

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Finite *p*-groups and *k*((*t*))

Anthony J. Bevelacqua^{a,*}, Mark Motley^b

^a Department of Mathematics, University of North Dakota, Grand Forks, ND 58202, United States ^b Glen Burnie, MD, United States

ARTICLE INFO

Article history: Received 13 February 2009 Available online 19 August 2011 Communicated by Aner Shalev

Keywords: p-Groups Laurent series

ABSTRACT

Let *k* be a field of characteristic p > 0 and let K = k((t)) be the field of Laurent series over *k*. For each group *G* of order p^n there exist units $u \in k[[t]]$ such that $K/k((ut^{p^n}))$ is Galois with $Gal(K/k((ut^{p^n}))) \cong G$. We explore the connections between *G* and *u*. Among other results, we prove that if both $K/k((u_1t^{p^n}))$ and $K/k((u_2t^{p^n}))$ are Galois and u_1 and u_2 are sufficiently close in the *t*-adic topology, then $Gal(K/k((u_1t^{p^n}))) \cong Gal(K/k((u_2t^{p^n})))$. © 2011 Elsevier Inc, All rights reserved.

1. Introduction

Let *k* be a field of characteristic $p \ge 0$ and let K = k((t)) be the field of Laurent series over *k*. Let v_t (or even just v) be the *t*-adic valuation on K/k. Set $\mathcal{U} = k[[t]]^{\times}$ and $\mathcal{A} = \operatorname{Aut}(K/k)$. We will show that if $L \subseteq K$ is a subfield with K/L a finite Galois extension, then either *G* is cyclic when p = 0 or $G = \operatorname{Gal}(K/L)$ is an extension of a *p*-group by a cyclic group with order prime to *p* when p > 0. Given this, it is natural to try to investigate the situation when p > 0 and $\operatorname{Gal}(K/L)$ is a finite *p*-group.

Let *G* be a finite *p*-group of order p^n . Then for any field *k* of characteristic p > 0 there exists a totally ramified Galois extension E/K with $Gal(E/K) \cong G$. Since *E* is complete with respect to the unique extension of *v* to *E*, E = k((s)) for some $s \in E$ by the structure theory of such fields. Now *K* and *E* are analytically isomorphic so there exists $L = k((ut^{p^n})) \subseteq K$ such that K/L is Galois of degree p^n with $G \cong Gal(K/L)$. We want to understand how information about $G = Gal(K/k((ut^{p^n})))$ can be determined from *u*. We will show, among other things, that if $L_1 = k((u_1t^{p^n}))$ and $L_2 = k((u_2t^{p^n}))$ are subfields of *K* such that K/L_1 and K/L_2 are Galois then there exists an integer *N* (depending on u_1) so that if $v(u_1 - u_2) > N$ then $Gal(K/L_1) \cong Gal(K/L_2)$.

* Corresponding author.

0021-8693/\$ – see front matter $\,\,\odot$ 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2011.08.002

E-mail addresses: anthony.bevelacqua@email.und.edu (A.J. Bevelacqua), mmotley@ms.uky.edu (M. Motley).

2. Structure of $\operatorname{Aut}(k((t))/k)$

Let k((t))/k((x)) be a finite Galois extension with Galois group *G*. We first determine the possible Galois groups which can occur. We will see that, when the characteristic of *k* is p > 0, the most interesting Galois groups which occur are *p*-groups.

We know that $v(\sigma(\alpha)) = v(\alpha)$ for all $\sigma \in \mathcal{A}$ and for all $\alpha \in K$. It follows that $v(\frac{\sigma(\alpha)}{\alpha}) = 0$ for all $\alpha \in K^{\times}$. So for each $\alpha \in K^{\times}$ we define $\phi_{\alpha} : \mathcal{A} \to \mathcal{U}$ by $\sigma \mapsto \frac{\sigma(\alpha)}{\alpha}$.

Proposition 1. Let $\alpha \in K^{\times}$. Then ϕ_{α} is a crossed homomorphism (or derivation or 1-cocycle) $\mathcal{A} \to \mathcal{U}$. It is principal (or inner or 1-coboundary) if and only if $\alpha \in \mathcal{U}$.

Proof. ϕ_{α} is a crossed homomorphism:

$$\begin{split} \phi_{\alpha}(\sigma\tau) &= \frac{\sigma\tau(\alpha)}{\alpha} \\ &= \frac{\sigma(\alpha)}{\alpha} \frac{\sigma\tau(\alpha)}{\sigma(\alpha)} \\ &= \frac{\sigma(\alpha)}{\alpha} \left(\frac{\tau(\alpha)}{\alpha}\right)^{\sigma} \\ &= \phi_{\alpha}(\sigma)\phi_{\alpha}(\tau)^{\sigma}. \end{split}$$

If $\alpha \in \mathcal{U}$ then, by definition, ϕ_{α} is principal. Now suppose ϕ_{α} is a principal crossed homomorphism. Then there exists a $u \in \mathcal{U}$ such that $\phi_{\alpha}(\sigma) = \frac{\sigma(u)}{u}$ for all $\sigma \in \mathcal{A}$. That is $\frac{\sigma(\alpha)}{\alpha} = \frac{\sigma(u)}{u}$ and so $\sigma(\frac{\alpha}{u}) = \frac{\alpha}{u}$ for all $\sigma \in \mathcal{A}$. Therefore $\frac{\alpha}{u} \in (K^{\times})^{\mathcal{A}} = k^{\times}$ and so $\alpha \in k^{\times}\mathcal{U} = \mathcal{U}$. \Box

In particular ϕ_t gives a nontrivial element of $H^1(\mathcal{A}, \mathcal{U})$. We also note that ϕ_t is bijective because for any $u \in \mathcal{U}$ there exists a $\sigma \in \mathcal{A}$ with $\sigma(t) = ut$. From now on we will denote $\phi_t(\sigma)$ by u_σ . Thus $\sigma(t) = u_\sigma t$ and $u_{\sigma\tau} = u_\sigma u_\tau^\sigma$ for all $\sigma, \tau \in \mathcal{A}$.

For any $n \ge 0$ and $\sigma \in \mathcal{A}$ we have $(t^{n+1})^{\sigma} = (t^{n+1})$ and thus σ induces an automorphism of $R_n = k[t]/(t^{n+1})$ which we'll denote by $\sigma^{[n]}$. If $\sigma, \tau \in \mathcal{A}$ we have $(\sigma \tau)^{[n]} = \sigma^{[n]} \tau^{[n]}$ and thus $h_n : \mathcal{A} \to \operatorname{Aut}_k(R_n)$ given by $\sigma \mapsto \sigma^{[n]}$ is a group homomorphism. We define $\mathcal{A}_n = \ker h_n$. Note that $\mathcal{A}_0 = \mathcal{A}$.

