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1. Introduction

This paper is about flows on finite graphs. Let M = (V, E) be a graph with vertex set V and edge set E. Each edge is
incident to precisely two different vertices, i.e. multiple edges may occur but there are no loops.

An orientation D of M is an assignment of a direction to each edge, and for v € V, D™ (v) (D" (v)) is the set of edges whose
head (tail) is incident to v. The oriented graph is denoted by D(M), dB(M)(v) = |D™(v)| and d[f(M)(v) = |D™(v)| denote the
indegree and outdegree of vertex v in D(M), respectively.

Let k > 2 be a positive integerand ¢ : E —> {0, 1, ..., k — 1} be a function. If forallv € V,
Y el@= ) ¢, (1)
eeDt(v) eeD™ (v)

then (D, @) is a k-flow on M. If, in addition, ¢(e) # 0, for all e € E, then (D, ¢) is a nowhere-zero k-flow on M. In such a case,
we say that M has a nowhere-zero k-flow.

If a graph has a nowhere-zero k-flow, then it has one for every k' > k. Tutte [7] proved that a graph G has a nowhere-zero
k-flow (D, ¢) if and only if it has a flow (D', ¢’) such that for every edge e, |¢’(e)| is one of 1, ..., k — 1. Thus determining
for which number k a graph has a nowhere-zero k-flow is a problem about graphs, not directed graphs.

Tutte [8] raised the problem to determine the smallest number k for which a graph has a nowhere-zero k-flow, and he
formulated the 5-Flow Conjecture.

Conjecture 1 (/8]). Every bridgeless graph has a nowhere-zero 5-flow.

The 5-Flow Conjecture is equivalent to its restriction to cubic graphs, cf. [3]. By Petersen’s theorem, every bridgeless cubic
graph G has a 2-factor and the oddness w(G) is the minimum number of odd cycles in a 2-factor of G. Clearly, the oddness
must be an even number, and it is well known (cf. [3]) that a cubic graph G has a nowhere-zero 4-flow if and only if it is
edge 3-colorable (i.e. w(G) = 0). Hence the 5-Flow Conjecture is equivalent to its restriction to bridgeless cubic graphs with
w > 2.
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Many papers deal with the structure of a possible counterexample to the 5-Flow Conjecture. A connected graph G =
(V, E) that contains two disjoint cycles is cyclically n-edge connected if there is no edge cut E’ C E with fewer than n edges
such that two components of G — E’ contain cycles. The maximum number k so that G is cyclically k-edge connected is the
cyclic connectivity of G and it is denoted by nf.. Kochol [4,5] showed that the length of a shortest cycle in a possible minimum
counterexample is at least 9, and that it is cyclically 6-edge connected. This paper proves the following theorems.

Theorem 1. Every cubic graph G with cyclic connectivity n}. > ga)(G) — 3 has a nowhere-zero 5-flow.

A minimum 2-factor of a cubic graph G = (V, E) has precisely w(G) odd cycles. Let w(G) > 2, & be a minimum 2-factor,
and let mg(¥,) be the maximum number k such that there is no edge cut E' C E with fewer than k edges such that two
components of G—E’ contain odd cycles of . We define m§ = max{mg(53)|%; is a minimum 2-factor of G} to be the cyclic
factor connectivity of G. For graphs G with w(G) = 0 define m§ = oo.

Since n¢ < m¢ Theorem 1 is a direct consequence of the following theorem.

Theorem 2. Let G be a bridgeless cubic graph. If m{ > gw(G) — 3, then G has a nowhere-zero 5-flow.

2. Balanced valuations and flow partitions

Bondy [1] and Jaeger [2] introduced the concept of balanced valuations. A balanced valuation of a graph M = (V,E) is a
function w from the vertex set V into the real numbers such that forall X € V:|}" _, w(v)| < |9y (X)|, where 9y (X) is
the set of edges with precisely one end in X. For v € V let dy;(v) be the degree of v in the undirected graph M. The following
theorem relates integer flows to balanced valuations.

Theorem 3 ([2]). Let M = (V, E) be a graph with orientation D and k > 3. Then M has a nowhere-zero k-flow (D, @) if and only
if there is a balanced valuation w of M with w(v) = k%z(zdg(,v,)(v) —dy()), forallv e V.

In particular, Theorem 3 says that a cubic graph G has a nowhere-zero 4-flow (nowhere-zero 5-flow) if and only if there
is a balanced valuation of G with values in {32} ({:I:%}).

