Finite p-groups and $k((t))$

Anthony J. Bevelacqua ${ }^{\mathrm{a}, *}$, Mark Motley ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, University of North Dakota, Grand Forks, ND 58202, United States
${ }^{\mathrm{b}}$ Glen Burnie, MD, United States

ARTICLE INFO

Article history:

Received 13 February 2009
Available online 19 August 2011
Communicated by Aner Shalev
Keywords:
p-Groups
Laurent series

Abstract

Let k be a field of characteristic $p>0$ and let $K=k((t))$ be the field of Laurent series over k. For each group G of order p^{n} there exist units $u \in k \llbracket t \rrbracket$ such that $K / k\left(\left(u t^{p^{n}}\right)\right)$ is Galois with $\operatorname{Gal}\left(K / k\left(\left(u t^{p^{n}}\right)\right)\right) \cong G$. We explore the connections between G and u. Among other results, we prove that if both $K / k\left(\left(u_{1} t^{p^{n}}\right)\right)$ and $K / k\left(\left(u_{2} t^{p^{n}}\right)\right)$ are Galois and u_{1} and u_{2} are sufficiently close in the t-adic topology, then $\operatorname{Gal}\left(K / k\left(\left(u_{1} t^{p^{n}}\right)\right)\right) \cong \operatorname{Gal}\left(K / k\left(\left(u_{2} t^{p^{n}}\right)\right)\right)$.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let k be a field of characteristic $p \geqslant 0$ and let $K=k((t))$ be the field of Laurent series over k. Let v_{t} (or even just v) be the t-adic valuation on K / k. Set $\mathcal{U}=k \llbracket t \rrbracket^{\times}$and $\mathcal{A}=\operatorname{Aut}(K / k)$. We will show that if $L \subseteq K$ is a subfield with K / L a finite Galois extension, then either G is cyclic when $p=0$ or $G=\operatorname{Gal}(K / L)$ is an extension of a p-group by a cyclic group with order prime to p when $p>0$. Given this, it is natural to try to investigate the situation when $p>0$ and $\operatorname{Gal}(K / L)$ is a finite p-group.

Let G be a finite p-group of order p^{n}. Then for any field k of characteristic $p>0$ there exists a totally ramified Galois extension E / K with $\operatorname{Gal}(E / K) \cong G$. Since E is complete with respect to the unique extension of v to $E, E=k((s))$ for some $s \in E$ by the structure theory of such fields. Now K and E are analytically isomorphic so there exists $L=k\left(\left(u t^{p^{n}}\right)\right) \subseteq K$ such that K / L is Galois of degree p^{n} with $G \cong \operatorname{Gal}(K / L)$. We want to understand how information about $G=\operatorname{Gal}\left(K / k\left(\left(u t^{p^{n}}\right)\right)\right)$ can be determined from u. We will show, among other things, that if $L_{1}=k\left(\left(u_{1} t p^{n}\right)\right)$ and $L_{2}=k\left(\left(u_{2} t p^{n}\right)\right)$ are subfields of K such that K / L_{1} and K / L_{2} are Galois then there exists an integer N (depending on u_{1}) so that if $v\left(u_{1}-u_{2}\right)>N$ then $\operatorname{Gal}\left(K / L_{1}\right) \cong \operatorname{Gal}\left(K / L_{2}\right)$.

[^0]
2. Structure of $\operatorname{Aut}(k((t)) / k)$

Let $k((t)) / k((x))$ be a finite Galois extension with Galois group G. We first determine the possible Galois groups which can occur. We will see that, when the characteristic of k is $p>0$, the most interesting Galois groups which occur are p-groups.

We know that $v(\sigma(\alpha))=v(\alpha)$ for all $\sigma \in \mathcal{A}$ and for all $\alpha \in K$. It follows that $v\left(\frac{\sigma(\alpha)}{\alpha}\right)=0$ for all $\alpha \in K^{\times}$. So for each $\alpha \in K^{\times}$we define $\phi_{\alpha}: \mathcal{A} \rightarrow \mathcal{U}$ by $\sigma \mapsto \frac{\sigma(\alpha)}{\alpha}$.

Proposition 1. Let $\alpha \in K^{\times}$. Then ϕ_{α} is a crossed homomorphism (or derivation or 1-cocycle) $\mathcal{A} \rightarrow \mathcal{U}$. It is principal (or inner or 1-coboundary) if and only if $\alpha \in \mathcal{U}$.

Proof. ϕ_{α} is a crossed homomorphism:

$$
\begin{aligned}
\phi_{\alpha}(\sigma \tau) & =\frac{\sigma \tau(\alpha)}{\alpha} \\
& =\frac{\sigma(\alpha)}{\alpha} \frac{\sigma \tau(\alpha)}{\sigma(\alpha)} \\
& =\frac{\sigma(\alpha)}{\alpha}\left(\frac{\tau(\alpha)}{\alpha}\right)^{\sigma} \\
& =\phi_{\alpha}(\sigma) \phi_{\alpha}(\tau)^{\sigma} .
\end{aligned}
$$

If $\alpha \in \mathcal{U}$ then, by definition, ϕ_{α} is principal. Now suppose ϕ_{α} is a principal crossed homomorphism. Then there exists a $u \in \mathcal{U}$ such that $\phi_{\alpha}(\sigma)=\frac{\sigma(u)}{u}$ for all $\sigma \in \mathcal{A}$. That is $\frac{\sigma(\alpha)}{\alpha}=\frac{\sigma(u)}{u}$ and so $\sigma\left(\frac{\alpha}{u}\right)=\frac{\alpha}{u}$ for all $\sigma \in \mathcal{A}$. Therefore $\frac{\alpha}{u} \in\left(K^{\times}\right)^{\mathcal{A}}=k^{\times}$and so $\alpha \in k^{\times} \mathcal{U}=\mathcal{U}$.

In particular ϕ_{t} gives a nontrivial element of $H^{1}(\mathcal{A}, \mathcal{U})$. We also note that ϕ_{t} is bijective because for any $u \in \mathcal{U}$ there exists a $\sigma \in \mathcal{A}$ with $\sigma(t)=u t$. From now on we will denote $\phi_{t}(\sigma)$ by u_{σ}. Thus $\sigma(t)=u_{\sigma} t$ and $u_{\sigma \tau}=u_{\sigma} u_{\tau}^{\sigma}$ for all $\sigma, \tau \in \mathcal{A}$.

For any $n \geqslant 0$ and $\sigma \in \mathcal{A}$ we have $\left(t^{n+1}\right)^{\sigma}=\left(t^{n+1}\right)$ and thus σ induces an automorphism of $R_{n}=k \llbracket t \rrbracket /\left(t^{n+1}\right)$ which we'll denote by $\sigma^{[n]}$. If $\sigma, \tau \in \mathcal{A}$ we have $(\sigma \tau)^{[n]}=\sigma^{[n]} \tau^{[n]}$ and thus $h_{n}: \mathcal{A} \rightarrow$ $\operatorname{Aut}_{k}\left(R_{n}\right)$ given by $\sigma \mapsto \sigma^{[n]}$ is a group homomorphism. We define $\mathcal{A}_{n}=\operatorname{ker} h_{n}$. Note that $\mathcal{A}_{0}=\mathcal{A}$.

Proposition 2. We have $\sigma \in \mathcal{A}_{n}$ if and only if $v_{t}\left(u_{\sigma}-1\right) \geqslant n$.
Proof. Since σ fixes the elements of k we have $\sigma \in \mathcal{A}_{n}$ if and only if $u_{\sigma} t+\left(t^{n+1}\right)=\sigma^{[n]}\left(t+\left(t^{n+1}\right)\right)=$ $t+\left(t^{n+1}\right)$ iff $u_{\sigma} t-t \in\left(t^{n+1}\right)$ iff $u_{\sigma}-1 \in\left(t^{n}\right)$ iff $v_{t}\left(u_{\sigma}-1\right) \geqslant n$.

