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Abstract 

This paper presents the set-up and application of the Bartlett-Lewis clustering mechanism to simulate residential 
water demand at fine, i.e. sub-hourly, time scales. Two different variants of the model, i.e., the original and the 
random-parameter model, are examined. The models are assessed in terms of preserving the main statistical 
characteristics and temporal properties of demand series at a range of fine time scales, i.e., from 1-min up to 15-min. 
The comparison against the typical Poisson rectangular pulse model showed that clustering mechanism enables a 
better reproduction of demand characteristics at levels of aggregation other than those used in the fitting procedure.       
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1. Introduction 

The high temporal and spatial variability of water demand poses extra difficulties in the efficient planning and 
management of water distribution and sewerage systems [1,2]. To cope with this uncertainty stochastic simulation 
techniques are usually employed to generate a large number of possible realizations of demand events across a wide 
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range of time and spatial scales, from minute to days and from the household to the DMA. Recently, the rising 
deployment of smart metering technologies, by providing high resolution data from households, enables the 
implementation of a “bottom-up” approach [3] that allow the demand series at higher temporal and spatial scales to 
be obtained by aggregating the demands from individual users. In this context, a special focus is given to the 
development of models that reproduce the statistical properties and the stochastic structure of water demand at 
individual user level. In this paper our focus is on fine time scales (i.e., sub-hourly) which are the temporal 
resolution of interest in water quality modelling of the peripheral parts of a network. In these parts the qualitative 
characteristics of water and the flows in the pipes are directly affected by the high variability of residential water 
demand [1,4].    

At fine time scales, the stochastic modelling of residential water demand has been studied with the use of the 
Poisson [5–10] and Poisson-cluster processes [11–13]. The main representative of the first category is the Poisson 
rectangular pulse (PRP) model [6]. It represents the demand mechanism via rectangular pulses that occur in 
continuous time according to the Poisson point process. Each rectangular pulse is associated with a random duration 
and intensity that follow specific probability distributions. In the initial formulation of the model, pulse durations 
and intensities are assumed mutually independent variables and independent of the arrival process. Recently, a 
model variant that introduces correlation between the intensity and duration was proposed by Creaco et al. [10].  

In the Poisson-cluster processes, the events are formulated via clustered rectangular pulses. In this case, two 
different Poisson processes are used to specify the time origins of clusters and the origins of pulses within clusters, 
respectively. Rodriguez-Iturbe et al. [14,15] first studied two alternative types of clustering, the Bartlett-Lewis and 
Neyman-Scott process, after observing the weakness of simple PRP-type models to reproduce the statistical 
characteristics of rainfall at multiple time scales. The main difference between the Bartlett-Lewis and Neyman-Scott 
mechanism lies in the way that pulse origins are distributed within a cluster. Transferring the clustering concept into 
demand modelling, the assumption of representing the consumption events through sequences of pulses, rather via 
individual pulses, seems more consistent with the actual demand mechanism, i.e., sequences of different water use 
activities are performed sequentially or simultaneously in the house [11]. Alvisi et al. [11] first examined the 
applicability of the original Neyman-Scott rectangular pulse (NSRP) model to simulate the total water demand at 
different fine time scales (i.e, from 1-min up to 15-min) of a small group of households. The Neyman-Scott model 
was later used by Alcocer-Yamanaka et al. [13,16]. On the contrary, the Bartlett-Lewis clustering process has never 
been studied for the residential demand modelling. Furthermore, a direct comparison between the Poisson and the 
Poisson-cluster models is not available in the literature.  

This study presents the set-up and application of the Bartlett-Lewis rectangular pulse model to simulate the water 
demand of a single-household, as it is recorded via the smart meter. Specifically, two different variants of the model, 
i.e., the original and the random parameter model, are examined. To fully evaluate the clustering mechanism against 
individual pulse processes, the Bartlett-Lewis models were compared to the original PRP model with independent 
pulse intensities and durations. The assessment of the models was conducted in terms of preserving the main 
statistical characteristics and temporal properties of a demand series from a household in Athens, at a range of fine 
time scale, varying from 1-min up to 15-min.  

