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Let k be a field of characteristic p > 0 and let K = k((t)) be
the field of Laurent series over k. For each group G of order pn

there exist units u ∈ k�t� such that K/k((ut pn
)) is Galois with

Gal(K/k((ut pn
))) ∼= G . We explore the connections between G

and u. Among other results, we prove that if both K/k((u1t pn
))

and K/k((u2t pn
)) are Galois and u1 and u2 are sufficiently close in

the t-adic topology, then Gal(K/k((u1t pn
))) ∼= Gal(K/k((u2t pn

))).
© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let k be a field of characteristic p � 0 and let K = k((t)) be the field of Laurent series over k.
Let vt (or even just v) be the t-adic valuation on K/k. Set U = k�t �× and A = Aut(K/k). We will
show that if L ⊆ K is a subfield with K/L a finite Galois extension, then either G is cyclic when
p = 0 or G = Gal(K/L) is an extension of a p-group by a cyclic group with order prime to p when
p > 0. Given this, it is natural to try to investigate the situation when p > 0 and Gal(K/L) is a finite
p-group.

Let G be a finite p-group of order pn . Then for any field k of characteristic p > 0 there exists a
totally ramified Galois extension E/K with Gal(E/K ) ∼= G . Since E is complete with respect to the
unique extension of v to E , E = k((s)) for some s ∈ E by the structure theory of such fields. Now
K and E are analytically isomorphic so there exists L = k((ut pn

)) ⊆ K such that K/L is Galois of de-
gree pn with G ∼= Gal(K/L). We want to understand how information about G = Gal(K/k((ut pn

))) can
be determined from u. We will show, among other things, that if L1 = k((u1t pn

)) and L2 = k((u2t pn
))

are subfields of K such that K/L1 and K/L2 are Galois then there exists an integer N (depending
on u1) so that if v(u1 − u2) > N then Gal(K/L1) ∼= Gal(K/L2).
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2. Structure of Aut(k((t))/k)

Let k((t))/k((x)) be a finite Galois extension with Galois group G . We first determine the possible
Galois groups which can occur. We will see that, when the characteristic of k is p > 0, the most
interesting Galois groups which occur are p-groups.

We know that v(σ (α)) = v(α) for all σ ∈ A and for all α ∈ K . It follows that v(
σ (α)

α ) = 0 for all

α ∈ K × . So for each α ∈ K × we define φα : A → U by σ �→ σ(α)
α .

Proposition 1. Let α ∈ K × . Then φα is a crossed homomorphism (or derivation or 1-cocycle) A → U . It is
principal (or inner or 1-coboundary) if and only if α ∈ U .

Proof. φα is a crossed homomorphism:

φα(στ ) = στ(α)

α

= σ(α)

α

στ(α)

σ (α)

= σ(α)

α

(
τ (α)

α

)σ

= φα(σ )φα(τ )σ .

If α ∈ U then, by definition, φα is principal. Now suppose φα is a principal crossed homomorphism.
Then there exists a u ∈ U such that φα(σ ) = σ(u)

u for all σ ∈ A. That is σ(α)
α = σ(u)

u and so σ(α
u ) = α

u
for all σ ∈ A. Therefore α

u ∈ (K ×)A = k× and so α ∈ k×U = U . �
In particular φt gives a nontrivial element of H1(A, U ). We also note that φt is bijective because

for any u ∈ U there exists a σ ∈ A with σ(t) = ut . From now on we will denote φt(σ ) by uσ . Thus
σ(t) = uσ t and uστ = uσ uσ

τ for all σ ,τ ∈ A.
For any n � 0 and σ ∈ A we have (tn+1)σ = (tn+1) and thus σ induces an automorphism of

Rn = k�t �/(tn+1) which we’ll denote by σ [n] . If σ ,τ ∈ A we have (στ )[n] = σ [n]τ [n] and thus hn : A →
Autk(Rn) given by σ �→ σ [n] is a group homomorphism. We define An = ker hn . Note that A0 = A.

Proposition 2. We have σ ∈ An if and only if vt(uσ − 1) � n.

Proof. Since σ fixes the elements of k we have σ ∈ An if and only if uσ t + (tn+1) = σ [n](t + (tn+1)) =
t + (tn+1) iff uσ t − t ∈ (tn+1) iff uσ − 1 ∈ (tn) iff vt(uσ − 1) � n. �

It’s now clear that A = A0 ⊇ A1 ⊇ A2 ⊇ · · · is a chain of normal subgroups of A and
⋂∞

n=0 An =
{idK }.

In [1] Camina studies A for k = Fp , the finite field with p elements. In particular our A1 is her J .
In [2] Johnson studies t + t2 R �t � for an arbitrary commutative ring with identity R as the group of
formal power series under substitution. This is essentially the group A1 when R = k is a field.

