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1. Introduction

The multiplicity of a fixed point of a differentiable function can be seen from the density of its
orbit near the fixed point as was shown in [5]. We recall this result in Theorem 1. The information
on the density is contained in the behavior of ε-neighborhood of the orbit near the fixed point and is
usually measured by the box dimension of the orbit. It was further noted in [19] that the box dimen-
sion of the orbit of Poincaré map around a focus or a limit cycle shows how many limit cycles can
appear in bifurcations. This gave an application of the result from Theorem 1 to continuous dynamical
systems.

The idea of this article is to generalize these results to a class of functions which are non-
differentiable at a fixed point. The goal is again to estimate the multiplicity of a fixed point of such
a function only from the asymptotic behavior of the length of the ε-neighborhood of any of its or-
bits close to the fixed point, as ε → 0. The results can be applied to continuous dynamical systems.
While differentiable functions described above appear as displacement functions near limit cycles and
foci, non-differentiable functions appear naturally as displacement functions near polycycles, see e.g.
[11,15] (see Section 4). The multiplicity of a fixed point 0 of the displacement function near some
limit periodic set reveals the number of limit cycles that appear in the unfoldings of the limit peri-
odic set. It is of interest to find at least an upper bound on the multiplicity.

Calculating numerically an orbit of the Poincaré map of the limit periodic set, one can estimate
the length of its ε-neighborhood for small values of ε and thus estimate its asymptotic behavior.

In the differentiable case (foci, limit cycles), see Theorem 1, it suffices to compare the behavior of
the length with discrete scale of powers, {ε, ε1/2, ε1/3, . . .}. The moment when comparability occurs
reveals multiplicity, i.e. cyclicity. We see additionally that this moment is signaled by the limit capac-
ity (the box dimension) of the orbit which actually shows the density of the orbit around the fixed
point: the bigger this density is, more limit cycles can appear in perturbations.

In non-differentiable cases, however, we show that it is not sufficient to compare the length of
the ε-neighborhood with the scale of powers to estimate multiplicity and cyclicity. The idea behind
Theorems 2 and 3 is in finding the appropriate scale to which the length should be compared to
obtain precise information on the multiplicity. This scale, as we will see, depends on the unfolding
and should be estimated at least from above. Here, instead of box dimension, the new notion of
critical Minkowski order is introduced, to signal the moment when the comparability occurs in the
new scale.

The article is organized as follows. First, in Section 1.1 we recall the connection from [5] be-
tween the box dimension of the orbit and the multiplicity of the fixed point in the differentiable
case, see Theorem 1. In Section 1.2 we recall and introduce definitions and notions we need in
non-differentiable cases. Finally, in Section 2, we state our main results concerning non-differentiable
cases, see Theorem 2 and Theorem 3. Some applications to continuous dynamical systems are given
in Section 4.

1.1. Differentiable case

Denote Diff r[0,d) the space of Cr -differentiable functions on [0,d), for r sufficiently big, d > 0. Let
f ∈ Diff r[0,d), f (0) = 0 and x > f (x) > 0, for x ∈ (0,d). Put

g = id − f (1)

and consider the orbit S g(x0) of 0 < x0 < d by g:

S g(x0) = {xn | n ∈N}, xn+1 = g(xn). (2)

Let μ
fix
0 (g) be the multiplicity of 0 as a fixed point of the function g in the family Diff r[0,d). That is,

the number of fixed points that can bifurcate from 0 by bifurcations within Diff r[0,d). Then,
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μ
fix
0 (g) = k, if f (0) = f ′(0) = · · · = f (k−1)(0) = 0, f (k)(0) �= 0, (3)

i.e., 0 is a zero of multiplicity μ0( f ) = k of f .
Now we define the Minkowski content and the box dimension of a bounded set. Let U ⊂ R

N be a
bounded set. Denote by |Aε(U )| the Lebesgue measure of ε-neighborhood of U .

By lower and upper s-dimensional Minkowski content of U , s � 0, we mean

Ms∗(U ) = lim inf
ε→0

|Aε(U )|
εN−s

and M∗s(U ) = lim sup
ε→0

|Aε(U )|
εN−s

respectively. Furthermore, lower and upper box dimension of U are defined by

dimB U = inf
{

s � 0
∣∣ Ms∗(U ) = 0

}
, dimB U = inf

{
s � 0

∣∣ M∗s(U ) = 0
}
.

As functions of s ∈ [0, N], M∗s(U ) and Ms∗(U ) are step functions that jump only once from +∞ to
zero as s grows, and upper and lower box dimension contain information on jump in upper and lower
content respectively.

If dimB U = dimB U , then we put dimB(U ) = dimB U = dimB U and call it the box dimension of U . In
the literature, upper box dimension (also called limit capacity) has been widely used. For more details
on box dimension, see Falconer [6] or Tricot [16].

Our case is 1-dimensional so N = 1 in the definition of box dimension, and also U ⊂ [0,d), where
d > 0. We are interested in measuring the density of accumulation of the orbit of a function g near its
fixed point zero. Let g be sufficiently differentiable on [0,d), d > 0, such that g(0) = 0, we denote by
S g(x0), 0 < x0 < d, the orbit of x0 by g defined by xn+1 = g(xn), x0 < d, and tending monotonously to
zero. In 1-dimensional differentiable case it is verified that dimB(S g(x0)) is independent of the choice
of the point x0 in the basin of 0. Therefore one can define box dimension of a function g by

dimB(g) = dimB
(

S g(x0)
)
,

for any x0 from the basin of attraction of 0.
For two positive functions F (x) and G(x), with no accumulation of zeros at x = 0, we write F (x) 	

G(x), as x → 0, if there exist two positive constants A and B and a constant d > 0 such that A �
F (x)/G(x) � B , x ∈ (0,d), and call such functions comparable. In the sequel, we write F (x) = o(x), if
limx→0

F (x)
x = 0.

Now we reformulate Theorem 1 from [5], connecting box dimension and multiplicity in the differ-
entiable case.

Theorem 1. Let f be sufficiently differentiable on [0,d) and positive and strictly increasing on (0,d). Let
g = id − f and suppose that the multiplicity of 0 as a fixed point of g is finite and greater than 1. That is,

1 < μ
fix
0 (g) < ∞. Let x0 ∈ (0,d), S g(x0) be defined as in (2) and let |Aε(S g(x0))| be the length of the ε-

neighborhood of the orbit S g(x0), ε > 0.
Then

∣∣Aε

(
S g(x0)

)∣∣ 	 ε1/μ
fix
0 (g), as ε → 0. (4)

If μfix
0 (g) = 1 and additionally f (x) < x on (0,d), then

∣∣Aε

(
S g(x0)

)∣∣ 	
{

ε(− logε), if f ′(0) < 1,

ε log(− logε), if f ′(0) = 1,
as ε → 0. (5)
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Moreover, for 1 �μ
fix
0 (g) < ∞,

μ
fix
0 (g) = 1

1 − dimB(g)
. (6)

Sketch of proof. We illustrate the proof on the simplest case when g is linear, g(x) = kx, k ∈ (0,1).
Take any initial point x0 ∈ (0,d). By recursion, it is easy to compute the whole orbit by g:

xn = knx0, n ∈N. (7)

To compute the asymptotic behavior of the length of the ε-neighborhood of the orbit, we divide
the ε-neighborhood in two parts: the nucleus, Nε , and the tail, Tε . The tail is the union of all disjoint
(2ε)-intervals of the ε-neighborhood, before they start to overlap. It holds that

∣∣Aε

(
S g(x0)

)∣∣ = |Nε| + |Tε|. (8)

Let nε denote the index separating the tail and the nucleus. It describes the moment when (2ε)-
intervals around the points start to overlap. We have that

|Nε| = xnε + ε, |Tε| 	 nε · ε, ε → 0. (9)

To find the asymptotics of nε , we have to solve xnε+1 − xnε 	 2ε, ε → 0. By mean value theorem,
using (7), we get

nε 	 − logε, ε → 0.