Proposition 2. We have $\sigma \in A_n$ if and only if $v_t(u_{\sigma} - 1) \ge n$.

Proof. Since σ fixes the elements of k we have $\sigma \in A_n$ if and only if $u_\sigma t + (t^{n+1}) = \sigma^{[n]}(t + (t^{n+1})) = t + (t^{n+1})$ iff $u_\sigma t - t \in (t^{n+1})$ iff $u_\sigma - 1 \in (t^n)$ iff $v_t(u_\sigma - 1) \ge n$. \Box

It's now clear that $\mathcal{A} = \mathcal{A}_0 \supseteq \mathcal{A}_1 \supseteq \mathcal{A}_2 \supseteq \cdots$ is a chain of normal subgroups of \mathcal{A} and $\bigcap_{n=0}^{\infty} \mathcal{A}_n = \{id_K\}$.

In [1] Camina studies \mathcal{A} for $k = \mathbb{F}_p$, the finite field with p elements. In particular our \mathcal{A}_1 is her J. In [2] Johnson studies $t + t^2 R[t]$ for an arbitrary commutative ring with identity R as the group of formal power series under substitution. This is essentially the group \mathcal{A}_1 when R = k is a field.

Proposition 3. $\mathcal{A}/\mathcal{A}_1 \cong k^{\times}$.

Proof. For any $u = a_0 + a_1 t + \cdots \in U$ and any $\sigma \in A$ we have $u^{\sigma} = a_0 + a_1 t^{\sigma} + \cdots$ and so $u \equiv u^{\sigma} \mod t$. So $u_{\sigma\tau} = u_{\sigma} u_{\tau}^{\sigma} \equiv u_{\sigma} u_{\tau} \mod t$. Thus the map $\sigma \mapsto u_{\sigma} \mod t$ is an epimorphism with kernel A_1 . \Box

In fact, the exact sequence $1 \to A_1 \to A \to k^{\times} \to 1$ splits. Let $\mathcal{B} = \{\sigma \in A \mid u_{\sigma} \in k^{\times}\}$. Clearly \mathcal{B} is a subgroup of $\mathcal{A}, \mathcal{B} \cong k^{\times}$, and $\mathcal{A} = A_1 \rtimes \mathcal{B}$.

We now focus our attention on \mathcal{A}_1 . It will be convenient to introduce the standard filtration of \mathcal{U} : define $\mathcal{U}_0 = \mathcal{U}$ and for each $n \ge 1$ define $\mathcal{U}_n = 1 + t^n k[\![t]\!]$. By an earlier result we have $\sigma \in \mathcal{A}_n$ if and only if $u_\sigma \in \mathcal{U}_n$.

Lemma 4. If $u \in U_n$ and $\sigma \in A_1$, then $u^{\sigma} \equiv u \mod t^{n+1}$.

Proof. We have $u \equiv 1 + a_n t^n \mod t^{n+1}$ and $u_{\sigma} = 1 + \lambda_1 t + \cdots$ and so

$$u^{\sigma} \equiv 1 + a_n (1 + \lambda_1 t + \dots)^n t^n \mod t^{n+1}$$
$$\equiv 1 + a_n t^n \mod t^{n+1}$$
$$\equiv u \mod t^{n+1}. \square$$

We will use the following identity repeatedly

$$u_{\sigma\tau} - 1 = u_{\sigma} u_{\tau}^{\sigma} - 1$$

= $(u_{\sigma} - 1) + (u_{\tau}^{\sigma} - 1) + (u_{\sigma} - 1)(u_{\tau}^{\sigma} - 1)$
= $(u_{\sigma} - 1) + (u_{\tau} - 1)^{\sigma} + (u_{\sigma} - 1)(u_{\tau} - 1)^{\sigma}$.

Proposition 5. $A_n/A_{n+1} \cong k^+$ for all $n \ge 1$.

Proof. For any $\sigma \in A_n$ we have $v_t(u_{\sigma} - 1) \ge n$ and so $v_t(\frac{u_{\sigma} - 1}{t^n}) \ge 0$. Thus we can define $f : A_n \to k^+$ by $\sigma \mapsto \frac{u_{\sigma} - 1}{t^n} \mod t$. For any $\sigma, \tau \in A_n$ we have

$$f(\sigma\tau) = \frac{u_{\sigma\tau} - 1}{t^n} \mod t$$
$$\equiv \frac{u_{\sigma} - 1}{t^n} + \frac{(u_{\tau} - 1)^{\sigma}}{t^n} + \frac{u_{\sigma} - 1}{t^n} (u_{\tau} - 1)^{\sigma} \mod t$$
$$\equiv \frac{u_{\sigma} - 1}{t^n} + \frac{u_{\tau} - 1}{t^n} \mod t$$
$$= f(\sigma) + f(\tau).$$

f is surjective because there exists a $\sigma \in A_n$ with $u_{\sigma} = 1 + \lambda t^n$ for any $\lambda \in k$ and ker *f* is A_{n+1} . Therefore $A_n/A_{n+1} \cong k^+$. \Box

Proposition 6. *If* $\sigma \in A_d$ *and* $n \in \mathbb{Z}$ *we have*

$$u_{\sigma^n} - 1 \equiv n(u_{\sigma} - 1) \mod t^{d+1}$$
.

Proof. For $n \ge 1$ we proceed by induction. The statement is clearly true for n = 1; suppose it's true for *n*. Consider

$$u_{\sigma^{n+1}} - 1 = u_{\sigma^n \sigma} - 1$$

= $(u_{\sigma^n} - 1) + (u_{\sigma} - 1)^{\sigma^n} + (u_{\sigma^n} - 1)(u_{\sigma} - 1)^{\sigma^n}$

$$\equiv (u_{\sigma^n} - 1) + (u_{\sigma} - 1) \mod t^{d+1}$$
$$\equiv n(u_{\sigma} - 1) + (u_{\sigma} - 1) \mod t^{d+1}$$
$$\equiv (n+1)(u_{\sigma} - 1) \mod t^{d+1}.$$

For n = 0 the statement is trivial because we have $u_{\sigma^0} = u_{id_K} = 1$. For n = -1 we have

$$0 = u_{id_{K}} - 1$$

= $(u_{\sigma\sigma^{-1}} - 1)$
= $(u_{\sigma} - 1) + (u_{\sigma^{-1}} - 1) \mod t^{d+1}$

and so $(u_{\sigma^{-1}} - 1) \equiv -(u_{\sigma} - 1) \mod t^{d+1}$. Since $\sigma^{-1} \in A_n$ the result now follows from the first paragraph. \Box

Corollary 7. If k has characteristic 0, A_1 is torsion-free. If k has characteristic p > 0, the torsion elements of A_1 have p-power order.

