
Physics Letters B 661 (2008) 42–51

www.elsevier.com/locate/physletb

Five-dimensional superfield supergravity

Sergei M. Kuzenko, Gabriele Tartaglino-Mazzucchelli ∗

School of Physics M013, The University of Western Australia, 35 Stirling Highway, Crawley W.A. 6009, Australia

Received 1 November 2007; received in revised form 17 January 2008; accepted 23 January 2008

Available online 1 February 2008

Editor: M. Cvetič

Abstract

We present a projective superspace formulation for matter-coupled simple supergravity in five dimensions. Our starting point is the superspace
realization for the minimal supergravity multiplet proposed by Howe in 1981. We introduce various off-shell supermultiplets (i.e. hypermultiplets,
tensor and vector multiplets) that describe matter fields coupled to supergravity. A projective-invariant action principle is given, and specific
dynamical systems are constructed including supersymmetric nonlinear sigma-models. We believe that this approach can be extended to other
supergravity theories with eight supercharges in D � 6 space–time dimensions, including the important case of 4D N = 2 supergravity.
© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Projective superspace [1,2] is a powerful formalism for building off-shell rigid supersymmetric theories with eight supercharges
in D � 6 space–time dimensions. It is ideal for the explicit construction of hyper-Kähler metrics [3]. For more than two decades,
it has been an open problem to extend this approach to supergravity. A partial success has been achieved in our recent paper [4]
where, in particular, the relevant projective formulation was developed for supersymmetric theories in five-dimensional N = 1
anti-de Sitter superspace AdS5|8 = SU(2,2|1)/SO(4,1) × U(1) which is a maximally symmetric curved background. In this Letter
we briefly describe a solution to the problem in the case of 5D simple supergravity. A more detailed presentation will be given
elsewhere [5].

For 5D N = 1 supergravity1 [6], off-shell superspace formulations were only sketched by Breitenlohner and Kabelschacht [7]
and independently by Howe [8] (who built on the 5D supercurrent constructed in [9]). Later, general matter couplings in 5D simple
supergravity were constructed within on-shell components approaches [10–12]. More recently, off-shell component formulations for
5D supergravity-matter systems were developed in [13] and independently, within the superconformal tensor calculus, in [14,15].
Since the approaches elaborated in [13–15] are intrinsically component (i.e. they make use of off-shell hypermultiplets with finitely
many auxiliary fields and an intrinsic central charge), they do not allow us to construct the most general sigma-model couplings,
similar to the four-dimensional N = 2 case, and thus a superspace description is still desirable. Such a formulation is given below.

Before turning to the description of our superspace approach, we should emphasize once more that it is the presence of the
intrinsic central charge that hypermultiplets possess, within the component formulations of [13,14] which makes it impossible to
cast general quaternionic Kähler couplings in terms of such off-shell hypermultiplets2 (see, e.g., [16] for a similar discussion in the
case of 4D N = 2 supergravity). On the other hand, the projective superspace approach offers nice off-shell formulations without
central charge. Specifically, there are infinitely many off-shell realizations with finitely many auxiliary fields for a neutral hyper-
multiplet (they are the called O(2n) multiplets, where n = 2,3, . . . , following the terminology of [20]), and a unique formulation
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for a charged hypermultiplet with infinitely many auxiliary fields (the so-called polar hypermultiplet). Using covariant polar hy-
permultiplets introduced below, one can construct sigma-model couplings that cannot be derived within the off-shell component
approach. An example is given by the supergravity-matter system (4.17), for a generic choice of the real function K(Φ, Φ̄) obeying
the homogeneity condition (4.14). We hope to discuss this point in more detail elsewhere.

This Letter is organized as follows. In Section 2, we describe the superspace geometry of the minimal multiplet for 5D N = 1
supergravity outlined in [8]. Various off-shell supermultiplets are introduced in Section 3. In Section 4, we present a supersymmetric
projective-invariant action principle in a Wess–Zumino gauge. This action is ready for applications, in particular for a reduction
from superfields to components. We also introduce several families of supergravity-matter systems. Finally, in Section 5 we describe
a locally supersymmetric action which we expect to reduce, in the Wess–Zumino gauge, to the action given in Section 4.