2. Model description  

2.1. The Poisson rectangular pulse model 

The Poisson Rectangular Pulse model was initially proposed to simulate rainfall events [14], while the model 
used later in the modelling of water demand [6]. In the PRP model, event origins occur according to a Poisson 
process with rate λ. Each pulse i has a random intensity xi and a random duration wi that follow a specific probability 
distribution. Different probability distributions have been used to describe pulse characteristics depending on what is 
best fitted to the observed data. Regarding pulse intensity, the two-parameter Weibull distribution was assumed by 
Garcia et al. [8], while the normal [7], log-normal [17] or exponential [1,12] distributions have been also used. The 
exponential distribution has been mainly used for pulse duration [1,7,8,12] while log-normal distribution seems also 
valid [9,17].                    
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The PRP model parameters can be obtained directly from individual pulse characteristics in the case that 
instantaneous demand measurements (i.e., 1-sec time step) are available. This process has been followed in most 
applications of the model in water demand modelling. However, such data is available only at a small number of 
pilot households, while the typical lower time resolution of commercially available smart metering devices is the 1 
minute, and subsequently, the decomposition of total demand into equivalent pulses is not possible. In that case, 
model fitting is based on the theoretical equations of the model that relates the statistical properties of the discrete 
process to model parameters [7].  

Recently, a new variant of the PRP model parameter that captures the positive correlation observed between 
water use intensity and duration was proposed by Creaco et al. [10]. More specifically, in the modified model, 
hereinafter notated as PRPX, pulse intensities and durations are distributed according to a bivariate log-normal 
distribution with their marginal distribution being also the log-normal. The PRPX model was further generalised to 
establish correlation in the case that other distributions are assumed for the two variables [9]. The analysis showed 
that PRPX outperforms the original model with respect to the daily demand volumes. PRPX can be fitted directly on 
the pulse series, while more recently a new parameterization approach was developed in the case that coarser meter 
readings are available [18].             

2.2. The Bartlett-Lewis rectangular pulse models 

The basic assumptions of the Bartlett-Lewis clustering mechanism [14], as shown in Fig. 1, are: (a) water 
consumption events occur according to a Poisson process with rate λ and each event is associated with a random 
number of pulses; (b) within each event, pulse origins tij occur from a second Poisson process with rate β; (c) within 
each event, the generation of pulses terminates after a time span vi that follows the exponential distribution with rate 
γ; (d) each pulse has a duration wij that follows the exponential distribution with rate η; and (e) an intensity xij that, in 
the simplest case, follows the exponential distribution with mean μX. Model’s structure implies that the number of 
pulses per consumption event has a geometric distribution of mean μc = 1 + β/γ. The model allows both for event 
and pulse overlapping, while the total consumption intensity, Y(t), at every instant t, is obtained by summing all 
active pulses at time t. 

 
 
 
 
 

 

 

 

 

Fig. 1. Schematic representation of the Bartlett-Lewis clustering mechanism. Filled circles denote the origins of consumption events while 
open circles denotes pulse arrivals. 

The basic version of the model, hereinafter referred to as the Rectangular Pulse Bartlett-Lewis (RPBL) model, 
has 5 constant independent parameters: {λ, β, γ, η, μX}. This implies that all consumption events are structured by 
pulses whose characteristics are sampled from the same statistical population.  

However, this hypothesis is not in full compliance with the actual demand mechanism where a consumption 
event may consist of short duration pulses (e.g., hand washing, cooking, dishwashing) or longer pulses (e.g., 
washing machine or bathing) or a combination of them. Such a variation between different consumption events is 
implied by the Random Parameter Bartlett-Lewis (BLRPR) model that assumes that parameter η of pulse duration 
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varies randomly among events according to the gamma distribution with a shape parameter α and a rate parameter v 
[15]. The parameterization of the BLRPR model assumes also that the pulse origin rate β and the event duration rate 
γ are also randomly varied parameters so that the ratios  and  are kept constant across the process. 
Subsequently, in the BLRPR model, parameters β and γ are also random variables following gamma distribution 
with common shape parameter α and rate parameters ν/κ and v/φ, accordingly. The BLRPR model has 6 independent 
parameters: {λ, α, v, κ, φ, μX}. The number of model parameters is increased by assuming longer-tailed distributions, 
such as gamma, Weibull or Pareto, for cell intensity variable [19].  

The statistical properties, i.e., mean, variance, covariance, and probability of zero demand, of the RPBL and 
BLRPR processes in discrete time are given via analytical equations as a function of the model parameters [14,15].  
The estimation of model parameters is conducted usually via the method of moments by equating theoretical 
moments with the observed statistics.   