Proof. Let $\sigma \in A_1$ with $\sigma \neq id_K$. Then $\sigma \in A_d - A_{d+1}$ for some $d \ge 1$. Thus $u_\sigma - 1 \equiv \lambda t^d \mod t^{d+1}$ for some $\lambda \in k^{\times}$. We then have $u_{\sigma^n} - 1 \equiv n(u_\sigma - 1) \mod t^{d+1}$ for all *n*. Thus we have $\frac{u_{\sigma^n} - 1}{t^d} \equiv n \frac{u_\sigma - 1}{t^d} \equiv n \lambda \mod t$ for all *n*.

So if the characteristic of k is 0, $\frac{u_{\sigma^n}-1}{t^d} \neq 0 \mod t$ for all $n \ge 1$ and therefore $u_{\sigma^n} \neq 1$ for all $n \ge 1$. Thus σ is not torsion.

If the characteristic of *k* is p > 0 and τ has order $n = mp^e$ for some *m* with $p \nmid m$ and $e \ge 0$, then $\sigma = \tau^{p^e}$ has order *m*. If $m \ne 1$ (that is, $\sigma \ne id_K$) we have $0 = \frac{u_{\sigma}m - 1}{t^d} \equiv m\lambda \mod t$ by the first paragraph and therefore p|m. This contradiction shows m = 1. \Box

The above proposition and corollary are found, with their notation and emphasis, in [2].

Proposition 8. Let G be a finite subgroup of A. Then:

- 1. If k has characteristic 0, G is cyclic of order s where s is the order of some root of unity in k and $G \cap A_1 = {id_K}$.
- 2. If k has characteristic p > 0, $G/G \cap A_1$ is cyclic of order s where s is the order of some root of unity in k and $G \cap A_1$ is the p-Sylow subgroup of G.

In either case, G is solvable.

Proof. We have $G \hookrightarrow \mathcal{A} \to \mathcal{A}/\mathcal{A}_1 \cong k^{\times}$ and so $G/G \cap \mathcal{A}_1$ is isomorphic to a subgroup of k^{\times} . Since $G/G \cap \mathcal{A}_1$ is finite and finite subgroups of k^{\times} are generated by a root of unity, $G/G \cap \mathcal{A}_1$ is cyclic of order *s* where *s* is the order of a root of unity in *k*.

If *k* has characteristic 0, $G \cap A_1 = {id_K}$ because A_1 is torsion-free.

If *k* has characteristic p > 0, $G \cap A_1$ has *p*-power order as the torsion elements of A_1 have *p*-power order. Since $[G : G \cap A_1] = s$ is the order of a root of unity in *k*, $p \nmid s$. Thus $G \cap A_1$ is the *p*-Sylow subgroup of *G*.

In either case, $G/G \cap A_1$ is cyclic and $G \cap A_1$ is nilpotent; thus *G* is solvable. \Box

3. Totally ramified extensions and subfields

We begin with a lemma which confirms that the codimension of $k((ut^s))$ in K is s. The converse of this statement is usually true: if k is a field either of characteristic 0 or of characteristic p > 0 and $[k : k^p]$ is finite then every subfield of K of codimension s is of the form $k((ut^s))$ for some unit u. For this result see [3].

Lemma 9. Let k be any field, s > 1, and $u \in \mathcal{U}$. Then $[k((t)) : k((ut^s))] = s$.

Proof. Let K = k((t)) and $L = k((ut^s))$. For notational convenience, set $\pi = ut^s$, and R = k[t]. Now $\pi R = t^s R$, so $R/\pi R \cong k[t]/t^s k[t]$ has a *k*-basis 1, t, t^2, \ldots, t^{s-1} . We prove by induction on *n* that there exist $\lambda_{i,j}$ for $i = 0, 1, \ldots, s-1$ and for all $j \ge 0$ such that

$$t^{s} \equiv \left(\sum_{j=0}^{n} \lambda_{0,j} \pi^{j}\right) 1 + \left(\sum_{j=0}^{n} \lambda_{1,j} \pi^{j}\right) t + \dots + \left(\sum_{j=0}^{n} \lambda_{s-1,j} \pi^{j}\right) t^{s-1} \mod \pi^{n+1}.$$

This is true for n = 0 since

$$t^{s} \equiv \lambda_{0,0} + \lambda_{1,0}t + \dots + \lambda_{s-1,0}t^{s-1} \pmod{t^{s}}$$

with $\lambda_{i,0} = 0$ for each *i* at this stage. Now suppose the result is true for n > 0. Then

$$\frac{1}{\pi^{n+1}} \left(t^s - \left(\sum_{j=0}^n \lambda_{0,j} \pi^j \right) 1 - \left(\sum_{j=0}^n \lambda_{1,j} \pi^j \right) t - \dots - \left(\sum_{j=0}^n \lambda_{s-1,j} \pi^j \right) t^{s-1} \right)$$
$$\equiv \lambda_{0,n+1} + \lambda_{1,n+1} t + \dots + \lambda_{s-1,n+1} t^{s-1} \mod \pi$$

for some $\lambda_{i,n+1} \in k$. Now multiply by π^{n+1} and collect terms to get the truth of the statement for n+1. Therefore $a_i = \sum_{j=0}^{\infty} \lambda_{i,j} \pi^j \in L$ for each *i*, and

$$t^{s} = a_{0} + a_{1}t + \dots + a_{s-1}t^{s-1}$$
.

Thus *t* is algebraic over *L*. Then L(t)/L is finite, and since *L* is complete, so is L(t). Now $k(t) \subseteq L(t)$ and so L(t) contains the closure of k(t), which is k((t)). Hence k((t)) = L(t). Since k((t))/L is finite, its ramification index is *s*, and its inertial degree is 1, we have [k((t)) : L] = s. \Box

We have seen that for any Galois extension $k((t))/k((ut^s))$, the Galois group is an extension of a *p*-group by a cyclic group with order prime to *p*. So it is reasonable to consider extensions whose Galois groups are *p*-groups. We now turn our attention to determining the possible Galois groups which occur. From this point on, we assume *k* is a field of characteristic p > 0.

Lemma 10. Let *K* be a field of characteristic p > 0, and K_p be the compositum of all *p*-power Galois extensions of *K*. Then Gal(K_p/K) is a free pro-*p* group. The number of generators of this group is equal to the dimension of the $\mathbb{Z}/p\mathbb{Z}$ -vector space $K/\wp(K)$, where $\wp(y) = y^p - y$.

Proof. See Proposition 30 in Chapter IV of [4].

Lemma 11. Let K = k((t)), where k is a field of characteristic p > 0. The $\mathbb{Z}/p\mathbb{Z}$ -vector space $K/\wp(K)$ is infinite dimensional.