Let M = (V, E) be a multigraph. If X C E, then M[X] denotes the graph whose vertex set consists of all vertices of edges
of X and whose edge set is X. Likewise if X C V, then M[X] is the graph whose vertex set is X and whose edge set consists
of those edges incident to two vertices of X. In both instances the subgraph M[X] is called the subgraph of M induced by X.

Let E; C E, and (D;, ¢;) be flows on M[E;], i = 1, 2. The sum (D4, ¢1) + (D2, @) is the flow (D, ¢) on M[E; U E,] with
orientation

D := Dileigy@=¢2(01 Y D2lfelpse)>¢1 ey, and

p1(e) + ¢a(e) if e received the same direction in D; and D,

9€) =1 151(e) — pa(e)|  otherwise,

fore € E{ UE,.

Let G = (V, E) be a bridgeless cubic graph, and ¥, be a 2-factor of G with odd cycles Cy, C3, ..., C3, and even cycles
Cori1s - - s Corrg (£ >0, £ > 0), and let F7 be the complementary 1-factor.

A canonical 4-coloring of G (with respect to %) colors the edges of #; with color 1, the edges of the even cycles with 2
and 3, alternately, and the edges of the odd cycles with colors 2 and 3 alternately, except one edge which is colored 0. Then,
there are precisely 2t vertices z1, zo, . . ., Zo: Where color 2 is missing.

Let Mg = (V, E(Mg)) be the graph obtained from G by adding two edges f; and f/ between z,;_; and z; fori =1, ..., t.
Extend c to a proper edge coloring of M¢ by coloring f/ with color 2 and f; with color 4. Let Cj, . .. C; be the 2-factor of Mg
induced by the edges of colors 1and 2 (s > 1),and fori = 1, ..., t let " be the 2-cycle induced by the edges f; and f/. We
construct a nowhere-zero 4-flow on M¢ as follows:

For 1 <i < 2t + £ let (D;, ¢;) be a nowhere-zero flow on the directed cycle C; with ¢;(e) = 2 for alle € E(G).

For 1 <i < slet (D;, ¢/) be a nowhere-zero flow on the directed cycle C] with ¢;(e) = 1foralle € E(C}).

1

For 1 < i < tlet (D}, ¢/) be a nowhere-zero flow on the directed cycle C" (choose D/ such that f receives the same

direction as in D}) with ¢/ (e) = 1forall e € {f;, f/}. Then

2t+-¢

(D.¢) =Y Do)+ Y (D, ¢)+ Y (D¢ (2)
i=1 i=1 i=1

is a nowhere-zero 4-flow on Mg.

By Theorem 3, there is a balanced valuation w’ (v) = 2(2d;r(MG) (v) —dw (v)) of Mg. It holds that |2d[+,(MG) () —dy.(v)| =1,
and hence w’(v) € {£2} for all v € V. The vertices of M; (and therefore of G as well) are partitioned into two classes
A= {v|lw'(v) = —2}and B = {v|w'(v) = 2}.Call the elements of A (B) the white (black) vertices of M; and of G, respectively.

Let G = (V, E) be a bridgeless cubic graph. A partition of V into two classes A and B constructed as above, and using a
2-factor %, a canonical 4-coloring ¢ of G, the 4-flow (D, ¢) on M and the induced balanced valuation w’ of Mg is called
a flow partition of G, and it is denoted by P;(A, B) = P;(A, B, %>, c, (D, ¢), w’). If we refer to a special 2-factor 5, we say
Pc(A, B) is a flow partition of G with respect to . For X C V let Ay = AN X (Bx = BN X) be the set of the white (black)
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vertices of X, and ay = |Ax/|, bx = |Bx|. If we consider the vertex set V(F) of a subgraph F of a graph G we also write ar
instead of ay ) (b instead of by ).

We will prove some properties of flow partitions of cubic graphs. The following lemma is a direct consequence of the
construction of (D, ¢) on Mg.

Lemma 1. Let P;(A, B, 7, ¢, (D, ), w’) be a flow partition of a bridgeless cubic graph G = (V,E), and xy = e € E. If the
canonical 4-coloring c colors e with 1or 2, then x and y belong to different classes, i.e. x € Aifand only if y € B.