Proposition 3. A/A1 ∼= k× .

Proof. For any u = a0 + a1t + · · · ∈ U and any σ ∈ A we have uσ = a0 + a1tσ + · · · and so u ≡
uσ mod t . So uστ = uσ uσ

τ ≡ uσ uτ mod t . Thus the map σ �→ uσ mod t is an epimorphism with
kernel A1. �
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In fact, the exact sequence 1 → A1 → A → k× → 1 splits. Let B = {σ ∈ A | uσ ∈ k×}. Clearly B is
a subgroup of A, B ∼= k× , and A = A1 � B.

We now focus our attention on A1. It will be convenient to introduce the standard filtration of U :
define U0 = U and for each n � 1 define Un = 1 + tnk�t �. By an earlier result we have σ ∈ An if and
only if uσ ∈ Un .

Lemma 4. If u ∈ Un and σ ∈ A1 , then uσ ≡ u mod tn+1 .

Proof. We have u ≡ 1 + antn mod tn+1 and uσ = 1 + λ1t + · · · and so

uσ ≡ 1 + an(1 + λ1t + · · ·)ntn mod tn+1

≡ 1 + antn mod tn+1

≡ u mod tn+1. �
We will use the following identity repeatedly

uστ − 1 = uσ uσ
τ − 1

= (uσ − 1) + (
uσ

τ − 1
) + (uσ − 1)

(
uσ

τ − 1
)

= (uσ − 1) + (uτ − 1)σ + (uσ − 1)(uτ − 1)σ .

Proposition 5. An/An+1 ∼= k+ for all n � 1.

Proof. For any σ ∈ An we have vt(uσ − 1) � n and so vt(
uσ −1

tn ) � 0. Thus we can define f : An → k+

by σ �→ uσ −1
tn mod t . For any σ ,τ ∈ An we have

f (στ ) = uστ − 1

tn
mod t

≡ uσ − 1

tn
+ (uτ − 1)σ

tn
+ uσ − 1

tn
(uτ − 1)σ mod t

≡ uσ − 1

tn
+ uτ − 1

tn
mod t

= f (σ ) + f (τ ).

f is surjective because there exists a σ ∈ An with uσ = 1 + λtn for any λ ∈ k and ker f is An+1.
Therefore An/An+1 ∼= k+ . �
Proposition 6. If σ ∈ Ad and n ∈ Z we have

uσ n − 1 ≡ n(uσ − 1) mod td+1.

Proof. For n � 1 we proceed by induction. The statement is clearly true for n = 1; suppose it’s true
for n. Consider

uσ n+1 − 1 = uσ nσ − 1

= (uσ n − 1) + (uσ − 1)σ
n + (uσ n − 1)(uσ − 1)σ

n
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≡ (uσ n − 1) + (uσ − 1) mod td+1

≡ n(uσ − 1) + (uσ − 1) mod td+1

≡ (n + 1)(uσ − 1) mod td+1.

For n = 0 the statement is trivial because we have uσ 0 = uidK = 1.
For n = −1 we have

0 = uidK − 1

= (uσσ−1 − 1)

≡ (uσ − 1) + (uσ−1 − 1) mod td+1

and so (uσ−1 − 1) ≡ −(uσ − 1) mod td+1. Since σ−1 ∈ An the result now follows from the first
paragraph. �
Corollary 7. If k has characteristic 0, A1 is torsion-free. If k has characteristic p > 0, the torsion elements
of A1 have p-power order.

Proof. Let σ ∈ A1 with σ �= idK . Then σ ∈ Ad − Ad+1 for some d � 1. Thus uσ −1 ≡ λtd mod td+1 for
some λ ∈ k× . We then have uσn − 1 ≡ n(uσ − 1) mod td+1 for all n. Thus we have uσn −1

td ≡ n uσ −1
td ≡

nλ mod t for all n.
So if the characteristic of k is 0, uσn −1

td �≡ 0 mod t for all n � 1 and therefore uσn �= 1 for all n � 1.
Thus σ is not torsion.

If the characteristic of k is p > 0 and τ has order n = mpe for some m with p � m and e � 0,

then σ = τ pe
has order m. If m �= 1 (that is, σ �= idK ) we have 0 = uσm −1

td ≡ mλ mod t by the first
paragraph and therefore p|m. This contradiction shows m = 1. �

The above proposition and corollary are found, with their notation and emphasis, in [2].

Proposition 8. Let G be a finite subgroup of A. Then:

1. If k has characteristic 0, G is cyclic of order s where s is the order of some root of unity in k and G ∩ A1 =
{idK }.