Proof. The infinite set $\{t^{-n} + \wp(K): n > 0 \text{ and } p \nmid n\}$ is linearly independent in $K/\wp(K)$: Assume

$$\alpha = c_0 t^{-n_0} + \dots + c_s t^{-n_s} = f^p - f \in \wp(K)$$

where $c_i \in \mathbb{Z}/p\mathbb{Z}$, $-n_0 < \cdots < -n_s$, $c_0 \neq 0$, and $p \nmid n_i$ for $i = 0, \dots, s$. We have $v(\alpha) = -n_0$ and so v(f) must be < 0. But then $v(f^p) < v(f)$ so $v(f^p - f) = v(f^p) = pv(f)$, a contradiction to $p \nmid n_0$. \Box

Together, the last two lemmas show that the Galois group of K_p/K is a free pro-*p* group on an infinite number of generators.

Lemma 12. Let *k* be a field of characteristic p > 0 and K = k((t)). Then every finite *p*-group *G* is the Galois group of a totally ramified extension of *K*.

Proof. Let *G* be a finite *p*-group of order p^n .

Suppose first that *k* is a finite field. Since K_p/K is Galois with Galois group a free pro-*p* group on an infinite number of generators, we can choose an extension F/K with Galois group isomorphic to $G \times G$. Let $G_1 = G \times \{1\}$ and $G_2 = \{1\} \times G$. If F_i is the fixed field of G_i , then F_i/K is a Galois extension with Galois group isomorphic to *G*. Let *F'* be the maximal unramified extension of k((t)) in *F*. Then F'/K is a cyclic extension of *p*-power order. Since $F_1 \cap F_2 = K$, it follows that at least one of F_i/K is totally ramified, as otherwise each F_i intersects *F'* nontrivially, and so each F_i must contain the unique degree *p* extension of *K* in *F'*, a contradiction. Hence we may assume that F_1/K is totally ramified with Galois group *G*.

Now suppose k is an arbitrary field of characteristic p. Let k_0 be the prime subfield of k. So k_0 is the finite field with p elements. Let $K_0 = k_0((t))$. By the first paragraph K_0 has a totally ramified Galois extension L_0/K_0 with Galois group G. Since L_0K/K is finite L_0K is complete with respect to a real valuation which extends v. We'll call this valuation v as well, so all our fields are complete with respect to the appropriate restrictions of v.

We have

$$\begin{bmatrix} v(L_0^{\times}) : v(K_0^{\times}) \end{bmatrix} = [L_0 : K_0]$$

$$\geq [L_0K : K]$$

$$\geq \begin{bmatrix} v((L_0K)^{\times}) : v(K^{\times}) \end{bmatrix}$$

$$= \begin{bmatrix} v((L_0K)^{\times}) : v(K_0^{\times}) \end{bmatrix}$$

$$\geq \begin{bmatrix} v(L_0^{\times}) : v(K_0^{\times}) \end{bmatrix}.$$

Thus we must have equality throughout. In particular we have

$$\left[\nu\left((L_0K)^{\times}\right):\nu\left(K^{\times}\right)\right]=\left[L_0K:K\right]=\left[L_0^{\times}:K_0^{\times}\right].$$

Thus L_0K/K is totally ramified and $\text{Gal}(L_0K/K) \cong \text{Gal}(L_0/K_0)$ by the Theorem on Natural Irrationalities and the equality of the dimensions. \Box

Proposition 13. For any finite *p*-group *G* and *k* a field of characteristic *p* there exists a unit $u \in U_1$ such that $K/k((ut^{p^n}))$ is Galois with Galois group isomorphic to *G*.

Proof. Let *G* be a finite *p*-group of order p^n . By the lemma there exists a field extension E/K such that E/K is totally ramified and Galois with Gal(E/K) = G. By the structure theorem of finite extensions of K = k((t)) we see that E = k((s)) for some $s \in E$. Since *E* and *K* are analytically *k*-isomorphic we see that *K* has a subfield *L* of codimension p^n such that $k \subseteq L$, *L* is closed (and hence complete) in the *t*-adic topology on *K*, and K/L is a totally ramified Galois extension with Gal(K/L) = G. Thus

L = k((z)) for some $z \in L$ and since K/L is totally ramified we have $v(z) = p^n$. Therefore $z = ut^{p^n}$ for some $u \in \mathcal{U}$. Since $k((ut^{p^n})) = k((\lambda ut^{p^n}))$ for any $\lambda \in k^{\times}$ we can suppose $u \in \mathcal{U}_1$. \Box

There are restrictions on the units $u \in \mathcal{U}$ such that $k((t))/k((ut^{p^n}))$ is Galois extension:

Theorem 14. If k is a perfect field of characteristic p > 0 and k((t))/L is a Galois extension of dimension p^n , then there exists $u \in U_{(p-1)n^{n-1}}$ such that $L = k((ut^{p^n}))$.

Proof. Suppose $k((t))/k((ut^{p^n}))$ is a finite Galois extension. Then $[k((t)) : k((ut^{p^n}))] = p^n$ and thus *G*, the Galois group of this extension, is a finite *p*-group. Let us proceed by induction on *n*. For the base case, suppose $k((t))/k((ut^p))$ is a finite Galois extension. Then we may write $k((t)) = k((ut^p))(\alpha)$, where α is a root of the Artin–Schreier polynomial $X^p - X - f$, for some $f \in k((ut^p))$ with $v_t(f) = -mp$ and gcd(m, p) = 1. (See Proposition 11.17 in [5].) For notational convenience, write $y = ut^p$ and $f = \frac{c}{y^m}$ with $c \in k[\![y]\!]^{\times}$. Now

$$\alpha^p - \alpha = \frac{c}{y^m} \quad \Rightarrow \quad \frac{1}{\alpha^p - \alpha} = c^{-1} y^m = \frac{\frac{1}{\alpha^p}}{1 - \frac{1}{\alpha^{p-1}}} = \frac{1}{\alpha^p} \left(\frac{1}{1 - \frac{1}{\alpha^{p-1}}} \right).$$

Write $\beta = \frac{1}{\alpha}$ and we can rewrite as

$$c^{-1}y^m = \beta^p (1 + \beta^{p-1} + \beta^{2p-2} + \cdots).$$

Since $v_t(\beta) = m$ there exists $w \in \mathcal{U}$ such that $\beta = wt^m$. Then

$$y^{m} = c(wt^{m})^{p}(1 + (wt^{m})^{p-1} + (wt^{m})^{2p-2} + \cdots)$$

and we may take *m*-th roots everywhere to get

$$ut^{p} = y = c^{\frac{1}{m}} w^{\frac{p}{m}} t^{p} (1 + (wt^{m})^{p-1} + (wt^{m})^{2p-2} + \cdots)^{\frac{1}{m}}.$$

Thus $u \in k[[ut^p]] \times k[[t^p]] \times k[[wt^{m(p-1)}]] \times$ and so $u \in 1 + k[[t]]t^{p-1}$.

