕi)+
s∑
i=1

(D′i, ϕ
′

i )+

t∑
i=1

(D′′i , ϕ
′′

i ) (2)

is a nowhere-zero 4-flow onMG.
By Theorem3, there is a balanced valuationw′(v) = 2(2d+D(MG)(v)−dMG(v)) ofMG. It holds that |2d+D(MG)(v)−dMG(v)| = 1,

and hence w′(v) ∈ {±2} for all v ∈ V . The vertices of MG (and therefore of G as well) are partitioned into two classes
A = {v|w′(v) = −2} and B = {v|w′(v) = 2}. Call the elements ofA (B) thewhite (black) vertices ofMG and ofG, respectively.
Let G = (V , E) be a bridgeless cubic graph. A partition of V into two classes A and B constructed as above, and using a

2-factor F2, a canonical 4-coloring c of G, the 4-flow (D, ϕ) on MG and the induced balanced valuation w′ of MG is called
a flow partition of G, and it is denoted by PG(A, B) = PG(A, B, F2, c, (D, ϕ), w′). If we refer to a special 2-factor F2, we say
PG(A, B) is a flow partition of G with respect to F2. For X ⊆ V let AX = A ∩ X (BX = B ∩ X) be the set of the white (black)



E. Steffen / Discrete Mathematics 310 (2010) 385–389 387

vertices of X , and aX = |AX |, bX = |BX |. If we consider the vertex set V (F) of a subgraph F of a graph G we also write aF
instead of aV (F) (bF instead of bV (F)).
We will prove some properties of flow partitions of cubic graphs. The following lemma is a direct consequence of the

construction of (D, ϕ) onMG.

Lemma 1. Let PG(A, B, F2, c, (D, ϕ), w′) be a flow partition of a bridgeless cubic graph G = (V , E), and xy = e ∈ E. If the
canonical 4-coloring c colors e with 1or 2, then x and y belong to different classes, i.e. x ∈ A if and only if y ∈ B.

Lemma 2. Let G = (V , E) be a cubic bridgeless graph and PG(A, B) be a flow partition with respect to a 2-factor F2. Let S ⊆ V
be a set of vertices such that the induced subgraph G[S] is connected, n be the number of edges which have to be removed
from G[S] to obtain a spanning tree of G[S], and let no be the number of odd cycles of F2 which are subgraphs of G[S]. Then
bS ≤ 4aS + 3− 3n+ no.
Proof. Let PG(A, B) = PG(A, B, F2, c, (D, ϕ), w′) and F be a connected subgraph of F2. We show:
(1) If F is an even cycle, then bF = aF .
(2) If F is an odd cycle, then bF ≤ aF + 1.
(3) If F is a path, then bF ≤ aF + 3.
Items (1) and (2) follow from Lemma 1 directly. We distinguish two cases to prove (3).

Case 1: The edges of F are colored with colors 2 and 3.
If |E(F)| = 2l+ 1, then at least l edges are colored with color 2. Thus Lemma 1 implies that aF ≥ l. Since |V (F)| = 2l+ 2

and bF = 2l+ 2− aF it follows that bF ≤ aF + 2.
If |E(F)| = 2l, then l edges are colored with color 2. Thus Lemma 1 implies that aF = l. Since |V (F)| = 2l + 1 it follows

that bF = aF + 1.
Case 2: F contains an edge of color 0.
By the definition of the coloring there is precisely one edge of color 0.
If the length of F is odd, say 2l+ 1, the first and the last edge of F are colored differently, and there are l edges of color 2.

Thus Lemma 1 implies that aF ≥ l. Since |V (F)| = 2l+ 2 it follows that bF ≤ aF + 2.
If |E(F)| = 2l, then at least l − 1 edges are colored 2. Thus Lemma 1 implies that aF ≥ l − 1. Since |V (F)| = 2l + 1 it

follows that bF ≤ aF + 3. ◦
Let E1 be the set of edges of color 1 of G[S]. By Lemma 1, |E1| ≤ aS . Let E−1 ⊂ E1 be a set of edges so that G[S] − E

−

1 is
connected and no edge of color 1 (in G[S]− E−1 ) is contained in a cycle. Each cycle of G[S]− E

−

1 is a cycle ofF2. Remove from
each cycle precisely one edge of color 2 to obtain a spanning tree of G[S]. Let E−2 be the set of these removed edges of color
2. With ni = |E−i | (i = 1, 2) it follows that n = n1 + n2.
Let Z0, . . . , Za′ be the components of G[S] − E1, and ai (bi) be the number of white (black) vertices in Zi, i = 0, . . . , a′.