2. If k has characteristic p > 0, G/G ∩ A1 is cyclic of order s where s is the order of some root of unity in k
and G ∩ A1 is the p-Sylow subgroup of G.

In either case, G is solvable.

Proof. We have G ↪→ A → A/A1 ∼= k× and so G/G ∩ A1 is isomorphic to a subgroup of k× . Since
G/G ∩ A1 is finite and finite subgroups of k× are generated by a root of unity, G/G ∩ A1 is cyclic of
order s where s is the order of a root of unity in k.

If k has characteristic 0, G ∩ A1 = {idK } because A1 is torsion-free.
If k has characteristic p > 0, G ∩ A1 has p-power order as the torsion elements of A1 have

p-power order. Since [G : G ∩ A1] = s is the order of a root of unity in k, p � s. Thus G ∩ A1 is
the p-Sylow subgroup of G .

In either case, G/G ∩ A1 is cyclic and G ∩ A1 is nilpotent; thus G is solvable. �
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3. Totally ramified extensions and subfields

We begin with a lemma which confirms that the codimension of k((uts)) in K is s. The converse
of this statement is usually true: if k is a field either of characteristic 0 or of characteristic p > 0 and
[k : kp] is finite then every subfield of K of codimension s is of the form k((uts)) for some unit u. For
this result see [3].

Lemma 9. Let k be any field, s > 1, and u ∈ U . Then [k((t)) : k((uts))] = s.

Proof. Let K = k((t)) and L = k((uts)). For notational convenience, set π = uts , and R = k�t �. Now
π R = ts R , so R/π R ∼= k[t]/tsk[t] has a k-basis 1, t, t2, . . . , ts−1. We prove by induction on n that there
exist λi, j for i = 0,1, . . . , s − 1 and for all j � 0 such that

ts ≡
(

n∑
j=0

λ0, jπ
j

)
1 +

(
n∑

j=0

λ1, jπ
j

)
t + · · · +

(
n∑

j=0

λs−1, jπ
j

)
ts−1 mod πn+1.

This is true for n = 0 since

ts ≡ λ0,0 + λ1,0t + · · · + λs−1,0ts−1 (
mod ts)

with λi,0 = 0 for each i at this stage. Now suppose the result is true for n > 0. Then

1

πn+1

(
ts −

(
n∑

j=0

λ0, jπ
j

)
1 −

(
n∑

j=0

λ1, jπ
j

)
t − · · · −

(
n∑

j=0

λs−1, jπ
j

)
ts−1

)

≡ λ0,n+1 + λ1,n+1t + · · · + λs−1,n+1ts−1 mod π

for some λi,n+1 ∈ k. Now multiply by πn+1 and collect terms to get the truth of the statement for
n + 1. Therefore ai = ∑∞

j=0 λi, jπ
j ∈ L for each i, and

ts = a0 + a1t + · · · + as−1ts−1.

Thus t is algebraic over L. Then L(t)/L is finite, and since L is complete, so is L(t). Now k(t) ⊆ L(t)
and so L(t) contains the closure of k(t), which is k((t)). Hence k((t)) = L(t). Since k((t))/L is finite, its
ramification index is s, and its inertial degree is 1, we have [k((t)) : L] = s. �

We have seen that for any Galois extension k((t))/k((uts)), the Galois group is an extension of a
p-group by a cyclic group with order prime to p. So it is reasonable to consider extensions whose
Galois groups are p-groups. We now turn our attention to determining the possible Galois groups
which occur. From this point on, we assume k is a field of characteristic p > 0.

Lemma 10. Let K be a field of characteristic p > 0, and K p be the compositum of all p-power Galois extensions
of K . Then Gal(K p/K ) is a free pro-p group. The number of generators of this group is equal to the dimension
of the Z/pZ-vector space K/℘ (K ), where ℘(y) = yp − y.

Proof. See Proposition 30 in Chapter IV of [4]. �
Lemma 11. Let K = k((t)), where k is a field of characteristic p > 0. The Z/pZ-vector space K/℘ (K ) is infinite
dimensional.
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Proof. The infinite set {t−n + ℘(K ): n > 0 and p � n} is linearly independent in K/℘ (K ): Assume

α = c0t−n0 + · · · + cst−ns = f p − f ∈ ℘(K )

where ci ∈ Z/pZ, −n0 < · · · < −ns , c0 �= 0, and p � ni for i = 0, . . . , s. We have v(α) = −n0 and so v( f )
must be < 0. But then v( f p) < v( f ) so v( f p − f ) = v( f p) = pv( f ), a contradiction to p � n0. �

Together, the last two lemmas show that the Galois group of K p/K is a free pro-p group on an
infinite number of generators.

Lemma 12. Let k be a field of characteristic p > 0 and K = k((t)). Then every finite p-group G is the Galois
group of a totally ramified extension of K .