It's now clear that $\mathcal{A}=\mathcal{A}_{0} \supseteq \mathcal{A}_{1} \supseteq A_{2} \supseteq \cdots$ is a chain of normal subgroups of \mathcal{A} and $\bigcap_{n=0}^{\infty} \mathcal{A}_{n}=$ $\left\{\operatorname{id}_{K}\right\}$.

In [1] Camina studies \mathcal{A} for $k=\mathbb{F}_{p}$, the finite field with p elements. In particular our \mathcal{A}_{1} is her J. In [2] Johnson studies $t+t^{2} R \llbracket t \rrbracket$ for an arbitrary commutative ring with identity R as the group of formal power series under substitution. This is essentially the group \mathcal{A}_{1} when $R=k$ is a field.

Proposition 3. $\mathcal{A} / \mathcal{A}_{1} \cong k^{\times}$.
Proof. For any $u=a_{0}+a_{1} t+\cdots \in \mathcal{U}$ and any $\sigma \in \mathcal{A}$ we have $u^{\sigma}=a_{0}+a_{1} t^{\sigma}+\cdots$ and so $u \equiv$ $u^{\sigma} \bmod t$. So $u_{\sigma \tau}=u_{\sigma} u_{\tau}^{\sigma} \equiv u_{\sigma} u_{\tau} \bmod t$. Thus the map $\sigma \mapsto u_{\sigma} \bmod t$ is an epimorphism with kernel \mathcal{A}_{1}.

In fact, the exact sequence $1 \rightarrow \mathcal{A}_{1} \rightarrow \mathcal{A} \rightarrow k^{\times} \rightarrow 1$ splits. Let $\mathcal{B}=\left\{\sigma \in \mathcal{A} \mid u_{\sigma} \in k^{\times}\right\}$. Clearly \mathcal{B} is a subgroup of $\mathcal{A}, \mathcal{B} \cong k^{\times}$, and $\mathcal{A}=\mathcal{A}_{1} \rtimes \mathcal{B}$.

We now focus our attention on \mathcal{A}_{1}. It will be convenient to introduce the standard filtration of \mathcal{U} : define $\mathcal{U}_{0}=\mathcal{U}$ and for each $n \geqslant 1$ define $\mathcal{U}_{n}=1+t^{n} k \llbracket t \rrbracket$. By an earlier result we have $\sigma \in \mathcal{A}_{n}$ if and only if $u_{\sigma} \in \mathcal{U}_{n}$.

Lemma 4. If $u \in \mathcal{U}_{n}$ and $\sigma \in \mathcal{A}_{1}$, then $u^{\sigma} \equiv u \bmod t^{n+1}$.
Proof. We have $u \equiv 1+a_{n} t^{n} \bmod t^{n+1}$ and $u_{\sigma}=1+\lambda_{1} t+\cdots$ and so

$$
\begin{aligned}
u^{\sigma} & \equiv 1+a_{n}\left(1+\lambda_{1} t+\cdots\right)^{n} t^{n} \bmod t^{n+1} \\
& \equiv 1+a_{n} t^{n} \bmod t^{n+1} \\
& \equiv u \bmod t^{n+1} .
\end{aligned}
$$

We will use the following identity repeatedly

$$
\begin{aligned}
u_{\sigma \tau}-1 & =u_{\sigma} u_{\tau}^{\sigma}-1 \\
& =\left(u_{\sigma}-1\right)+\left(u_{\tau}^{\sigma}-1\right)+\left(u_{\sigma}-1\right)\left(u_{\tau}^{\sigma}-1\right) \\
& =\left(u_{\sigma}-1\right)+\left(u_{\tau}-1\right)^{\sigma}+\left(u_{\sigma}-1\right)\left(u_{\tau}-1\right)^{\sigma} .
\end{aligned}
$$

Proposition 5. $\mathcal{A}_{n} / \mathcal{A}_{n+1} \cong k^{+}$for all $n \geqslant 1$.
Proof. For any $\sigma \in \mathcal{A}_{n}$ we have $v_{t}\left(u_{\sigma}-1\right) \geqslant n$ and so $v_{t}\left(\frac{u_{\sigma}-1}{t^{n}}\right) \geqslant 0$. Thus we can define $f: \mathcal{A}_{n} \rightarrow k^{+}$ by $\sigma \mapsto \frac{u_{\sigma}-1}{t^{n}} \bmod t$. For any $\sigma, \tau \in \mathcal{A}_{n}$ we have

$$
\begin{aligned}
f(\sigma \tau) & =\frac{u_{\sigma \tau}-1}{t^{n}} \bmod t \\
& \equiv \frac{u_{\sigma}-1}{t^{n}}+\frac{\left(u_{\tau}-1\right)^{\sigma}}{t^{n}}+\frac{u_{\sigma}-1}{t^{n}}\left(u_{\tau}-1\right)^{\sigma} \bmod t \\
& \equiv \frac{u_{\sigma}-1}{t^{n}}+\frac{u_{\tau}-1}{t^{n}} \bmod t \\
& =f(\sigma)+f(\tau) .
\end{aligned}
$$

f is surjective because there exists a $\sigma \in \mathcal{A}_{n}$ with $u_{\sigma}=1+\lambda t^{n}$ for any $\lambda \in k$ and $\operatorname{ker} f$ is \mathcal{A}_{n+1}. Therefore $\mathcal{A}_{n} / \mathcal{A}_{n+1} \cong k^{+}$.

Proposition 6. If $\sigma \in \mathcal{A}_{d}$ and $n \in \mathbb{Z}$ we have

$$
u_{\sigma^{n}}-1 \equiv n\left(u_{\sigma}-1\right) \quad \bmod t^{d+1} .
$$

Proof. For $n \geqslant 1$ we proceed by induction. The statement is clearly true for $n=1$; suppose it's true for n. Consider

$$
\begin{aligned}
u_{\sigma^{n+1}}-1 & =u_{\sigma^{n} \sigma}-1 \\
& =\left(u_{\sigma^{n}}-1\right)+\left(u_{\sigma}-1\right)^{\sigma^{n}}+\left(u_{\sigma^{n}}-1\right)\left(u_{\sigma}-1\right)^{\sigma^{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \equiv\left(u_{\sigma^{n}}-1\right)+\left(u_{\sigma}-1\right) \quad \bmod t^{d+1} \\
& \equiv n\left(u_{\sigma}-1\right)+\left(u_{\sigma}-1\right) \quad \bmod t^{d+1} \\
& \equiv(n+1)\left(u_{\sigma}-1\right) \quad \bmod t^{d+1} .
\end{aligned}
$$

For $n=0$ the statement is trivial because we have $u_{\sigma^{0}}=u_{\mathrm{id}_{K}}=1$.
For $n=-1$ we have

$$
\begin{aligned}
0 & =u_{\mathrm{id}_{K}}-1 \\
& =\left(u_{\sigma \sigma^{-1}}-1\right) \\
& \equiv\left(u_{\sigma}-1\right)+\left(u_{\sigma^{-1}}-1\right) \bmod t^{d+1}
\end{aligned}
$$

and so $\left(u_{\sigma^{-1}}-1\right) \equiv-\left(u_{\sigma}-1\right) \bmod t^{d+1}$. Since $\sigma^{-1} \in \mathcal{A}_{n}$ the result now follows from the first paragraph.

Corollary 7. If k has characteristic $0, \mathcal{A}_{1}$ is torsion-free. If k has characteristic $p>0$, the torsion elements of \mathcal{A}_{1} have p-power order.

Proof. Let $\sigma \in \mathcal{A}_{1}$ with $\sigma \neq \operatorname{id}_{K}$. Then $\sigma \in \mathcal{A}_{d}-\mathcal{A}_{d+1}$ for some $d \geqslant 1$. Thus $u_{\sigma}-1 \equiv \lambda t^{d} \bmod t^{d+1}$ for some $\lambda \in k^{\times}$. We then have $u_{\sigma^{n}}-1 \equiv n\left(u_{\sigma}-1\right) \bmod t^{d+1}$ for all n. Thus we have $\frac{u_{\sigma} n-1}{t^{d}} \equiv n \frac{u_{\sigma}-1}{t^{d}} \equiv$ $n \lambda \bmod t$ for all n.