Now for the inductive step. Suppose that n > 0 is given, and that the result is true for n - 1. *G* is a *p*-group, and so *G* contains a normal subgroup *H* of index *p*. Let *E* be the fixed field of *H*. Then k((t))/E is a Galois extension of degree p^{n-1} and $E/k((ut^{p^n}))$ is Galois of degree *p*. By the induction hypothesis, there exists a unit $u_1 \in \mathcal{U}$ such that $v_t(u_1 - 1) \ge p^{n-2}(p-1)$ and $E = k((u_1t^{p^{n-1}}))$. $E/k((ut^{p^n}))$ is Galois of degree *p*, so there exists a unit $u_2 \in k[[u_1t^{p^{n-1}}]]$ such that $\frac{1}{p^{n-1}}v_t(u_2 - 1) > p - 1$ and $k((ut^{p^n})) = k((u_2(u_1t^{p^{n-1}})^p))$. Now $u_2(u_1t^{p^{n-1}})^p = u_2u_1^pt^{p^n}$ and $v_t(u_1^p - 1) = pv_t(u_1 - 1) \ge pp^{n-2}(p-1) = p^{n-1}(p-1)$ and $v_t(u_2 - 1) \ge p^{n-1}(p-1)$. Thus $v_t(u_2(u_1)^p - 1) \ge p^{n-1}(p-1)$ and $u_2u_1^p$ is a unit in k[[t]]. Note that the last inequality follows from the identity ab - 1 = (a - 1)(b - 1) + (a - 1) + (b - 1). Thus we see that for any Galois extension k((t))/L of degree p^n , there exists some $u \in \mathcal{U}_{(p-1)p^{n-1}}$ such that $L = k((ut^{p^n}))$.

4. Extended depth

For $\alpha \in K$ we have $\alpha = \sum_{i=-\infty}^{\infty} a_i t^i$ where $a_i \in k$ and $a_i = 0$ for all i < N for some N depending on α . When convenient we will denote a_i , the *i*-th coefficient of α , by $[\alpha]_i$. The *support* of α is the set $\text{Supp}(\alpha) = \{i: [\alpha]_i \neq 0\}$. We have, of course, $v(\alpha) = \inf(\text{Supp}(\alpha))$.

In the study of Aut(*K*/*k*) the *depth* of a unit $u \in U$ is defined to be d(u) = v(u - u(0)), where u(0) is the nonzero zeroth coefficient of *u*. For $\sigma \in Aut(K/k)$, $d(\sigma) = d(u_{\sigma})$, where $\sigma(t) = u_{\sigma}t$. In this work

we often consider $u_1 t^{m_1} \in k((u_2 t^{m_2}))$ for some $u_1, u_2 \in \mathcal{U}$ and try to estimate the depth of u_2 in terms of the depth of u_1 . In order to get more precise relations, we introduce a related concept.

We define the *extended depth* of $\alpha \in K$ to be

$$e(\alpha) = \inf (\operatorname{Supp}(\alpha) - p\mathbb{Z}) \in \mathbb{Z} \cup \{\infty\}.$$

Note that $e(\alpha)$ is either ∞ or an integer not divisible by p. Of course for any $\alpha \in \mathcal{U}$ we have $e(\alpha) \ge d(\alpha)$ with equality if and only if $p \nmid d(\alpha)$. Similarly for $\sigma \in \mathcal{A}$ we define $e(\sigma)$ to be $e(u_{\sigma})$ where $\sigma(t) = u_{\sigma}t$.

4.1. Extended depth of elements

The following lemma collects the basic properties of $e(\cdot)$ we will need.

Lemma 15. *Let* α , $\beta \in K$.

- 1. $e(\alpha) \ge v(\alpha)$ with equality if and only if $p \nmid v(\alpha)$ or $\alpha = 0$. (In particular *e* is continuous.)
- 2. $e(\alpha) = \infty$ if and only if $\alpha \in k((t^p))$. (Note $K^p \subseteq k((t^p))$.)
- 3. $e(\alpha + \beta) \ge \min(e(\alpha), e(\beta))$ with equality if $e(\alpha) \ne e(\beta)$.
- 4. If $\gamma \in k((t^p))$ then $e(\alpha + \gamma) = e(\alpha)$.
- 5. If $\gamma \in k((t^p))$ then $e(\alpha \gamma) = e(\alpha) + v(\gamma)$. (In particular if $u \in k[[t^p]]^{\times}$ then $e(\alpha u) = e(\alpha)$.)
- 6. α can be written as $\alpha_0 + \gamma$ where $\alpha_0 \in K$, $\gamma \in k((t^p))$, $e(\alpha) = v(\alpha_0) = e(\alpha_0)$, and $v(\alpha) = \min(v(\alpha_0), v(\gamma))$.

Proof. The proofs of 1. through 5. follow immediately from the definition of *e*. As for 6. we set $\alpha_0 = \sum_{i=-\infty}^{\infty} c_i t^i$ and $\gamma = \sum_{i=-\infty}^{\infty} d_i t^i$ where

$$c_i = \begin{cases} [\alpha]_i & \text{if } p \nmid i, \\ 0 & \text{if } p \mid i \end{cases} \text{ and } d_i = \begin{cases} 0 & \text{if } p \nmid i, \\ [\alpha]_i & \text{if } p \mid i. \end{cases}$$

Then $\alpha = \alpha_0 + \gamma$ and the rest follows. \Box

Proposition 16. Suppose $\alpha, \beta \in U$ and $e = \min(e(\alpha), e(\beta)) < \infty$. Then

$$[\alpha\beta]_e = [\alpha]_e[\beta]_0 + [\beta]_e[\alpha]_0$$
 and $e(\alpha\beta) \ge e$

with equality if and only if $[\alpha \beta]_e \neq 0$.

Proof. Without loss of generality $e(\alpha) \leq e(\beta)$. So $e(\alpha) = e < \infty$ and $\alpha = at^e + r_1 + \gamma_1$ where $a = [\alpha]_e \neq 0$, $v(r_1) > e$, and $\gamma_1 \in k((t^p))$.

If $e(\beta) = \infty$ then $\beta \in k((t^p))$ so $\alpha\beta = a\beta t^e + r_1\beta + \gamma_1\beta$ where $v(r_1\beta) = v(r_1) > e$ and $[\alpha\beta]_e = [\alpha]_e[\beta]_0 + [\beta]_e[\alpha]_0 \neq 0$ as $[\beta]_e = 0$.