2. Superspace geometry of the minimal supergravity multiplet

Let zM̂ = (xm̂, θ
μ̂
i ) be local bosonic (x) and fermionic (θ ) coordinates parametrizing a curved five-dimensional N = 1 su-

perspace M5|8, where m̂ = 0,1, . . . ,4, μ̂ = 1, . . . ,4, and i = 1,2. The Grassmann variables θ
μ̂
i are assumed to obey a standard

pseudo-Majorana reality condition. Following [8], the tangent-space group is chosen to be SO(4,1) × SU(2), and the superspace
covariant derivatives D

Â
= (Dâ ,Di

α̂
) have the form

(2.1)D
Â

= E
Â

+ Ω
Â

+ Φ
Â

+ V
Â
Z.

Here E
Â

= E
Â

M̂(z) ∂
M̂

is the supervielbein, with ∂
M̂

= ∂/∂zM̂ ,

(2.2)Ω
Â

= 1

2
Ω

Â
b̂ĉM

b̂ĉ
= Ω

Â
β̂γ̂ M

β̂γ̂
, M

âb̂
= −M

b̂â
, M

α̂β̂
= M

β̂α̂

is the Lorentz connection,

(2.3)Φ
Â

= Φkl

Â
Jkl, Jkl = Jlk

is the SU(2)-connection, and Z the central-charge generator. The Lorentz generators with vector indices (M
âb̂

) and spinor in-

dices (M
α̂β̂

) are related to each other by the rule: M
âb̂

= (Σ
âb̂

)α̂β̂M
α̂β̂

(for more details regarding our 5D notation and conventions,
see Appendix in [4]). The generators of SO(4,1) × SU(2) act on the covariant derivatives as follows:

(2.4)
[
J kl,Di

α̂

] = εi(kDl)

α̂
,

[
M

α̂β̂
,Di

γ̂

] = εγ̂ (α̂Di

β̂)
,

where J kl = εkiεlj Jij , and the symmetrization of n indices involves a factor of (n!)−1. The covariant derivatives obey
(anti)commutation relations of the general form

(2.5)[D
Â
,D

B̂
} = T

ÂB̂
ĈD

Ĉ
+ 1

2
R

ÂB̂
ĉd̂M

ĉd̂
+ R

ÂB̂
klJkl + F

ÂB̂
Z,

where T
ÂB̂

Ĉ is the torsion, R
ÂB̂

kl and R
ÂB̂

ĉd̂ the SU(2)- and SO(4,1)-curvature tensors, and F
ÂB̂

the central charge field strength.
The supergravity gauge group is generated by local transformations of the form

(2.6)D
Â

→ D′
Â

= eKD
Â

e−K, K = KĈ(z)D
Ĉ

+ 1

2
Kĉd̂ (z)M

ĉd̂
+ Kkl(z)Jkl + τ(z)Z,

with all the gauge parameters being neutral with respect to the central charge Z, obeying natural reality conditions, and otherwise
arbitrary. Given a tensor superfield U(z), it transforms as follows:

(2.7)U → U ′ = eKU.

In accordance with [8], in order to realize the so-called minimal supergravity multiplet in the above framework, one has to
impose special covariant constraints on various components of the torsion3 of dimensions 0, 1/2 and 1. They are:

(2.8a)T i
α̂

j

β̂

ĉ = −2iεij
(
Γ ĉ

)
α̂β̂

, F i
α̂

j

β̂
= −2iεij ε

α̂β̂
(dimension-0),

(2.8b)T i
α̂

j

β̂

γ̂

k = T i
α̂ b̂

ĉ = F i
α̂ b̂

= 0 (dimension-1/2),

(2.8c)T
âb̂

ĉ = T
âβ̂ (j

β̂
k) = 0 (dimension-1).