From (9), we get

|Nε| 	 ε, |Tε| 	 ε(− logε),

therefore, by (8), |Aε(S g(x0))| 	 ε(− logε), as ε → 0. �
Note that in Theorem 1 we assume f to be differentiable at zero point x = 0. In this article, we

generalize Theorem 1 to some non-differentiable functions at x = 0.
Since in the non-differentiable cases standard multiplicity of zero is not well defined, we use

the notion of multiplicity of a point as zero of f (x) with respect to a family of functions (see Defini-
tion 1). The family of functions we consider will be the family of functions having a finite codimension
asymptotic development with respect to a Chebyshev scale (see Definition 2).

As the main results, in Section 2 we extend formula (4) to non-differentiable case. Therefore we
have to introduce the notion of critical Minkowski order with respect to a Chebyshev scale, see Definition 5.
This notion is in the differentiable case directly related to box dimension, see Remark 2(ii). In non-
differentiable cases, it generalizes the notion of box dimension in a way that a formula similar to
formula (6) holds.

1.2. Non-differentiable cases

Let us recall some definitions we use in the non-differentiable cases.
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Definition 1. Let Λ be a topological space and let F = { fλ | λ ∈ Λ}, fλ : [0,d) → R, be a family of
functions. Let λ0 ∈ Λ, we say that x = 0 is a zero of multiplicity greater than or equal to m of the function
fλ0 in the family of functions F if there exists a sequence of parameters λn → λ0, as n → ∞, such
that, for every n ∈ N, fλn has m distinct zeros yn

1, . . . , yn
m ∈ [0,d) different from x = 0 and yn

j → 0, as
n → ∞, j = 1, . . . ,m.

We say that x = 0 is a zero of multiplicity m of the function fλ0 in the family F and write
μ0( fλ0 ,F) = m, if m is the biggest possible integer such that the former holds.

Putting gλ = id − fλ , G = {gλ = id − fλ}, the multiplicity of 0 as a fixed point of gλ0 with respect

to the family G is μ
fix
0 (gλ0 , G) = μ0( fλ0 ,F).

In [15] Roussarie introduced the notion of cyclicity, measuring the number of limit cycles (isolated
periodic orbits) that can be born from a certain set called limit periodic set by deformation of a
given vector field in a family of vector fields. In the case of the family of Poincaré maps of the family
of vector fields in a neighborhood of a limit periodic set, cyclicity is given by the above notion of
multiplicity of a fixed point zero of gλ0 in the family of Poincaré maps. Due to the possible loss of
differentiability of the family of Poincaré maps near a limit periodic set, the more general notion of
multiplicity introduced in Definition 1 is necessary.

Remark 1 (Relation between classical multiplicity and multiplicity in a family for differentiable functions).
Note that if f is differentiable, f ∈ Diff r[0,d), then the classical notion of multiplicity of 0 as
a zero of f , μ0( f ) � r as in (3), measures the maximal number of zeros of fλ that can ap-
pear near 0, for fλ ∈ F close to f , where F = Diff r[0,d) and the distance function is given by
d( f , g) = supk=0,...,r | f (k)(0) − g(k)(0)|, i.e. μ0( f ) = μ0( f ,Diffr[0,d)). Note that the number of ze-
ros μ0( f ,F) that can appear by deformations F really depends on the family F . Taking a family F
of deformations bigger or smaller than Diff r[0,d), it is easy to give examples with μ0( f ,F) bigger
or smaller than μ0( f ). (See e.g. Example 1.1.1 and Example 1.1.2 in [13].)

We want to study non-differentiable functions having a special type of asymptotic behavior at
x = 0. The definition of the following sequence of monomials and its properties is based on the
notion of Chebyshev systems, see [12] and [13], and the proofs therein. A similar notion of asymptotic
Chebyshev scale is mentioned in [4].

Definition 2. A finite or infinite sequence I = {u0, u1, u2, . . .} of functions of the class C[0,d) ∩
Diff r(0,d), r ∈N∪ {∞}, is called a Chebyshev scale if:

i) A system of differential operators Di , i = 0, . . . , r, is well defined inductively by the following
division and differentiation algorithm:

D0(uk) = uk

u0
,

Di+1(uk) = (Di(uk))
′

(Di(ui+1))
′ , i ∈ N0,

for every k ∈ N0, except possibly in x = 0 to which they are extended by continuity.
ii) The functions Di(ui+1) are strictly increasing on [0,d), i ∈N0.

iii) limx→0 D jui(x) = 0, for j < i, i ∈ N0.

We call Di( f ) the i-th generalized derivative of f in the scale I .
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Definition 3. A function f has a development in a Chebyshev scale I = {u0, . . . , uk} of order k if

f (x) =
k∑

i=0

αiui(x) + ψ(x), αi ∈R, (10)

and the generalized derivatives Di(ψ(x)), i = 0, . . . ,k, verify Di(ψ(0)) = 0 (in the limit sense).

Note that (in the limit sense) Di( f )(0) = αi , i = 0, . . . ,k.
Consider a family F = { fλ | λ ∈ Λ} of functions having a uniform development of order k in a

family of Chebyshev scales Iλ = (u0(x, λ), . . . , uk(x, λ)), i.e.

fλ(x) =
k∑

i=0

αi(λ)ui(x, λ) + ψ(x, λ), λ ∈ W . (11)

The development is uniform in the sense that all generalized derivatives D j fλ , j = 0, . . . ,k, can be
extended by continuity to x = 0 uniformly with respect to λ, and this extension is continuous as
function of λ.

The following lemma generalizes Remark 1. It gives the connection between the index of the first
nonzero coefficient in development of a function f ∈F in a Chebyshev scale and the multiplicity of 0
as a zero of f in the family F .

Lemma 1. Let Iλ = (u0(x, λ), . . . , uk(x, λ)), λ ∈ Λ, be a family of Chebyshev scales and F = ( fλ) a family of
functions having a uniform development in the family of Chebyshev scales Iλ of order k and fλ0 ∈ F . If the
generalized derivatives satisfy

Di( fλ0)(0) = 0, i = 0, . . . ,k0 − 1, and Dk0( fλ0)(0) �= 0, k0 � k, (12)

i.e., if αk0(λ0) is the first nonzero coefficient in the development of fλ0 , then the multiplicity of 0 as zero of fλ0

in the family F is at most k0 (i.e., μ0( fλ0 ,F)� k0).
If moreover Λ ⊂ R

N , k0 � N, and the matrix (
∂αi
∂λ j

)i=0...k0−1, j=1...k0 (λ0) is of maximal rank (i.e., equal

to k0), then (12) is equivalent to μ0( fλ0 ,F) = k0 .

