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Introduction

During the last decades, we witnessed a continuous develop-
ment in the field of atomic physics that had direct impact on
other fields of research such as astrophysics, plasma physics,

controlled thermonuclear fusion, laser physics, and condensed
matter physics.

The landscape is vast and cannot possibly be covered in one

review article, but it would require a complete book.
Therefore, I will confine myself to the research works I was
involved in and those that have direct connections with the

work I have done.
The review is structured around five main topics:

– Electron–atom collisions.
– Ion–atom collisions.
– Atomic structure calculations and X-ray lasers.
– Laser-induced breakdown spectroscopy (LIBS).

– Laser cooling and Bose–Einstein condensation.
Electron–atom collisions

The physics of electron–atom collisions originated in 1930 by
the work of Ramsauer and Kollath [1,2] on the total scattering

cross-section of low energy electrons against noble gases,
which contributed so much to the development of quantum
theory. This work was followed by Tate and Smith [3] on
Fig. 1 Schematic view of the scattered electron–ion co
inelastic total cross-sections for excitation of noble gases.
Several well known physicists, e.g., Bleakney and Smith [4],
Hughes and Rojansky [5], and Massey and Smith [6], at this

period gave important contributions in the field of electron col-
lision physics. The theory was developed by Stueckelberg [7],
Landau [8], and Zener [9]. In 1952, Massey and Burhop’s book

[10] appeared on ‘‘Electronic and Ionic Impact phenomena,’’
which provided the basis for any scientist who wants to start
the work on the subject.

Multiple ionization of noble gases by low energy electrons
(below 600 eV) has been studied extensively in mass spectrom-
eters [3,11,12]. However, total electron impact cross-sections
were determined by Van der Wiel et al. [13] and El-Sherbini

et al. [14] for the formation of singly and multiply charged ions
of He, Ne, Ar, Kr, and Xe by fast electrons (2–16 keV). The
ion selection was performed in a charge analyzer with 100%

transmission, and consequently, it was possible to avoid the
discrimination effects in the measurement of the relative abun-
dances of the multiply charged ions. Therefore, the data were

more reliable than those obtain in low transmission mass spec-
trometers. The ionization cross-section of large electron
impact energies is given by

rni

4pa20

Eel

R
¼M2

ni ln Eel þ Cni ð1Þ

where rni is the cross-section for formation of n+ ions, Eel is
the electron energy corrected for relativistic effects, a0 is the

first Bohr radius, R is the Rydberg energy, M2
ni, and Cni are

constants.

The constant M2
ni is given by

M2
ni ¼

Z
nþ

dfnþ

dE

R

E
dE ð2Þ

where dfn+/dE is the differential dipole oscillator strength for

an ionization to n+ continuum at excitation energy E.
In 1970, an experiment was developed by van der Wiel [15],

in which fast electrons (10 keV), scattered by He, Ne, and Ar

are detected in coincidence with the ions formed (Fig. 1). It
was possible from the measurements of the scattering intensity
at small angles to calculate optical oscillator strengths. The dif-

ferential scattering of fast electrons is given by Bethe et al. [16]
(in au):
incidence apparatus. The first table-top synchrotron.



Fig. 2 Block diagram of the coincidence circuit. Signal from the ion detector (channel 1). Signal from the electron detector (channel 2).
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rð#;EÞ ¼ 2

E

kn
k0

1

K2

dfðKÞ
dE

ð3Þ

where # is the scattering angle, E the energy loss, k0 and kn are-
the magnitudes of the momenta of the primary electron before

and after collision, K is the magnitude of the momentum trans-
fer (K= k0 � kn), and dfðKÞ=dEð Þ is the generalized oscillator
strength. This last quantity may be expanded in terms of K2:

dfðKÞ
dE

¼ df

dE
þ aK2 þ bK4þ ð4Þ

where df
dE

is the optical oscillator strength, as defined in the

dipole approximation.
The work was closely connected to that where ion charge

distribution is measured after irradiation of atoms with pho-

tons at a number of selected wavelengths [17,18]. However,
the use of photon source is simulated by measuring the
small-angle, inelastic scatting of 10 keV electrons in coinci-
dence with the ions formed. The simulation is based on the fact

that measured energy lost by the scattered electron in the coin-
cident experiment corresponds to the photon energy absorbed
in the photon experiments for the same process. Moreover, the

incident electron energy of 10 keV is large compared to the
energy losses studied 6400 eV, and also, the incident momen-
tum (370 au) is much larger than the momentum transfer

(60.5 au). Under these conditions, the first Born approxima-
tion holds. By making use of the first Born approximation
for inelastic electron scattering at small momentum transfer,

the measured intensities of scattering were converted into opti-
cal oscillator strengths. Fig. 2 shows the block diagram of the
electronic circuit, where signals from the ion and the electron
detectors are measured in delayed coincidence. The true coin-

cidences after being separated from the simultaneously regis-
tered accidental ones are stored in a data collector that
drives the energy loss scanning. The number of true coinci-

dences is recorded per number of ions of the charge state under
consideration. This enables us to put spectra for different
charge states on the same relative scale when knowing the rel-

ative abundances of the charge states at 10 keV electron
impact energy. This technique combines the advantage of
continuous variability of the energy transfer over a few hun-
dred eV with that of a constant detection efficiency. As a
result, oscillator-strength spectra over a wide energy range
were obtained, which could be put on an absolute scale by nor-
malization on an absolute photo-absorption value at only one
energy. As far as the intensity is concerned, this method com-
pares favorably with a possible alternative of charge analysis
of ions formed by dispersed electron synchrotron radiation
in a low density target (10�5 torr). This work was extended
by El-Sherbini and van der Wiel [19] to measure oscillator
strengths for multiple ionization in the outer and first inner
shells of Kr and Xe (Figs. 3 and 4). Direct ejection of two N
electrons below the 3d9 threshold is observed in the Kr2+ spec-
trum, which was found to be a characteristic of such transi-
tions. The threshold for discrete triplet ionization is observed
in the inset of the Kr3+ spectrum, where it is just sufficiently
separated from that of the 3d electrons. The spectrum for dou-
ble O-shell ionization in Xe is shown in the inset of Fig. 4,
together with the thresholds for formation of the 5s25p4,
5s15p5, and 5s05p6 states. A few values obtained by Cairns
et al. [18] in a photo-ionization experiment are also inserted
in the figure. Their results are in excellent agreement with ours.
However, the main conclusions from our coincidence measure-
ments of the small angle inelastically scattered electrons in Kr
and Xe and the ions formed are that we were able to demon-
strate the presence of a minimum followed by a maximum in
the contribution of the 4p–ed transitions in Kr and 5p–ed tran-
sitions in Xe. These minima and maxima were obscured in the
photo-absorption measurements [20] by the rapidly rising con-
tributions of 3d and 4d transitions in Kr and Xe, respectively.
Furthermore, the results showed the existence of strong direct
interaction between electrons in the outer and the inner shells,
as opposed to a ‘‘shake off’’-type interaction in Ar [15]. This
gives evidence of the importance of the correlation between
these shells of Kr and Xe, which is not considered in most of
the calculations and is at least partially responsible for the dis-
crepancies that exist between the experimental results of the
oscillator strengths and those predicted by theory [21,22].
The electron–ion coincidence technique was also applied to
study the K shell excitation of nitrogen and carbon monoxide



Fig. 3 Oscillator-strength spectra of Kr2+ and Kr3+. The inset of the upper figure shows the direct ejection of two N electrons below the

3d9 threshold in the Kr2+ spectrum. The inset of the lower figure shows the threshold for discrete triple ionization in the Kr3+ spectrum.
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by electron impact [23]. The study of the ionization of N2 and
CO by 10 keV electrons as a function of the energy loss was
done by El-Sherbini and van der Wiel for the valence electrons
[24] as well as for inner-shell electrons [25].