3 As demonstrated by Dragon [17], the curvature is completely determined in terms of the torsion in supergravity theories formulated in superspace.
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Under these constraints, the algebra (2.5) can be shown to take the form4 (its derivation will be given in [5]):
{
Di

α̂
,Dj

β̂

} = −2iεijD
α̂β̂

− 2iεij ε
α̂β̂

Z + 3iε
α̂β̂

εij SklJkl − 2i
(
Σâb̂

)
α̂β̂

(F
âb̂

+ N
âb̂

)J ij

(2.9a)− iε
α̂β̂

εijF ĉd̂M
ĉd̂

+ i

4
εij εâb̂ĉd̂ êN

âb̂
(Γĉ)α̂β̂

M
d̂ê

+ 4iSijM
α̂β̂

,

[
Dâ ,Dj

β̂

] = 1

2
(Γâ)β̂

γ̂ Sj
kDk

γ̂
− 1

2
F

âb̂

(
Γ b̂

)
β̂

γ̂Dj

γ̂
− 1

8
ε
âb̂ĉd̂ ê

N d̂ê
(
Σb̂ĉ

)
β̂

γ̂Dj

γ̂

+
(

−3εjkΞ
âβ̂

l + 5

4
(Γâ)β̂

α̂εjkFα̂
l − 1

4
(Γâ)β̂

α̂εjkNα̂
l

)
Jkl

+
(

1

2
(Γâ)

α̂γ̂Dδ̂j F
α̂β̂

− 1

2
(Γâ)β̂α̂

Dγ̂ j F δ̂α̂ − 1

2
(Γâ)

α̂γ̂ δδ̂

β̂
Dρ̂jFα̂ρ̂

(2.9b)+ 1

2
(Γâ)ρ̂α̂Dρ̂jF α̂γ̂ δδ̂

β̂
− 1

2
(Γâ)β̂ρ̂

Dρ̂jF γ̂ δ̂

)
M

γ̂ δ̂
,

[Dâ ,Db̂
] = i

2

(
Dγ̂

k F
âb̂

)
Dk

γ̂
− i

8

(
Dγ̂ (kDl)

γ̂
F

âb̂

)
Jkl + F

âb̂
Z

+
(

1

4
εĉd̂

m̂n̂[âDb̂]N
m̂n̂ + 1

2
δĉ
[âNb̂]m̂Nd̂m̂ − 1

4
Nâ

ĉN
b̂
d̂ − 1

8
δĉ
â
δd̂

b̂
Nm̂n̂Nm̂n̂

(2.9c)+ i

8

(
Σĉd̂

)γ̂ δ̂Dk
γ̂
D

δ̂k
F

âb̂
− Fâ

ĉF
b̂
d̂ + 1

2
δĉ
â
δd̂

b̂
Sij Sij

)
M

ĉd̂
.

The torsion components obey a number of Bianchi identities some of which can be conveniently expressed in terms of the three
irreducible components of Dk

γ̂
F

α̂β̂
: a completely symmetric third-rank tensor W

α̂β̂γ̂
k , a gamma-traceless spin-vector Ξâγ̂

k and a

spinor Fγ̂
k . These components originate as follows:

Dk
γ̂
F

α̂β̂
= W

α̂β̂γ̂
k + (Γâ)γ̂ (α̂Ξ â

β̂)
k + εγ̂ (α̂Fβ̂)

k,

(2.10)W
α̂β̂γ̂

k = W
(α̂β̂γ̂ )

k,
(
Γ â

)
α̂

β̂Ξ
âβ̂

i = 0.

The dimension-3/2 Bianchi identities are as follows:

(2.11a)Dk
γ̂
N

α̂β̂
= −W

α̂β̂γ̂
k + 2(Γâ)γ̂ (α̂Ξ â

β̂)
k + εγ̂ (α̂Nβ̂)

k,

(2.11b)Dk

β̂
Sjl = −1

2
εk(j

(
3F

β̂
l) +N

β̂
l)
)
.

The Bianchi identities of dimension 2 will be described in [5]. A simple consequence of (2.11b) is

(2.12)D(i

α̂
Sjk) = 0.

This result will be important in what follows.