The proof of Lemma 1 is based on Rolle’s theorem and the observation that dividing by
nonzero functions the number of zeros is unchanged. If the matrix (

∂αi
∂λ j

) is of maximal rank, then

by the implicit function theorem one can consider parameters λ j , j = 1, . . . ,k0, as functions of
α0, . . . ,αk0−1, λk0+1, . . . , λN and α0, . . . ,αk0−1, λk0+1, . . . , λN as new parameters. Then making a se-
quence of small deformations starting with αk0−1, . . . ,αk0−2 etc., one can create k0 small zeros in a
neighborhood of 0. For the details of the proof, see Example 1.1.3 in [13].

Example 1 (Examples of Chebyshev scales on [0,d)).

i) Differentiable case: e.g. I = {1, x, x2, x3, x4, . . .}.
ii) Non-differentiable case:

– I = {xα0 , xα1 , xα2 , . . .}, αi ∈R, 0 < α0 < α1 < α2 < · · ·;
– I = {1, x(− log x), x, x2(− log x), x2, x3(− log x), x3, . . .};
– More generally, I can be any set of monomials of the type xk(− log x)l , ordered by increasing

flatness:

xi(− log x) j < xk(− ln x)l if and only if (i < k) or (i = j and j > l).

iii) For more general examples corresponding to Poincaré map at a homoclinic loop see Section 4.1.3.



P. Mardešić et al. / J. Differential Equations 253 (2012) 2493–2514 2499
Definition 4. A function f is weakly comparable to powers, if there exist constants m > 0 and M > 0
such that

m � x · (log f )′(x) � M, x ∈ (0,d). (13)

We call the left-hand side of (13) the lower power condition and the right-hand side the upper power
condition. A function f is sublinear if it satisfies lower power condition and m > 1.

A similar notion of comparability with power functions in Hardy fields appears in literature, see
Fliess, Rudolph [7] and Rosenlicht [14]. A Hardy field H is a field of real-valued functions of the
real variable defined on (0,d), d > 0, closed under differentiation and with valuation ν defined in an
ordered Abelian group. Let f , g ∈ H be positive on (0,d) and let limx→0 f (x) = 0, limx→0 g(x) = 0. If
there exist integers M, N ∈N and positive constants α,β > 0 such that

f (x)� αg(x)M and g(x) � β f (x)N , (14)

it is said that f and g belong to the same comparability class/are comparable in H .
Let us state a sufficient condition for comparability from Rosenlicht [14, Proposition 4]:

Proposition 1. (See Proposition 4 in [14].) Let H be a Hardy field, f (x), g(x) nonzero positive elements of H
such that limx→0 f (x) = 0, limx→0 g(x) = 0. If

ν
(
(log f )′

) = ν
(
(log g)′

)
, (15)

then f and g are comparable.

The condition (15) is equivalent to (see Theorem 0 in [14])

lim
x→0

(log f )′(x)

(log g)′(x)
= L, 0 < L < ∞. (16)

Rosenlicht’s condition (15), i.e. (16) is stronger than our condition (13) of weak comparability to
powers. If limx→0

(log f )′(x)
1/x = L, 0 < L < ∞ ((13) obviously follows), then f is comparable to power

functions in the sense (14).
Note that condition (13) excludes infinitely flat functions, but is nevertheless not equivalent to

non-flatness. If f is infinitely flat (in the sense that all its derivatives tend to zero as x → 0), then it
can easily be shown by L’Hospital rule that limx→0

f (x)
xa = 0, for every a > 0 and, as a consequence,

the inequality (13) cannot be satisfied. The contrary is not true. There exist functions that are not
infinitely flat, but nevertheless do not satisfy (13). As an example, see Example 3 in Appendix A.

Example 2 (Weak comparability to powers and sublinearity).

i) Functions of the form

f (x) = xα(− log x)β, α > 0, β ∈ R,

are weakly comparable to powers.
This class obviously includes functions of the form xα , xα(− log x)β and xα

(− log x)β
, for α > 0 and

β > 0. If additionally α > 1, they are also sublinear.
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ii) Functions of the form

f (x) = 1

(− log x)β
, β > 0,

do not satisfy the lower power condition in (13).
iii) Infinitely flat functions of the form

f (x) = e− 1
xα , α > 1,

do not satisfy the upper power condition in (13), but they are sublinear.

2. Main results

We now state the main theorems and their consequences.

Theorem 2. Let f ∈ Diff r(0,d) be continuous on [0,d), positive on (0,d) and let f (0) = f ′(0) = 0. Assume
that f is a sublinear function. Put g = id − f and let S g(x0) = {xn | n ∈ N} be an orbit of g, x0 < d.

The following formula for the length of the ε-neighborhood of the orbit S g(x0) holds

∣∣Aε

(
S g(x0)

)∣∣ 	 f −1(ε). (17)

The sublinearity condition m > 1 in the lower power condition cannot be omitted from Theorem 2.
For counterexample, see Remark 4 in Appendix A.

The following definition is a generalization of box dimension in non-differentiable case, accord-
ing to a given Chebyshev scale. There exists in the literature the notion of generalized Minkowski
content, see He and Lapidus [9], and Žubrinić and Županović [18]. It is suitable in the situation
where the leading term of |Aε(U )| does not behave as a power function, and we introduce some
functions usually called gauge functions. Driven by the result of Theorem 2, we follow the idea and
define the generalized Minkowski content with respect to a family of gauge functions. By Theorem 2,
the ε-neighborhood |Aε(S g(x0))| should be compared to the family obtained by inverting the given
Chebyshev scale, {u−1

1 (ε), u−1
2 (ε), . . .}. Comparing it to the powers of ε as in the standard definition of

the Minkowski content does not give precise enough information. Next we define critical Minkowski
order which is close to the notion of box dimension. Its purpose is to contain information on the
jump in the rate of growth of the length of ε-neighborhood of an orbit.

The upper (lower) generalized Minkowski content defined in Definition 5 below can be viewed as
function of i, i = 1, . . . , 
. By Lemma 2i)(b) in Section 3, it is a discrete function which jumps only
once from +∞ to 0 through some value 0 � M � +∞. This is a behavior analogous to the behavior
of the standard upper (lower) Minkowski content as function of s, see Section 1 and e.g. [6].

Let I = {u0, u1, . . .} be a Chebyshev scale such that monomials ui are positive and strictly increas-
ing on (0,d), for i � 1. Suppose that f has a development in the Chebyshev scale of order 
 on [0,d)

and moreover that f satisfies assumptions from Theorem 2 and upper power condition. Let g = id− f .
We have the following definition:

Definition 5. By lower (upper) generalized Minkowski content of S g(x0) with respect to ui , i = 1, . . . , 
, we
mean

M∗
(

S g(x0), ui
) = lim inf

ε→0

|Aε(S g(x0))|
u−1

i (ε)
,

M∗(S g(x0), ui
) = lim sup

ε→0

|Aε(S g(x0))|
u−1(ε)
i
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respectively. It can be easily seen that the behavior of the ε-neighborhood and thus the definition
is independent of the choice of the initial point x0 < d in the basin of attraction of 0. Therefore we
define

m(g,I) = max
{

i � 1
∣∣ M∗

(
S g(x0), ui

)
> 0

}
,

m(g,I) = max
{

i � 1
∣∣ M∗(S g(x0), ui

)
> 0

}
as the lower (upper) critical Minkowski order of g with respect to the scale I , when a jump in lower
(upper) generalized Minkowski content occurs. If m(g,I) = m(g,I), we call it critical Minkowski order
with respect to the scale I and denote m(g,I).

Remark 2 (Box dimension and critical Minkowski order).