Now suppose $e(\beta) < \infty$. Then $\beta = bt^f + r_2 + \gamma_2$ where $f = e(\beta)$, $b = [\beta]_f \neq 0$, $v(r_2) > f$, and $\gamma_2 \in k((t^p))$. So

$$\alpha\beta \equiv (at^{e} + \gamma_{1})(bt^{f} + \gamma_{2}) \mod t^{e+1}$$
$$\equiv abt^{e+f} + a\gamma_{2}t^{e} + b\gamma_{1}t^{f} + \gamma_{1}\gamma_{2} \mod t^{e+1}$$
$$\equiv a[\beta]_{0}t^{e} + b[\alpha]_{0}t^{f} + \gamma_{1}\gamma_{2} \mod t^{e+1}$$

remembering that $[\alpha]_0 = [\gamma_1]_0$ and $[\beta]_0 = [\gamma_2]_0$ as $\alpha, \beta \in \mathcal{U}$. Thus if e = f we have $[\alpha\beta]_e = [\alpha]_e[\beta]_0 + [\beta]_e[\alpha]_0$, and if e < f we have $[\alpha\beta]_e = [\alpha]_e[\beta]_0 = [\alpha]_e[\beta]_0 + [\beta]_e[\alpha]_0$ as $[\beta]_e = 0$. In either case $e(\alpha\beta) \ge e$ and the result follows. \Box

Corollary 17. *If* $\alpha \in U$ *and* $e = e(\alpha) < \infty$ *then*

$$\left[\alpha^{m}\right]_{e} = m\left[\alpha\right]_{0}^{m-1}\left[\alpha\right]_{e} \text{ and } e\left(\alpha^{m}\right) \ge e$$

with equality if and only if $p \nmid m$.

Theorem 18. Suppose $u, w \in U$ are such that $e(u) < \infty$ and $ut^{p^a} \in k((wt^{p^b}))$ for some $a \ge b \ge 1$. Then

$$e(u) = \begin{cases} e(w) & \text{if } a = b, \\ e(w) + mp^b & \text{if } a > b \end{cases}$$

for some $m \ge 1$, $p \nmid m$. In particular, we have $e(w) \le e(u)$.

Proof. Since $ut^{p^a} \in k((wt^{p^b}))$ we have $ut^{p^a} \in k[[wt^{p^b}]]$ as ut^{p^a} has positive valuation. So $ut^{p^a} = \sum_{i=0}^{\infty} c_i(wt^{p^b})^i$ where $c_i \in k$. By valuation again $c_i = 0$ for all $0 \leq i < p^{a-b}$ and $c_{p^{a-b}} \neq 0$. Thus

$$ut^{p^{a}} = \sum_{i=p^{a-b}}^{\infty} c_{i} (wt^{p^{b}})^{i} = \sum_{j=0}^{\infty} \tilde{c}_{j} w^{p^{a-b}+j} t^{p^{a}+jp^{b}}$$

where $\tilde{c}_0 \neq 0$ and so

$$u = \sum_{j=0}^{\infty} \tilde{c}_j w^{p^{a-b}+j} t^{jp^b}.$$

If a - b > 0 we have

$$e(\tilde{c}_{j}w^{p^{a-b}+j}t^{jp^{b}}) = e(w^{j}) + v(\tilde{c}_{j}w^{p^{a-b}}t^{jp^{b}})$$
$$= e(w^{j}) + v(\tilde{c}_{j}) + jp^{b}$$
$$= \begin{cases} e(w) + jp^{b} & \text{if } p \nmid j \text{ and } \tilde{c}_{j} \neq 0, \\ \infty & \text{otherwise.} \end{cases}$$

Since $e(u) < \infty$ we must have $p \nmid j$ and $\tilde{c}_j \neq 0$ for at least one j and since for these indices the e-values are distinct we have $e(u) = e(w) + jp^b$ for the least j such that $p \nmid j$ and $\tilde{c}_j \neq 0$.

If a - b = 0 we have

$$e(\tilde{c}_{j}w^{1+j}t^{jp^{b}}) = e(w^{1+j}) + v(\tilde{c}_{j}t^{jp^{b}})$$
$$= e(w^{1+j}) + v(\tilde{c}_{j}) + jp^{b}$$
$$= \begin{cases} e(w) + jp^{b} & \text{if } p \nmid (1+j) \text{ and } \tilde{c}_{j} \neq 0, \\ \infty & \text{otherwise.} \end{cases}$$

Since for j = 0 we have $p \nmid (1 + j)$ and $\tilde{c}_j \neq 0$ and since the finite *e*-values are distinct with their minimum occurring when j = 0 we have e(u) = e(w). \Box

Corollary 19. If k is perfect and $K/k((ut^{p^n}))$ is Galois then

$$e(u) \ge (p-1)p^{n-1}.$$

Proof. By Theorem 14 there exists a unit $u_0 \in U_{(p-1)p^{n-1}}$ such that $k((ut^{p^n})) = k((u_0t^{p^n}))$. Now $e(u_0) \ge (p-1)p^{n-1}$ and by Theorem 18 we have $e(u) = e(u_0)$. \Box

4.2. Extended depth of automorphisms

We first note that for all $\sigma \in A_1$ we have $[u_{\sigma}]_0 = 1$.

Lemma 20. Let $\alpha \in K$ and $\sigma, \tau \in A$.

1. $e(\alpha^{\sigma}) = e(\alpha)$. 2. If $e = e(\alpha) < \infty$ then $[\alpha^{\sigma}]_e = [u_{\sigma}]_0^e[\alpha]_e$.

Proof. For 1. we write $\alpha = \alpha_0 + \gamma$ where $\alpha_0 \in K$, $\gamma \in k((t^p))$, and $e(\alpha) = v(\alpha_0)$. Now $\alpha^{\sigma} = \alpha_0^{\sigma} + \gamma^{\sigma}$ and since $\gamma^{\sigma} \in k((t^p))$ we have $e(\alpha^{\sigma}) = e(\alpha_0^{\sigma})$. Since $v(\alpha_0^{\sigma}) = v(\alpha_0) = e(\alpha)$ is not divisible by p we have $e(\alpha_0^{\sigma}) = v(\alpha_0^{\sigma}) = v(\alpha_0^{\sigma}) = e(\alpha)$.

For 2. we write $\alpha = [\alpha]_e t^e + t^{e+1}f + \gamma$ where $f \in k[t]$ and $\gamma \in k((t^p))$. Then $\alpha^{\sigma} = [\alpha]_e (u_{\sigma}t)^e + t^{e+1}g + \gamma^{\sigma}$ where $g \in k[t]$. Thus $\alpha^{\sigma} = [\alpha]_e [u_{\sigma}]_0^e t^e + t^{e+1}h + \gamma^{\sigma}$ where $h \in k[t]$ and the result follows. \Box

Proposition 21. *If* $\sigma \in A_1$ *and* $e = e(\sigma) < \infty$ *then*

$$[u_{\sigma^m}]_e = m[u_{\sigma}]_e$$
 and $e(\sigma^m) \ge e$

with equality if and only if $p \nmid m$.