Our results on electron–atom ionization were the first of its

type and corresponded well with those of photo-ionization by
real and big synchrotron devices, but our apparatus was much
faster and easier to operate. Our device was a sort of model

synchrotron and in fact was considered to be the first table-

top synchrotron.

Ion–atom collisions

Collision processes between fast heavy atoms and ions can be
simply described by the interactions between relatively fast

protons and alpha particles with neutral atoms. Besides the
normal excitations and ionizations which are analogous to
what happens in electron–atom collisions, an extra phe-
nomenon occurs, named charge exchange. The best way to

describe both types of phenomena is in treating the three par-
ticles involved, viz the point charge projectile, the target atom,
and the electron with one Hamiltonian. It is one closed system

in which kinetic energy of the projectile is transferred into
electronic excitation energy. The impact parameter treatment
has proven very useful, see Bates [26]. It gave a semiclassical
description of the collision process, with the external motions

classically and the internal motions quantum mechanically.
Due to the heavymass of the proton or alpha particle, the kinetic
energy of the projectile is much bigger than the electronic excita-

tions concerned. Therefore, the trajectory of the projectile is
considered rectilinear during the whole collision event. The pro-
jectile keeps constant velocity, approximately. The impact
parameter q is defined as the distance between the trajectory

and the target nucleus. The cross-section r for transition of
the electronic system from state i to state f is given by

rifðEÞ ¼ 2p
Z 1

0

qPðqÞdq ð5Þ

where E is the kinetic energy of the projectile in the center of
mass system, and

PðqÞ ¼ jaifðq; t ¼ 1Þj2 ð6Þ

with

i
d

dt
aifðR

!
; tÞ ¼

X
k

aikðR
!
; tÞVfkðR

!
Þ expð�iDEkftÞ ð7Þ



Fig. 4 Oscillator-strength spectra of Xe2+ and Xe3+. The spectrum for double O-shell ionization is shown in the inset of the figure

together with the thresholds for formation of the 5s25p4, 5s15p5 and 5s05p6 states. Our data are plotted together with a few values obtained

by Cairns et al. [18], from a photo-ionization experiment.
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DEkf ¼ Ek � Ef ð8Þ

R
!
is the distance between both nuclei; Vfk ðR

!
Þ is the matrix ele-

ment of the potential field of target particle scaled by 2m
�h2

between the target eigen states f and k; Ek and Ef are eigen
energies of target particle; and aik is the amplitude of the target

eigen functions. For kinetic energies E far above the threshold,
we can apply the Dirac condition, which assumes that the most
dominant transition is from the initial to the final state i.e.

aik ¼ dkfaik ð9Þ

This leads to the integral equation

iaifðR
!
; tÞ ¼

Z t

�1
aifðR

!
; sÞVifðR

!
Þ expð�iDEifsÞds ð10Þ

In the first order Born approximation, we obtain

iaifðq; t ¼ 1Þ ¼
Z þ1

�1
VfiðR

!
Þ expð�iDEiftÞdt ð11Þ

see Merzbacher [27]. Replacing t by z
u
, where u is the velocity,

one gets

iaifðq; t ¼ 1Þ ¼
1

u

Z þ1

�1
VfiðR

!
Þ exp �iDEif

z

u

� �
dz ð12Þ
From this relation, the dependence of P(q) on u can be

deduced. Therefore, it will depend on

aDEif

u
ðin atomic unitsÞ ð13Þ

One measures the effective interaction length ‘‘a’’ along the

trajectory z, if the projectile passes by the target particle. This
is the Massey Criterion. For large values of u, we see

aDEif

hu
< 2p ð14Þ

which means that

PðqÞ � jaifj2 �
1

u2
� 1

E
ð15Þ

Decreasing speed coming from large values of u, one
expects a maximum in P(q) if (aDEif/u � 2p), following the

oscillatory behavior of exp (�iDEifz/u) as a function of u.
This type of behavior has been studied by Hasted [28,29]
who measured total cross-sections for exchange between vari-

ous kinds of ions and neutral targets. Differential cross-
sections, not only velocity dependent but also as a function
of the scattering angle, have been measured by Morgan and

Everhart [30] and by Kessel and Everhart [31].
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Advances in this field were made by measuring electron
capture by multiply charged ions. It attracted attention of
many physicists in various fields of physics such as astro-

physics, plasma physics, controlled thermonuclear fusion
research, and X-ray laser production. When multiply charged
ions collide with neutral particles (at low to intermediate

impact velocities u 6 1 au), capture reactions populating
excited states in the projectile are very probable, see, for
instance, Niehaus and Ruf [32] and Winter et al. [33]. For sin-

gle electron capture, these reactions may lead to population
inversion and are of importance in several schemes for the pro-
duction of XUV and soft X-ray lasers. However, in these col-
lisions, non-radiative (i.e. auto-ionizing) processes can be

important, and competition with radiative processes occurs.
Measurements of these non-radiative processes by Winter
et al. [34] showed that the corresponding total cross-sections

for the production of slow electrons were large and strongly
charge state dependent. These results were interpreted by them
to be the result of capture ionization, i.e., an Auger ionization

in the short-lived quasi-molecule.
Let Xz+ is the multiply charged ion and Y is the target

atom, then the reactions can be followed by radiative emission

Xzþ þY! Xðz�1Þþ� þYþ ! Xðz�1Þþ þYþ þ hm

or by electron emission through one of the following channels

Xzþ þY! Xðz�1Þþ þY2þ þ e ðaÞ

Auger ionization of the quasi-molecule formed during
collision,

Xzþ þY! Xðz�1Þþ� þYþ ! Xðz�1Þþ þY2 þþe ðbÞ
Penning ionization after single electron capture,

Xzþ þY! Xðz�2Þþ�� þY2þ ! Xðz�1Þþ þY2þ þ e ðcÞ

double electron capture into autoionizing states of the

projectile,

Xzþ þY! Xðz�1Þþ� þYþ ! Xðz�2Þþ�� þY2þ ðdÞ

! Xðz�1Þþ þY2þ þ e ðeÞ
Fig. 5 Electron spectra for 100 keV Nen+ on Ar (#= 90�),
the figure indicate the positions of calculated transition energies corre
electron capture followed by electron promotion [35] into

auto-ionizing states of the projectile.
The measurements of Winter et al. [34] yielded only total

cross-sections for Nez+ (z = 1–4) and Arz+ (z= 1–8) colliding

at energies 100 keV and 200 keV, respectively, with noble gas
atoms. However, data on the energy spectrum of the electrons
are still needed to investigate these phenomena in more detail.
Woerlee et al. [36] have extended the work by measuring energy

spectra of electrons produced in collisions of multiply charged
neon ions with noble gas atoms. Fig. 5 shows the experimental
results for 100 keV Ne1–4+ on Ar. The spectrum consists of a

continuous background on which peaks are superimposed.
The spectra for Ne1+ and Ne2+ are almost identical, but large
changes are seen when the projectile charge state is increased

from 2+ to 3+ and 3+ to 4+. The largest changes are an
increase in the continuum below ±20 eV, and an increasing
number of peaks superimposed on the continua. The increase
in the continuum below 20 eV is the result of capture ionization

in the short-lived quasi-molecule [37]. The bars in Fig. 5 indi-
cate the positions of calculated transition energies corrected
for a Doppler shift of �2.7 eV. The peaks observed in