(i) Using Lemma 2, it can easily be seen that the upper and lower generalized Minkowski contents
M(S g(x0), ui) pass from the value +∞, through a finite value and drop to 0 as i grows. More-
over, the critical index i0 is the same for upper and lower content and therefore m(g,I) = i0.

(ii) If f ∈ Diff r[0,d) is a differentiable function, then it has an asymptotic development in the
differentiable Chebyshev scale, I = {1, x, x2, . . . , xr} of order r. The box dimension and critical
Minkowski order are then directly related by the formula

dimB(g) = 1 − 1

m(g,I)
. (18)

Indeed, assume f (x) 	 xk , 1 < k � r. By (4), |Aε(S g(x0))| 	 ε1/k . This gives m(g,I) = k. On the
other side, by definition, the box dimension is the value s such that 1/k = 1 − s.

(iii) By analogy with the differentiable case (18), we can define generalized box dimension of a function
g with respect to a Chebyshev scale I by

dimG B(g,I) = 1 − 1

m(g,I)
.

This definition is obviously independent of x0 from the basin of attraction of 0.

The following theorem is a generalization of Theorem 1 to non-differentiable cases. Derivatives
are replaced by generalized derivatives in a Chebyshev scale, and box dimension by similar notion of
critical Minkowski order with respect to a Chebyshev scale. It shows that, in non-differentiable cases,
the length of the ε-neighborhood should be compared with the inverted Chebyshev scale instead of
the power scale to obtain multiplicity.

Let F = { fλ | λ ∈ Λ} be a family of functions on [0,d) admitting a uniform asymptotic development
(11) in a family of Chebyshev scales Iλ = (u0(x, λ), u1(x, λ), . . .), G = (gλ) = {id − fλ | fλ ∈F}. Let, for
λ = λ0, the monomials in the scale I = Iλ0 be positive and strictly increasing on (0,d), for i � 1.

Theorem 3. Let f = fλ0 be a function from the family F above, satisfying all assumptions of Theorem 2 and
the upper power condition. Let g = id − f . Then the following claims are equivalent:

(i) Di( f )(0) = 0, for i = 0, . . . ,k − 1, and Dk( f )(0) > 0, for some k � 1 (that is, f 	 uk, for some k � 1),
(ii) |Aε(S g(x0))| 	 u−1

k (ε),
(iii) m(g,I) = k.

If moreover Λ ⊂ R
N , k � N, and the matrix (

∂αi
∂λ j

)i=0...k−1, j=1...k(λ0) is of maximal rank (i.e. equal to k), then

(1), (2) or (3) is also equivalent to

(iv) μ
fix
0 (g,G) = k.
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Without this regularity assumption, (i), (ii) or (iii) implies

μ
fix
0 (g,G) � k.

On the importance of the upper power condition in Theorem 3, see Remark 5 in Appendix A.
In the differentiable case, we notice that differentiation diminishes critical Minkowski order by 1.

Let f ∈ Diff r[0,d) be differentiable enough and suppose μ0( f ′) > 1. Put g = id − f and h = id − f ′ ,
then by Theorem 1 and Remark 2(ii) we have

m(h,I) = m(g,I) − 1,

where I = {1, x, x2, . . . , xr} is a differentiable Chebyshev scale.
The same property is valid in the non-differentiable case when f has asymptotic development of

some order in a Chebyshev scale, if the derivative is substituted by the generalized derivative in that
scale. The following corollary is a direct consequence of Theorem 3:

Corollary 1 (Behavior of the critical Minkowski order under differentiation). Let I = {u0, u1, . . . , uk} be a
Chebyshev scale and let D1(I) denote the Chebyshev scale of first generalized derivatives of I , that is, D1(I) =
{D1(u1), D1(u2), . . . , D1(uk)}. Suppose that f has an asymptotic development in the scale I of order k on
(0,d) and let f and D1( f ) satisfy assumptions from Theorem 2 and the upper power condition. Let g = id− f ,
h = id − D1( f ). It holds

m
(
h, D1(I)

) = m(g,I) − 1.

Finally, let us explain the gain of introducing the notion of critical Minkowski order with respect
to some Chebyshev scale over the standard box dimension. As we have mentioned before, the role
of the box dimension and Minkowski content was to measure density of the orbit S g(x0) around the
fixed point 0 by determining the rate of growth of |Aε(S g(x0))| as ε → 0. If we consider, for example,
functions f1(x) = xk and f2(x) = xk(− log x), k > 1, and compute standard box dimension of the orbits
generated by g1 = id − f1 and g2 = id − f2, we get in both cases

dimB(g1) = dimB(g2) = 1 − 1

k
.

Thus box dimension is equal for two functions obviously distinct in growth. This is unnatural, the
difference can be noticed in the upper (lower) (1 − 1/k)-Minkowski content M1−1/k , which is zero
for g2 and greater than zero for g1, thus signaling that the orbit generated by g1 has bigger density
around 0 than the one generated by g2. The reason lies in the fact that the box dimension and
the Minkowski content are defined in a way that compares functions to power functions, but the
functions f2(x) = xk(− log x) are not visible in the scale of power functions. Precisely, by Theorem 2,
|Aε(S g2 (x0))| 	 f −1

2 (ε) does not behave as power of ε, but satisfies ε1/k < |Aε(S g2 (x0))| < ε1/(k+δ) ,
for every δ > 0, as ε tends to 0. Therefore there is not much sense in comparing the length to powers
of ε as in the standard definition of box dimension. We should define some other Chebyshev scale
in which f1 and f2 both have developments, for example I = {1, x(− log x), x, x2(− log x), x2, . . .}, and
consider critical Minkowski orders with respect to this new scale instead of box dimensions. Then,
we obtain distinct numbers:

m(g1,I) = 2k, m(g2,I) = 2k − 1.

Therefore critical Minkowski order with respect to the appropriate scale is a more precise measure
for density of the orbit in non-differentiable case than the box dimension.
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3. Proof of the main theorems

In the proofs of Theorem 2 and Theorem 3 we need the following lemma:

Lemma 2 (Inverse property). Let d > 0 and let f , g ∈ C1(0,d) be positive, strictly increasing functions on
(0,d).

i) If there exists a positive constant M > 0 such that the upper power condition holds,

x · (log f )′(x) � M, x ∈ (0,d), (19)

then

(a) f −1(y) 	 g−1(y), as y → 0 implies f (x) 	 g(x), as x → 0, (20)

(b) lim
x→0

f (x)

g(x)
= 0 (+∞) implies lim

y→0

f −1(y)

g−1(y)
= +∞ (0). (21)

ii) If there exists a positive constant m > 0 such that the lower power condition holds,

m � x · (log f )′(x), x ∈ (0,d), (22)

then

f (x) 	 g(x), as x → 0, implies f −1(y) 	 g−1(y), as y → 0. (23)

Proof. i)(a) From f −1 	 g−1 we have that there exist constants A < 1, B > 1 and δ > 0 such that

Ag−1(y) � f −1(y) � Bg−1(y), y ∈ (0, δ).

