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The problem of estimating the mean of a multivariate normal distribution is
considered. A class of admissible minimax estimators is constructed. This class
includes two well-known classes of estimators, Strawderman's and Alam's. Further,
this class is much broader than theirs. � 1998 Academic Press
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1. INTRODUCTION

Let X be a random variable having p-variate normal distribution
Np(%, Ip). Then we consider the problem of estimating the mean vector %
by $(X) relative to the quadratic loss function &$(X )&%&2. The usual
estimator X, which has constant risk, is minimax. Stein (1956) showed
that equivariant estimators relative to an orthogonal transformation group
are of the forms $,(X)=(1&,(&X&2)�&X&2)X and that there exists an
estimator dominating X among these when p�3. James and Stein (1961)
explicitly constructed the improved estimator $JS(X)=(1&( p&2)�&X&2)X.
Moreover it turns out that $JS(X ) is inadmissible since its positive-part
estimator is superior to $JS(X ) as shown in Baranchik (1964). In view of
frequentist decision theory, the construction of an admissible estimator is
very important. Therefore we are interested in characterizing a class of
estimators satisfying two optimalities, that is, minimaxity and admissibility.
It is noted that, in this problem, Brown (1971) showed any admissible
estimators must be generalized Bayes. For the minimaxity of $,(X ), Stein
(1973) derived a general condition:

4,$(w)+,(w)[2( p&2)&,(w)]�w�0, (1.1)
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for every w�0. This condition obviously includes Baranchik (1970)'s
condition: ,(w) is monotone nondecreasing, and 0�,(w)�2( p&2). For
many minimax estimators that have been proposed so far, ,(w) is monotone
nondecreasing. We note, however, that Stein's condition allows ,(w) to
decrease with increasing w. In fact, some such classes of minimax estimators
have been obtained in Alam (1973), Efron-Morris (1976) and DasGupta
and Strawderman (1997). We believe that the investigation of estimators
that ,(w) is not monotone nondecreasing is more and more important
because such estimators are considered as candidates for the solution of the
more difficult problem in this field, that is, the problem of finding admissible
estimators dominating the James-Stein positive-part rule. See also Efron
and Morris (1976).

In this paper, we only deal with an well-known class of the generalized
Bayes estimators $*a, b(X)=(1&,*a, b(&X&2)�&X&2) X, where

,*a, b(w)=w
�1

0 * p�2&a+1(1&*)b exp(&1
2w*) d*

�1
0 * p�2&a(1&*)b exp(&1

2w*) d*
.

Strawderman (1971) and Berger (1976) showed that $*a, b(X ) for 3& p�2�
a�2 and b=0 is admissible and minimax. Alam (1973) also proposed the
class of minimax admissible estimators, which has been known as a class
different from Strawderman's. We verify, however, that $*a, b(X) for a=b+2
and some value of &1<b<0 coincides with Alam's class. Further we
show that $*a, b(X ) for 3& p�2�a�2 and b�&(a&3+ p�2)�p is the
admissible minimax estimator and that ,*a, b(w) for &1<b<0 is not
monotone nondecreasing. Off course, Strawderman's and Alam's class are
both in this class of admissible minimax estimators.

2. THE MAIN RESULT

2.1. The Unified Class of the Generalized Bayes Estimators
First of all, we derive the class of generalized Bayes estimators $*a, b(X ).

Let the conditional distribution of % given *, 0<*<1, be normal with
mean 0 and covariance matrix *&1(1&*) Ip and a density function of * is
proportional to *&a(1&*)b I(0, 1)(*). We assume that b>&1. Therefore it
is noted that the above prior distribution is proper for a<1 and is
improper for a�1. This idea of the hierarchical prior distribution is from
Strawderman (1971) and is broadened by Faith (1978). The generalized
Bayes estimator with respect to the above distribution of % is given by

$(X)=E(% | X )=[1&E(% | X )] X.
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The joint distribution of * and X is given by

g(*, x) B | exp \&
&x&%&2

2 + } \ *
1&*+

p�2

} exp \&
*

1&*
&%&2

2 + } *&a(1&*)b d%

B | exp \&
&%&(1&*)x&2

2(1&*)
&

&x&2*
2 + } \ *

1&*+
p�2

*&a(1&*)b d%

B exp \&
1
2

&x&2 *+ } * p�2&a(1&*)b.