So if the characteristic of k is $0, \frac{u_{\sigma^{n}}-1}{t^{d}} \not \equiv 0 \bmod t$ for all $n \geqslant 1$ and therefore $u_{\sigma^{n}} \neq 1$ for all $n \geqslant 1$. Thus σ is not torsion.

If the characteristic of k is $p>0$ and τ has order $n=m p^{e}$ for some m with $p \nmid m$ and $e \geqslant 0$, then $\sigma=\tau^{p^{e}}$ has order m. If $m \neq 1$ (that is, $\sigma \neq \mathrm{id}_{K}$) we have $0=\frac{u_{\sigma} m-1}{t^{d}} \equiv m \lambda \bmod t$ by the first paragraph and therefore $p \mid m$. This contradiction shows $m=1$.

The above proposition and corollary are found, with their notation and emphasis, in [2].

Proposition 8. Let G be a finite subgroup of \mathcal{A}. Then:

1. If k has characteristic $0, G$ is cyclic of order s where s is the order of some root of unity in k and $G \cap \mathcal{A}_{1}=$ $\left\{\mathrm{id}_{K}\right\}$.
2. If k has characteristic $p>0, G / G \cap \mathcal{A}_{1}$ is cyclic of order s where s is the order of some root of unity in k and $G \cap \mathcal{A}_{1}$ is the p-Sylow subgroup of G.

In either case, G is solvable.
Proof. We have $G \hookrightarrow \mathcal{A} \rightarrow \mathcal{A} / \mathcal{A}_{1} \cong k^{\times}$and so $G / G \cap \mathcal{A}_{1}$ is isomorphic to a subgroup of k^{\times}. Since $G / G \cap \mathcal{A}_{1}$ is finite and finite subgroups of k^{\times}are generated by a root of unity, $G / G \cap \mathcal{A}_{1}$ is cyclic of order s where s is the order of a root of unity in k.

If k has characteristic $0, G \cap \mathcal{A}_{1}=\left\{\operatorname{id}_{K}\right\}$ because \mathcal{A}_{1} is torsion-free.
If k has characteristic $p>0, G \cap \mathcal{A}_{1}$ has p-power order as the torsion elements of \mathcal{A}_{1} have p-power order. Since $\left[G: G \cap \mathcal{A}_{1}\right]=s$ is the order of a root of unity in k, $p \nmid s$. Thus $G \cap \mathcal{A}_{1}$ is the p-Sylow subgroup of G.

In either case, $G / G \cap \mathcal{A}_{1}$ is cyclic and $G \cap \mathcal{A}_{1}$ is nilpotent; thus G is solvable.

3. Totally ramified extensions and subfields

We begin with a lemma which confirms that the codimension of $k\left(\left(u t^{s}\right)\right)$ in K is s. The converse of this statement is usually true: if k is a field either of characteristic 0 or of characteristic $p>0$ and [$k: k^{p}$] is finite then every subfield of K of codimension s is of the form $k\left(\left(u t^{s}\right)\right)$ for some unit u. For this result see [3].

Lemma 9. Let k be any field, $s>1$, and $u \in \mathcal{U}$. Then $\left[k((t)): k\left(\left(u t^{s}\right)\right)\right]=s$.

Proof. Let $K=k((t))$ and $L=k\left(\left(u t^{s}\right)\right)$. For notational convenience, set $\pi=u t^{s}$, and $R=k \llbracket t \rrbracket$. Now $\pi R=t^{s} R$, so $R / \pi R \cong k[t] / t^{s} k[t]$ has a k-basis $1, t, t^{2}, \ldots, t^{s-1}$. We prove by induction on n that there exist $\lambda_{i, j}$ for $i=0,1, \ldots, s-1$ and for all $j \geqslant 0$ such that

$$
t^{s} \equiv\left(\sum_{j=0}^{n} \lambda_{0, j} \pi^{j}\right) 1+\left(\sum_{j=0}^{n} \lambda_{1, j} \pi^{j}\right) t+\cdots+\left(\sum_{j=0}^{n} \lambda_{s-1, j} \pi^{j}\right) t^{s-1} \bmod \pi^{n+1}
$$

This is true for $n=0$ since

$$
t^{S} \equiv \lambda_{0,0}+\lambda_{1,0} t+\cdots+\lambda_{s-1,0} t^{s-1} \quad\left(\bmod t^{S}\right)
$$

with $\lambda_{i, 0}=0$ for each i at this stage. Now suppose the result is true for $n>0$. Then

$$
\begin{aligned}
& \frac{1}{\pi^{n+1}}\left(t^{s}-\left(\sum_{j=0}^{n} \lambda_{0, j} \pi^{j}\right) 1-\left(\sum_{j=0}^{n} \lambda_{1, j} \pi^{j}\right) t-\cdots-\left(\sum_{j=0}^{n} \lambda_{s-1, j} \pi^{j}\right) t^{s-1}\right) \\
& \equiv \lambda_{0, n+1}+\lambda_{1, n+1} t+\cdots+\lambda_{s-1, n+1} t^{s-1} \quad \bmod \pi
\end{aligned}
$$

for some $\lambda_{i, n+1} \in k$. Now multiply by π^{n+1} and collect terms to get the truth of the statement for $n+1$. Therefore $a_{i}=\sum_{j=0}^{\infty} \lambda_{i, j} \pi^{j} \in L$ for each i, and

$$
t^{s}=a_{0}+a_{1} t+\cdots+a_{s-1} t^{s-1}
$$

Thus t is algebraic over L. Then $L(t) / L$ is finite, and since L is complete, so is $L(t)$. Now $k(t) \subseteq L(t)$ and so $L(t)$ contains the closure of $k(t)$, which is $k((t))$. Hence $k((t))=L(t)$. Since $k((t)) / L$ is finite, its ramification index is s, and its inertial degree is 1 , we have $[k((t)): L]=s$.

We have seen that for any Galois extension $k((t)) / k\left(\left(u t^{s}\right)\right)$, the Galois group is an extension of a p-group by a cyclic group with order prime to p. So it is reasonable to consider extensions whose Galois groups are p-groups. We now turn our attention to determining the possible Galois groups which occur. From this point on, we assume k is a field of characteristic $p>0$.

Lemma 10. Let K be a field of characteristic $p>0$, and K_{p} be the compositum of all p-power Galois extensions of K. Then $\operatorname{Gal}\left(K_{p} / K\right)$ is a free pro-p group. The number of generators of this group is equal to the dimension of the $\mathbb{Z} / p \mathbb{Z}$-vector space $K / \wp(K)$, where $\wp(y)=y^{p}-y$.

Proof. See Proposition 30 in Chapter IV of [4].

Lemma 11. Let $K=k((t))$, where k is a field of characteristic $p>0$. The $\mathbb{Z} / p \mathbb{Z}$-vector space $K / \wp(K)$ is infinite dimensional.

Proof. The infinite set $\left\{t^{-n}+\wp(K): n>0\right.$ and $\left.p \nmid n\right\}$ is linearly independent in $K / \wp(K)$: Assume

$$
\alpha=c_{0} t^{-n_{0}}+\cdots+c_{s} t^{-n_{s}}=f^{p}-f \in \wp(K)
$$

where $c_{i} \in \mathbb{Z} / p \mathbb{Z},-n_{0}<\cdots<-n_{s}, c_{0} \neq 0$, and $p \nmid n_{i}$ for $i=0, \ldots, s$. We have $v(\alpha)=-n_{0}$ and so $v(f)$ must be <0. But then $v\left(f^{p}\right)<v(f)$ so $v\left(f^{p}-f\right)=v\left(f^{p}\right)=p v(f)$, a contradiction to $p \nmid n_{0}$.