Putting x = g−1(y) and applying f (strictly increasing) on the above inequality we get that there
exists δ1 > 0 such that

f (Ax)� g(x) � f (Bx), x ∈ (0, δ1). (24)

For each constant C > 1 we have, for small enough x,

log f (Cx) − log f (x) = (log f )′(ξ)(C − 1)x

< (log f )′(ξ)(C − 1)ξ, ξ ∈ (x, Cx). (25)

Combining (19) and (25), we get that there exist constants mC > 1 and dC > 0 such that

f (Cx)

f (x)
� mC , x ∈ (0,dC ). (26)

Now using property (26) and inequality (24), for small enough x we obtain

1

m1/A
f (x) � g(x)� mB f (x),

i.e. f (x) 	 g(x), as x → 0.
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i)(b) Suppose limx→0
f (x)
g(x) = +∞. We prove that limy→0

f −1(y)

g−1(y)
= 0 by proving that limit superior

and limit inferior are equal to zero. Suppose the contrary, that is,

lim inf
y→0

f −1(y)

g−1(y)
= M, for some M > 0 or M = ∞.

By definition of limit inferior, there exists a sequence yn → 0, as n → ∞, such that

f −1(yn)

g−1(yn)
→ M, as n → ∞. (27)

From (27) it follows that there exist n0 ∈N and C > 0 such that

g−1(yn) < C f −1(yn), n � n0. (28)

Now, as in i)(a), by a change of variables xn = g−1(yn), xn → 0, and applying f (strictly increasing)
on (28), we get

mC g(xn) � f (xn), n � n0, xn → 0, for mC > 0,

which is obviously a contradiction with limx→0
f (x)
g(x) = +∞. Therefore

lim inf
y→0

f −1(y)

g−1(y)
= 0.

It can be proven in the same way that limit superior is equal to zero.

Now suppose limx→0
f (x)
g(x) = 0. In the same way as above, we prove that limy→0

g−1(y)

f −1(y)
= 0.

ii) It is easy to see by change of variables x = f −1(y) that property (22) of f is equivalent to
property (19) of f −1 and the statement follows from i). �
Remark 3 (Counterexamples in Lemma 2). To show that in Lemma 2i) the upper power condition (19)

is important, we can take, for example, functions f (x) = e− 1
2x and g(x) = e− 1

x . They do not satisfy
(19) and, obviously,

lim
x→0

f (x)

g(x)
= ∞, but f −1(y) = − 1

2 log y
	 g−1(y) = − 1

log y
.

We can do the same for the lower power condition (22) in Lemma 2ii) by considering, for example,
f (x) = − 1

log x and g(x) = − 1
2 log x .

Proof of Theorem 2. From lower power condition together with f ′(0) = 0, we get that f (x) = o(x)
and that f (x) is strictly increasing on (0,d). It can easily be checked that xn → 0 and d(xn, xn+1) → 0,
as n → ∞. Denote by Nε and Tε nucleus and tail of the ε-neighborhood of the sequence, that are
ε-neighborhoods of two subsets of the orbit satisfying the inequality d(xn, xn+1)� 2ε for the nucleus,
and d(xn, xn+1) > 2ε for the tail. Therefore,

∣∣Aε

(
S g(x1)

)∣∣ = ∣∣Nε

(
S g(x1)

)∣∣ + ∣∣Tε

(
S g(x1)

)∣∣, (29)

where |Nε| is the length of the nucleus, and |Tε| the length of the tail of the ε-neighborhood. For
more on notions of the tail and the nucleus of the ε-neighborhood of a set, see Tricot [16].
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To compute the length, we have to find the index nε ∈N such that

f (xnε ) < 2ε, f (xnε−1) � 2ε, (30)

that is, the smallest index nε such that ε-neighborhoods of the points xnε , xnε+1, etc. start to overlap.
Then we have

|Nε| = xnε + ε, (31)

|Tε| 	 nε · ε. (32)

First we estimate |Nε|. From f (x) = o(x) we get

lim
y→0

y

f −1(y)
= 0. (33)

Since f −1 is strictly increasing, from (30) we easily get xnε 	 f −1(2ε). Since f satisfies the lower
power condition, by Lemma 2ii) it follows xnε 	 f −1(ε). This, together with (31) and (33), implies
|Nε| 	 f −1(ε).

Now let us estimate the length of the tail, |Tε|, by estimating nε .
Putting xn := xn − xn+1, from xn+1 − xn = − f (xn) we get

xn

f (xn)
= 1 and

nε∑
n=n0

xn

f (xn)
=

nε∑
n=n0

1 = nε − n0 	 nε, as ε → 0, (34)

for some fixed n0 ∈N.
As in (41) below, we get that xn+1

xn
tends to 1, as n tends to infinity, and thus we can choose the

integer n0 so that

A f (xn+1) < f (xn) < B f (xn+1), n � n0, (35)

for some constants A, B > 0.
Since the function 1

f (x) is strictly decreasing on (0,d) and limx→0
1

f (x) = +∞, the sum
∑nε

n=n0

xn
f (xn)

is equal to the sum of the areas of the rectangles in Fig. 1i) and, analogously, the sum
∑nε

n=n0

xn
f (xn+1)

is
equal to the sum of the areas of the rectangles in Fig. 1ii). Therefore we have the following inequality:

nε∑
n=n0

xn

f (xn)
�

xn0∫
xnε+1

dx

f (x)
�

nε∑
n=n0

xn

f (xn+1)
. (36)

From (35), we get

nε∑
n=n0

xn

f (xn+1)
< B

nε∑
n=n0

xn

f (xn)
, (37)

so finally, putting (37) in (36) and using (34), we get the following estimate for nε:

nε 	
xn0∫

xn +1

dx

f (x)
, as ε → 0. (38)
ε
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Fig. 1. Sums from (36) as sums of areas of rectangles.

Substituting x = f −1(y), from the lower power condition we get

f −1(y)

y2
�m

( f −1)′(y)

y

and, consequently, for y ∈ (0, f (d)),

−
(

f −1(y)

y

)′
= − ( f −1)′(y)

y
+ f −1(y)

y2
� (m − 1) · ( f −1)′(y)

y
. (39)

Now substitution x = f −1(s) in the integral (38) together with (39) gives

nε 	
f (xn0 )∫

f (xnε+1)

( f −1)′(s)ds

s
� 1

m − 1

(
− f −1(s)

s

)∣∣∣∣
f (xn0 )

f (xnε+1)

. (40)

It holds

f (xnε )

f (xnε−1)
= f (xnε−1 − f (xnε−1))

f (xnε−1)

= f (xnε−1) + f ′(ξε)(− f (xnε−1))

f (xnε−1)
= 1 − f ′(ξε),

for some ξε ∈ (xnε , xnε−1), so f ′(0) = 0 implies

lim
ε→0

f (xnε )

f (xnε−1)
= 1. (41)

From (30) and (41), we now conclude that f (xnε+1) 	 ε. Therefore (40) becomes

nε � C
f −1(ε)

,

ε
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for some C > 0. From (32), we have that

|Tε| 	 nε · ε � C1 · f −1(ε),

for some C1 > 0 and ε small enough. Together with |Nε| 	 f −1(ε) obtained above, this implies, using
(29), that

∣∣Aε

(
S g(x1)

)∣∣ 	 f −1(ε), as ε → 0. �
Proof of Theorem 3. We first prove that (i) ⇒ (ii) ⇒ (iii). Suppose Di( f )(0) = 0, i = 0, . . . ,k − 1,
Dk( f )(0) > 0, i.e., f 	 uk , as x → 0. Theorem 2 applied to f gives |Aε(S g(x1))| 	 f −1(ε). Since
f 	 uk , by Lemma 2ii) we get f −1 	 u−1

k and therefore |Aε(S g(x1))| 	 u−1
k (ε). Since uk satisfies up-

per power condition, by Lemma 2 and Definition 5 of critical Minkowski order (see Remark 2(ii)), we
get m(g,I) = k.