Therefore if a< p�2+1 and b>&1, the marginal density of X given by

m(x) B |
1

0
* p�2&a(1&*)b exp(&1

2&x&2 *) d* (2.1)

exists for all x and the posterior density is well defined. Then, we can get

E(* | X )=
�1

0 * p�2&a+1(1&*)b exp(& 1
2&X&2 *) d*

�1
0 * p�2&a(1&*)b exp(& 1

2&X&2 *) d*
,

which yields the generalized Bayes estimator $*a, b(X )=(1&,*a, b(&X&2)�
&X&2)X, where

,*a, b(w)=w
�1

0 * p�2&a+1(1&*)b exp(& 1
2 w*) d*

�1
0 * p�2&a(1&*)b exp(& 1

2 w*) d*
.

Now we present ,*a, b(w) through the confluent hypergeometric function

M(a, b, x)=1+ax�b+ } } } +(a)n xn�(b)n n !+ } } } ,

where (a)n=a } (a+1) } } } (a+n&1), n�1 and (a)0=1. Using the following
relations due to Abramowitz and Stegun (1964),

1(b&a) 1(a)(1(b))&1 M(a, b, x)

=|
1

0
extta&1(1&t)b&a&1 dt, for b>a>0, (2.2)

M(a, b, x)=exM(b&a, b&x) (2.3)

and

bM(a, b, x)&bM(a&1, b, x)&xM(a, b+1, x)=0, (2.4)
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we obtain

,*a, b(w)=w
p�2&a+1

p�2&a+b+2
M(b+1, p�2&a+b+3, w�2)
M(b+1, p�2&a+b+2, w�2)

=( p&2a+2)(1& g(w)),

where g(w)=M(b, c, w�2)�M(b+1, c, w�2) and c= p�2&a+b+2. This
representation of ,*a, b(w) shows that $*a, b(X ) for a=b+2 and some value
of &1<b<0 coincides with Alam (1973)'s class of generalized Bayes,
admissible minimax estimators. Thus we can deal with Strawderman's class
and Alam's class simultaneously. For the investigation in Section 2.2, we
need to get the properties of the behavior of ,*a, b(w). The next results are
a generalization of Alam (1973)'s and Takada (1979)'s.

Theorem 2.1.

(A) limw � � ,*a, b(w)= p&2a+2.

(B) limw � � w } d�dw ,*a, b(w)=0.

(C) For b�0, ,*a, b(w) is monotone increasing.

(D) For &1<b<0, ,*a, b(w) is increasing from the origin to a certain
point and is decreasing from the point.

Proof. The following two formula due to Abramowitz and Stegun (1964)
and the lemma are useful for our proof:

M(a, b, x)=1(b)(1(a))&1 exxa&b(1+O( |x|&1)), for large x,

(2.5)

d
dx

M(a, b, x)=
a
b

M(a+1, b+1, x) (2.6)

and

Lemma 2.1. Let h( y)=(��
i=0 diyi) � (��

i=0 ciyi) where di , ci are non-
negative, and ��

i=0 di yi and ��
i=0 ciyi converges for all y>0. If the sequence

[di �ci] is monotone increasing (decreasing), then h( y) is monotone increasing
(decreasing) in y. (See Lehmann (1986) p. 428).

To prove (A), it is sufficient to show that limw � � g(w)=0, which is
easily verified by (2.5).
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To prove (B), observe that a calculation using (2.4) and (2.6) gives

w
d

dw
,*a, b(w)=( p&2a+2) _(b+1) g(w)

M(b+2, c, w�2)
M(b+1, c, w�2)

&b& g(w)& .

By (2.5), we have the conclusion.
To prove (C), we have only to show g(w) is monotone decreasing in w,

which is guaranteed by Lemma 2.1.
To prove (D), it is sufficient to show g(w) is decreasing from the origin

to a certain point and is increasing from the point. Let f (w)=M(b+1, c, w�2),
and

h(w)=
(d�dw) M(b, c, w�2)

(d�dw) M(b+1, c, w�2)
=

b
b+1

M(b+1, c+1, w�2)
M(b+2, c+1, w�2)