Together, the last two lemmas show that the Galois group of K_{p} / K is a free pro- p group on an infinite number of generators.

Lemma 12. Let k be a field of characteristic $p>0$ and $K=k((t))$. Then every finite p-group G is the Galois group of a totally ramified extension of K.

Proof. Let G be a finite p-group of order p^{n}.
Suppose first that k is a finite field. Since K_{p} / K is Galois with Galois group a free pro-p group on an infinite number of generators, we can choose an extension F / K with Galois group isomorphic to $G \times G$. Let $G_{1}=G \times\{1\}$ and $G_{2}=\{1\} \times G$. If F_{i} is the fixed field of G_{i}, then F_{i} / K is a Galois extension with Galois group isomorphic to G. Let F^{\prime} be the maximal unramified extension of $k((t))$ in F. Then F^{\prime} / K is a cyclic extension of p-power order. Since $F_{1} \cap F_{2}=K$, it follows that at least one of F_{i} / K is totally ramified, as otherwise each F_{i} intersects F^{\prime} nontrivially, and so each F_{i} must contain the unique degree p extension of K in F^{\prime}, a contradiction. Hence we may assume that F_{1} / K is totally ramified with Galois group G.

Now suppose k is an arbitrary field of characteristic p. Let k_{0} be the prime subfield of k. So k_{0} is the finite field with p elements. Let $K_{0}=k_{0}((t))$. By the first paragraph K_{0} has a totally ramified Galois extension L_{0} / K_{0} with Galois group G. Since $L_{0} K / K$ is finite $L_{0} K$ is complete with respect to a real valuation which extends v. We'll call this valuation v as well, so all our fields are complete with respect to the appropriate restrictions of v.

We have

$$
\begin{aligned}
{\left[v\left(L_{0}^{\times}\right): v\left(K_{0}^{\times}\right)\right] } & =\left[L_{0}: K_{0}\right] \\
& \geqslant\left[L_{0} K: K\right] \\
& \geqslant\left[v\left(\left(L_{0} K\right)^{\times}\right): v\left(K^{\times}\right)\right] \\
& =\left[v\left(\left(L_{0} K\right)^{\times}\right): v\left(K_{0}^{\times}\right)\right] \\
& \geqslant\left[v\left(L_{0}^{\times}\right): v\left(K_{0}^{\times}\right)\right] .
\end{aligned}
$$

Thus we must have equality throughout. In particular we have

$$
\left[v\left(\left(L_{0} K\right)^{\times}\right): v\left(K^{\times}\right)\right]=\left[L_{0} K: K\right]=\left[L_{0}^{\times}: K_{0}^{\times}\right] .
$$

Thus $L_{0} K / K$ is totally ramified and $\operatorname{Gal}\left(L_{0} K / K\right) \cong \operatorname{Gal}\left(L_{0} / K_{0}\right)$ by the Theorem on Natural Irrationalities and the equality of the dimensions.

Proposition 13. For any finite p-group G and k a field of characteristic p there exists a unit $u \in \mathcal{U}_{1}$ such that $K / k\left(\left(u t^{p^{n}}\right)\right)$ is Galois with Galois group isomorphic to G.

Proof. Let G be a finite p-group of order p^{n}. By the lemma there exists a field extension E / K such that E / K is totally ramified and Galois with $\operatorname{Gal}(E / K)=G$. By the structure theorem of finite extensions of $K=k((t))$ we see that $E=k((s))$ for some $s \in E$. Since E and K are analytically k-isomorphic we see that K has a subfield L of codimension p^{n} such that $k \subseteq L, L$ is closed (and hence complete) in the t-adic topology on K, and K / L is a totally ramified Galois extension with $\operatorname{Gal}(K / L)=G$. Thus
$L=k((z))$ for some $z \in L$ and since K / L is totally ramified we have $v(z)=p^{n}$. Therefore $z=u t^{p^{n}}$ for some $u \in \mathcal{U}$. Since $k\left(\left(u t^{p^{n}}\right)\right)=k\left(\left(\lambda u t^{p^{n}}\right)\right)$ for any $\lambda \in k^{\times}$we can suppose $u \in \mathcal{U}_{1}$.

There are restrictions on the units $u \in \mathcal{U}$ such that $k((t)) / k\left(\left(u t^{p^{n}}\right)\right)$ is Galois extension:

Theorem 14. If k is a perfect field of characteristic $p_{p}>0$ and $k((t)) / L$ is a Galois extension of dimension p^{n}, then there exists $u \in \mathcal{U}_{(p-1) p^{n-1}}$ such that $L=k\left(\left(u t^{p^{n}}\right)\right)$.

Proof. Suppose $k((t)) / k\left(\left(u t^{p^{n}}\right)\right)$ is a finite Galois extension. Then $\left[k((t)): k\left(\left(u t^{p^{n}}\right)\right)\right]=p^{n}$ and thus G, the Galois group of this extension, is a finite p-group. Let us proceed by induction on n. For the base case, suppose $k((t)) / k\left(\left(u t^{p}\right)\right)$ is a finite Galois extension. Then we may write $k((t))=k\left(\left(u t^{p}\right)\right)(\alpha)$, where α is a root of the Artin-Schreier polynomial $X^{p}-X-f$, for some $f \in k\left(\left(u t^{p}\right)\right)$ with $v_{t}(f)=-m p$ and $\operatorname{gcd}(m, p)=1$. (See Proposition 11.17 in [5].) For notational convenience, write $y=u t^{p}$ and $f=\frac{c}{y^{m}}$ with $c \in k \llbracket y \rrbracket^{\times}$. Now

$$
\alpha^{p}-\alpha=\frac{c}{y^{m}} \Rightarrow \frac{1}{\alpha^{p}-\alpha}=c^{-1} y^{m}=\frac{\frac{1}{\alpha^{p}}}{1-\frac{1}{\alpha^{p-1}}}=\frac{1}{\alpha^{p}}\left(\frac{1}{1-\frac{1}{\alpha^{p-1}}}\right)
$$

Write $\beta=\frac{1}{\alpha}$ and we can rewrite as

$$
c^{-1} y^{m}=\beta^{p}\left(1+\beta^{p-1}+\beta^{2 p-2}+\cdots\right)
$$

Since $v_{t}(\beta)=m$ there exists $w \in \mathcal{U}$ such that $\beta=w t^{m}$. Then

$$
y^{m}=c\left(w t^{m}\right)^{p}\left(1+\left(w t^{m}\right)^{p-1}+\left(w t^{m}\right)^{2 p-2}+\cdots\right)
$$

and we may take m-th roots everywhere to get

$$
u t^{p}=y=c^{\frac{1}{m}} w^{\frac{p}{m}} t^{p}\left(1+\left(w t^{m}\right)^{p-1}+\left(w t^{m}\right)^{2 p-2}+\cdots\right)^{\frac{1}{m}}
$$