Now we prove that (iii) ⇒ (ii) ⇒ (i). Suppose m(g,I) = k and f 	 ul , for some l �= k. As
above, we conclude m(g,I) = l �= k, which is a contradiction. Therefore f 	 uk and, again as above,
|Aε(S g(x1))| 	 u−1

k (ε).

By Lemma 1, we conclude that (i) implies μ
fix
0 (g,G) � k. If moreover the condition on the maximal

rank of the matrix (
∂αi
∂λ j

)i=0...k−1, j=1...k(λ0) is verified, by Lemma 1 (i) is equivalent to (iv). �
4. Applications

4.1. Cyclicity of limit periodic sets for planar systems

The number of limit cycles that bifurcate from a monodromic limit periodic set in an unfolding is
equal to the multiplicity of the isolated fixed point x = 0 of the Poincaré map in the family of Poincaré
maps for the given unfolding, see e.g. Proposition 2 in [4]. For exact definitions of limit periodic set
and cyclicity, see e.g. Roussarie [15].

Results from Section 2 connect cyclicity of a limit periodic set in an unfolding and the rate of
growth of the length of the ε-neighborhood of any orbit of the Poincaré map whose initial point is
sufficiently close to the limit periodic set. This rate of growth is given by the critical Minkowski order
with respect to the appropriate scale.

The orbit of the Poincaré map on a transversal to the limit periodic set is the intersection of the
corresponding one-dimensional orbit of the vector field with the transversal. Locally in a neighbor-
hood of a point on the transversal, the structure of the one-dimensional orbit is that of the orbit of
the Poincaré map by a segment. Hence all interesting data of the one-dimensional orbit are given by
the corresponding zero-dimensional orbit of the Poincaré map.

Therefore, instead of considering the rate of growth of the area (2-Lebesgue measure) of the
ε-neighborhood of an orbit of the field itself, as ε → 0, which would be more natural in search
of cyclicity of a limit periodic set, it is sufficient to consider the rate of growth of the length of the
ε-neighborhood of an orbit of its Poincaré map.

Let Γ be the stable limit periodic set for the analytic unfolding Xλ . We consider only the unfold-
ings of finite codimension such that the family of Poincaré maps gλ(x), x ∈ [0,d), for the unfolding is
well defined and different from identity on the transversal to vector field Xλ in neighborhood of Γ .

Let us recall that the function fλ = id − gλ is called the displacement function. The main idea is to
find the family of Chebyshev scales Iλ such that the family fλ has a uniform development of some
order in the family Iλ , as was introduced in Section 2. Suppose Γ is a limit periodic set of Xλ0 , for
the parameter value λ = λ0. Then, by Theorem 3, the critical Minkowski order of gλ0 with respect to
the scale Iλ0 , m(gλ0 , Iλ0 ), is an upper bound on cyclicity of Γ in the unfolding Xλ .

In the sequel, limit periodic sets are stable limit cycles, nondegenerate stable focus points and
stable homoclinic loops. The family of displacement functions fλ for the unfolding has a uniform
asymptotic development in a family of appropriate Chebyshev scales and is analytic in x = 0 in first
two cases (differentiable cases) and non-differentiable in x = 0 in the case of homoclinic loop.
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4.1.1. Differentiable case, limit cycle
Suppose that Xλ0 has a stable or semistable limit cycle Γ and let Xλ be an arbitrary analytic

unfolding of Xλ0 .
There exists neighborhood W of λ0 such that the displacement function fλ is analytic on [0,d),

for λ ∈ W , and fλ0 (0) = 0. Expanding fλ(x) in Taylor series, we get

fλ(x) = α0(λ) + α1(λ)x + α2(λ)x2 + α3(λ)x3 + · · · , λ ∈ W . (42)

The family fλ has a uniform asymptotic development in the Chebyshev scale

I = {
1, x, x2, . . . , x


}
,

of any order 
 ∈N.
By Theorem 2, the length of the ε-neighborhood of an orbit of the Poincaré map around the limit

cycle should be compared to the inverted scale, {ε, ε1/2, ε1/3, . . .}, to obtain an upper bound on the
cyclicity. Let G = {gλ = id − fλ} be the family of Poincaré maps. By Theorem 3, if fλ0 	 xk , for some
2 � k � 
, then |Aε| 	 ε1/k and the critical Minkowski order of gλ0 with respect to Iλ0 is equal to k,

m(gλ0 ,Iλ0 ) = k. The cyclicity of the limit cycle in the unfolding Xλ is equal to μ
fix
0 (gλ0 ,G) � k. If

moreover the unfolding (Xλ) is general enough so that the regularity condition from Theorem 3 is
satisfied, then the cyclicity μ

fix
0 (gλ0 ,G) = k.

4.1.2. Differentiable case, weak focus
Suppose x0 is a stable weak focus of Xλ0 (that is, D Xλ0 (x0) has two conjugate complex eigenvalues

without the real part). Suppose Xλ is an arbitrary analytic unfolding of Xλ0 .
There exists neighborhood W of λ0 such that, for λ ∈ W , the displacement function fλ(x) is an-

alytic in 0 and fλ(0) = 0. Therefore we can expand fλ in Taylor series around 0 and, by symmetry
argument around focus point, we get that the leading monomials can only be the ones with odd
exponents:

fλ(x) = β1(λ)
(
x + g1(λ, x)

) + β3(λ)
(
x3 + g3(λ, x)

) + β5(λ)
(
x5 + g5(λ, x)

) + · · · , (43)

where gi(λ, x) denotes some linear combination of monomials from Taylor expansion of order strictly
greater than xi and with coefficients depending on λ.

The family of displacement functions fλ has a uniform asymptotic development in a family of
Chebyshev scales Iλ of some order:

Iλ = {
x + g1(λ, x), x3 + g3(λ, x), x5 + g5(λ, x), . . . , x2
+1 + g2
+1(λ, x)

}
.

To obtain an upper bound on the cyclicity of the focus, by Theorem 3, the length of the
ε-neighborhood of the discrete orbit of the Poincaré map around the origin should be compared
to the inverted scale {ε, ε1/3, ε1/5, . . .} of Iλ0 . We proceed as in the example above.

4.1.3. Non-differentiable case, homoclinic loop
Suppose Xλ0 has a stable homoclinic loop with the hyperbolic saddle point at the origin, with

0x as unstable and 0y as stable manifold, and such that the ratio of hyperbolicity of the saddle is
r(λ0) = 1 (i.e. D Xλ0(0) has eigenvalues of the same absolute value, but of different sign). Suppose Xλ

is an analytic unfolding of Xλ0 and that, for λ ∈ W , each Xλ has a hyperbolic saddle of ratio r(λ) at
the origin, with the same stable and unstable manifolds.

We consider the family of Poincaré maps G = gλ and the family of displacement functions fλ =
id− gλ , x ∈ (0, δ), on a transversal to stable manifold near the origin, as in Chapter 5 in Roussarie [15].
The family cannot be extended analytically to x = 0 due to nondifferentiability in x = 0 and the
following asymptotic expansion in x = 0 holds instead (see [15, Section 5.2.2]):
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fλ(x) = β0(λ) + α1(λ)
[
xω

(
x,α1(λ)

) + g1(x, λ)
]

+ β1(λ)x + α2(λ)
[
x2ω

(
x,α1(λ)

) + g2(x, λ)
] + β2(λ)x2 + · · ·

+ βn(λ)x + αn(λ)
[
xnω

(
x,α1(λ)

) + gn(x, λ)
] + βn(λ)xn + o

(
xn), n ∈ N, (44)

where α1(λ) = 1 − r(λ), gi(x, λ) denotes linear combination in the monomials of the type xkωl of
strictly greater order than xiω (order on monomials is defined by increasing flatness, xiω j < xkωl if
(i < k) or (i = k and j > l)) and

ω(x,α) =
{

x−α−1
α , if α �= 0,

− log x, if α = 0.