3. Projective supermultiplets

To introduce an important class of off-shell supermultiplets, it is convenient to make use of an isotwistor u+
i ∈ C2 \ {0} defined

to be inert with respect to the local SU(2) group (in complete analogy with [4,18]). Then, in accordance with (2.8a), the operators
D+

α̂
:= u+

i Di
α̂

obey the following algebra:

(3.1)
{
D+

α̂
,D+

β̂

} = −4i(F
α̂β̂

+ N
α̂β̂

)J++ + 4iS++M
α̂β̂

,

where J++ := u+
i u+

j J ij and S++ := u+
i u+

j Sij . Relation (3.1) naturally hints at the possibility of introducing covariant superfields

Q(z,u+) obeying the chiral-like condition D+
α̂

Q = 0 (which is a generalization of the so-called analyticity condition in 4D N = 2
rigid supersymmetric [1,19] and 5D N = 1 anti-de Sitter [4] cases). For this constraint to be consistent, however, such superfields
must be scalar with respect to the Lorentz group, M

α̂β̂
Q = 0, and also possess special properties with respect to the group SU(2),

that is, J++Q = 0. Now we define such multiplets.
A covariantly analytic multiplet of weight n, Q(n)(z, u+), is a scalar superfield that lives on M5|8, is holomorphic with respect

to the isotwistor variables u+
i on an open domain of C2 \ {0}, and is characterized by the following conditions:

4 In [8], the solution to the constraints was not given in detail. In particular, the algebra of covariant derivatives (2.9a)–(2.9c) was not included.
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(i) it obeys the analyticity constraint

(3.2)D+
α̂

Q(n) = 0;
(ii) it is a homogeneous function of u+ of degree n, that is,

(3.3)Q(n)
(
z, cu+) = cnQ(n)

(
z,u+)

, c ∈ C∗;
(iii) infinitesimal gauge transformations (2.6) act on Q(n) as follows:

δQ(n) = (
KĈD

Ĉ
+ KijJij + τZ

)
Q(n),

(3.4)KijJijQ
(n) = − 1

(u+u−)

(
K++D−− − nK+−)

Q(n), K±± = Kiju±
i u±

j ,

where

(3.5)D−− = u−i ∂

∂u+i
, D++ = u+i ∂

∂u−i
.

Transformation law (3.4) involves an additional isotwistor, u−
i , which is subject to the only condition (u+u−) = u+iu−

i �= 0, and
is otherwise completely arbitrary. By construction, Q(n) is independent of u−, i.e. ∂Q(n)/∂u−i = 0, and hence D++Q(n) = 0. It is
easy to see that δQ(n) is also independent of the isotwistor u−, ∂(δQ(n))/∂u−i = 0, as a consequence of (3.3). It follows from (3.4)

(3.6)J++Q(n) = 0, J++ ∝ D++,

and therefore the constraint (3.2) is indeed consistent. It is important to point out that Eq. (3.6) is purely algebraic.
In what follows, our consideration will be restricted to those supermultiplets that are inert with respect to the central charge,

ZQ(n) = 0.
Given a covariantly analytic superfield Q(n), its complex conjugate is not analytic. However, similarly to the flat four-dimensional

case [1,19] (see also [4]), one can introduce a generalized, analyticity-preserving conjugation, Q(n) → Q̃(n), defined as

(3.7)Q̃(n)
(
u+) ≡ Q̄(n)

(
ũ+)

, ũ+ = iσ2u
+,

with Q̄(n) the complex conjugate of Q(n). Its fundamental property is

(3.8)D̃+
α̂

Q(n) = (−1)ε(Q
(n))D+α̂Q̃(n).

One can see that ˜̃
Q(n) = (−1)nQ(n), and therefore real supermultiplets can be consistently defined when n is even. In what follows,

Q̃(n) will be called the smile-conjugate of Q(n).
With respect to the natural projection π : C2 \ {0} → CP 1, the isotwistor u+

i plays the role of homogeneous global coordinates
for CP 1, and the covariantly analytic superfields Q(n)(z, u+) introduced describe special supermultiplets living in M5|8 × CP 1.
As is well known, instead of the homogeneous coordinates u+

i , it is often useful to work with an inhomogeneous local complex
variable ζ that is invariant under arbitrary projective rescalings u+

i → cu+
i , with c ∈ C∗. In such an approach, one should replace

Q(n)(z, u+) with a new superfield Q[n](z, ζ ) ∝ Q(n)(z, u+), where Q[n](z, ζ ) is holomorphic with respect to ζ , and its explicit
definition depends on the supermultiplet under consideration. The space CP 1 can naturally be covered by two open charts in which
ζ can be defined, and the simplest choice is: (i) the north chart characterized by u+1 �= 0; (ii) the south chart with u+2 �= 0. In
discussing various supermultiplets, our consideration below will be restricted to the north chart.