Thus $u \in k \llbracket u t^{p} \rrbracket^{\times} k \llbracket t^{p} \rrbracket^{\times} k \llbracket w t^{m(p-1)} \rrbracket^{\times}$and so $u \in 1+k \llbracket t \rrbracket t^{p-1}$.
Now for the inductive step. Suppose that $n>0$ is given, and that the result is true for $n-1$. G is a p-group, and so G contains a normal subgroup H of index p. Let E be the fixed field of H. Then $k((t)) / E$ is a Galois extension of degree p^{n-1} and $E / k\left(\left(u t^{p^{n}}\right)\right)$ is Galois of degree p. By the induction hypothesis, there exists a unit $u_{1} \in \mathcal{U}$ such that $v_{t}\left(u_{1}-1\right) \geqslant p^{n-2}(p-1)$ and $E=k\left(\left(u_{1} t^{p^{n-1}}\right)\right) . E / k\left(\left(u t^{p^{n}}\right)\right)$ is Galois of degree p, so there exists a unit $u_{2} \in k \llbracket u_{1} t^{p^{n-1}} \rrbracket$ such that $\frac{1}{p^{n-1}} v_{t}\left(u_{2}-1\right)>p-1$ and $k\left(\left(u t^{p^{n}}\right)\right)=k\left(\left(u_{2}\left(u_{1} t^{p^{n-1}}\right)^{p}\right)\right)$. Now $u_{2}\left(u_{1} t^{p^{n-1}}\right)^{p}=u_{2} u_{1}^{p} t^{p^{n}}$ and $v_{t}\left(u_{1}^{p}-1\right)=$ $p v_{t}\left(u_{1}-1\right) \geqslant p p^{n-2}(p-1)=p^{n-1}(p-1)$ and $v_{t}\left(u_{2}-1\right) \geqslant p^{n-1}(p-1)$. Thus $v_{t}\left(u_{2}\left(u_{1}\right)^{p}-1\right) \geqslant$ $p^{n-1}(p-1)$ and $u_{2} u_{1}^{p}$ is a unit in $k \llbracket t \rrbracket$. Note that the last inequality follows from the identity $a b-1=(a-1)(b-1)+(a-1)+(b-1)$. Thus we see that for any Galois extension $k((t)) / L$ of degree p^{n}, there exists some $u \in \mathcal{U}_{(p-1) p^{n-1}}$ such that $L=k\left(\left(u t^{p^{n}}\right)\right)$.

4. Extended depth

For $\alpha \in K$ we have $\alpha=\sum_{i=-\infty}^{\infty} a_{i} t^{i}$ where $a_{i} \in k$ and $a_{i}=0$ for all $i<N$ for some N depending on α. When convenient we will denote a_{i}, the i-th coefficient of α, by $[\alpha]_{i}$. The support of α is the set $\operatorname{Supp}(\alpha)=\left\{i:[\alpha]_{i} \neq 0\right\}$. We have, of course, $v(\alpha)=\inf (\operatorname{Supp}(\alpha))$.

In the study of $\operatorname{Aut}(K / k)$ the depth of a unit $u \in \mathcal{U}$ is defined to be $d(u)=v(u-u(0))$, where $u(0)$ is the nonzero zeroth coefficient of u. For $\sigma \in \operatorname{Aut}(K / k), d(\sigma)=d\left(u_{\sigma}\right)$, where $\sigma(t)=u_{\sigma} t$. In this work
we often consider $u_{1} t^{m_{1}} \in k\left(\left(u_{2} t^{m_{2}}\right)\right)$ for some $u_{1}, u_{2} \in \mathcal{U}$ and try to estimate the depth of u_{2} in terms of the depth of u_{1}. In order to get more precise relations, we introduce a related concept.

We define the extended depth of $\alpha \in K$ to be

$$
e(\alpha)=\inf (\operatorname{Supp}(\alpha)-p \mathbb{Z}) \in \mathbb{Z} \cup\{\infty\}
$$

Note that $e(\alpha)$ is either ∞ or an integer not divisible by p. Of course for any $\alpha \in \mathcal{U}$ we have $e(\alpha) \geqslant$ $d(\alpha)$ with equality if and only if $p \nmid d(\alpha)$. Similarly for $\sigma \in \mathcal{A}$ we define $e(\sigma)$ to be $e\left(u_{\sigma}\right)$ where $\sigma(t)=u_{\sigma} t$.

4.1. Extended depth of elements

The following lemma collects the basic properties of $e(\cdot)$ we will need.
Lemma 15. Let $\alpha, \beta \in K$.

1. $e(\alpha) \geqslant v(\alpha)$ with equality if and only if $p \nmid v(\alpha)$ or $\alpha=0$. (In particular e is continuous.)
2. $e(\alpha)=\infty$ if and only if $\left.\alpha \in k\left(t^{p}\right)\right)$. (Note $\left.K^{p} \subseteq k\left(t^{p}\right)\right)$.)
3. $e(\alpha+\beta) \geqslant \min (e(\alpha), e(\beta))$ with equality if $e(\alpha) \neq e(\beta)$.
4. If $\gamma \in k\left(\left(t^{p}\right)\right)$ then $e(\alpha+\gamma)=e(\alpha)$.
5. If $\gamma \in k\left(\left(t^{p}\right)\right)$ then $e(\alpha \gamma)=e(\alpha)+v(\gamma)$. (In particular if $u \in k \llbracket t^{p} \rrbracket^{\times}$then $e(\alpha u)=e(\alpha)$.)
6. α can be written as $\alpha_{0}+\gamma$ where $\alpha_{0} \in K, \gamma \in k\left(\left(t^{p}\right)\right)$, $e(\alpha)=v\left(\alpha_{0}\right)=e\left(\alpha_{0}\right)$, and $v(\alpha)=$ $\min \left(v\left(\alpha_{0}\right), v(\gamma)\right)$.

Proof. The proofs of 1 . through 5. follow immediately from the definition of e. As for 6 . we set $\alpha_{0}=\sum_{i=-\infty}^{\infty} c_{i} t^{i}$ and $\gamma=\sum_{i=-\infty}^{\infty} d_{i} t^{i}$ where

$$
c_{i}=\left\{\begin{array}{ll}
{[\alpha]_{i}} & \text { if } p \nmid i, \\
0 & \text { if } p \mid i
\end{array} \quad \text { and } \quad d_{i}= \begin{cases}0 & \text { if } p \nmid i, \\
{[\alpha]_{i}} & \text { if } p \mid i .\end{cases}\right.
$$

Then $\alpha=\alpha_{0}+\gamma$ and the rest follows.
Proposition 16. Suppose $\alpha, \beta \in \mathcal{U}$ and $e=\min (e(\alpha), e(\beta))<\infty$. Then

$$
[\alpha \beta]_{e}=[\alpha]_{e}[\beta]_{0}+[\beta]_{e}[\alpha]_{0} \quad \text { and } \quad e(\alpha \beta) \geqslant e
$$

with equality if and only if $[\alpha \beta]_{e} \neq 0$.
Proof. Without loss of generality $e(\alpha) \leqslant e(\beta)$. So $e(\alpha)=e<\infty$ and $\alpha=a t^{e}+r_{1}+\gamma_{1}$ where $a=$ $[\alpha]_{e} \neq 0, v\left(r_{1}\right)>e$, and $\gamma_{1} \in k\left(\left(t^{p}\right)\right)$.

If $e(\beta)=\infty$ then $\beta \in k\left(\left(t^{p}\right)\right.$) so $\alpha \beta=a \beta t^{e}+r_{1} \beta+\gamma_{1} \beta$ where $v\left(r_{1} \beta\right)=v\left(r_{1}\right)>e$ and $[\alpha \beta]_{e}=$ $[\alpha]_{e}[\beta]_{0}+[\beta]_{e}[\alpha]_{0} \neq 0$ as $[\beta]_{e}=0$.

Now suppose $e(\beta)<\infty$. Then $\beta=b t^{f}+r_{2}+\gamma_{2}$ where $f=e(\beta), b=[\beta]_{f} \neq 0, v\left(r_{2}\right)>f$, and $\gamma_{2} \in k\left(\left(t^{p}\right)\right)$. So

$$
\begin{aligned}
\alpha \beta & \equiv\left(a t^{e}+\gamma_{1}\right)\left(b t^{f}+\gamma_{2}\right) \bmod t^{e+1} \\
& \equiv a b t^{e+f}+a \gamma_{2} t^{e}+b \gamma_{1} t^{f}+\gamma_{1} \gamma_{2} \bmod t^{e+1} \\
& \equiv a[\beta]_{0} t^{e}+b[\alpha]_{0} t^{f}+\gamma_{1} \gamma_{2} \quad \bmod t^{e+1}
\end{aligned}
$$

remembering that $[\alpha]_{0}=\left[\gamma_{1}\right]_{0}$ and $[\beta]_{0}=\left[\gamma_{2}\right]_{0}$ as $\alpha, \beta \in \mathcal{U}$. Thus if $e=f$ we have $[\alpha \beta]_{e}=[\alpha]_{e}[\beta]_{0}+$ $[\beta]_{e}[\alpha]_{0}$, and if $e<f$ we have $[\alpha \beta]_{e}=[\alpha]_{e}[\beta]_{0}=[\alpha]_{e}[\beta]_{0}+[\beta]_{e}[\alpha]_{0}$ as $[\beta]_{e}=0$. In either case $e(\alpha \beta) \geqslant e$ and the result follows.