100 keV Ne3+,4+ on Ar shift to lower energies when the projec-
tile energy is increased. This shift is equal to the kinematical
shift, which would be expected, when the corresponding elec-

trons are emitted by the projectile. Therefore, we concluded
that the peaks originate from auto-ionizing states in the projec-
tile, which decay after the collision has taken place. Since no

photoabsorption data exist on the auto-ionizing states of
multiply charged neon ions, we tried to calculate energy levels
of doubly excited neon ions with a single configuration HF
method. In order to determine the energies of the various levels,

we included the electrostatic energy splitting due to the core
electrons, see El-Sherbini and Farrag [38]. The energy splitting
caused by the excited electrons is small and was not taken into

account. We found that for Ne4+–Ar, the peaks occur in the
region for the calculated peak energies of Ne1+**, Ne2+**,
and Ne3+**, but Ne2+** seems to cover most of the data. For

Ne3+–Ar, calculated energies of Ne1+** and Ne2+** appear
in the region of the observed peaks.
n= 1; n= 2; n= 3; n= 4. The bars in

cted for a Doppler shift of �2.7 eV.



Fig. 6 Diabatic MO correlation diagram for Ar–He system. The

radial coupling occurs at the 3dr–4sr crossing and the rotational

coupling occurs at the 3dr–3dp–3dd crossing.
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Further developments in this field were done by El-Sherbini
et al. [39], where they measured target dependence of excitation

resulting from electron capture in collisions of 200 keV Ar6+

ions with noble gases. The study shows strongly rising total
capture excitation cross-sections and shifts in the post-

collision projectile excited-state distributions to higher n levels
with the increase in the target atomic number. Energy depen-
dence of excitation and ionization resulting from electron
Fig. 7 Emission cross-section for Ar II (3p44s 2P), Ar II (3p43d 2D)

projectile energy in Arq+–He collisions.
capture in Ar6+–H2 collision in the range of ion projectile ener-
gies 200–1200 keV was measured by El-Sherbini et al. [40].
These studies indicate that single electron charge transfer into

excited states of the product ion is the most important inelastic
process. Photon emission between 20 and 250 nm and slow
electron and ion production cross-sections have been mea-

sured. The capture occurred mainly into n = 4 levels with the
excitation of the higher angular momentum states dominating
over most of the projectile energy range. The capture ionization

cross-section is appreciable, amounting to 30–40% of the total
excitation cross-section. These results are extremely valuable
for the developments of controlled thermonuclear fusion reac-
tors (see El-Sherbini [41]). To obtain more information about

the coupling mechanisms, which gives rise to capture into
excited states in ion–atom collisions at intermediate energies
(u � 0.5 au), El-Sherbini and de Heer [42] measured photon

emission in the spectral region between 60 and 100 nm in the
collision of Arq+ (q = 1, 2, and 3) with He and Ne at impact
energies between 15 and 400 keV. The experimental results

were explained qualitatively by considering the MO correlation
diagram (Fig. 6). The emission cross-section for the collision of
Arq+ with He is shown in Fig. 7. It was often found that the

cross-section for excitation decreases with the increase in the
number of intermediate transitions required in order to reach
the excited state. When there is a mechanism involving radial
coupling leading from initial to final states, then it was found

that the measured emission cross-section decreases with energy,
where as mechanisms involving rotational coupling lead to
cross-sections that increase with increasing energy up to

200 keV or more. The results have been of particular impor-
tance in evaluating theoretical models and have provided a
valuable check of the range of validity of existing theories.

Atomic structure calculations and X-ray lasers

In the field of atomic collisions, as we noticed in the previous

sections, much attention was paid to the excitation of noble
gas atoms. A systematic study of the excitation process
, Ar II (3s3p6 2S), and Ar III (3s3p5 3P,1P) states plotted against
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requires the knowledge of accurate dipole transition probabil-
ities for spontaneous emission between the various configura-
tions of the ions. Laser physics and astrophysics are other

branches, which have stimulated more accurate atomic line
strengths and transition probabilities calculations. Garstang
[43,44] performed the first intermediate coupling calculations

for Ne II. On this basis, Wiese et al. [45] composed their data
compilations. However, the previously tabulated line strengths
were in need of revision. In his work, Luyken [46,47] per-

formed new calculations of line strengths and transition prob-
abilities for Ne II and Ar II where specific configuration
interactions were investigated and some effective operators
were included. The results showed that the agreement with

the experimental data was improved as compared with the ear-
lier calculations. El-Sherbini [48–50] has extended the work of
Luyken to the calculation of transition probabilities and radia-

tive lifetimes for Kr II and Xe II. He used ‘‘exact’’ intermediate
coupling wave functions to describe the various states [48] :

WðJ;MÞ ¼
X

aijp4Lc
i S

c
i ; lr

1

2
; LiSiJM > ð16Þ

where ai is the expansion coefficient, J is the total angular
momentum, M is the magnetic quantum number, Lc

i and Sc
i

are the total orbital and spin angular momentum of the core
electrons, lr is the orbital angular momentum of the running
electron, and Li and Si are the orbital and spin angular

momentum of the pure L–S bases states on which the ‘‘exact’’
W(J,M) is expanded. The transition probability between two
states with summation indices i and j refer to the upper and

lower level, respectively, is given by

AðJu; JlÞ ¼
64p2

3hk3ð2Ju þ 1Þ
SðJu; JlÞ ð17Þ

where S(Ju,Jl) is the line strength and Ju, Jl are the total angu-

lar momentum of the upper and lower states, respectively. The
line strength is given by El-Sherbini [48]

SðJu; JlÞ ¼e2
X
i;j

a�i ajð�1ÞSjþJuþlruþL
c
j dðSi;SjÞd Lc

i ;L
c
j

� � SjLjJl

1JuLi

� ������
Lc

j lrlLj

1Lilru

� �
lru1lrl

000

� �
½ð2Ju þ 1Þð2Jl þ 1Þð2Li þ 1Þ

2Lj þ 1Þð2lru þ 1Þð2lrl þ 1Þ�1=2
� ���2 Z 1

0

Rlru ðrÞrRlrl ðrÞdr
� �2

ð18Þ

where Ju, Jl and lru, lrl are, respectively, the total angular

momentum of the states and the orbital angular momentum
of the running electron in the upper and lower states. RlruðrÞ
and RlrlðrÞ are the one electron radial wavefunctions in the

two different states.
The lifetime su of the upper state is given by El-Sherbini [49]

su ¼
1X

l

AðJu; JlÞ
ð19Þ

The parametric potential method was used to calculate the

radial part of the wave function [51], while the method of least
squares fit of energy levels [52] was applied in obtaining the
angular part of the wave function. The results obtained in inter-

mediate coupling showed a much better agreement with the
experimental data than those using pure LS-coupling wave
functions. Further improvements in the atomic structure calcu-
lations of Kr II were obtained by El-Sherbini and Farrag [38]

when including configuration interaction effects. The results
showed that the 4s24p4(1D)4d 2S1/2 level is strongly perturbed

through interaction with the 4s4p6 2S1/2 level, in agreement with
the earlier predictions from the Kr II analysis. Theoretical
investigations of the 5s25p45d + 5s25p46s + 5s5p6+ level

structure in Xe II were performed by El-Sherbini and Zaki
[53]. Taking into account, configuration-interaction effects in
the calculations showed that some observed energy levels of
the 5p45d configuration were not correctly designated. A strong

interaction between the 5p45d and 5s5p6 configurations was
also reported. Moreover, the calculated energies of the 6s and
5d levels were improved considerably by introducing configura-

tion interactions into the calculations. The presence of strong
configuration interaction between the 4s4p6, 4p44d, and 4p45s
configurations in singly ionized krypton [38] makes it difficult

to perform accurate calculations for the energies, pumping
rates, and lifetimes of levels in these configurations.
Therefore, it was important to improve upon the previous cal-
culations, see El-Sherbini [54,55], on the low lying 4p44d and