Proof. Let G be a finite p-group of order pn .
Suppose first that k is a finite field. Since K p/K is Galois with Galois group a free pro-p group on

an infinite number of generators, we can choose an extension F/K with Galois group isomorphic to
G × G . Let G1 = G ×{1} and G2 = {1}× G . If Fi is the fixed field of Gi , then Fi/K is a Galois extension
with Galois group isomorphic to G . Let F ′ be the maximal unramified extension of k((t)) in F . Then
F ′/K is a cyclic extension of p-power order. Since F1 ∩ F2 = K , it follows that at least one of Fi/K
is totally ramified, as otherwise each Fi intersects F ′ nontrivially, and so each Fi must contain the
unique degree p extension of K in F ′ , a contradiction. Hence we may assume that F1/K is totally
ramified with Galois group G .

Now suppose k is an arbitrary field of characteristic p. Let k0 be the prime subfield of k. So k0
is the finite field with p elements. Let K0 = k0((t)). By the first paragraph K0 has a totally ramified
Galois extension L0/K0 with Galois group G . Since L0 K/K is finite L0 K is complete with respect to a
real valuation which extends v . We’ll call this valuation v as well, so all our fields are complete with
respect to the appropriate restrictions of v .

We have [
v
(
L×

0

) : v
(

K ×
0

)] = [L0 : K0]
� [L0 K : K ]
�

[
v
(
(L0 K )×

) : v
(

K ×)]
= [

v
(
(L0 K )×

) : v
(

K ×
0

)]
�

[
v
(
L×

0

) : v
(

K ×
0

)]
.

Thus we must have equality throughout. In particular we have[
v
(
(L0 K )×

) : v
(

K ×)] = [L0 K : K ] = [
L×

0 : K ×
0

]
.

Thus L0 K/K is totally ramified and Gal(L0 K/K ) ∼= Gal(L0/K0) by the Theorem on Natural Irrationali-
ties and the equality of the dimensions. �
Proposition 13. For any finite p-group G and k a field of characteristic p there exists a unit u ∈ U1 such that
K/k((ut pn

)) is Galois with Galois group isomorphic to G.

Proof. Let G be a finite p-group of order pn . By the lemma there exists a field extension E/K such
that E/K is totally ramified and Galois with Gal(E/K ) = G . By the structure theorem of finite exten-
sions of K = k((t)) we see that E = k((s)) for some s ∈ E . Since E and K are analytically k-isomorphic
we see that K has a subfield L of codimension pn such that k ⊆ L, L is closed (and hence complete)
in the t-adic topology on K , and K/L is a totally ramified Galois extension with Gal(K/L) = G . Thus
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L = k((z)) for some z ∈ L and since K/L is totally ramified we have v(z) = pn . Therefore z = ut pn
for

some u ∈ U . Since k((ut pn
)) = k((λut pn

)) for any λ ∈ k× we can suppose u ∈ U1. �
There are restrictions on the units u ∈ U such that k((t))/k((ut pn

)) is Galois extension:

Theorem 14. If k is a perfect field of characteristic p > 0 and k((t))/L is a Galois extension of dimension pn,
then there exists u ∈ U(p−1)pn−1 such that L = k((ut pn

)).

Proof. Suppose k((t))/k((ut pn
)) is a finite Galois extension. Then [k((t)) : k((ut pn

))] = pn and thus G , the
Galois group of this extension, is a finite p-group. Let us proceed by induction on n. For the base case,
suppose k((t))/k((ut p)) is a finite Galois extension. Then we may write k((t)) = k((ut p))(α), where α
is a root of the Artin–Schreier polynomial X p − X − f , for some f ∈ k((ut p)) with vt( f ) = −mp and
gcd(m, p) = 1. (See Proposition 11.17 in [5].) For notational convenience, write y = ut p and f = c

ym

with c ∈ k� y�× . Now

αp − α = c

ym
⇒ 1

αp − α
= c−1 ym =

1
αp

1 − 1
αp−1

= 1

αp

(
1

1 − 1
αp−1

)
.

Write β = 1
α and we can rewrite as

c−1 ym = β p(
1 + β p−1 + β2p−2 + · · ·).

Since vt(β) = m there exists w ∈ U such that β = wtm . Then

ym = c
(

wtm)p(
1 + (

wtm)p−1 + (
wtm)2p−2 + · · ·)

and we may take m-th roots everywhere to get

ut p = y = c
1
m w

p
m t p(

1 + (
wtm)p−1 + (

wtm)2p−2 + · · ·) 1
m .

Thus u ∈ k�ut p �×k�t p �×k� wtm(p−1)�× and so u ∈ 1 + k�t �t p−1.
Now for the inductive step. Suppose that n > 0 is given, and that the result is true for n − 1.