Proof. The result is trivial if m = 1. Now suppose we have $[u_{\sigma^m}]_e = m[u_{\sigma}]_e$ and $e(\sigma^m) \ge e$ with equality if and only if $p \nmid m$. We have $u_{\sigma^{m+1}} = u_{\sigma}^{\sigma^m} u_{\sigma}$ and so, by Proposition 16, we have

$$[u_{\sigma^{m+1}}]_e = [u_{\sigma}^{\sigma^m} u_{\sigma}]_e$$
$$= [u_{\sigma}^{\sigma^m}]_e [u_{\sigma}]_0 + [u_{\sigma}]_e [u_{\sigma}^{\sigma^m}]_0$$
$$= m[u_{\sigma}]_e 1 + [u_{\sigma}]_e 1$$
$$= (m+1)[u_{\sigma}]_e$$

and

$$e(u_{\sigma^{m+1}}) = e(u_{\sigma}^{\sigma^m}u_{\sigma}) \ge e$$

with equality if and only if $[u_{\sigma^{m+1}}]_e \neq 0$ if and only if $p \nmid m + 1$. \Box

We define the *canonical unit* of a totally ramified Galois extension as follows: Suppose K/L is Galois and totally ramified with Galois group G of order n. Then $N_{K/L}(t) = \prod_{\sigma \in G} \sigma(t)$ has valuation n. Thus $N_{K/L}(t) = u_L t^n$ for some unit u_L . Note that $u_L = \prod_{\sigma \in G} u_\sigma$. We call this u_L the *canonical unit* for K/L. Since $k((u_L t^n)) \subseteq L$ and both have codimension n in K, we have $L = k((u_L t^n))$.

Theorem 22. Suppose $K/k((ut^{p^n}))$ is Galois with Galois group G. Then $e(\sigma) \leq e(u)$ for all $\sigma \in G$, $\sigma \neq id_K$.

Proof. Let $\sigma \in G$, $\sigma \neq id_K$. Suppose σ has order p^e with $e \ge 2$. Since $\sigma^{p^{e-1}}$ has order p and $e(\sigma) < e(\sigma^{p^{e-1}})$, it suffices to prove the result when σ has order p.

Let $\sigma \in G$ have order p. Let $e = e(\sigma)$. Let L be the fixed field of σ . Then [K : L] = p so $L = k((u_L t^p))$ where u_L is the canonical unit for K/L. We have $u_L = 1u_{\sigma} \cdots u_{\sigma^{p-1}}$ and thus $e(u_L) \ge \min(e(u_{\sigma}), \ldots, e(u_{\sigma^{p-1}})) = e$ as $e = e(u_{\sigma}) = \cdots = e(u_{\sigma^{p-1}})$. Finally $e(u) \ge e(u_L)$ by Theorem 18 of the last section. Thus $e \le e(u_L) \le e(u)$ as desired. \Box

5. Canonical units of Galois extensions

We are now able to prove a theorem about the relationship between Galois extensions and their canonical units. We need two lemmas.

Lemma 23. Let $k((t))/k((ut^{p^n}))$ be a finite Galois extension with Galois group G. Suppose that $\{d(\sigma) \mid id_K \neq \sigma \in G\}$ is bounded above by N. Then the map

$$G \longrightarrow \operatorname{Aut}(k\llbracket t \rrbracket / (t^{N+1}))$$
 given by $\sigma \mapsto \sigma^{[N]}$

is an embedding. In particular, if N > e(u) the above map is an embedding.

Proof. As in Section 2, the map $G \to \operatorname{Aut}(R_N)$ given by $\sigma \mapsto \sigma^{[N]}$ is a group homomorphism. We have $\sigma^{[N]} = \operatorname{id}_{R_N}$ if and only if $u_{\sigma}t \equiv t \mod t^{N+1}$ if and only if $v(u_{\sigma}-1) \ge N$ if and only if $d(\sigma) \ge N$. Thus if $N > d(\sigma)$ for all $\sigma \neq \operatorname{id}_K$, our map is an embedding.

Finally, if N > e(u) then $N > e(\sigma) \ge d(\sigma)$ for all $\sigma \neq id_K$ by Theorem 22 and our result follows. \Box

Lemma 24. If $f, g \in Aut(K/k)$ satisfy v(f(t) - g(t)) > m then

$$\nu(f(rt) - g(rt)) > m + \nu(r)$$

for any $r \in k[[t]]$. In particular, if $h \in Aut(K/k)$ as well we have

$$v(f(h(t)) - g(h(t))) > m.$$

Proof. We have $f(tt^n) - g(tt^n) = f(t)^{n+1} - g(t)^{n+1} = (f(t) - g(t))z$ where $z = \sum_{i=0}^{n} f(t)^{n-i}g(t)^i$. Since *f*, *g* are continuous we have v(f(t)) = v(g(t)) = 1 and so $v(z) \ge n$. Thus $v(f(tt^n) - g(tt^n)) > m + n$. Now $r = a_0 + a_1t + a_2t^2 + \dots \le k[t]$ and so

$$f(rt) - g(rt) = a_0(f(t) - g(t)) + a_1(f(tt) - g(tt)) + a_2(f(tt^2) - g(tt^2)) + \cdots$$

and the result follows. \Box

Theorem 25. Let $L_1 = k((u_1 t^{p^n}))$ and $L_2 = k((u_2 t^{p^n}))$ be such that both K/L_1 and K/L_2 are Galois with Galois groups G_1 and G_2 respectively.

If $v(u_1 - u_2) > (e(u_1) + 1)p^n$ then $G_1 \cong G_2$.

Proof. Let $N = v(u_1 - u_2) > (e(u_1) + 1)p^n$. Let $R_N = k[[t]]/(t^{N+1})$ and let *S* be the image of $k[[u_1t^{p^n}]]$ in R_N . Since $N > e(u_1)$ we have $G_1 \hookrightarrow \overline{G_1} \leq \operatorname{Aut}_k(R_N)$ by Lemma 23. And since $v(u_1 - u_2) = N > e(u_1)$ we have $e(u_1) = e(u_2)$ and so $G_2 \hookrightarrow \overline{G_2} \leq \operatorname{Aut}_k(R_N)$ as well. Since $u_1 \equiv u_2 \mod t^N$ we have $u_1t^{p^n} \equiv u_2t^{p^n} \mod t^{N+1}$. Hence $\overline{G_2}$ fixes the elements of *S* because G_2 fixes the elements of $L_2 = k((u_2t^{p^n}))$.

Let $f = \prod_{\rho \in G_1} (X - \rho(t))$. We see that f has degree p^n and coefficients in $k[[u_1 t^{p^n}]]$. Let $M = \max\{v(\rho(t) - \mu(t)): \rho, \mu \in G_1, \rho \neq \mu\}$. We have M > 0. Since $v(\rho(t) - \mu(t)) = v((\mu^{-1}\rho)(t) - t)$ we have $M = \max\{v(\rho(t) - t): \rho \in G_1, \rho \neq id_{G_1}\}$. Finally since $\rho(t) - t = (u_\rho - 1)t$ we have $v(\rho(t) - t) \leq e(\rho) + 1 \leq e(u_1) + 1$ for $\rho \neq id_{G_1}$ by Theorem 22. Thus $M \leq e(u_1) + 1$.