4p45s laser levels in this ion. Therefore, multi-configuration
Hartree–Fock (MCHF) calculation in order to determine the
lifetimes of these laser levels was done by El-Sherbini [56].

The results show that some of these levels are metastable.
They also suggest a two-step excitation from the ground state
of the ion to the 4p45p level involving some intermediate

metastable states as a possible laser excitation mechanism.
Further developments in the field of atomic structure calcu-

lations were done by the studies of excitation of electrons in

atomic isoelectronic sequences [57–59]. These studies are essen-
tial not only for better understanding of atomic structure and
ionizing phenomena, but also they provide new laser lines
which could be extended into the X-ray spectral region

[60,61]. This in turn will help in the development of X-ray laser
devices. Once X-ray lasers become reliable, efficient, and eco-
nomical, they will have several important applications. First

and foremost, their short wave lengths, coherence, and extreme
brightness should allow the exploration of living structures
much smaller than one can see with optical methods. They will

also have important applications in high resolution atomic
spectroscopy, diagnostics of high density plasmas, radiation
chemistry, photolithography, metallurgy, crystallography,
medical radiology, and holographic imaging. Shortly after

the demonstration of the first soft X-ray amplification in
neon-isoelectronic selenium by Mathews et al. [62], extensive
work was done both theoretically and experimentally on other

systems [63,64]. Progress toward the development of soft X-ray
lasers with several plasma-ion media of different isoelectronic
sequences was achieved at many laboratories [65,66]. A soft

X-ray laser transitions in the Be-isoelectronic sequence were
proposed by Krishnan and Trebes [67]. They suggested that
intense line radiation from plasmas of Mn VI, P IV, Al V,

Al V III, Al IX, and Al XI may be used to selectively pump
population inversions in plasmas of Be-like C III, N IV, F
VI, and Ne VII and Na VIII. Lasing in the soft X-ray region
is then possible on 4p–3d and 4f–3d (singlet and triplet) tran-

sitions. Short wave length laser calculations in the beryllium
sequence were done by Feldman et al. [68]. They calculated
gain at a number of different temperatures and electron densi-

ties for the 3p–3s laser transition in the highly charged ions of
Be-sequence. Al-Rabban [69] has extended both the work of
Krishnan and Trebes [67] and Feldman et al. [68], to the higher

members of the Be-isoelectronic sequence and to more transi-
tion states (which are promising for X-ray laser emission). She



Fig. 9 Gain coefficient of laser transitions against electron

density at temperature 2 keV in E35þ
u ions.
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carried out an ab initio multi-configuration Hartree–Fock cal-
culations of energy levels, atomic oscillator strengths, and
radiative lifetimes for singly and doubly excited states in Be I

and Be-like ions. Configuration interaction effects between
the various configurations were included using the computer
program code CIV3 described by Hibbert [70]. In this code,

the N-electron energies and eigenfunctions are obtained by
diagonalizing the Hamiltonian matrix, which may have quite
large dimensions. The choice for the spatial (radial) part of

the single particle wave functions is based on expansions in
Slater-type orbitals [71]:

PnlðrÞ ¼
Xk
j¼1

Cjnlr
Ijnl expð�njnlrÞ ð20Þ

The coefficients in the expansion Cjnl, Ijnl as well as njnl in the
exponents are treated as variational parameters.

Investigations of the possibilities of obtaining population

inversion and laser emission could be achieved by calculating
the level population of the excited states. These calculations
were done by the group of atomic physics at the Physics

Department of the Faculty of Science – Cairo University, solv-
ing the coupled rate equations [72]
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where Nj is the population density of level j, Aji is the sponta-

neous decay rate from level j to level i, Ce
ji is the electron col-

lisional excitation rate coefficient, Cd
ji is the electron

collisional de-excitation rate coefficient, and Ne is the plasma
electron density. The gain coefficient (a) for Doppler broaden-

ing of the various transitions is given by Elton [73] :

a ¼ k2
lu

8p
M

2pkTi

� �1=2

AulNuF ð22Þ

whereM is the ion mass, klu is the transition wave length in cm,
Ti is the ion temperature in K, u and l represent the upper and
lower transition levels, respectively, Nu is the population of the

upper level, and F is the gain factor.
Vriens and Smeets [74] gave empirical formulas for the cal-

culation of rate coefficient in hydrogen atom. Their work was
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Fig. 8 Reduced fractional population for selected levels of Ni14+

ions at electron temperature 3/4 the ionization potential.
extended by Allam [75] to be valid for atoms with one electron
outside a closed shell and also for two-electron atoms (ions).

Allam [75] adopted the method of Palumb and Elton [76] for
modeling plasmas of helium-like and carbon-like ions, and
he has developed a computer program (CRMOC) in order to
calculate excitation and de-excitation rate coefficients for

two-electron system. In his program which was developed
for collisional radiative model calculations, the principal quan-
tum numbers of the excited states were replaced by effective

quantum numbers. Using the above theoretical schemes, the
atomic physics group was able to extensively investigate the
possibility of X-ray laser emission in several isoelectronic sys-

tems, see for example Figs. 8 and 9. The studies include helium
isoelectronic sequence [77], beryllium isoelectronic sequence
[69,78], boron isoelectronic sequence [79–81], carbon isoelec-
tronic sequence [82], sodium isoelectronic sequence [83–85],

magnesium isoelectronic sequence [86–88], aluminum isoelec-
tronic sequence [89], silicon isoelectronic sequence [90–92], sul-
fur isoelectronic sequence [93], potassium isoelectronic

sequence [94], scandium isoelectronic sequence [95], and nickel
isoelectronic sequence [96]. Most of the heavy members of the
isoelectronic sequences studied radiate in the XUV and Soft X-

Ray spectral regions (k between 50 and 1000 Å). The reported
stimulated emission transitions in these ions indicate that some
of the transitions are promising and could lead to progress

toward the development of XUV and Soft X-Ray lasers.