G is a p-group, and so G contains a normal subgroup H of index p. Let E be the fixed field
of H . Then k((t))/E is a Galois extension of degree pn−1 and E/k((ut pn

)) is Galois of degree p.
By the induction hypothesis, there exists a unit u1 ∈ U such that vt(u1 − 1) � pn−2(p − 1) and
E = k((u1t pn−1

)). E/k((ut pn
)) is Galois of degree p, so there exists a unit u2 ∈ k�u1t pn−1

� such that
1

pn−1 vt(u2 −1) > p −1 and k((ut pn
)) = k((u2(u1t pn−1

)p)). Now u2(u1t pn−1
)p = u2up

1 t pn
and vt(up

1 −1) =
pvt(u1 − 1) � ppn−2(p − 1) = pn−1(p − 1) and vt(u2 − 1) � pn−1(p − 1). Thus vt(u2(u1)

p − 1) �
pn−1(p − 1) and u2up

1 is a unit in k�t �. Note that the last inequality follows from the identity
ab − 1 = (a − 1)(b − 1) + (a − 1) + (b − 1). Thus we see that for any Galois extension k((t))/L of
degree pn , there exists some u ∈ U(p−1)pn−1 such that L = k((ut pn

)). �
4. Extended depth

For α ∈ K we have α = ∑∞
i=−∞ aiti where ai ∈ k and ai = 0 for all i < N for some N depending

on α. When convenient we will denote ai , the i-th coefficient of α, by [α]i . The support of α is the
set Supp(α) = {i: [α]i �= 0}. We have, of course, v(α) = inf(Supp(α)).

In the study of Aut(K/k) the depth of a unit u ∈ U is defined to be d(u) = v(u − u(0)), where u(0)

is the nonzero zeroth coefficient of u. For σ ∈ Aut(K/k), d(σ ) = d(uσ ), where σ(t) = uσ t . In this work
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we often consider u1tm1 ∈ k((u2tm2 )) for some u1, u2 ∈ U and try to estimate the depth of u2 in terms
of the depth of u1. In order to get more precise relations, we introduce a related concept.

We define the extended depth of α ∈ K to be

e(α) = inf
(
Supp(α) − pZ

) ∈ Z ∪ {∞}.
Note that e(α) is either ∞ or an integer not divisible by p. Of course for any α ∈ U we have e(α) �
d(α) with equality if and only if p � d(α). Similarly for σ ∈ A we define e(σ ) to be e(uσ ) where
σ(t) = uσ t .

4.1. Extended depth of elements

The following lemma collects the basic properties of e(·) we will need.

Lemma 15. Let α,β ∈ K .

1. e(α) � v(α) with equality if and only if p � v(α) or α = 0. (In particular e is continuous.)
2. e(α) = ∞ if and only if α ∈ k((t p)). (Note K p ⊆ k((t p)).)
3. e(α + β) � min(e(α), e(β)) with equality if e(α) �= e(β).
4. If γ ∈ k((t p)) then e(α + γ ) = e(α).
5. If γ ∈ k((t p)) then e(αγ ) = e(α) + v(γ ). (In particular if u ∈ k�t p �× then e(αu) = e(α).)
6. α can be written as α0 + γ where α0 ∈ K , γ ∈ k((t p)), e(α) = v(α0) = e(α0), and v(α) =

min(v(α0), v(γ )).

Proof. The proofs of 1. through 5. follow immediately from the definition of e. As for 6. we set
α0 = ∑∞

i=−∞ citi and γ = ∑∞
i=−∞ diti where

ci =
{ [α]i if p � i,

0 if p|i and di =
{

0 if p � i,
[α]i if p|i.

Then α = α0 + γ and the rest follows. �
Proposition 16. Suppose α,β ∈ U and e = min(e(α), e(β)) < ∞. Then

[αβ]e = [α]e[β]0 + [β]e[α]0 and e(αβ) � e

with equality if and only if [αβ]e �= 0.

Proof. Without loss of generality e(α) � e(β). So e(α) = e < ∞ and α = ate + r1 + γ1 where a =
[α]e �= 0, v(r1) > e, and γ1 ∈ k((t p)).

If e(β) = ∞ then β ∈ k((t p)) so αβ = aβte + r1β + γ1β where v(r1β) = v(r1) > e and [αβ]e =
[α]e[β]0 + [β]e[α]0 �= 0 as [β]e = 0.