Now for any $\sigma \in G_2$ we have

$$f(\sigma(t)) \equiv \sigma(f(t)) \equiv \sigma(0) \equiv 0 \mod t^{N+1}$$

and therefore

$$\sum_{\rho \in G_1} v(\sigma(t) - \rho(t)) = v\left(\prod_{\rho \in G_1} (\sigma(t) - \rho(t))\right) > N.$$

Since $N > (e(u_1) + 1)p^n$ we have $v(\sigma(t) - \rho(t)) > e(u_1) + 1 \ge M$ for at least one $\rho \in G_1$ and since $M = \max\{v(\rho(t) - \mu(t)): \rho, \mu \in G_1, \rho \ne \mu\}$ this ρ is unique. That is, for each $\sigma \in G_2$ there is a unique $\tilde{\sigma} \in G_1$ such that $v(\sigma(t) - \tilde{\sigma}(t)) > e(u_1) + 1$.

We have

$$\sigma\tau(t) - \tilde{\sigma}\tilde{\tau}(t) = \left[\sigma\tau(t) - \tilde{\sigma}\tau(t)\right] + \left[\tilde{\sigma}\tau(t) - \tilde{\sigma}\tilde{\tau}(t)\right].$$

Since $\tau(t) = u_{\tau}t$ and $\nu(\sigma(t) - \tilde{\sigma}(t)) > e(u_1) + 1$ we have $\nu(\sigma\tau(t) - \tilde{\sigma}\tau(t)) > e(u_1) + 1$ by Lemma 24. Since $\tilde{\sigma}$ is continuous and $\nu(\tau(t) - \tilde{\tau}(t)) > e(u_1) + 1$ we have $\nu(\tilde{\sigma}\tau(t) - \tilde{\sigma}\tilde{\tau}(t)) > e(u_1) + 1$ as well. Thus $\nu(\sigma\tau(t) - \tilde{\sigma}\tilde{\tau}(t)) > e(u_1) + 1$ and $\tilde{\sigma}\tilde{\tau} \in G_1$ so $\tilde{\sigma\tau} = \tilde{\sigma}\tilde{\tau}$.

Thus the map $G_2 \to G_1$ given by $\sigma \mapsto \tilde{\sigma}$ is a group homomorphism. Now $\tilde{\sigma} = \mathrm{id}_{G_1}$ implies $\nu(\sigma(t) - t) > e(u_1) + 1$. Since $e(\sigma) + 1 \ge \nu(\sigma(t) - t)$ we have $e(\sigma) > e(u_1)$ and therefore $\sigma = \mathrm{id}_{G_2}$ by Theorem 22. Hence $G_2 \to G_1$ given by $\sigma \mapsto \tilde{\sigma}$ is an injective group homomorphism between two groups of order p^n , so $G_1 \cong G_2$. \Box

Corollary 26. If $K/k((ut^{p^n}))$ is Galois then the Galois group is determined by the first $(e(u) + 1)p^n$ terms of u.

6. An example

Again *k* is a field of characteristic $p \ge 0$ and K = k((t)).

For each $\lambda \in k$ we define $\phi_{\lambda} : K \to K$ given by $t \mapsto \frac{1}{1+\lambda t}t$. So $\phi_{\lambda} \in A_1$ for each $\lambda \in k$. An easy calculation shows that $\phi_{\lambda_1} \circ \phi_{\lambda_2} = \phi_{\lambda_1+\lambda_2}$. Therefore $k^+ \to A_1$ given by $\lambda \mapsto \phi_{\lambda}$ is a group embedding. Thus if p > 0 we have a family of convenient elements of order p.

Unfortunately these are the only easily described elements of finite order in \mathcal{A}_1 : Suppose $\phi \in \mathcal{A}_1$ has order d and is given by $t \mapsto \frac{f}{g}t$ where $f, g \in k[t]$. Then $k(t) \supseteq k(\phi(t)) \supseteq \cdots \supseteq k(\phi^d(t)) = k(t)$ and so $k(t) = k(\phi(t)) = k(\frac{ft}{g})$. Thus $1 = [k(t) : k(\frac{ft}{g})] = \max(\deg(ft), \deg(g))$. It follows that $\deg(f) = 0$ and $\deg(g) \leq 1$. Since $\phi \in \mathcal{A}_1$ we have $\phi(t) = \frac{1}{1+\lambda t}t$ for some $\lambda \in k$.

Now suppose p > 0 and $\lambda \in k^{\times}$. So ϕ_{λ} has order p. Let L be the fixed field of $\langle \phi_{\lambda} \rangle$. Then $L = k((ut^p))$ where

$$ut^{p} = N_{K/L}(t) = \prod_{i=0}^{p-1} \phi^{i}(t) = \prod_{i=0}^{p-1} \frac{1}{1+i\lambda t} t = \left(\prod_{i=1}^{p-1} (1+i\lambda t)\right)^{-1} t^{p}.$$

Now $\prod_{i=1}^{p-1} (1+i\lambda t) = \prod_{i=1}^{p-1} i(\lambda t + \frac{1}{i}) = -(\lambda^{p-1}t^{p-1} - 1)$ by Wilson's theorem and the identity $X^{p-1} - 1 = \prod_{i=1}^{p-1} (X-j)$. Thus

$$u = \frac{1}{1 - \lambda^{p-1} t^{p-1}}$$

is the canonical unit for a Galois K/L with Galois group cyclic of order p. Similarly but more tediously, if k has at least p^n elements we could construct the canonical unit for a Galois K/L with Galois group elementary abelian of order p^n .

7. Some questions

We have provided a few examples of the relations between the Galois group of $k((t))/k((ut^{p^n}))$ and the structure of the unit *u*. There are many questions which remain. For example:

- 1. How easily can one determine interesting information about *G* directly from the coefficients of *u*? Is there a way of seeing when *G* is cyclic, abelian, etc.?
- 2. Conversely, can one begin with a p-group G and construct the sequence of coefficients of u?

References

- [1] R. Camina, Subgroups of the Nottingham group, J. Algebra 196 (1997) 101-113.
- [2] D.L. Johnson, The group of formal power series under substitution, J. Aust. Math. Soc. (Ser. A) 45 (1988) 296-302.
- [3] A. Bevelacqua, M. Motley, Finite codimension subfields of a field complete with respect to a real valuation, Comm. Algebra 34 (1) (2006) 335-345.
- [4] S. Shatz, Profinite Groups, Arithmetic, and Geometry, Ann. of Math. Stud., Princeton University Press, 1972.
- [5] D. Bump, Algebraic Geometry, World Scientific Publishing, 1998.