Each component is either a cycle of F2 or a subpath of a cycle of F2. The number of components is smaller than or equal to
1 plus the number of edges of color 1 in G[S] − E−1 , therefore a

′
≤ aS − n1. Furthermore

∑a′
i=0 ai = aS .

For i ∈ IP = {0, 1, . . . , a′ − n2} let Zi be a path, for i ∈ IoC = {a
′
− n2 + 1, . . . , a′ − n2 + no} let Zi be an odd cycle, and for

i ∈ IeC = {a
′
− n2 + no + 1, . . . , a′} let Zi be an even cycle. Then it follows with a′ ≤ aS − n1 that

bS =
∑
i∈IP

bi +
∑
i∈IoC

bi +
∑
i∈IeC

bi

≤

∑
i∈IP

(ai + 3)+
∑
i∈IoC

(ai + 1)+
∑
i∈IeC

ai

= 3(a′ − n2 + 1)+ no +
a′∑
i=0

ai

≤ 3(aS − (n1 + n2)+ 1)+ no + aS
= 4aS + 3− 3n+ no. �

We finish this section with the following lemma.

Lemma 3. Let PG(A, B) be a flow partition of a cubic bridgeless graph G = (V , E). Let S ⊆ V be a set of vertices such that the
induced subgraph G[S] is connected, and n be the number of edges which have to be removed from G[S] to obtain a spanning tree
T of G[S]. Assume aS ≤ bS , then bS ≤ 4aS + 3− 3n if and only if 53 (bS − aS) ≤ |∂G(S)|.
Proof. Consider a spanning tree T = (S, E(T )) of G[S] and let Ti = {v|v ∈ S and dT (v) = i}, for i = 1, 2. Then
|∂G(S)| + 2n = 2|T1| + |T2| and

|S| − 1 = |E(T )| =
1
2
(3(|S| − (|T1| + |T2|))+ 2|T2| + |T1|) =

1
2
(3|S| − |∂G(S)| − 2n).

Since |S| = aS + bS it follows that |∂G(S)| = aS + bS + 2 − 2n, and hence 53 (bS − aS) ≤ |∂G(S)| is equivalent to
bS ≤ 4aS + 3− 3n. �
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3. Proof of Theorem 2

Let G = (V , E) be a bridgeless cubic graph with oddness ω. If ω ∈ {0, 2}, then G has a nowhere-zero 5-flow, cf. [3]. Thus
we may assume that ω ≥ 4.
Let F2 be a minimum 2-factor of G with mG(F2) = m∗G ≥

5
2ω − 3. Let PG(A, B) = PG(A, B, F2, c, (D, ϕ), w′) be a flow

partition of Gwith respect to F2. Letw : V → {± 53 } be a function withw(v) = − 53 if v ∈ A andw(v) = 5
3 if v ∈ B. We will

show thatw is a balanced valuation of G. Then it follows from Theorem 3 that G has a nowhere-zero 5-flow.
Assume to the contrary thatw is not balanced. Then there is S ⊆ V with∣∣∣∣∣∑

v∈S

w(v)

∣∣∣∣∣ > |∂G(S)|. (3)

If S = V , then |
∑

v∈S w(v)| = 0 = |∂G(S)|, and therefore S is a proper subset of V . Let S be of minimum order, so we
may assume that G[S] is connected, and without loss of generality bS ≥ aS . With k = bS − aS Eq. (3) becomes

5
3
k > |∂G(S)|. (4)

We show

Proposition 1. |∂G(S)| ≤ 5
2ω − 4; in particular

(1) |∂G(S)| ≤ 5
2ω − 4, if |∂G(S)| ≡ 1 mod 5,

(2) |∂G(S)| ≤ 5
2ω − 8, if |∂G(S)| ≡ 2 mod 5,

(3) |∂G(S)| ≤ 5
2ω − 7, if |∂G(S)| ≡ 3 mod 5,

(4) |∂G(S)| ≤ 5
2ω − 11, if |∂G(S)| ≡ 4 mod 5,

(5) |∂G(S)| ≤ 5
2ω − 15, if |∂G(S)| ≡ 0 mod 5.

Proof. For i = 0, 1, 2, 3 let Ei ⊂ E be the set of the edges of color i in G and let ci = |∂G(S) ∩ Ei|. The edges of color 1 form a
1-factor of G. Thus Lemma 1 implies that k = c1 and hence c1 > 3

5 |∂G(S)| by Eq. (4).
Let laS (l

b
S) be the number of white (black) vertices of S where color 2 is missing, with respect to c . Let l = |l

b
S − l

a
S |. From

0 ≤ laS , l
b
S ≤

1
2ω it follows that l ≤

1
2ω, and Lemma 1 implies that k ≤ c2 + l. Hence c2 +

1
2ω ≥ k > 3

5 |∂G(S)|.