Now suppose e(β) < ∞. Then β = bt f + r2 + γ2 where f = e(β), b = [β] f �= 0, v(r2) > f , and
γ2 ∈ k((t p)). So

αβ ≡ (
ate + γ1

)(
bt f + γ2

)
mod te+1

≡ abte+ f + aγ2te + bγ1t f + γ1γ2 mod te+1

≡ a[β]0te + b[α]0t f + γ1γ2 mod te+1

remembering that [α]0 = [γ1]0 and [β]0 = [γ2]0 as α,β ∈ U . Thus if e = f we have [αβ]e = [α]e[β]0 +
[β]e[α]0, and if e < f we have [αβ]e = [α]e[β]0 = [α]e[β]0 + [β]e[α]0 as [β]e = 0. In either case
e(αβ) � e and the result follows. �
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Corollary 17. If α ∈ U and e = e(α) < ∞ then[
αm]

e = m[α]m−1
0 [α]e and e

(
αm)

� e

with equality if and only if p � m.

Theorem 18. Suppose u, w ∈ U are such that e(u) < ∞ and ut pa ∈ k((wt pb
)) for some a � b � 1. Then

e(u) =
{

e(w) if a = b,

e(w) + mpb if a > b

for some m � 1, p � m. In particular, we have e(w) � e(u).

Proof. Since ut pa ∈ k((wt pb
)) we have ut pa ∈ k� wt pb

� as ut pa
has positive valuation. So ut pa =∑∞

i=0 ci(wt pb
)i where ci ∈ k. By valuation again ci = 0 for all 0 � i < pa−b and cpa−b �= 0. Thus

ut pa =
∞∑

i=pa−b

ci
(

wt pb )i =
∞∑
j=0

c̃ j w pa−b+ jt pa+ jpb

where c̃0 �= 0 and so

u =
∞∑
j=0

c̃ j w pa−b+ jt jpb
.

If a − b > 0 we have

e
(
c̃ j w pa−b+ jt jpb ) = e

(
w j) + v

(
c̃ j w pa−b

t jpb )
= e

(
w j) + v(c̃ j) + jpb

=
{

e(w) + jpb if p � j and c̃ j �= 0,

∞ otherwise.

Since e(u) < ∞ we must have p � j and c̃ j �= 0 for at least one j and since for these indices the
e-values are distinct we have e(u) = e(w) + jpb for the least j such that p � j and c̃ j �= 0.

If a − b = 0 we have

e
(
c̃ j w1+ jt jpb ) = e

(
w1+ j) + v

(
c̃ jt

jpb )
= e

(
w1+ j) + v(c̃ j) + jpb

=
{

e(w) + jpb if p � (1 + j) and c̃ j �= 0,

∞ otherwise.

Since for j = 0 we have p � (1 + j) and c̃ j �= 0 and since the finite e-values are distinct with their
minimum occurring when j = 0 we have e(u) = e(w). �
Corollary 19. If k is perfect and K/k((ut pn

)) is Galois then

e(u) � (p − 1)pn−1.
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Proof. By Theorem 14 there exists a unit u0 ∈ U(p−1)pn−1 such that k((ut pn
)) = k((u0t pn

)). Now e(u0) �
(p − 1)pn−1 and by Theorem 18 we have e(u) = e(u0). �
4.2. Extended depth of automorphisms

We first note that for all σ ∈ A1 we have [uσ ]0 = 1.

Lemma 20. Let α ∈ K and σ ,τ ∈ A.

1. e(ασ ) = e(α).
2. If e = e(α) < ∞ then [ασ ]e = [uσ ]e

0[α]e .

Proof. For 1. we write α = α0 + γ where α0 ∈ K , γ ∈ k((t p)), and e(α) = v(α0). Now ασ = ασ
0 + γ σ

and since γ σ ∈ k((t p)) we have e(ασ ) = e(ασ
0 ). Since v(ασ

0 ) = v(α0) = e(α) is not divisible by p we
have e(ασ

0 ) = v(ασ
0 ) and thus e(ασ ) = e(α).

For 2. we write α = [α]ete + te+1 f + γ where f ∈ k�t � and γ ∈ k((t p)). Then ασ = [α]e(uσ t)e +
te+1 g + γ σ where g ∈ k�t �. Thus ασ = [α]e[uσ ]e

0te + te+1h + γ σ where h ∈ k�t � and the result fol-
lows. �
Proposition 21. If σ ∈ A1 and e = e(σ ) < ∞ then

[uσm ]e = m[uσ ]e and e
(
σm)

� e

with equality if and only if p � m.