Corollary 17. If $\alpha \in \mathcal{U}$ and $e=e(\alpha)<\infty$ then

$$
\left[\alpha^{m}\right]_{e}=m[\alpha]_{0}^{m-1}[\alpha]_{e} \quad \text { and } \quad e\left(\alpha^{m}\right) \geqslant e
$$

with equality if and only if $p \nmid m$.

Theorem 18. Suppose $u, w \in \mathcal{U}$ are such that $e(u)<\infty$ and $u t^{p^{a}} \in k\left(\left(w t^{p^{b}}\right)\right)$ for some $a \geqslant b \geqslant 1$. Then

$$
e(u)= \begin{cases}e(w) & \text { if } a=b \\ e(w)+m p^{b} & \text { if } a>b\end{cases}
$$

for some $m \geqslant 1, p \nmid m$. In particular, we have $e(w) \leqslant e(u)$.

Proof. Since $u t^{p^{a}} \in k\left(\left(w t^{p^{b}}\right)\right)$ we have $u t^{p^{a}} \in k \llbracket w t^{p^{b}} \rrbracket$ as $u t^{p^{a}}$ has positive valuation. So $u t^{p^{a}}=$ $\sum_{i=0}^{\infty} c_{i}\left(w t^{p^{b}}\right)^{i}$ where $c_{i} \in k$. By valuation again $c_{i}=0$ for all $0 \leqslant i<p^{a-b}$ and $c_{p^{a-b}} \neq 0$. Thus

$$
u t^{p^{a}}=\sum_{i=p^{a-b}}^{\infty} c_{i}\left(w t^{p^{b}}\right)^{i}=\sum_{j=0}^{\infty} \tilde{c}_{j} w^{p^{a-b}+j} t^{p^{a}+j p^{b}}
$$

where $\tilde{c}_{0} \neq 0$ and so

$$
u=\sum_{j=0}^{\infty} \tilde{c}_{j} w^{p^{a-b}+j} t^{j p^{b}}
$$

If $a-b>0$ we have

$$
\begin{aligned}
e\left(\tilde{c}_{j} w^{p^{a-b}+j} t^{j p^{b}}\right) & =e\left(w^{j}\right)+v\left(\tilde{c}_{j} w^{p^{a-b}} t^{j p^{b}}\right) \\
& =e\left(w^{j}\right)+v\left(\tilde{c}_{j}\right)+j p^{b} \\
& = \begin{cases}e(w)+j p^{b} & \text { if } p \nmid j \text { and } \tilde{c}_{j} \neq 0 \\
\infty & \text { otherwise. }\end{cases}
\end{aligned}
$$

Since $e(u)<\infty$ we must have $p \nmid j$ and $\tilde{c}_{j} \neq 0$ for at least one j and since for these indices the e-values are distinct we have $e(u)=e(w)+j p^{b}$ for the least j such that $p \nmid j$ and $\tilde{c}_{j} \neq 0$.

If $a-b=0$ we have

$$
\begin{aligned}
e\left(\tilde{c}_{j} w^{1+j} t^{j p^{b}}\right) & =e\left(w^{1+j}\right)+v\left(\tilde{c}_{j} t^{j p^{b}}\right) \\
& =e\left(w^{1+j}\right)+v\left(\tilde{c}_{j}\right)+j p^{b} \\
& = \begin{cases}e(w)+j p^{b} & \text { if } p \nmid(1+j) \text { and } \tilde{c}_{j} \neq 0, \\
\infty & \text { otherwise. }\end{cases}
\end{aligned}
$$

Since for $j=0$ we have $p \nmid(1+j)$ and $\tilde{c}_{j} \neq 0$ and since the finite e-values are distinct with their minimum occurring when $j=0$ we have $e(u)=e(w)$.

Corollary 19. If k is perfect and $K / k\left(\left(u t t^{n}\right)\right)$ is Galois then

$$
e(u) \geqslant(p-1) p^{n-1}
$$

Proof. By Theorem 14 there exists a unit $u_{0} \in \mathcal{U}_{(p-1) p^{n-1}}$ such that $k\left(\left(u t^{p^{n}}\right)\right)=k\left(\left(u_{0} t^{p^{n}}\right)\right)$. Now $e\left(u_{0}\right) \geqslant$ $(p-1) p^{n-1}$ and by Theorem 18 we have $e(u)=e\left(u_{0}\right)$.

4.2. Extended depth of automorphisms

We first note that for all $\sigma \in \mathcal{A}_{1}$ we have $\left[u_{\sigma}\right]_{0}=1$.
Lemma 20. Let $\alpha \in K$ and $\sigma, \tau \in \mathcal{A}$.

1. $e\left(\alpha^{\sigma}\right)=e(\alpha)$.
2. If $e=e(\alpha)<\infty$ then $\left[\alpha^{\sigma}\right]_{e}=\left[u_{\sigma}\right]_{0}^{e}[\alpha]_{e}$.

Proof. For 1 . we write $\alpha=\alpha_{0}+\gamma$ where $\alpha_{0} \in K, \gamma \in k\left(\left(t^{p}\right)\right)$, and $e(\alpha)=v\left(\alpha_{0}\right)$. Now $\alpha^{\sigma}=\alpha_{0}^{\sigma}+\gamma^{\sigma}$ and since $\gamma^{\sigma} \in k\left(\left(t^{p}\right)\right.$) we have $e\left(\alpha^{\sigma}\right)=e\left(\alpha_{0}^{\sigma}\right)$. Since $v\left(\alpha_{0}^{\sigma}\right)=v\left(\alpha_{0}\right)=e(\alpha)$ is not divisible by p we have $e\left(\alpha_{0}^{\sigma}\right)=v\left(\alpha_{0}^{\sigma}\right)$ and thus $e\left(\alpha^{\sigma}\right)=e(\alpha)$.

For 2. we write $\alpha=[\alpha]_{e} t^{e}+t^{e+1} f+\gamma$ where $f \in k \llbracket t \rrbracket$ and $\gamma \in k\left(\left(t^{p}\right)\right)$. Then $\alpha^{\sigma}=[\alpha]_{e}\left(u_{\sigma} t\right)^{e}+$ $t^{e+1} g+\gamma^{\sigma}$ where $g \in k \llbracket \llbracket \rrbracket$. Thus $\alpha^{\sigma}=[\alpha]_{e}\left[u_{\sigma}\right]_{0}^{e} t^{e}+t^{e+1} h+\gamma^{\sigma}$ where $h \in k \llbracket t \rrbracket$ and the result follows.