Laser-induced breakdown spectroscopy (LIBS)

Laser-induced breakdown spectroscopy is a form of optical
(atomic) emission spectroscopy [97]. It is a technique based
on utilizing light emitted from plasma generated via interac-
tion of a high power lasers with matter (solids, liquids or

gases). Assuming that light emitted is sufficiently influenced
by the characteristic parameters of the plasma, the atomic
spectroscopic analysis of this light shows considerable infor-

mation about the elemental structure and the basic physical
processes in plasmas. There is a growing interest in LIBS, par-
ticularly in the last 20 years because of its applications in the

laboratory and in industry, art, environment, medicine, and
forensic sciences [98–100]. Most commonly, LIBS has been
applied to sensitive elemental analysis of solids, conductors
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and non-conductors, as well as liquid and gaseous samples
[101]. It has many practical advantages over more conven-
tional elemental analysis techniques. LIBS has been utilized

to analyze thin metal films [102], and it has found more and
more applications in monitoring of industrial processes [98],
characterization of jewellery products [103], soil studies [104],

pulsed laser thin film deposition [105], quality control of phar-
maceutical products [100], cleaning [106], and in situ planetary
exploration [107].

An enhancement of the LIBS sensitivity was achieved by
introducing the double pulse technique [108]. The double pulse
(DP)-LIBS configuration, which makes use of two laser pulses
separated by a suitable temporal delay instead of a single pulse

for inducing the plasma, was reported to give a substantial
enhancement of the signal to noise ratio with respect to single
pulse (SP)-LIBS configuration with a corresponding improve-

ment of the limits of detections [109]. The double pulse laser
ablation (DPLA) approach in relation to the spectral analysis
was first reported by Piepmeier and Malmstadt [110].

However, the first systematic investigation of (DPLA) was
reported by Sattmann et al. [111]. They performed a quantita-
tive microchemical analysis of low-alloy steel with single and

double laser pulses, where they found that the analytical per-
formance was considerably improved by the double pulse tech-
nique. The great contribution to the development of (DPLA)
for practical analysis was made by Petukh et al. [112]. They

compared radiation of plasma flares produced on exposure
of metals to laser radiation in a monopulse generation mode
in the case of single and double pulses with change in air pres-

sure. They observed in the case of double pulses increases in
the duration and the intensity of the radiation of the spectral
lines. For elucidation of the double pulse laser ablation

(DPLA) mechanisms, see, for instance, St-Onge et al. [113]
and Noll [114]. DP-LIBS technique was also applied for the
fabrication of nanosize particles. Tarasenko et al. [115] studied

and analyzed the capabilities of laser ablation in liquids for
fabrication metallic and composite nanoparticles. The tech-
nique offers the better controle over the particle formation
process. They found that the mean size of the nanoparticles

and their stability could be controlled by proper selection of
the parameters of laser ablation such as temporal delays
between pulses, laser fluence, and the sort of liquid used.

Therefore, the optimal conditions favoring the formation of
nanoparticles with a desired structure could be reached.

Parallel to the work on atomic structure calculations by our

atomic physics group at the physics department, the group was
also involved in the study of the physical parameters of plasmas
generated by high power laser irradiation of solid targets
(plasma diagnostics), applying the (LIBS) technique. The spec-

troscopic plasma diagnostics which is essentially based on the
measurements of the optical radiation emitted from the plasma
enables the group to obtain simultaneously a large amount of

information about the plasma without disturbing it. Spectral
fingerprints of optical plasma emission provide information
about the physical and chemical processes that occur in the

plasma. The spectra can contain individual spectral lines, band,
or continuum radiation. Plasma emits line radiations resulting
from bound–bound electronic transitions and continuum radi-

ations resulting from free-bound and free–free electronic tran-
sitions. However, utility of spectroscopic diagnostics depends
upon the knowledge about radiative behavior of atomic and
molecular species and type of equilibrium attained in the
plasma. It is assumed that the plasma in our laboratory (labo-
ratory of lasers and new materials at the physics department) is
in local thermodynamic equilibrium (LTE). In local thermody-

namic equilibrium, all the species in the plasma, i.e., electrons,
ions, and neutrals are in thermodynamic equilibrium except the
radiation. This condition generally is observed to be valid in a

collision dominated plasma such as high-pressure arc plasma
produced in plasma torches. Small size of such plasmas allows
radiation to escape to the surroundings. In (LTE) plasmas, the

number of electronic transitions due to collisions between the
first excited states and the fundamental level is 10 times larger
than the number of transitions due to spontaneous emission.
Collisions are mainly responsible for excitation and de-

excitation, ionization, and recombination. The two main
parameters that characterized the state of the plasma are
namely the plasma temperature and the electron density.

Knowledge of the temperature leads to understand the plasma
processes occurring such as vaporization, dissociation, ioniza-
tion, and excitation. The optical emission spectroscopic

(OES) method for the determination of the plasma temperature
is based on the measurements of the intensity of the spectral
lines. In optically thin plasma, the integrated intensity of an

atomic emission line is related to excitation energy, population
density of upper state and transition probability as given by

Iul ¼
1

4p
AulnuhtulL ðW=m2-sterÞ ð23Þ

where Iul is the line intensity of transition from upper level u to
lower level l integrated over the plasma length L, Aul is the
spontaneous transition probability, nu is the density of atom

excited in the upper energy level u, and htul is the energy of
each emitted quantum. The measurement of Iul gives only
the population of upper level u. When the thermal plasma is
in (LTE), the density of atoms excited to the upper level is

given by the Boltzmann distribution function:

nu ¼
n0
Z0

� �
gu exp

�Eu

kT

� �
ð24Þ

where n0 is the total density of atoms, gu is the statistical weight
of the upper state, Eu is the energy of upper state, k is
Boltzmann constant, andZ0 is the partition function defined by

Z0 ¼
X
u

gu exp
�Eu

kT

� �
ð25Þ

Substituting the value of nu into Eq. (23), we get

Iul ¼
1

4p
hcAul

kul

n0L

Z0

gu exp
�Eu

kT

� �
ð26Þ

In case of the evaluation of absolute line intensity, one should
know the initial composition, pressure and wave length of the
emission line. The values of Aul, gul, and Eu can be obtained

from spectroscopic tables. However, one must also know the
plasma length, and an absolute spectral radiance calibration
must be performed using a standard source. For relative line

intensities measurement of the same species and stage of ion-
ization, one needs not to know the values of partition function,
n0, and plasma emitting length. The ratio of two emission lines
I1 and I2 is given by

I1
I2
¼ g1A1k2

g2A2k1

exp
E2 � E1

kT

� �
ð27Þ



Fig. 10 Experimental set up.
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The terms in Eq. (26) can be arranged as

Iulkul

guAul

¼ hcn0L

4pZ0

exp
�Eu

kT

� �
ð28Þ

and therefore, we can write

ln
Iulkul

guAul

� �
¼ B� Eu

kT
ð29Þ

This is an equation of straight line where B = ln (hcn0L/4pZ0)
is a constant. If lnðIulkul=guAulÞ values are plotted against Eu,
the temperature is given by the reciprocal of the slope of the

straight line. This is called the atomic Boltzmann plot method.
The other key parameter in the diagnostics of plasma is the
electron density. Determination of the electron density nek is
based on the broadening of emission lines from the plasma.