In the north chart u+1 �= 0, and the projective-invariant variable ζ ∈ C can be defined in the simplest way:

(3.9)u+i = u+1(1, ζ ) = u+1ζ i, ζ i = (1, ζ ), ζi = εij ζ
j = (−ζ,1).

Since any projective multiplet Q(n) and its transformation (3.4) do not depend on u−, we can make a convenient choice for the
latter. In the north chart, it is

(3.10)u−
i = (1,0), u−i = εiju−

j = (0,−1).

The transformation parameters K++ and K+− in (3.4) can be represented as K++ = (u+1)2K++(ζ ) and K+− = u+1K(ζ), where

(3.11)K++(ζ ) = Kij ζiζj = K11ζ 2 − 2K12ζ + K22, K(ζ ) = K1iζi = −K11ζ + K12.

If the projective supermultiplet Q(n)(z, u+) is described by Q[n](z, ζ ) ∝ Q(n)(z, u+) in the north chart, then the analyticity condi-
tion (3.2) turns into

(3.12)D+
α̂

(ζ )Q[n](ζ ) = 0, D+
α̂

(ζ ) =Di
α̂
ζi = −ζD1

α̂
+D2

α̂
.
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Let us give several important examples of projective supermultiplets.
An arctic multiplet5 of weight n is defined to be holomorphic on the north chart. It can be represented as

(3.13)Υ (n)(z, u) = (
u+1)n

Υ [n](z, ζ ), Υ [n](z, ζ ) =
∞∑

k=0

Υk(z)ζ
k.

The transformation law of Υ [n] can be read off from Eq. (3.4) by noting (see [18,21] for more details)

(3.14)KijJijΥ
[n](ζ ) = (

K++(ζ )∂ζ + nK(ζ )
)
Υ [n](ζ ),

or equivalently

J11Υ0 = 0, J11Υk = (k − 1 − n)Υk−1, k > 0,

J22Υk = (k + 1)Υk+1,

(3.15)J12Υk =
(

n

2
− k

)
Υk.

It is important to emphasize that the transformation law of Υ [n] preserves the functional structure of Υ [n] defined in (3.13).
The analyticity condition (3.12) implies

(3.16)D2
α̂
Υ0 = 0, D2

α̂
Υ1 =D1

α̂
Υ0.

The integrability conditions for these constraints can be shown to be J11Υ0 = 0 and J11Υ1 = −2J12Υ0, and they hold identically
due to (3.15). Using the algebra of covariant derivatives, Eq. (2.9a), one can deduce from (3.16)

(3.17)
(
D2

[α̂D
2

β̂] + 3iε
α̂β̂

S22)Υ1 = 2i

(
D

α̂β̂
− 3

2
nε

α̂β̂
S12

)
Υ0.

The smile-conjugate of Υ (n) is said to be an antarctic multiplet of weight n. It proves to be holomorphic on the south chart, while
in the north chart it has the form

(3.18)Υ̃ (n)(z, u) = (
u+2)n

Υ̃ [n](z, ζ ), Υ̃ [n](z, ζ ) =
∞∑

k=0

(−1)kῩk(z)
1

ζ k
,

with Ῡk the complex conjugate of Uk . Its transformation follows from (3.4) by noting

(3.19)KijJij Υ̃
[n](ζ ) = 1

ζ n

(
K++(ζ )∂ζ + nK(ζ )

)(
ζ nΥ̃ (n)(ζ )

)
.

The arctic multiplet Υ [n] and its smile-conjugate Υ̃ (n) constitute a polar multiplet.
Our next example is a real O(2n)-multiplet, H̃ (2n) = H(2n).

H(2n)
(
z,u+) = u+

i1
· · ·u+

i2n
H i1···i2n(z) = (

iu+1u+2)n
H [2n](z, ζ ),

(3.20)H [2n](z, ζ ) =
n∑

k=−n

Hk(z)ζ
k, H̄k = (−1)kH−k.

The transformation of H [2n] follows from (3.4) by noting

(3.21)KijJijH
[2n] = 1

ζ n

(
K++(ζ )∂ζ + 2nK(ζ )

)(
ζ nH [2n]).