The family of displacement functions fλ has obviously a uniform asymptotic development in the
following family of Chebyshev scales Iλ of some order:

Iλ = {
1, xω

(
x,α1(λ)

) + g1(x, λ), x, x2ω
(
x,α1(λ)

) + g2(x, λ), x2, . . .
}
.

If we take λ = λ0 in (44), we get the following expansion for Xλ0 (α1(λ0) = 0, fλ0 (0) = 0):

fλ0(x) = β1(λ0)x + α2(λ0)x2ω(x,0) + α3(λ0)x3ω(x,0) + · · ·
= β1(λ0)x + α2(λ0)x2(− log x) + α3(λ0)x3(− log x) + · · · . (45)

The length of the ε-neighborhood should be compared to the inverted scale of Iλ0 to obtain
information on cyclicity. The critical Minkowski order signals the moment the comparability oc-
curs. By Theorem 3, if fλ0 (x) 	 xk , as x → 0, k � 2, then the critical Minkowski order is equal
to 2k, m(gλ0 ,Iλ0 ) = 2k; if fλ0 	 xk(− log x), k � 2, then the critical order is equal to 2k − 1,
m(gλ0 ,Iλ0 ) = 2k − 1. Consequently, the cyclicity of the loop is less than or equal to 2k, 2k − 1 re-
spectively. Equality can be obtained if the unfolding (Xλ) is general enough so that the regularity
condition from Theorem 3 is satisfied.

4.1.4. Non-differentiable case, Hamiltonian hyperbolic 2-cycle with constant hyperbolicity ratios
Suppose (Xλ) is an unfolding of a Hamiltonian hyperbolic 2-cycle of the field Xλ0 in which at least

one separatrix remains unbroken. Such a situation appears for polycycles having part of the line at
infinity as the unbroken separatrix. Suppose that the ratios of hyperbolicity of both saddles S1 and
S2 at λ = λ0 are r1(λ0) = r2(λ0) = 1. The breaking parameter of the breaking separatrix is denoted
by β1(λ) (β1(λ0) = 0). By x ∈ (0, δ) we parametrize the (inner side) of the transversal to the stable
manifold of one of the saddles, and we choose the saddle whose stable manifold is on the unbroken
separatrix, say S1. In search of cyclicity, instead of considering fixed points of Poincaré maps fλ on
(0, δ), for simplicity we can consider zero points on (0, δ) of the family of maps

λ(x) = Dλ
2 ◦ Rλ

2(x) − Rλ
1 ◦ Dλ

1(x),

where D1 and D2 represent Dulac maps of the saddle S1, R1 is the regular map along the bro-
ken separatrix and R2 the regular map along the unbroken separatrix. Obviously, Rλ

1(0) equals the
breaking parameter of the separatrix, β1(λ), and Rλ

2(0) = 0, on the unbroken separatrix. Using the
developments of Dulac maps from [15], just like in the above example of the saddle loop, λ has the
uniform development in the monomials from the two Chebyshev scales, I1

λ and I2
λ below, since the

developments for Dλ
2 ◦ Rλ

2(x) and Rλ
1 ◦ Dλ

2(x) are subtracted:
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I1
λ = {

1, xω1
(
x,α1(λ)

)
, x, x2ω2

1

(
x,α1(λ)

)
, x2ω1

(
x,α1(λ)

)
, x2,

x3ω3
1

(
x,α1(λ)

)
, x3ω2

1

(
x,α1(λ)

)
, x3ω1

(
x,α1(λ)

)
, x3, . . .

}
,

I2
λ = {

1, xω2
(
x,α2(λ)

)
, x, x2ω2

2

(
x,α2(λ)

)
, x2ω2

(
x,α2(λ)

)
, x2,

x3ω3
2

(
x,α2(λ)

)
, x3ω2

2

(
x,α2(λ)

)
, x3ω2

(
x,α2(λ)

)
, x3, . . .

}
.

For the development, see e.g. [2]. For each monomial xkωl
i , k � 1, l � 0, it necessarily holds that k � l,

α1(λ) = 1 − r1(λ), α2(λ) = 1 − r2(λ), and ω1 and ω2 are as defined in the section above. They are
known as independent compensators, since they are not comparable by flatness, and thus disable the
concatenation of I1

λ and I2
λ in one Chebyshev scale.

If we additionally suppose that the ratios of hyperbolicity r1(λ0) and r2(λ0) are preserved through-
out the unfolding, then we have

ω1
(
x,α1(λ)

) = ω2
(
x,α2(λ)

) = − log x, for all λ.

In this case the Chebyshev scale in which all of λ from the unfolding (Xλ) have the uniform devel-
opment is

I = {
1, x, x2(− log x)2, x2(− log x), x2, x3(− log x)3, x3(− log x)2, x3(− log x), x3, . . .

}
.

To see the number of limit cycles that can arise in the unfolding of the hyperbolic 2-cycle in Xλ0 ,
by Theorem 3, the length of ε-neighborhood of the discrete orbit of λ0 (x) should be computed
numerically and compared to the inverted scale of I . The index i for which |Aε| 	 u−1

i (ε) holds, in
the article called critical Minkowski order m(λ0 ,I), represents an upper bound on the number of
limit cycles that can appear in the unfolding (Xλ) of Xλ0 .

Let us note here that this upper bound is not necessarily optimal, since the scale I is taken to
be the largest possible for a given problem. Better results on upper bound are obtained in [4], using
asymptotic developments of Abelian integrals, and in [8]. In [8], the upper bound is given in terms of
characteristic numbers of holonomy maps, not using asymptotic development of the Poincaré map.

4.2. Abelian integrals

Abelian integrals on 1-cycles are integrals of polynomial 1-form ω along the continuous family of
cycles of the polynomial Hamiltonian field, lying in the level sets of the Hamiltonian H , δt ⊂ {H = t},

Iω(t) =
∫
δt

ω.

Suppose that the value t = 0 is a critical value for the Hamiltonian field in R
2, such that there

exists d > 0 and a continuous family of cycles belonging to the level sets {H = t}, t ∈ (0,d). Then we
have the following asymptotic expansion at t = 0 (see Arnold [1, Ch. 10, Theorem 3.12] and Zoladek
[17, Ch. 5]):

Iω(t) =
∑
α

1∑
k=0

ak,α(ω)tα(− log t)k, (46)

where α runs over an increasing sequence of nonnegative rational numbers depending only on Hamil-
tonian H(x, y) (such that e2π iα are eigenvalues of monodromy operator of the singular value) and
ak,α ∈ R.
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Obviously, the corresponding Chebyshev scale for this problem is:

I = {
tα1(− log t), tα1 , tα2(− log t), tα2 , . . . , tαm (− log t), tαm , . . .

}
. (47)

It makes sense to compute critical Minkowski order of the orbit S g(x0), comparing the length of
ε-neighborhood of g(t) = t − Iω0 (t) with the inverted scale of I , to obtain the multiplicity of an
Abelian integral in a family of integrals.