Proof. The result is trivial if m = 1. Now suppose we have [uσm ]e = m[uσ ]e and e(σm) � e with
equality if and only if p � m. We have uσm+1 = uσm

σ uσ and so, by Proposition 16, we have

[uσm+1 ]e = [
uσm

σ uσ

]
e

= [
uσm

σ

]
e[uσ ]0 + [uσ ]e

[
uσm

σ

]
0

= m[uσ ]e1 + [uσ ]e1

= (m + 1)[uσ ]e

and

e(uσm+1) = e
(
uσm

σ uσ

)
� e

with equality if and only if [uσm+1 ]e �= 0 if and only if p � m + 1. �
We define the canonical unit of a totally ramified Galois extension as follows: Suppose K/L is Galois

and totally ramified with Galois group G of order n. Then NK/L(t) = ∏
σ∈G σ(t) has valuation n. Thus

NK/L(t) = uLtn for some unit uL . Note that uL = ∏
σ∈G uσ . We call this uL the canonical unit for K/L.

Since k((uLtn)) ⊆ L and both have codimension n in K , we have L = k((uLtn)).

Theorem 22. Suppose K/k((ut pn
)) is Galois with Galois group G. Then e(σ ) � e(u) for all σ ∈ G, σ �= idK .

Proof. Let σ ∈ G , σ �= idK . Suppose σ has order pe with e � 2. Since σ pe−1
has order p and e(σ ) <

e(σ pe−1
), it suffices to prove the result when σ has order p.
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Let σ ∈ G have order p. Let e = e(σ ). Let L be the fixed field of σ . Then [K : L] = p so
L = k((uLt p)) where uL is the canonical unit for K/L. We have uL = 1uσ · · · uσ p−1 and thus e(uL) �
min(e(uσ ), . . . , e(uσ p−1 )) = e as e = e(uσ ) = · · · = e(uσ p−1 ). Finally e(u) � e(uL) by Theorem 18 of the
last section. Thus e � e(uL) � e(u) as desired. �
5. Canonical units of Galois extensions

We are now able to prove a theorem about the relationship between Galois extensions and their
canonical units. We need two lemmas.

Lemma 23. Let k((t))/k((ut pn
)) be a finite Galois extension with Galois group G. Suppose that {d(σ ) | idK �=

σ ∈ G} is bounded above by N. Then the map

G −→ Aut
(
k�t �

/(
tN+1)) given by σ �→ σ [N]

is an embedding. In particular, if N > e(u) the above map is an embedding.

Proof. As in Section 2, the map G → Aut(RN ) given by σ �→ σ [N] is a group homomorphism. We
have σ [N] = idRN if and only if uσ t ≡ t mod tN+1 if and only if v(uσ − 1) � N if and only if d(σ ) � N .
Thus if N > d(σ ) for all σ �= idK , our map is an embedding.

Finally, if N > e(u) then N > e(σ ) � d(σ ) for all σ �= idK by Theorem 22 and our result follows. �
Lemma 24. If f , g ∈ Aut(K/k) satisfy v( f (t) − g(t)) > m then

v
(

f (rt) − g(rt)
)
> m + v(r)

for any r ∈ k�t �. In particular, if h ∈ Aut(K/k) as well we have

v
(

f
(
h(t)

) − g
(
h(t)

))
> m.

Proof. We have f (ttn)− g(ttn) = f (t)n+1 − g(t)n+1 = ( f (t)− g(t))z where z = ∑n
i=0 f (t)n−i g(t)i . Since

f , g are continuous we have v( f (t)) = v(g(t)) = 1 and so v(z) � n. Thus v( f (ttn) − g(ttn)) > m + n.
Now r = a0 + a1t + a2t2 + · · · ∈ k�t � and so

f (rt) − g(rt) = a0
(

f (t) − g(t)
) + a1

(
f (tt) − g(tt)

) + a2
(

f
(
tt2) − g

(
tt2)) + · · ·

and the result follows. �
Theorem 25. Let L1 = k((u1t pn

)) and L2 = k((u2t pn
)) be such that both K/L1 and K/L2 are Galois with Galois

groups G1 and G2 respectively.
If v(u1 − u2) > (e(u1) + 1)pn then G1 ∼= G2 .

Proof. Let N = v(u1 − u2) > (e(u1) + 1)pn . Let RN = k�t �/(tN+1) and let S be the image of k�u1t pn
�

in RN . Since N > e(u1) we have G1 ↪→ G1 � Autk(RN ) by Lemma 23. And since v(u1 −u2) = N > e(u1)

we have e(u1) = e(u2) and so G2 ↪→ G2 � Autk(RN ) as well. Since u1 ≡ u2 mod tN we have u1t pn ≡
u2t pn

mod tN+1. Hence G2 fixes the elements of S because G2 fixes the elements of L2 = k((u2t pn
)).