This can be seen to be equivalent to

J11H−n = 0, J11Hk = (k − 1 − n)Hk−1, −n < k � n,

J22Hn = 0, J22Hk = (k + 1 + n)Hk+1, −n � k < n,

(3.22)J12Hk = −kHk.

The analyticity condition (3.12) implies, in particular, the constraints: D2
α̂
H−n = 0 and D2

α̂
H−n+1 = D1

α̂
H−n. The corresponding

integrability conditions can be shown to hold due to (3.22). The case n = 1 corresponds to an off-shell tensor multiplet.

5 For covariantly analytic multiplets, we adopt the same terminology which was first introduced in [20] in the super-Poincaré case and which is standard nowadays.
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Our last example is a real tropical multiplet of weight 2n:

U(2n)
(
z,u+) = (

iu+1u+2)n
U [2n](z, ζ ) = (

u+1)2n
(iζ )nU [2n](z, ζ ),

(3.23)U [2n](z, ζ ) =
∞∑

k=−∞
Uk(z)ζ

k, Ūk = (−1)kU−k.

The SU(2)-transformation law of U [2n](z, ζ ) copies (3.21). To describe a massless vector multiplet prepotential, one should choose
n = 0. Supersymmetric real Lagrangians correspond to the choice n = 1, see below.

4. Supersymmetric action in the Wess–Zumino gauge

In our previous paper [4], we formulated the supersymmetric action principle in five-dimensional N = 1 anti-de Sitter superspace
AdS5|8. From the supergravity point of view, the geometry of this superspace is singled out by setting

(4.1)Di
α̂
Sjk = 0, F

âb̂
= N

âb̂
= 0

in the (anti)commutation relations (2.9a)–(2.9c), and the central charge decouples.6 In a Wess–Zumino gauge, the action functional
constructed in [4] is as follows7:

(4.2)S = − 1

2π

∮
u+

i du+i

(u+u−)4

∫
d5x e

[
(D−)4 − 25

24
iS−−(D−)2 + 18S−−S−−

]
L++

∣∣∣∣.
Here L++ is a real covariantly analytic superfield of weight +2, D−

α̂
= u−

i Di
α̂

, S−− = u−
i u−

j Sij , and the line integral is carried out

over a closed contour in the space of u+ variables. In the flat-superspace limit, Sij → 0, the action reduces to the 5D version of the
projective-superspace action which was originally constructed in [1] and then reformulated in a projective-invariant form in [22].

As demonstrated in [4], the action (4.2) is uniquely fixed by either of the following two conditions: (i) supersymmetry; (ii) pro-
jective invariance. The latter means the invariance of S under arbitrary projective transformations of the form

(4.3)
(
u−

i , u+
i

) → (
u−

i , u+
i

)
R, R =

(
a 0
b c

)
∈ GL(2,C).

Thus, although the conditions (i) and (ii) seem to be unrelated at first sight, they actually appear to be equivalent. Below, we will
put forward the principle of projective invariance in order to construct a supergravity extension of the above action.

4.1. Wess–Zumino gauge

In supergravity theories, reduction from superfields to component fields is conveniently performed by choosing a Wess–Zumino
gauge [23,24]. Here we follow a streamlined procedure [25] of introducing the supergravity Wess–Zumino gauge [23] (originally
given in [23] for the old minimal formulation of 4D N = 1 supergravity8). The advantage of this approach is its universality and
independence from the dimension of space–time and the number of supersymmetries.

Given a superfield U(z) = U(x, θ), it is standard to denote as U | its θ -independent component, U | := U(x, θ = 0). The Wess–
Zumino gauge for 5D N = 1 supergravity is defined by

(4.4)Dâ| = ∇â + Ψâ
γ̂

k (x)Dk
γ̂

∣∣ + φâ
kl(x)Jkl + Vâ (x)Z, Di

α̂

∣∣ = ∂

∂θ α̂
i

.

Here ∇â are space–time covariant derivatives,

(4.5)∇â = eâ + ωâ, eâ = eâ
m̂(x)∂m̂, ωâ = 1

2
ωâ

b̂ĉ(x)M
b̂ĉ

= ωâ
β̂γ̂ (x)M

β̂γ̂
,

with eâ
m̂ the component inverse vielbein, and ωâ

b̂ĉ the Lorentz connection. Furthermore, Ψâ
γ̂

k is the component gravitino, while
φâ

kl = Φâ
kl | and Vâ = Vâ| are the component SU(2) and central-charge gauge fields, respectively. The space–time covariant deriv-

atives obey the commutation relations

(4.6)[∇â ,∇b̂
] = T

âb̂
ĉ∇ĉ + 1

2
R

âb̂
ĉd̂M

ĉd̂
.