In R
2, Abelian integrals have been used as a tool for determining cyclicity of vector fields, con-

sidering them as perturbation of Hamiltonian field (for details and examples see e.g. Zoladek [17,
Ch. 6]).

Suppose we have the following η-perturbed Hamiltonian system,

ẋ = ∂ H

∂ y
+ ηP (x, y, η),

ẏ = −∂ H

∂x
+ ηQ (x, y, η), (48)

where P , Q , H are polynomials and η > 0.
Let ω = Q dx − P dy be the polynomial 1-form defined by P , Q .

Let t = 0 be a critical value of Hamiltonian, and let S be a transversal to the family of cycles
(δt ⊂ {H = t}) on small neighborhood of t = 0, parametrized by t ∈ [0,d). Then (see e.g. Zoladek [17,
Ch. 6]) the displacement function on S of the perturbed Hamiltonian field is given by

fη(t) = ηIω(t) + o(η), (49)

i.e., Abelian integral is the first approximation of the displacement function, for η small enough. Here
we suppose that Iω(t) is not identically equal to zero, i.e. that ω is not relatively exact.

On some segment [α,β] ⊂ (0,d) away from critical value t = 0, it is known that the number of
zeros of Abelian integral gives an upper bound on the number of zeros of the displacement function
fη(t) on [α,β] of the perturbed system (48), for η small enough (both counted with multiplicities),
i.e. on the number of limit cycles born in perturbed system (48) in the area

⋃
t∈[α,β] δt , for η < η0

small enough (for this result, see e.g. [3, Theorem 2.1.4]).
However, the problem arises if we approach the critical value t = 0 and the result cannot be ap-

plied to the whole interval [0,d). In some systems, some limit cycles visible as zeros of displacement
function are not visible as zeros of corresponding Abelian integral, because sometimes the approxi-
mation (49) is not good enough. One of the examples is the perturbation of the Hamiltonian field in
the neighborhood of the saddle polycycle with 2 or more vertices, see Dumortier and Roussarie [4].
Abelian integrals near hyperbolic polycycles have an expansion linear in log t , see expansion (46) or
[4, Proposition 1]. On the other hand, see Roussarie [15], the asymptotic expansion of the displace-
ment function near the saddle polycycle with more than one vertex involves also powers of log t
greater than 1.

In the neighborhood of the center singular point and of the saddle loop (1-saddle polycycle) of the
Hamiltonian field, however, the multiplicity of corresponding Abelian integral gives correct informa-
tion about cyclicity, see e.g. Dumortier and Roussarie [4, Theorem 4].

4.3. One example out of scope of Theorem 3

At the very end, let us note that in the former examples we have used critical Minkowski order
which reveals the rate of growth of ε-neighborhood of the orbit generated by Poincaré map around
limit periodic set to conclude about the cyclicity of the set. The connection is given by Theorem 3
through the notion of multiplicity of the fixed point zero which is equal to cyclicity.
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From the assumptions of Theorem 3 it is visible that the theorem cannot be applied to displace-
ment functions which are infinitely flat and therefore not comparable to powers (see the paragraph
after Definition 4). We have noticed that this restriction of Theorem 3 to functions that are not in-
finitely flat makes sense in applications. As an example, we can take the accumulation of limit cycles
on the saddle-node polycycle, a case which obviously should not meet the conditions of Theorem 3
because multiplicity and cyclicity should not turn out finite. It is interesting that in this case the dis-
placement function is infinitely flat, and therefore excluded from Theorem 3. Perhaps this could be
the subject of further research.

We state here the result from Il’yashenko [10]: If a sequence of limit cycles of an analytic vector
field converges to a polycycle with saddle-node singular points, then one can select a semitransversal
to this polycycle such that the displacement function is not equal to zero, but infinitely flat, for e.g.

f (x) 	 e− 1
x . If we have a polycycle with only saddle singular points, then the displacement function

cannot be infinitely flat.
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Appendix A

In this appendix we put some observations concerning main results.

Remark 4 (Sublinearity in Theorem 2). The condition m > 1 in the lower power condition in Theorem 2
cannot be weakened. If we take, for example, the function

f (x) = x

− log x
,

it obviously satisfies all assumptions of Theorem 2, except sublinearity: the lower power condition
holds only for m � 1. If we compute |Aε(S g(x0))| for this function (as it is computed in the proof
of Theorem 2 in Section 3), we get that |Aε(S g (x0))|

f −1(ε)
tends to infinity, as ε → 0, and therefore the

conclusion (17) is not true.
On the other hand, for functions of the form

f (x) = x1+α

− log x
, α > 0,

which are obviously sublinear with m = 1+α > 1, the explicit computation shows that |Aε(S g(x0))| 	
f −1(ε), as ε → 0.

Remark 5 (Upper power condition in Theorem 3). The upper power condition on f is needed in Theo-
rem 3, for the if implication to hold, see Lemma 2i). As a counterexample, we can take the following
Chebyshev scale

I = {
e− 1

x , e− 1
2x , e− 1

3x , . . .
}
,

and, f (x) = e− 1
3x , g = id − f , which does not satisfy upper power condition.

Obviously, D0( f )(0) = D1( f )(0) = 0 and D2( f )(0) > 0, so the multiplicity μ0(g,G) � 2. On the
other side, u−1

1 (ε) 	 u−1
2 (ε) 	 u−1

3 (ε) 	 · · · 	 1
− logε , therefore the critical Minkowski order m(g,G)

is infinite. In this case, we are not able to read the multiplicity neither from the critical Minkowski
order nor from behavior of the length of the ε-neighborhood.
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Fig. 2. Function g(x) = log f (x) from Example 3.

Example 3 (Non-flat function, not weakly comparable to powers). We construct a non-infinitely flat func-
tion f that does not satisfy x(log f )′(x) � M for any M > 0, just to show that, for functions of interest,
non-flatness is not equivalent to weak comparability to powers.

The main idea is to bound the function from above and from below with xα+1 and xα , α > 1,
therefore it cannot be infinitely flat.

Next we need to make sure that on some intervals approaching zero its logarithmic growth is
faster than the logarithmic growth of xα .

We construct the function f in logarithmic chart, i.e. we construct function g(x) = log f (x) on
some segment (0,d).

Let h1(x) = log(xα) = α log x and let h2(x) = log(xα+1) = (α + 1) log x. Let us take x1 close to
x = 0. The segment I1 connects the points (x1,h1(x1)) and (x1/2,h2(x1/2)). Now we choose point
x2 such that h1(x2) < h2(x1/2) (to ensure that f is increasing). We get segment I2 by connecting
(x1/2,h2(x1/2)) and (x2,h1(x2)). We repeat the procedure with x2 instead of x1 to get segments
I3 and I4 and, inductively, we get the sequence (xn) tending to 0, as n → ∞, and the sequence of
segments (In) which are becoming perpendicular very quickly, see Fig. 2.

The graph of our function g will be the union of the segments
⋃∞

n=1 In , smoothened on edges.
Obviously f (x) = eg(x) is bounded by xα+1 and xα . Nevertheless, if we take the sequence (yn) such
that xn/2 < yn < xn , we compute

g′(yn) · yn = m log xn − (m + 1) log xn
2

xn/2
· yn 	 − log xn, as n → ∞,

and, thus, for the sequence (yn) tending to 0 it holds g′(yn)yn → ∞, as n → ∞, a contradiction to
xg′(x) � M .
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