It is assumed that the Stark effect is the dominant broadening
mechanism, in comparison with Doppler broadening and the
other pressure broadening mechanisms, due to collisions with

neutral atoms. The validity of this assumption was generally
admitted in works on (LIBS) and is justified in various studies
[116,117]. For the linear Stark effect (hydrogen and hydrogenic

ions), the following equation is valid [116]

ne ¼ CðT; neÞDks ð30Þ

where Dks is the full width at half maximum (FWHM) of the
spectral line and C(T,ne) is a coefficient that is only a weak

function of electron density and temperature. For elements
other than hydrogen and hydrogen-like ions, the quadratic
Stark effect acts on the total half width at half maximum
(HWHM), due to collisions with electrons and ions, xtotal is

approximately given by Griem [117]

xtotal ¼ ½1þ 1:75Að1� 0:75RÞ�xsne=n
ref
e ð31Þ

where xtotal is the electron impact (half) width, A is the ion

broadening parameter, xs is the Stark width, nrefe is a reference

electron density, usually of the order of 1016 or 1017 cm�3, and
R is the ratio of the mean distance between ion and Debye
radius. Eq. (31) is used in LIBS to determine the electron den-
sity from experimentally measured line widths of selected lines.

For accurate measurements of the electron density, spectral
lines as isolated as possible and emitted in optically thin con-
ditions have to be selected. Stark broadening of isolated spec-

tral lines of non-hydrogenic neutral atoms and ions is due
mainly to electrons. As a consequence, the contribution of
quasi-static ions was generally neglected, and hence, the

Lorentzian FWHM can be approximated by

xtotal ¼ xsðne=nrefe Þ ð32Þ

Our group at the laboratory of lasers and new materials at
the physics department has studied emission spectra from
laser-induced titanium plasma [118] and measured population

density and temperature of argon metastable (1S3) state using
tunable diode laser-absorption diagnostic technique [119]. An
elemental analysis of some minerals using laser-induced break-

down spectroscopy (LIBS) was performed at the laboratory by
El-Sergany et al. [120].

Self-absorption effect can distort the spectral line shape and

therefore produces apparently an increase in the line width and
a decrease in the line intensity, Griem [116]. It is originated
mostly from cooler boundary layer of the plasma which con-

tains much lower population density [117]. This effect will mis-
lead investigators and can give in accurate results for the
plasma parameters. Therefore, for the work on LIBS, one
has to check the presence of self-absorption. Our group has
evaluated self-absorption coefficient of Aluminum emission

lines in laser-induced breakdown spectroscopy (LIBS) mea-
surements, see El-Sherbini et al. [121]. Hydrogen lines, espe-
cially those of the Balmer series exhibit linear Stark effect,

are the most strongly broadened lines, and they are easy to
measure. Therefore, they are oftenly used to determine the
electron density. Our group, El-Sherbini et al. [122], has mea-
sured the electron density in a laser produced plasma experi-

ment using the Stark broadening of Ha-line at 656.27 nm.
This line is produced from the interaction of a Q-switched
Nd-Yag laser beam at the fundamental wave length of

1.06 lm with a plane solid aluminum target in a humid air
Fig. 10. In this experiment, light emitted from the plasma
plume is collected by a lens and optical fiber arrangement using

an imaging spectrograph with ICCD camera, see Fig. 10. The
wave length scale was calibrated with a low pressure Hg-lamp.
The emitted light was collected in the wave length region from
200 to 1000 nm. The gain of the camera was kept fixed at a

maximum level of 250. The measurement was confirmed by
observing the spectra emitted at wave length regions from
plasma at delay times from 30 to 50 ls which gave the same

band width. Identification of the different spectral lines was
carried out using a software spectrum analyzer (version 1.6).
The agreement between the measured electron density from

both the Ha-line and the Al II-line at 281.62 nm confirms the
reliability of utilizing the Ha-line as an electron density stan-
dard reference line in LIBS experiments.

Our group has also measured the Stark broadening of
atomic emission lines in non-optically thin plasmas by of
laser-induced breakdown spectroscopy, El-Sherbini et al.
[123]. An assessment of LIBS diagnostics of plasma using the

hydrogen Ha-line at different laser energies in air was per-
formed by the group, El-Sherbini et al. [124]. Moreover, the
atomic physics group has applied the diode laser atomic

absorption spectroscopy (DLAAS) technique to assess the
degree of optical opacity of plasma at the wave length of Ha-
line, El-Sherbini et al. [125]. They found that the plasma asso-

ciated with metallic targets is almost optically thin at the Ha-
line over all fluencies and at delay times P1 ls, but rather thick
for hydrogen-rich targets (plastic and wood) over all delay

times and fluencies.
Recent measurements of plasma electron temperature utiliz-

ing magnesium lines appeared in laser produced aluminum
plasmas were done by the group, El-Sherbini et al. [126]. This

work shows that the Mg I andMg II lines appeared at the short
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wave length region of the LIBS spectrum are good candidates
for measuring the temperature of the plasma in LIBS experi-
ments, but after correction against self-absorption. The spec-

trometric measurements of plasma parameters utilizing the
target ambient gas O I and N I atomic lines show the reliability
in the values of the electron density and the temperature of the

plasma generated by the interaction of laser beam with solid
targets, El-Sherbini et al. [127].

Advances in the LIBS measurements at our laboratory of

lasers and new materials in the physics department at the fac-
ulty of science – Cairo University were achieved by studying
the X-ray/particle emission from plasmas produced by laser
irradiating nano-srtuctured targets, Hegazy et al. [128]. In this

experiment, nano-copper structures evaporated onto copper
bulk disks and nano-gold structures evaporated onto gold ones
were used. An ion collector and X-ray semiconductor diode

were used to study the ion and X-ray emission, respectively.
A comparison of both studies in the case of nano-structured
targets and bulk targets was performed at different laser fluen-

cies (1 · 109–1 · 1012 W/cm2) on the target. A 20% increase in
the X-ray emission for nano-gold with respect to the bulk gold
was observed; however, the X-ray emission in the nano-copper

and copper was the same. At high laser intensities, the presence
of non-linear processes in the preformed plasma may signifi-
cantly increase the temperature of the fast electrons, and there-
fore mainly, the hard components of X-ray radiation at the

fast ion emission are produced that does not happen in low
energy nano-second experiments. Another progress was also
recently achieved at our laboratory, by observing enhance-

ments in LIBS signals from nano vs. bulk ZnO targets and
nano-based targets, El-Sherbini et al. [129]. The study revealed
that the signal enhancement cannot be attributed to the plasma
Fig. 11 (a) experimental setup; (b) TEM image of the ZnO-20 nm s

target (red color) in comparison to that from the bulk-based material
temperature difference or the difference in the electron density.
The signal enhancement depends only on the relative atomic
concentration in the plasma created from the nano-based

material with respect to the bulk-based plasma. This can be
qualitatively explained in terms of the collisonal radiative
modeling; for an electron density in the order of 1017 cm�3,

the collision processes are the dominant ones. Therefore, the
enhanced emission of Zn I-lines from the nano-based target
Fig. 11 could be attributed to the higher concentration of neu-

tral atoms in the nano-based material plasma with respect to
the corresponding bulk-based ZnO material.

The evolution of Al plasma generated by Nd-YAG laser
radiation at the fundamental wave length was studied at our

laboratory by Hegazy et al. [130]. The results showed that the
plasma temperature and the electron density are strongly
dependent on the time and on the laser energy. More recently,

another study was done at our laboratory by the same authors
on titanium targets [131]. They investigated the spectral-
evolution of nano-second laser interaction with Ti target in

air. In this study, time resolved optical emission spectroscopy
(OES) has been successfully employed to investigate the evolu-
tion of plasma produced by IR- and visible-pulsed laser beams

irradiating a titanium target in ambient air at atmospheric pres-
sure. The characterization of the plasma-assisted pulsed laser
ablation of the titanium target was discussed. The obtained
temperature was in a good agreement with the one obtained

from Ti II spectral lines previously suggested by Herman
et al. [132]. Moreover, the Stark broadening method has been
employed in the experiment for electron density measurements.