Let f = ∏
ρ∈G1

(X − ρ(t)). We see that f has degree pn and coefficients in k�u1t pn
�. Let M =

max{v(ρ(t) − μ(t)): ρ,μ ∈ G1, ρ �= μ}. We have M > 0. Since v(ρ(t) − μ(t)) = v((μ−1ρ)(t) − t) we
have M = max{v(ρ(t)− t): ρ ∈ G1, ρ �= idG1}. Finally since ρ(t)− t = (uρ −1)t we have v(ρ(t)− t) �
e(ρ) + 1 � e(u1) + 1 for ρ �= idG1 by Theorem 22. Thus M � e(u1) + 1.
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Now for any σ ∈ G2 we have

f
(
σ(t)

) ≡ σ
(

f (t)
) ≡ σ(0) ≡ 0 mod tN+1

and therefore ∑
ρ∈G1

v
(
σ(t) − ρ(t)

) = v

( ∏
ρ∈G1

(
σ(t) − ρ(t)

))
> N.

Since N > (e(u1) + 1)pn we have v(σ (t) − ρ(t)) > e(u1) + 1 � M for at least one ρ ∈ G1 and since
M = max{v(ρ(t) − μ(t)): ρ,μ ∈ G1, ρ �= μ} this ρ is unique. That is, for each σ ∈ G2 there is a
unique σ̃ ∈ G1 such that v(σ (t) − σ̃ (t)) > e(u1) + 1.

We have

στ(t) − σ̃ τ̃ (t) = [
στ(t) − σ̃ τ (t)

] + [
σ̃ τ (t) − σ̃ τ̃ (t)

]
.

Since τ (t) = uτ t and v(σ (t) − σ̃ (t)) > e(u1) + 1 we have v(στ (t) − σ̃ τ (t)) > e(u1) + 1 by Lemma 24.
Since σ̃ is continuous and v(τ (t) − τ̃ (t)) > e(u1) + 1 we have v(σ̃ τ (t) − σ̃ τ̃ (t)) > e(u1) + 1 as well.
Thus v(στ (t) − σ̃ τ̃ (t)) > e(u1) + 1 and σ̃ τ̃ ∈ G1 so σ̃ τ = σ̃ τ̃ .

Thus the map G2 → G1 given by σ �→ σ̃ is a group homomorphism. Now σ̃ = idG1 implies
v(σ (t) − t) > e(u1) + 1. Since e(σ ) + 1 � v(σ (t) − t) we have e(σ ) > e(u1) and therefore σ = idG2

by Theorem 22. Hence G2 → G1 given by σ �→ σ̃ is an injective group homomorphism between two
groups of order pn , so G1 ∼= G2. �
Corollary 26. If K/k((ut pn

)) is Galois then the Galois group is determined by the first (e(u) + 1)pn terms of u.

6. An example

Again k is a field of characteristic p � 0 and K = k((t)).
For each λ ∈ k we define φλ : K → K given by t �→ 1

1+λt t . So φλ ∈ A1 for each λ ∈ k. An easy
calculation shows that φλ1 ◦φλ2 = φλ1+λ2 . Therefore k+ → A1 given by λ �→ φλ is a group embedding.
Thus if p > 0 we have a family of convenient elements of order p.

Unfortunately these are the only easily described elements of finite order in A1: Suppose φ ∈ A1

has order d and is given by t �→ f
g t where f , g ∈ k[t]. Then k(t) ⊇ k(φ(t)) ⊇ · · · ⊇ k(φd(t)) = k(t) and

so k(t) = k(φ(t)) = k(
f t
g ). Thus 1 = [k(t) : k(

f t
g )] = max(deg( f t),deg(g)). It follows that deg( f ) = 0

and deg(g) � 1. Since φ ∈ A1 we have φ(t) = 1
1+λt t for some λ ∈ k.

Now suppose p > 0 and λ ∈ k× . So φλ has order p. Let L be the fixed field of 〈φλ〉. Then L =
k((ut p)) where

ut p = NK/L(t) =
p−1∏
i=0

φi(t) =
p−1∏
i=0

1

1 + iλt
t =

( p−1∏
i=1

(1 + iλt)

)−1

t p .

Now
∏p−1

i=1 (1+ iλt) = ∏p−1
i=1 i(λt + 1

i ) = −(λp−1t p−1 −1) by Wilson’s theorem and the identity X p−1 −
1 = ∏p−1

j=1 (X − j). Thus

u = 1

1 − λp−1t p−1

is the canonical unit for a Galois K/L with Galois group cyclic of order p. Similarly but more tediously,
if k has at least pn elements we could construct the canonical unit for a Galois K/L with Galois group
elementary abelian of order pn .
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7. Some questions

We have provided a few examples of the relations between the Galois group of k((t))/k((ut pn
)) and

the structure of the unit u. There are many questions which remain. For example:

1. How easily can one determine interesting information about G directly from the coefficients of u?
Is there a way of seeing when G is cyclic, abelian, etc.?

2. Conversely, can one begin with a p-group G and construct the sequence of coefficients of u?
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