,

where second equality is from (2.6). Hence we have g$(w)= f $(w)( f (w))&1

[h(w)& g(w)]. By Lemma 2.1, we show that h(w) is strictly increasing in
w from h(0)=b�(b+1) to h(�)=&0. Since f $(w)>0 and f (w)>0, at
first g(w) is decreasing up to the point w0 which satisfies h(w)= g(w). We
are now in position to show that g(w) is increasing when w>w0 , that
is h(w)> g(w) for w>w0 . Our proof is by contradiction. Suppose that
there exists a point w1(>w0) such that h(w)� g(w). Since the differential
coefficient of g(w) at w1 is non-positive, we have h(w1&=1)< g(w1&=1) for
sufficiently small =1>0. It is noted that since h$(w0)> g$(w0) for sufficiently
small =0>0, we have h(w0+=0)> g(w0+=0). Hence, by intermediate value
theorem and by noting that h(w) is strictly increasing, there exists at least
one point w2 in [w0+=0 , w1&=1], which satisfies both g(w2)=h(w2)
and g$(w2)>0. This result contradicts the fact g$(w)= f $(w)( f (w))&1

[h(w)& g(w)], which completes the proof.

2.2. Admissibility and Minimaxity

In this section, we obtain conditions on the admissibility and the mini-
maxity of the generalized Bayes estimator $*a, b(X). Toward the admissibility of
$*a, b(X ), Brown (1971)'s result is used as the main tool and this is stated
in the following.

Theorem 2.2. Suppose that $(X) is the generalized Bayes estimator with
respect to a spherically symmetric prior F(%). Hence the marginal density of
X is given by

m(x)=| exp \&
&x&%&2

2 + dF(%)=m*(&x&).
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Then if

|
�

1
(r p&1m*(r))&1 dr<�,

$(X ) is inadmissible. If this integral is infinite and r(x)=$(x)&x is bounded
then $(X ) is admissible.

Using this theorem, we have the following.

Theorem 2.3. $*a, b(X ) is admissible if and only if a�2 and b>&1.

Proof. For the estimator $*a, b(X), we have r(x)=&,*a, b(&x&2)[x�&x&2].
Since ,*a, b(w) is a bounded function by Theorem 2.1 and r(0) is a zero
vector, we obtain &r(x)&<M, for some suitable constant M.

Next we will determine whether or not the value of the integral above is
infinity. Applying (2.2) and (2.3) to (2.1), we have

m*(r)=|
1

0
* p�2&a(1&*)b exp(&1

2r2*) d*

=Ce&(r 2�2)M(b+1, p�2&a+b+2, r2�2).

We note that by (2.5) as r � �,

M(b+1, p�2&a+b+2, r2�2)=C1 } e(r2�2)(r2)&p�2+a&1 (1+O(r&2)).

Therefore there exists an L such that r>L implies

C2 } r&p+2a&2<m*(r)<C3 } r&p+2a&2,

for suitable values C2 and C3 . Hence, in the case of a>2, we have

|
�

1

1
r p&1m*(r)

dr<|
L

1

1
r p&1m*(r)

dr+
1

C2
|

�

L
r&2a+3 dr<�.

Next we have the inequality

|
�

1
(r p&1m*(r))&1 dr>(1�C3) |

�

L
r&2a+3 dr.

If &2a+3�&1, the r.h.s of above inequality diverges. This completes the
proof.

Next for the minimaxity of $*a, b(X ), we have the following.
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Theorem 2.4. $*a, b(X) for 3& p�2�a<1+ p�2 and b�&(a+ p�2&3)�p
is minimax.

Combining Theorem 2.3 and Theorem 2.4 shows that $*a, b(X ) for 3& p�2
�a�2 and b�&(a+ p�2&3)�p is the admissible minimax estimator. Off
course, this class includes Strawderman-Berger's class( for 3& p�2�a�2
and b=0) and Alam's class (for a=b+2 and (2p+1&(4p2+8p&7)1�2)�4
<b<0). In particular, the estimator in this class for b<0 is admissible
minimax estimator and satisfies that ,(w) is not nondecreasing.