In conclusion, plasma diagnostic technique with LIBS is
essential for accurate determination of plasma parameters such
as temperature and electron density. It can give more
ize; (c) enhanced emission of the Zn I – line from the nano-based

(black color).



Fig. 13 A diagram showing the properties of particles in a gas at

various temperatures, Ketterle [142].
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information about the atomic processes and the dynamic nat-
ure of the plasma. This information plays a major role in astro-
physics and in controlled thermonuclear fusion research.

Laser cooling and Bose–Einstein condensation

One of the research highlights in atomic physics in recent years is

the study of laser cooling and Bose–Einstein condensation. As
early as 1917, Einstein [133] had predicted that momentum is
transferred in the absorption and emission of light, but it was

not until the mid eighties that such optical momentum transfer
was used to cool and trap neutral atoms [134,135]. By properly
tuning laser light close to atomic transitions, atomic samples can

be cooled to extremely low temperatures [136]. In 1985,National
Bureau of standards group [137] cooled atoms in a thermal
atomic beam in the range of 50–100 m K by irradiating them

with a beam of counter-propagating against their motion. If
the laser is tuned to the low frequency side of an atomic reso-
nance, an atommoving against the direction of a laser beamwill
see the beam Doppler-shifted into resonance, while the beam

co-propagating with the atom will be Doppler-shifted out of
resonance. Thus, the atom will preferentially scatter photons
from the beam opposing the direction of motion. A step further

was cooling in three dimensions, and this was accomplished by
creating three sets of counter-propagating beams along the x, y,
and z axes. The idea was suggested by Hansch and Schawlow

[138] and was demonstrated by Chu et al. [139] . Because the
cooling force is viscous (linearly proportional to the velocity
of atoms for low velocities), the laser beams that generate the
drag force was named ‘‘optical molasses.’’

A substantial improvement in laser cooling was achieved
with optical molasses (OM), where three intersecting orthogo-
nal pairs of oppositely directed laser beams are used to severely

restrict the movement of atoms in the intersection region. With
this technique, atoms could be cooled to temperatures between
1 and 0.1 lK. The first cooling and trapping of neutral atoms

(sodium atoms) was accomplished with optical molasses in
combination with magneto-static fields Fig. 12, and the tech-
nique was named magneto-optical trapping MOT [140].

When atoms in a gas are cooled to extremely low tempera-
tures, they will (under the appropriate condition) condensate
into a single quantum mechanical state known as a Bose–
Einstein condensate (BEC). This phenomenon was predicted
Fig. 12 The technique of magneto-optical trapping MOT,

Scientific American (January 1998).
by Nath Bose and Albert Einstein in 1925 when they pointed
out that at low temperatures particles in a gas could all reside
in the same quantum state. The Bose–Einstein condensation

exhibits a new state of matter which occurs at extremely low
temperatures when the de Broglie wave length of atoms
becomes comparable to the average distance between them

Fig. 13. The temperatures reached by laser cooling are impres-
sively low, but they are not low enough to produce BEC in
gases at the densities that are realizable experimentally. In
the experiments performed to obtain BEC of alkali gases,

evaporative cooling which was first suggested by Hess [141]
was used after laser cooling. With this additional cooling,
the temperature reached about 2 nK, which was sufficiently

low to form BEC. The basic physical effect in evaporative
cooling is that if particles escaping from a system have energy
higher than the average energy of particles in the system, the

remaining particles are cooled. If one makes a hole in the
magneto-optical trap (MOT), only atoms with an energy at
least equal to the energy of the trap at the hole will be able
to escape. In practice, one can make such a hole by applying

radio-frequency radiation that flips the spin state of an atom
from a low-field seeking one to a high field seeking one,
thereby expelling the atom from the trap [142]. In order to

diagnose the dense and cold samples of trapped atoms, the
time of flight (TOF) method is used [143]. The (TOF) method
was capable of mapping out the velocity distribution for both

hyperfine and ground states of dilute gases of alkali atoms
along their path through the trap, see Fig. 14. The peculiar
BEC gaseous state was created and diagnosed in the labora-

tory for the first time in 1995, by Carl Wieman, Cornell, and
co-workers [144] at the JILA laboratory in Boulder and by
Ketterle and co-workers [145] at the MIT, using the powerful
laser cooling method together with evaporative cooling

method. Nowadays, the phenomenon of BEC has become an
increasingly active area of research both experimentally and
theoretically. Research work on this form of matter is relevant

to many different areas of physics – from atomic clocks and



Fig. 15 The condensate fraction N0/N as a function of the

reduced temperature T/T0 and the rotation ratio a.

Fig. 14 The density profile of the condensate after time of flight

expansion, giving emphasis to the velocity distribution, Ref. [144].
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quantum computing to superfluidity, superconductivity, atom

lasers, and quantum phase transition.
The pioneering work on BEC by Wieman, Cornell and

Ketterle and others [144–146] was centered on atoms that were

bosons, particles with integer spins. But atomic physicists have
since extended their work to create Fermi gases from atoms
that are fermions, particles with half odd integer spins. The

advances came in 2003 by Deborah Jin and co-workers at
the university of Colorado [147], who created a BEC of weakly
bound molecules from ultra-cold Fermi gas of potassium-40

atoms. This new form of matter may help in a better under-
standing of superconductivity and could pave the way toward
a superconductor that works at room temperature. Recently,
research efforts in the field of BEC were directed toward stor-

ing ultra-cold bosonic and fermionic quantum gases in artifi-
cial periodic potentials of light, i.e., in optical lattices [148].
This has opened innovative manipulation and control possibil-

ities, in many cases creating structures far beyond those cur-
rently achievable in typical condensed matter physics
systems. Trapping ultra-cold quantum gases in optical lattices

will open the door to a wide interdisciplinary field of physics
ranging from non-linear dynamics to strongly correlated quan-
tum phases and quantum information processing.

Around 2004, the group of atomic physics at the Physics

Department of the Faculty of Science – Cairo University
started theoretical work on BEC, and a brief review on the
subject was given by El-Sherbini [149]. The group adopted in

their studies the semiclassical approximation, i.e., the density
of state (DOS) approach [150]. In this approach, the sum over
the discrete spectrum for the thermodynamic quantities of the

Bose–Einstein condensate was replaced by an integral
weighted of a piecewise DOS. The latter was calculated via
the technique of the high temperature expansion for the parti-

tion function [151]. This approximation has been widely used
in variety of problems in statistical physics [152]. These studies
showed that the resulting thermodynamic parameters depend
crucially on the choice and construction of the DOS [153].