(1) If |∂G(S)| ≡ 1 mod 5, say |∂G(S)| = 5m + 1, then it follows that c1 ≥ 3m + 1 and therefore c2 ≤ 2m. Thus
1
2ω ≥ 3m+ 1− c2 ≥ 3m+ 1− 2m = m+ 1 and hence

5
2ω − 4 ≥ |∂G(S)|.

(2) Can be proved analogously.
(3) If |∂G(S)| ≡ 3 mod 5, say |∂G(S)| = 5m+ 3, then it follows that c1 ≥ 3m+ 2 and therefore c2 ≤ 2m+ 1.

If c2 = 2m+ 1, then c1 ≤ |∂G(S)| − c2 = 3m+ 2 and hence c1 = 3m+ 2 and c0 = c3 = 0. Let X be the set of vertices of
G[S]which are incident (in G) to an edge of |∂G(S)∩ E2|, and Y be the set of vertices which are incident to an edge of color 0
in G[S]. Color 2 or 3 is missing on each vertex of X ∪ Y and Z = X ∩ Y consists of those vertices of G[S] where both colors,
2 and 3, are missing. Each vertex z of Z is incident to an edge e = zz ′ of color 0 in G[S]. Furthermore, color 2 is missing and
color 3 appears at z ′. Therefore, for each vertex of z ∈ Z there is precisely one vertex z ′ in G[S]where only color 2 is missing.
Since |X | = c2 is odd and c0 = c3 = 0 it follows that the total number of vertices of G[S] where either color 2 or color 3
is missing is odd. This is a contradiction, since every path induced by edges of colors 2 and 3 in G[S] has precisely two end
vertices in G[S].
Therefore c2 ≤ 2m and hence c2+ 12ω ≥ 3m+2 implies that

1
2ω ≥ 3m+2−2m = m+2. Thus

5
2ω−7 ≥ 5m+3 = |∂G(S)|.

Items (4) and (5) can be proved analogously to (3). ◦
Since G has no edge cut with fewer than 52ω − 3 edges that separates two odd cycles of F2 it follows with Proposition 1

that no = 0. Hence bS ≤ 4aS + 3 − 3n by Lemma 2 and therefore 53k ≤ |∂G(S)| by Lemma 3. This contradicts Eq. (4) and
completes the proof. �

4. Remarks on r-flows

The notion of nowhere-zero flows can be extended to rational numbers. Let 1 ≤ p ≤ q be integers, and let ϕ be a function
from the edge set E of the directed graph G = (V , E) (with orientation D) into the rational numbers. (D, ϕ) is a nowhere-zero
q
p + 1-flow on G = (V , E) if 1 ≤ ϕ(e) ≤ q

p for all e ∈ E and Eq. (1) is satisfied for all v ∈ V . The circular flow number Fc(G) of
G is the minimum number r such that G has a nowhere-zero r-flow.
Seymour [6] proved that every bridgeless graph has a nowhere-zero 6-flow. Somemethods of this paper can be extended

to the study of nowhere-zero r-flows on graphs. For instance, it can be proved that Fc(G) < 6 for all bridgeless cubic graphs
Gwithm∗G ≥

3
2ω(G)+ 1.



E. Steffen / Discrete Mathematics 310 (2010) 385–389 389

References

[1] J.A. Bondy, Balanced colourings and graph orientation, Congr. Numer. XIV (1975) 109–114.
[2] F. Jaeger, Balanced valuations and flows in multigraphs, Proc. Amer. Math. Soc. 55 (1975) 237–242.
[3] F. Jaeger, Nowhere-zero flow problems, in: L.W. Beineke, R.J. Wilson (Eds.), in: Topics in Graph Theory, vol. 3, Academic Press, London, 1988, pp. 70–95.
[4] M. Kochol, Reduction of the 5-flow conjecture to cyclically 6-edge-connected snarks, J. Combin. Theory, Ser. B 90 (2004) 139–145.
[5] M. Kochol, Restrictions on smallest counterexamples to the 5-flow conjecture, Combinatorica 26 (2006) 83–89.
[6] P.D. Seymour, Nowhere-zero 6-flows, J. Comb. Theory Ser. B 30 (1981) 130–135.
[7] W.T. Tutte, On the embedding of linear graphs in surfaces, Proc. London Math. Soc. Ser. 2 51 (1949) 474–489.
[8] W.T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954) 80–91.


	Tutte's 5-flow conjecture for highly cyclically connected cubic graphs
	Introduction
	Balanced valuations and flow partitions
	Proof of Theorem 2
	Remarks on  r -flows
	References