Proof. By (A) and (B) of Theorem 2.1, we have

lim
w � � _4w

d
dw

,*a, b(w)+,*a, b(w)[2( p&2)&,*a, b(w)]&
=&4(a& p�2&1)(a+ p�2&3),

which implies that we have only to consider the case for 3& p�2�a<
1+ p�2 and b>&1. For b�0 and 3& p�2�a<1+ p�2, by (A) and (C) of
Theorem 2.1, ,*a, b(w) satisfies Baranchik's condition. Thus, in this case,
$*a, b(X ) is minimax. It is noted that this result has already been derived in
Faith (1978). For &1<b<0 and 3& p�2�a<1+ p�2, ,*a, b(w) is not
monotone nondecreasing as claimed in (D) of Theorem 2.1. Thus, by
Stein's condition (1.1), we would like to get conditions that

S(a, b, w)=_4
d

dw
,*a, b(w)+,*a, b(w)[2( p&2)&,*a, b(w)]�w&

is nonnegative for every w�0. Letting c= p�2&a+b+2 and x=w�2, after
some calculation, we obtain

S(a, b, w)=
2(c&b&1)

cM2(b+1, c, x)
[( p&c&b&1) M(b+1, c+1, x) M(b+1, c, x)

+(c&b&1) M(b+1, c+1, x) M(b, c, x)

+2(b+1) M(b+2, c+1, x) M(b, c, x)]. (2.7)

The following calculation is mainly based on the method of Alam (1973).
Using the series expansion for the confluent hypergeometric function, we
have
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M(b+1, c+1, x) M(b+1, c, x)

= :
�

n=0

xn

n !
:
n

#=0
\n

#+
(b+1)# (b+1)n&#

(c+1)# (c)n&#

= :
�

n=0

xn

n !
:
n

#=0
\n

#+
(b+1)# (b+1)n&#c

(c)# (c)n&# (c+n&#)

= :
�

n=0

xn

n !
:

[n�2]

#=0
\n

#+
(b+1)# (b+1)n&#

(c)# (c)n&#
cq# _ 1

c+#
+

1
c+n&#& , (2.8)

where [n�2] denotes the largest integer less than or equal to n�2, q#=1 for
#<n�2 and q#=1�2 for #=n�2. Similarly,

M(b+1, c+1, x) M(b, c, x)= :
�

n=0

xn

n !
:

[n�2]

#=0
\n

#+
(b+1)# (b+1)n&#

(c)# (c)n&#
cq#

_b _ 1
(c+#)(b+n&#)

+
1

(c+n&#)(b+#)& ,

(2.9)

M(b+2, c+1, x) M(b, c, x)

= :
�

n=0

xn

n !
:

[n�2]

#=0
\n

#+
(b+1)# (b+1)n&#

(c)# (c)n&#
cq#

b
b+1 _

b+1+#
(c+#)(b+n&#)

+
b+1+n&#

(c+n&#)(b+#)& . (2.10)

Combining (2.7), (2.8), (2.9) and (2.10), we can see that S(a, b, w) is
nonnegative if

T(c, b, n, #)=(c&b&1) b _ 1
(c+#)(b+n&#)

+
1

(c+n&#)(b+#)&
+2(b+1)

b
b+1 _

b+1+#
(c+#)(b+n&#)

+
b+1+n&#

(c+n&#)(b+#)&
+( p&c&b&1) _ 1

c+#
+

1
c+n&#&�0,
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for each #=0, 1, ..., [n�2] and for each n=0, 1, ... . Now n=0 implies #=0
clearly and we have T(c, b, 0, 0)=2p�c>0. Thus we deal with the case for
n�1. Note that n�1 implies n&#�1. We can arrange T(c, b, n, #) as

T(c, b, n, #)=( p&c&1)
2c+n

(c+#)(c+n&#)

+b _ c+1&n+3#
(c+#)(b+n&#)

+
c+1+2n&3#

(c+n&#)(b+#)& .

The quantity inside the braces on the right-hand side can be written as

_ c&n+3#
(c+#)(b+n&#)

+
c+2n&3#

(c+n&#)(b+#)

+
1

(c+#)(b+n&#)
+

1
(c+n&#)(b+#)&

=
1

(c+#)(c+n&#) _
c+n&#
b+n&#

(c&n+3#)+
c+#
b+#

(c+2n&3#)

+
c+n&#
b+n&#

+
c+#
b+#&

�
1

(c+#)(c+n&#) _
c+1
b+1

(c&n+3#)+
c+1
b+1

(c+2n&3#)

+
c+n&#

b+1
+

c+#
b+1&

=
2c+n

(c+#)(c+n&#)
c+2
b+1

.

Since b<0, we have

T(c, b, n, #)�
2c+n

(c+#)(c+n&#) _p&c&1+
b

b+1
(c+2)& ,

which is nonnegative if p&( p�2&a+b+2)&1+b( p�2&a+b+2+2)�
(b+1)�0. In this case, S(a, b, w) is also nonnegative, completing the
proof.
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