A generalization of the semiclassical approximation was
suggested by Hassan and El-Badry [154], allowing for an essen-
tial extension of its region of applicability. The parameterized

DOS has considered the effects of finite size, anisotropic of the
harmonic potential, and the positive chemical potential; all of
them simultaneously. The latter effect is similar to the effect of

repulsive interaction provided by the mean field theory
approach [155]. The outcome results provide a solid theoretical
formulation for the existing experiments [155]. The generalized
semiclassical approximation was also applied by Hassan and

El-Badry [156] in the study of thermodynamic properties of
quasi-equilibrium magnons in crystalline bulk materials and
thin films and by Hassan [157] in the calculations of effective
area and expansion energy of trapped Bose gas in a combined
magnetic-optical potential. Hassan et al. [158] were able to cal-

culate the critical temperature of a Bose–Einstein condensate
in a 3D non-cubic optical lattice. Moreover, Hassan et al.
[159] have studied recently the thermodynamic properties of

condensed 39 K Bose gas in a harmonic trap. In particular
the critical atoms number and its corresponding temperature
are predicted via the graphical representation [160]. A step fur-

ther in the advancement of research on BEC was carried out by
the group, where they determined the thermodynamic proper-
ties of rotating Bose gas in a harmonic trap [161].

Nowadays, the work on fast rotating gases in Bose Einstein

condensates which was initiated by the group of Dalibard at
the Ecole Normale Superieure (ENS) laboratory in Paris
[162] was recently under investigation by our group. Usually,

the effective trapping potential Veff for fast rotation regime is
approximated by harmonic plus weak quartic potential [163]:

Veff ¼
m

2
½x2

zz
2 þ x2

?r
2
?� þ

1

4
xr4 �m

2
X2r2? ð33Þ

where m is the mass of the atom and r2 = x2 + y2 is the per-
pendicular radius to the rotation axis z. The parameter x clas-
sifies the strength of the quartic term and, moreover, plays an

important role in exploring the fast rotation regime. The
parameter j must be greater than zero; otherwise, the effective
potential felt by the atom Veff would tend to �1 for r fi ±1.

In a recent paper by the group, El-Sherbini et al. [164], a
modified semiclassical approximation is provided to study
the effects of finite size, the positive chemical potential, and

anisotropy of the trap, on the thermodynamical properties of
a rotating gas in a harmonic plus quartic trap. Fig. 15 presents
the characteristic dependence of the condensate fraction N0/N
on the reduced temperature T/T0 and the rotation rate a. It
shows the monotonically decreasing nature of the condensate
fraction due to the increase in the reduced temperature every-
where. This decrease is minor in the slow rotation range and

rapid in the fast rotation range monotonically in agreement
with the experimental observations and the numerical calcula-
tion [165]. Our results also provide a correction due to the

finite size and positive chemical potential effects (interaction
effect) for the results of Kling and Pelster [165]. Both of them
show a significant quenching of the condensate fraction and a

shift of the critical temperature toward the lower values.



Fig. 17 The normalized recoil frequency S as function of the

critical temperature Tc and the optical depth V0.
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The study of BEC in a rotating optical lattice was done in
the atomic physics group by Abdel-Gany et al. [166]. The effec-
tive trapping potential Veff for rotating optical lattice trap is

considered to be,

Veff ¼
m

2
x2

zz
2 þ x2

?r
2
?

	 

þ V0 sin2

px
d

� �
þ sin2

py
d

� �h i
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2
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where d is the lattice spacing. The dependence of the conden-

sate fraction, critical temperature, and the heat capacity on
the recoil frequency, optical potential depth, and rotating fre-
quency is investigated. The results show that the normalized
recoil frequency can control the characteristic shape of the

condensate fraction Fig. 16. Furthermore, our results show
that the rotating BEC in optical lattice is accompanied by a
peak in the critical temperature Tc at defined value for the nor-

malized recoil frequency S^, Fig. 17. This remarkable behavior
was observed experimentally by Burger et al. [167] and numer-
ically detected for non-rotating boson gas in optical lattice by

Blakie et al. [168].
Bose–Einstein condensates in optical lattices represent

model systems for solid state physics with yet unprecedented

level of control. They can be used for exploring a wide range
of fundamental problems in condensed matter physics such
as Mott (metal-insulator) transitions, Anderson localization,
type II superconductivity, and quantum Hall effect.

Exactly solvable models are very important in physics since
they enable physicists to estimate the accuracy of the different
approximate methods. In condensed atomic systems, the major

problem involves solving many body interacting systems. The
group of atomic physics at the Physics Department of the
Faculty of Science – Cairo University has started to work on

an exactly solvable model for a system composed of two spe-
cies of identical Bosons in three-dimensional space interacting
via harmonic potential. Aboul-Seoud et al. [169] have studied a
system of two N-particles of identical Bosons with equal num-

bers, assuming that particles belonging to the same species
repel each other and particles belong to different species attract
each other. It was realized that the system is condensed in one

channel when the coupling strengths are identical and in two
channels when the coupling strengths are different. This study
will enable us to understand the behavior of the miscibility of
Fig. 16 The condensate fraction N0/N as a function of the

normalized recoil frequency S and the reduced temperature T/T0 .
atomic species as a function of the variations in the coupling

strengths between the Bose species.
Further research activities in the field of BEC are being pur-

sued by members of our atomic physics group. The research
focuses on the study of the thermodynamics of Bose systems

at finite temperature and inter-particle interactions. A system
of equations describes trapped and condensed Bose systems
at finite temperature is being investigated. The description of

weakly interacting Bosons at zero temperature saw a break-
through in 1947 with the seminal work of Bogoliubov [170],
who derived the mean field equations that govern the statics,

as well as the dynamics, of the condensed state. Bogoliubov’s
work correctly describes the microscopic low energy spectrum
of the condensed state of a uniform condensate. Further pro-
gress was achieved through the work of Gross and Pitaevskii

[171,172], who derived the zero temperature equations of a
non-uniform condensate. Their approach has become the basis
for much of the theoretical work on degenerate Bose gases. This

work saw a surge of activity after the experimental realization
of Bose–Einstein Condensation in electromagnetic-optical
traps containing metastable vapors of alkali atoms [144,145].

More work is needed, however, to address both dynamical
and thermodynamic aspects of the condensed phase at finite
temperatures. At finite temperature, the system contains boso-

nic quasi-particle excitations. As the temperature is raised, the
density of such excitations increases and their interactions with
the condensate particles, as well as among themselves, may
have a pronounced effect on the physics of the trapped system.

Another aspect comes about because of the experimental
possibility to fine-tune the inter-particle interactions using
Feschbach resonances. This means that the interactions

between the atoms in the condensate are not weak anymore.
The validity of many of the approaches that have been devel-
oped with both finite temperature and strong inter-particle

interactions has been questioned by Yukalov [173]. In order
to treat these effects consistently, he derived a system of
coupled equations for the main quantities that govern the

macroscopic properties of degenerate trapped gases. These
quantities include the condensate density, the density of
non-condensate particles, the local speed of sound, and the
anomalous density of the trapped system. We are comparing

the solutions we are obtaining with known experimental results
[174]. This approach is promising since it appears that it can be
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easily generalized to include non-uniformities due to vortices
or other special excitations, as well as dynamic phenomena
at finite temperature. The results of our work are currently

being prepared for submission for publication.
Concluding, I would like once more to stress that this review

article was by no means an attempt to cover the whole of

developments of atomic physics of the last half century.
Rather, it was aimed at outlining the contributions of the
atomic physics group of Cairo University that I had the honor

to lead for the past four decades, as well as the research work I
conducted during my scientific visits to the FOM-Institute for
Atomic and Molecular Physics in Amsterdam.

With future publications, our group hopes to continue par-

ticipating in the worldwide edifice of atomic physics.
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