Lemma 2. Let G = (V, E) be a cubic bridgeless graph and P;(A, B) be a flow partition with respect to a 2-factor 5. Let S C V
be a set of vertices such that the induced subgraph G[S] is connected, n be the number of edges which have to be removed
from G[S] to obtain a spanning tree of G[S], and let n, be the number of odd cycles of ¥, which are subgraphs of G[S]. Then
bs < 4as 4+ 3 — 3n + n,.
Proof. Let P;(A, B) = Pg(A, B, %5, ¢, (D, ¢), w') and F be a connected subgraph of ;. We show:
(1) If F is an even cycle, then by = ar.
(2) IfF is an odd cycle, then by < ar + 1.
(3) If F is a path, then br < ar + 3.

Items (1) and (2) follow from Lemma 1 directly. We distinguish two cases to prove (3).
Case 1: The edges of F are colored with colors 2 and 3.

If |[E(F)| = 21+ 1, then at least [ edges are colored with color 2. Thus Lemma 1 implies that ar > [ Since |V (F)| = 21+ 2
and b = 21+ 2 — af it follows that by < ar + 2.

If [E(F)| = 21, then [ edges are colored with color 2. Thus Lemma 1 implies that ar = L. Since |V (F)| = 2l + 1 it follows
that bp =ar + 1.

Case 2: F contains an edge of color 0.

By the definition of the coloring there is precisely one edge of color 0.

If the length of F is odd, say 2] + 1, the first and the last edge of F are colored differently, and there are [ edges of color 2.
Thus Lemma 1 implies that ar > L. Since |V (F)| = 21 4 2 it follows that by < ar + 2.

If |[E(F)| = 2I, then at least | — 1 edges are colored 2. Thus Lemma 1 implies that ap > [ — 1. Since |[V(F)| = 21 + 1 it
follows that by < ar + 3.0

Let E; be the set of edges of color 1 of G[S]. By Lemma 1, |[E1| < as.Let E]’ C E; be a set of edges so that G[S] — E] is
connected and no edge of color 1 (in G[S] — E;) is contained in a cycle. Each cycle of G[S] — E] is a cycle of #,. Remove from
each cycle precisely one edge of color 2 to obtain a spanning tree of G[S]. Let E;” be the set of these removed edges of color
2.Withn; = [E; | (i = 1, 2) it follows that n = ny + n.

Let Zy, ..., Zy be the components of G[S] — E;, and a; (b;) be the number of white (black) vertices in Z;,i = 0, ..., d’.
Each component is either a cycle of # or a subpath of a cycle of #,. The number of components is smaller than or equal to
1 plus the number of edges of color 1in G[S] — E;, therefore a’ < as — n;. Furthermore Z?:o a; = ds.

Forielp ={0,1,...,d —ny}letZ beapath,forie I2 ={ad —ny+1,...,d —ny +n,} let Z; be an odd cycle, and for
ielf ={d —ny+n,+1,...,4d}letZ beaneven cycle. Then it follows with a’ < as — n; that

by = Zbi—l—Zbi—i—be

i H 0 i e
ielp iel} iel¢

Y@+ +) @++Y a

i i=10 i—1€
ielp iele il

IA

a/
3(a/—n2+1)+n0+2ai
i=0
3(as — (n +nz) + 1) + 1, + as
4as+3 —-3n+n,. O

IA

We finish this section with the following lemma.

Lemma 3. Let P;(A, B) be a flow partition of a cubic bridgeless graph G = (V,E). Let S C V be a set of vertices such that the
induced subgraph G[S] is connected, and n be the number of edges which have to be removed from G[S] to obtain a spanning tree
T of G[S]. Assume as < bs, then bs < 4as + 3 — 3nifand only if %(bs —as) < |9g(S)|.

Proof. Consider a spanning tree T = (S,E(T)) of G[S] and let T; = {v|v € S and df(v) = i}, fori = 1,2. Then
[0c(S)| + 2n = 2|Ty| + |T2| and

1 1
IS|=1=|E(D|= 5(3(|5| — (Tl +T2D) + 2IT2| + |Th]) = 5(3|5| — [86(S)| — 2n).

Since |S| = as + bs it follows that |95(S)] = as + bs + 2 — 2n, and hence %(bs — as) < |9g(S)| is equivalent to
b5§4a5+3—3n. O
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3. Proof of Theorem 2

Let G = (V, E) be a bridgeless cubic graph with oddness w. If w € {0, 2}, then G has a nowhere-zero 5-flow, cf. [3]. Thus
we may assume that w > 4.

Let #, be a minimum 2-factor of G with m¢(%,) = m§ > %a) — 3. Let Pg(A, B) = P;(A, B, %5, ¢, (D, ¢), w’) be a flow
partition of G with respect to #5. Let w : V — {43} be a function with w(v) = —3 ifv € Aand w(v) = % if v € B. We will
show that w is a balanced valuation of G. Then it follows from Theorem 3 that G has a nowhere-zero 5-flow.