Proposition 21. If $\sigma \in \mathcal{A}_{1}$ and $e=e(\sigma)<\infty$ then

$$
\left[u_{\sigma^{m}}\right]_{e}=m\left[u_{\sigma}\right]_{e} \text { and } e\left(\sigma^{m}\right) \geqslant e
$$

with equality if and only if $p \nmid m$.
Proof. The result is trivial if $m=1$. Now suppose we have $\left[u_{\sigma^{m}}\right]_{e}=m\left[u_{\sigma}\right]_{e}$ and $e\left(\sigma^{m}\right) \geqslant e$ with equality if and only if $p \nmid m$. We have $u_{\sigma^{m+1}}=u_{\sigma}^{\sigma^{m}} u_{\sigma}$ and so, by Proposition 16, we have

$$
\begin{aligned}
{\left[u_{\sigma^{m+1}}\right]_{e} } & =\left[u_{\sigma}^{\sigma^{m}} u_{\sigma}\right]_{e} \\
& =\left[u_{\sigma}^{\sigma^{m}}\right]_{e}\left[u_{\sigma}\right]_{0}+\left[u_{\sigma}\right]_{e}\left[u_{\sigma}^{\sigma^{m}}\right]_{0} \\
& =m\left[u_{\sigma}\right]_{e} 1+\left[u_{\sigma}\right]_{e} 1 \\
& =(m+1)\left[u_{\sigma}\right]_{e}
\end{aligned}
$$

and

$$
e\left(u_{\sigma^{m+1}}\right)=e\left(u_{\sigma}^{\sigma^{m}} u_{\sigma}\right) \geqslant e
$$

with equality if and only if $\left[u_{\sigma^{m+1}}\right]_{e} \neq 0$ if and only if $p \nmid m+1$.
We define the canonical unit of a totally ramified Galois extension as follows: Suppose K / L is Galois and totally ramified with Galois group G of order n. Then $N_{K / L}(t)=\prod_{\sigma \in G} \sigma(t)$ has valuation n. Thus $N_{K / L}(t)=u_{L} t^{n}$ for some unit u_{L}. Note that $u_{L}=\prod_{\sigma \in G} u_{\sigma}$. We call this u_{L} the canonical unit for K / L. Since $k\left(\left(u_{L} t^{n}\right)\right) \subseteq L$ and both have codimension n in K, we have $L=k\left(\left(u_{L} t^{n}\right)\right)$.

Theorem 22. Suppose $K / k\left(\left(u t^{p^{n}}\right)\right)$ is Galois with Galois group G. Then $e(\sigma) \leqslant e(u)$ for all $\sigma \in G, \sigma \neq \operatorname{id}_{K}$.
Proof. Let $\sigma \in G, \sigma \neq \mathrm{id}_{K}$. Suppose σ has order p^{e} with $e \geqslant 2$. Since $\sigma^{p^{e-1}}$ has order p and $e(\sigma)<$ $e\left(\sigma^{p^{e-1}}\right)$, it suffices to prove the result when σ has order p.

Let $\sigma \in G$ have order p. Let $e=e(\sigma)$. Let L be the fixed field of σ. Then $[K: L]=p$ so $L=k\left(\left(u_{L} t^{p}\right)\right)$ where u_{L} is the canonical unit for K / L. We have $u_{L}=1 u_{\sigma} \cdots u_{\sigma}{ }^{p-1}$ and thus $e\left(u_{L}\right) \geqslant$ $\min \left(e\left(u_{\sigma}\right), \ldots, e\left(u_{\sigma^{p-1}}\right)\right)=e$ as $e=e\left(u_{\sigma}\right)=\cdots=e\left(u_{\sigma^{p-1}}\right)$. Finally $e(u) \geqslant e\left(u_{L}\right)$ by Theorem 18 of the last section. Thus $e \leqslant e\left(u_{L}\right) \leqslant e(u)$ as desired.

5. Canonical units of Galois extensions

We are now able to prove a theorem about the relationship between Galois extensions and their canonical units. We need two lemmas.

Lemma 23. Let $k((t)) / k\left(\left(u t^{p^{n}}\right)\right)$ be a finite Galois extension with Galois group G. Suppose that $\left\{d(\sigma) \mid \mathrm{id}_{K} \neq\right.$ $\sigma \in G\}$ is bounded above by N. Then the map

$$
G \longrightarrow \operatorname{Aut}\left(k \llbracket t \rrbracket /\left(t^{N+1}\right)\right) \quad \text { given by } \sigma \mapsto \sigma^{[N]}
$$

is an embedding. In particular, if $N>e(u)$ the above map is an embedding.

Proof. As in Section 2, the map $G \rightarrow \operatorname{Aut}\left(R_{N}\right)$ given by $\sigma \mapsto \sigma^{[N]}$ is a group homomorphism. We have $\sigma^{[N]}=\mathrm{id}_{R_{N}}$ if and only if $u_{\sigma} t \equiv t \bmod t^{N+1}$ if and only if $v\left(u_{\sigma}-1\right) \geqslant N$ if and only if $d(\sigma) \geqslant N$. Thus if $N>d(\sigma)$ for all $\sigma \neq \mathrm{id}_{K}$, our map is an embedding.

Finally, if $N>e(u)$ then $N>e(\sigma) \geqslant d(\sigma)$ for all $\sigma \neq \mathrm{id}_{K}$ by Theorem 22 and our result follows.

Lemma 24. If $f, g \in \operatorname{Aut}(K / k)$ satisfy $v(f(t)-g(t))>m$ then

$$
v(f(r t)-g(r t))>m+v(r)
$$

for any $r \in k \llbracket t \rrbracket$. In particular, if $h \in \operatorname{Aut}(K / k)$ as well we have

$$
v(f(h(t))-g(h(t)))>m
$$

Proof. We have $f\left(t t^{n}\right)-g\left(t t^{n}\right)=f(t)^{n+1}-g(t)^{n+1}=(f(t)-g(t)) z$ where $z=\sum_{i=0}^{n} f(t)^{n-i} g(t)^{i}$. Since f, g are continuous we have $v(f(t))=v(g(t))=1$ and so $v(z) \geqslant n$. Thus $v\left(f\left(t t^{n}\right)-g\left(t t^{n}\right)\right)>m+n$.

Now $r=a_{0}+a_{1} t+a_{2} t^{2}+\cdots \in k \llbracket t \rrbracket$ and so

$$
f(r t)-g(r t)=a_{0}(f(t)-g(t))+a_{1}(f(t t)-g(t t))+a_{2}\left(f\left(t t^{2}\right)-g\left(t t^{2}\right)\right)+\cdots
$$

and the result follows.

Theorem 25. Let $L_{1}=k\left(\left(u_{1} t^{p^{n}}\right)\right)$ and $L_{2}=k\left(\left(u_{2} t^{p^{n}}\right)\right)$ be such that both K / L_{1} and K / L_{2} are Galois with Galois groups G_{1} and G_{2} respectively.

If $v\left(u_{1}-u_{2}\right)>\left(e\left(u_{1}\right)+1\right) p^{n}$ then $G_{1} \cong G_{2}$.
Proof. Let $N=v\left(u_{1}-u_{2}\right)>\left(e\left(u_{1}\right)+1\right) p^{n}$. Let $R_{N}=k \llbracket t \rrbracket /\left(t^{N+1}\right)$ and let S be the image of $k \llbracket u_{1} t^{p^{n}} \rrbracket$ in R_{N}. Since $N>e\left(u_{1}\right)$ we have $G_{1} \hookrightarrow \overline{G_{1}} \leqslant \operatorname{Aut}_{k}\left(R_{N}\right)$ by Lemma 23. And since $v\left(u_{1}-u_{2}\right)=N>e\left(u_{1}\right)$ we have $e\left(u_{1}\right)=e\left(u_{2}\right)$ and so $G_{2} \hookrightarrow \overline{G_{2}} \leqslant \operatorname{Aut}_{k}\left(R_{N}\right)$ as well. Since $u_{1} \equiv u_{2} \bmod t^{N}$ we have $u_{1} t^{p^{n}} \equiv$ $u_{2} t p^{n} \bmod t^{N+1}$. Hence $\overline{G_{2}}$ fixes the elements of S because G_{2} fixes the elements of $L_{2}=k\left(\left(u_{2} t p^{n}\right)\right)$.