3. Application 

3.1. Case study and parameter estimation 

In the present paper, the performance of the Bartlett-Lewis and Poisson models was assessed using a time-series 
of total water consumption, with 1-min temporal resolution, from a single household in Athens, Greece. The data 
was drawn via the smart metering equipment installed at October 2014 under the framework of the iWIDGET 
project [20], and cover a period of 30 days during February-March 2015. The same dataset has been used also by 
Creaco et al. [18] and it was chosen due to the quality of data (i.e., small number of missing data) and the regular 
consumption of water.          

As the time resolution of measurements does not allow fitting the models directly upon pulse characteristics, the 
analytical expressions of the first- and second-order moments and the probability of zero demand of the models 
were utilized. The parameter estimation for the PRP, RPBL and BLRPR models was conducted with the use of 
“MOMFIT” package [21], developed in R, that implements the generalized method of moments within a two-step 
optimization framework [22]. The form of the objective function Z used in this study is: 

 
  
   (1) 
 
 

where Fi(X) is the model expression for statistic i, X is the parameter vector, Fi’ the observed statistic i, Wi the 
weight assigned to statistic i and N is the total number of statistics used in parameter estimation. It is well known 
that parameter estimation process is highly sensitive to the combination of moments used in Eq. (1), resulting in 
equally good parameter sets in terms of minimum value of objective function [23]. However, a more comprehensive 
assessment of the overall performance of the model can be obtained by studying also the statistics that are not 
included in the fitting procedure.  

Regarding the choice of moments included in fitting procedure, the preliminary analysis showed that the use of 
statistics in Eq. (1) from only one aggregation level results in good fitting at this level, but not in adequate model 
performance at other time scales. On the other hand, by using statistics from finer (e.g., 1-min) and coarser (e.g., 15-
min) levels, the reproduction of process at a wider range of time scales can be achieved. The statistical 
characteristics that were used to estimate the parameters of PRP, RPBL and BLRPR models are given in Table 1, 
while in all optimizations the weight vector was set equal to 1. The optimization routine requires the lower and 
upper bounds for each parameter. The identification of the bounds, shown in Table 2, was conducted through a 
preliminary analysis along with values proposed in the literature [7,11] as reasonable for the various water uses. In 
the case of the BLRPR model, parameters κ, φ, α and ν do not have a direct link to the actual demand mechanism. 
To define the feasible search space of the parameters the temporal properties of the process were used, i.e., the mean 
duration of water use activity, E(γ) = ν/((α-1)φ), the mean pulse inter-arrival time, E(β) = ν/((α-1)κ), and the mean 
pulse duration, E(η) = α/ν.            
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Table 1. Statistics used for models’ fitting per level of aggregation 

Model Mean Coef. of Variation Lag-1 Autocorrelation Probability of zero demand 

PRP 1-min 1-min, 5-min 1-min, 5-min - 

BLRP 1-min 1-min, 5-min 1-min, 5-min - 

BLRPR 1-min 1-min, 5-min 1-min, 5-min 1-min, 5-min 

Table 2. Upper and lower bounds for models’ fitting 

PRP BLRP BLRPR 

Parameters Lower Upper Parameters Lower Upper Parameters Lower Upper 

λ-1 (min) 5 200 λ-1 (min) 5 1000 λ-1 (min) 5 1000 

η-1 (min) 0.1 10 η-1 (min) 0.01 5 ν (min) 0.00001 2500 

μX (L/min) 0.5 8 μX (L/min) 0.5 8 μX (L/min) 0.5 8 

   β-1 (min) 0.016 20 α (-) 1.00001 500 

   γ-1 (min) 1 30 κ (-) 0.001 315 

   μc (no of pulses) 1.5 62.5 φ (-) 0.00033 5 

3.2. Results 

The Poisson and the Bartlett-Lewis models were assessed in terms of preserving certain statistical characteristics 
of water demand at different time scales, varying from 1-min up to 15-min. To take into consideration the variability 
that demand characteristics exhibit within the day, the analysis was conducted by dividing the day in 12 two-hour 
intervals, following the approach of Alvisi et al. [11]. To this end, models’ parameters were estimated, assuming that 
the process is stationary within each of the time intervals, while all parameters were left free to vary among different 
time intervals. 