Assume to the contrary that w is not balanced. Then there is S C V with

Z w(v)

vES

> 13g(S)|. (3)

IfS =V, then|) . w()| = 0 = |3:(S)|, and therefore S is a proper subset of V. Let S be of minimum order, so we
may assume that G[S] is connected, and without loss of generality bs > as. With k = bs — as Eq. (3) becomes

5
gk > |9¢(S)]. (4)
We show
Proposition 1. |05(S)| < %w — 4; in particular

(1) 10c(S)| < 3 — 4,if |36(S)| = 1 mod 5,
(2) 18c(S)| < 3 — 8,if [36(S)| = 2 mod 5,
(3) 18¢(S)| < 3 — 7,if |36(S)| = 3 mod 5,
(4) 13¢(S)| < 2w — 11,if |3¢(S)| = 4 mod 5,
(5) 10c(S)] < 2w — 15, if [05(S)| = 0 mod 5.
Proof. Fori =0, 1, 2, 3let E; C E be the set of the edges of coloriin G and let ¢; = |95(S) N E;|. The edges of color 1 form a
1-factor of G. Thus Lemma 1 implies that k = ¢; and hence ¢; > §|BG(S)| by Eq. (4).

Let [2 (12) be the number of white (black) vertices of S where color 2 is missing, with respect to c. Let | = |2 — [¢]. From
0 <412 < Jwit follows that | < Jw, and Lemma 1 implies that k < c; + . Hence c; + 30 > k > 2]96(S)|.

3
2
3
2

(1) If |06(S)] = 1 mod 5, say |9g(S)|] = 5m + 1, then it follows that ¢; > 3m + 1 and therefore c; < 2m. Thus
jo>3m+1—c >3m+1—2m=m+ 1and hence 3w — 4 > [9(S)|.

(2) Can be proved analogously.

(3) If |[06(S)| = 3 mod 5, say |95(S)| = 5m + 3, then it follows that c; > 3m + 2 and therefore c; < 2m + 1.

Ifc; =2m+ 1,thency < |9¢(S)| —c; = 3m+ 2 and hence ¢c; = 3m + 2 and ¢y = ¢35 = 0. Let X be the set of vertices of
G[S] which are incident (in G) to an edge of |0¢(S) N E,|, and Y be the set of vertices which are incident to an edge of color 0
in G[S]. Color 2 or 3 is missing on each vertex of X U Y and Z = X N Y consists of those vertices of G[S] where both colors,
2 and 3, are missing. Each vertex z of Z is incident to an edge e = zz’ of color 0 in G[S]. Furthermore, color 2 is missing and
color 3 appears at z'. Therefore, for each vertex of z € Z there is precisely one vertex z’ in G[S] where only color 2 is missing.
Since |X| = ¢, is odd and cg = c3 = 0 it follows that the total number of vertices of G[S] where either color 2 or color 3
is missing is odd. This is a contradiction, since every path induced by edges of colors 2 and 3 in G[S] has precisely two end
vertices in G[S].

Therefore ¢, < 2mand hence ¢;+ 3@ > 3m+2 implies that 2 > 3m+2—2m = m+2.Thus 2w—7 > 5m+3 = |95(S)|.

Items (4) and (5) can be proved analogously to (3). o

Since G has no edge cut with fewer than %w — 3 edges that separates two odd cycles of F; it follows with Proposition 1

that n, = 0. Hence bs < 4as + 3 — 3n by Lemma 2 and therefore %k < 19¢(S)| by Lemma 3. This contradicts Eq. (4) and
completes the proof. O

4. Remarks on r-flows

The notion of nowhere-zero flows can be extended to rational numbers. Let 1 < p < g be integers, and let ¢ be a function
from the edge set E of the directed graph G = (V, E) (with orientation D) into the rational numbers. (D, ¢) is a nowhere-zero
g 4+ 1-flowon G = (V,E) if 1 < ¢(e) < g forall e € E and Eq. (1) is satisfied for all v € V. The circular flow number F.(G) of
G is the minimum number r such that G has a nowhere-zero r-flow.

Seymour [6] proved that every bridgeless graph has a nowhere-zero 6-flow. Some methods of this paper can be extended
to the study of nowhere-zero r-flows on graphs. For instance, it can be proved that F.(G) < 6 for all bridgeless cubic graphs
Gwithmf > 3w(G) + 1.
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