Let $f=\prod_{\rho \in G_{1}}(X-\rho(t))$. We see that f has degree p^{n} and coefficients in $k \llbracket u_{1} t^{p^{n}} \rrbracket$. Let $M=$ $\max \left\{v(\rho(t)-\mu(t)): \rho, \mu \in G_{1}, \rho \neq \mu\right\}$. We have $M>0$. Since $v(\rho(t)-\mu(t))=v\left(\left(\mu^{-1} \rho\right)(t)-t\right)$ we have $M=\max \left\{v(\rho(t)-t): \rho \in G_{1}, \rho \neq \operatorname{id}_{G_{1}}\right\}$. Finally since $\rho(t)-t=\left(u_{\rho}-1\right) t$ we have $v(\rho(t)-t) \leqslant$ $e(\rho)+1 \leqslant e\left(u_{1}\right)+1$ for $\rho \neq \operatorname{id}_{G_{1}}$ by Theorem 22 . Thus $M \leqslant e\left(u_{1}\right)+1$.

Now for any $\sigma \in G_{2}$ we have

$$
f(\sigma(t)) \equiv \sigma(f(t)) \equiv \sigma(0) \equiv 0 \quad \bmod t^{N+1}
$$

and therefore

$$
\sum_{\rho \in G_{1}} v(\sigma(t)-\rho(t))=v\left(\prod_{\rho \in G_{1}}(\sigma(t)-\rho(t))\right)>N
$$

Since $N>\left(e\left(u_{1}\right)+1\right) p^{n}$ we have $v(\sigma(t)-\rho(t))>e\left(u_{1}\right)+1 \geqslant M$ for at least one $\rho \in G_{1}$ and since $M=\max \left\{v(\rho(t)-\mu(t)): \rho, \mu \in G_{1}, \rho \neq \mu\right\}$ this ρ is unique. That is, for each $\sigma \in G_{2}$ there is a unique $\tilde{\sigma} \in G_{1}$ such that $v(\sigma(t)-\tilde{\sigma}(t))>e\left(u_{1}\right)+1$.

We have

$$
\sigma \tau(t)-\tilde{\sigma} \tilde{\tau}(t)=[\sigma \tau(t)-\tilde{\sigma} \tau(t)]+[\tilde{\sigma} \tau(t)-\tilde{\sigma} \tilde{\tau}(t)] .
$$

Since $\tau(t)=u_{\tau} t$ and $v(\sigma(t)-\tilde{\sigma}(t))>e\left(u_{1}\right)+1$ we have $v(\sigma \tau(t)-\tilde{\sigma} \tau(t))>e\left(u_{1}\right)+1$ by Lemma 24. Since $\tilde{\sigma}$ is continuous and $v(\tau(t)-\tilde{\tau}(t))>e\left(u_{1}\right)+1$ we have $v(\tilde{\sigma} \tau(t)-\tilde{\sigma} \tilde{\tau}(t))>e\left(u_{1}\right)+1$ as well. Thus $v(\sigma \tau(t)-\tilde{\sigma} \tilde{\tau}(t))>e\left(u_{1}\right)+1$ and $\tilde{\sigma} \tilde{\tau} \in G_{1}$ so $\widetilde{\sigma} \tau=\tilde{\sigma} \tilde{\tau}$.

Thus the map $G_{2} \rightarrow G_{1}$ given by $\sigma \mapsto \tilde{\sigma}$ is a group homomorphism. Now $\tilde{\sigma}=\mathrm{id}_{G_{1}}$ implies $v(\sigma(t)-t)>e\left(u_{1}\right)+1$. Since $e(\sigma)+1 \geqslant v(\sigma(t)-t)$ we have $e(\sigma)>e\left(u_{1}\right)$ and therefore $\sigma=\operatorname{id}_{G_{2}}$ by Theorem 22. Hence $G_{2} \rightarrow G_{1}$ given by $\sigma \mapsto \tilde{\sigma}$ is an injective group homomorphism between two groups of order p^{n}, so $G_{1} \cong G_{2}$.

Corollary 26. If $K / k\left(\left(u t^{p^{n}}\right)\right.$) is Galois then the Galois group is determined by the first $(e(u)+1) p^{n}$ terms of u.

6. An example

Again k is a field of characteristic $p \geqslant 0$ and $K=k((t))$.
For each $\lambda \in k$ we define $\phi_{\lambda}: K \rightarrow K$ given by $t \mapsto \frac{1}{1+\lambda t} t$. So $\phi_{\lambda} \in \mathcal{A}_{1}$ for each $\lambda \in k$. An easy calculation shows that $\phi_{\lambda_{1}} \circ \phi_{\lambda_{2}}=\phi_{\lambda_{1}+\lambda_{2}}$. Therefore $k^{+} \rightarrow \mathcal{A}_{1}$ given by $\lambda \mapsto \phi_{\lambda}$ is a group embedding. Thus if $p>0$ we have a family of convenient elements of order p.

Unfortunately these are the only easily described elements of finite order in \mathcal{A}_{1} : Suppose $\phi \in \mathcal{A}_{1}$ has order d and is given by $t \mapsto \frac{f}{g} t$ where $f, g \in k[t]$. Then $k(t) \supseteq k(\phi(t)) \supseteq \cdots \supseteq k\left(\phi^{d}(t)\right)=k(t)$ and so $k(t)=k(\phi(t))=k\left(\frac{f t}{g}\right)$. Thus $1=\left[k(t): k\left(\frac{f t}{g}\right)\right]=\max (\operatorname{deg}(f t), \operatorname{deg}(g))$. It follows that $\operatorname{deg}(f)=0$ and $\operatorname{deg}(g) \leqslant 1$. Since $\phi \in \mathcal{A}_{1}$ we have $\phi(t)=\frac{1}{1+\lambda t} t$ for some $\lambda \in k$.

Now suppose $p>0$ and $\lambda \in k^{\star}$. So ϕ_{λ} has order p. Let L be the fixed field of $\left\langle\phi_{\lambda}\right\rangle$. Then $L=$ $k\left(\left(u t^{p}\right)\right)$ where

$$
u t^{p}=N_{K / L}(t)=\prod_{i=0}^{p-1} \phi^{i}(t)=\prod_{i=0}^{p-1} \frac{1}{1+i \lambda t} t=\left(\prod_{i=1}^{p-1}(1+i \lambda t)\right)^{-1} t^{p} .
$$

Now $\prod_{i=1}^{p-1}(1+i \lambda t)=\prod_{i=1}^{p-1} i\left(\lambda t+\frac{1}{i}\right)=-\left(\lambda^{p-1} t^{p-1}-1\right)$ by Wilson's theorem and the identity $X^{p-1}-$ $1=\prod_{j=1}^{p-1}(X-j)$. Thus

$$
u=\frac{1}{1-\lambda^{p-1} t^{p-1}}
$$

is the canonical unit for a Galois K / L with Galois group cyclic of order p. Similarly but more tediously, if k has at least p^{n} elements we could construct the canonical unit for a Galois K / L with Galois group elementary abelian of order p^{n}.

7. Some questions

We have provided a few examples of the relations between the Galois group of $k((t)) / k\left(\left(u t^{p^{n}}\right)\right)$ and the structure of the unit u. There are many questions which remain. For example:

1. How easily can one determine interesting information about G directly from the coefficients of u ? Is there a way of seeing when G is cyclic, abelian, etc.?
2. Conversely, can one begin with a p-group G and construct the sequence of coefficients of u ?

References

[1] R. Camina, Subgroups of the Nottingham group, J. Algebra 196 (1997) 101-113.
[2] D.L. Johnson, The group of formal power series under substitution, J. Aust. Math. Soc. (Ser. A) 45 (1988) 296-302.
[3] A. Bevelacqua, M. Motley, Finite codimension subfields of a field complete with respect to a real valuation, Comm. Algebra 34 (1) (2006) 335-345.
[4] S. Shatz, Profinite Groups, Arithmetic, and Geometry, Ann. of Math. Stud., Princeton University Press, 1972.
[5] D. Bump, Algebraic Geometry, World Scientific Publishing, 1998.

[^0]: * Corresponding author.

 E-mail addresses: anthony.bevelacqua@email.und.edu (A.J. Bevelacqua), mmotley@ms.uky.edu (M. Motley).