The estimated parameters are not provided in detail in this paper due to the lack of space. In general, all models 
exhibit different behaviour between the time intervals of higher (i.e., morning, afternoon and evening) and lower 
consumption (i.e., night hours). The optimized parameters are similar within these distinct periods. In the higher-
consumption cases, the pulses occur with higher frequency, having greater mean intensity and duration than in the 
case of night (low consumption) hours. By comparing the parameters of the PRP model with those of the Bartlett-
Lewis model, we can infer that during the periods of higher consumption, the former generates pulses with longer 
duration (e.g., 3.5 min) while the latter consist of pulses that occur more frequently but have shorter duration (e.g., 1 
min).            

The results of the present analysis are shown graphically in  
Fig. 2 through Fig. 5. Each graph displays a specific statistical property for the 12 time intervals, at time scales of 

1, 5, 10 and 15 minutes. Further to the statistics of the observed data, the statistics of the PRP, RPBL and BLRPR 
models are those obtained from theoretical equations with the use of the optimised parameters.  

In  
Fig. 2 and Fig. 3 we can see that all models reproduce the mean water demand exactly at all aggregation levels 

and perform well with respect to the variance. It is worth remembering that these two properties were included in the 
fitting of the three models. Regarding the lag-1 autocorrelation coefficient (Fig. 4), a very good fit was achieved 
with the two Bartlett-Lewis models, especially for the time scales of 1-min and 5-min, as well as the intermediate 
scales, i.e., 2-min, 3-min (not shown in this paper). The PRP model reproduces well that property at the 1-min time 
scale, producing, however, an autocorrelation structure that decays much faster as the level of aggregation increases. 
Furthermore, the analysis also showed that the Bartlett-Lewis mechanism, compared to the Poisson model, matches 
much better the autocorrelation structure of observed data for higher lag values. Finally, we examine the 
performance of the models in reproducing the probability of zero demand. As it was discussed in section 3.1, the 
probability of zero demand was used as fitting property only in the case of the BLRPR model, while its application 
to the fitting of the PRP and BLRP models not only does not improve the preservation of this property but also leads 
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to the deterioration of models’ performance upon rest statistics. As it is shown in Fig. 5, the BLRPR model 
outperforms the other models, enabling a better representation of the probability of zero demand, across all-time 
scales. This behaviour can be attributed to its structure that allows the generation of water events consisting of 
pulses with different characteristics. On the contrary, the RPBL model tends to overestimate that characteristic, 
especially in the periods of higher consumption where different water uses are performed at the same time. The PRP 
model also exhibit good performance, especially at the fine time scales.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Comparison of historical and modelled mean for each time interval and aggregation level 
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Fig. 3. Comparison of historical and modelled variance for each time interval and aggregation level 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Fig. 4. Comparison of historical and modelled Lag-1 autocorrelation coefficient for each time interval and aggregation level 
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Fig. 5. Comparison of historical and modelled probability of zero demand for each time interval and aggregation level 

4. Conclusions and future research 

This paper examines the applicability of the Bartlett-Lewis clustering mechanism in simulating residential water 
demand at fine time scales. Two variants of this mechanism, the original and the random model, were assessed on 
the basis of preserving certain statistical characteristics and the temporal properties of demand at different time 
scales, varying the time step from 1-min up to 15-min. The models were compared against the widely used Poisson 
rectangular pulse model with independent pulse intensity-duration. The analysis was based on 1-min water demand 
data collected during the iWIDGET project and showed that all models perform well with respect to the mean and 
variance of water demand across time scales. Additionally, the clustering mechanism provides the flexibility of 
better preserving the autocorrelation structure and the probability of zero demand at time scales that are not directly 
involved in model fitting.     

This paper is part of a wider study and presents some initial findings of the application of the Poisson and 
Poisson-cluster models to estimate model parameters in the case that only aggregated data from smart meters is 
available. Ongoing research is focused on a series of challenging issues such as the application of such models to 
simulate water demand of a small group of households, the performance of the models at higher temporal, i.e., daily 
or hourly water peaks and volumes, and spatial aggregation levels, i.e., large group of households. Further to that 
and in the case of Bartlett-Lewis models, the use of other probability distributions for pulse intensity and duration 
should be also considered. Finally, the use of recently developed variants of the Bartlett-Lewis mechanism to 
simulate residential water demand is under investigation.         
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