6 To make contact with the notation used in [4], one should represent Sij = iωJ ij .
7 We use the following definitions: (D−)4 = − 1

96 εα̂β̂γ̂ δ̂D−
α̂
D−

β̂
D−

γ̂
D−

δ̂
and (D±)2 =D±α̂D±

α̂
.

8 For an alternative approach to impose a supergravity Wess–Zumino gauge, see [26].
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Here the space–time torsion can be shown to be

(4.7)T
âb̂

ĉ = 2iεjkΨâ
γ̂

j

(
Γ ĉ

)
γ̂ δ̂

Ψ
b̂
δ̂
k.

The latter occurs in the integration by parts rule:

(4.8)
∫

d5x e∇âU
â =

∫
d5x eT

âb̂
b̂U â, e−1 = det

(
eâ

m̂
)
.

Those supergravity gauge transformations (2.6) that survive in the Wess–Zumino gauge are described by the following equations:

Di
α̂
K

β̂
j

∣∣= Kĉ
∣∣Tĉ

i
α̂

β̂
j

∣∣ + δi
jKα̂

β̂
∣∣+ δ

β̂

α̂
Ki

j

∣∣, Di
α̂
Kb̂

∣∣= −2i
(
Γ b̂

)
α̂γ̂

Kγ̂ i
∣∣,

(4.9)Di
α̂
Kβ̂γ̂

∣∣= KĈ
∣∣R

Ĉ
i
α̂

β̂γ̂
∣∣, Di

α̂
Kjk

∣∣= KĈ
∣∣R

Ĉ
i
α̂

jk
∣∣, Di

α̂
τ
∣∣= −2iKi

α̂

∣∣.
4.2. Action principle

Let L++ be a covariantly analytic real superfield of weight +2. We assume the existence (to be justified later on) of a locally
supersymmetric and projective-invariant action associated with L++. Our main result is that the requirement of projective invariance
uniquely determines this action in the Wess–Zumino gauge, provided the term of highest order in derivatives is proportional to

∮
u+

i du+i

(u+u−)4

∫
d5x e(D−)4L++∣∣.

Direct and long calculations lead to the following projective-invariant action:

S
(
L++) = − 1

2π

∮
u+

i du+i

(u+u−)4

∫
d5x e

[(
D−)4 + i

4
Ψ α̂β̂γ̂−D−

γ̂
D−

α̂
D−

β̂
− 25

24
iS−−(

D−)2 − 2
(
Σâb̂

)
β̂

γ̂ Ψâ
β̂−Ψ

b̂
δ̂−D[γ̂ −D

δ̂]
−

− i

4
φα̂β̂−−D−

α̂
D−

β̂
+ 4

(
Σâb̂

)α̂
γ̂ φ[â−−Ψ

b̂]
γ̂−D−

α̂
− 4Ψ α̂β̂

β̂
−S−−D−

α̂
+ 2iεâb̂ĉm̂n̂(Σm̂n̂)α̂β̂

Ψâ
α̂−Ψ

b̂
β̂−Ψĉ

γ̂−D−
γ̂

(4.10)+ 18S−−S−− − 6iεâb̂ĉm̂n̂(Σm̂n̂)α̂β̂
Ψâ

α̂−Ψ
b̂
β̂−φĉ

−− + 18i
(
Σâb̂

)
α̂β̂

Ψâ
α̂−Ψ

b̂
β̂−S−−

]
L++∣∣.

The projective invariance of (4.10) is a result of miraculous cancellations. The technical details will be given in [5]. In the AdS
limit (4.1), the action reduces to (4.2).

The important feature of our action (4.10) is that it is practically ready for applications, that is, for a reduction from superfields
to component fields. It is instructive to compare (4.10) with the component actions in 4D N = 1 supergravity (see Eq. (5.6.60)
in [25] and Eq. (5.8.50) in [26]). It should be pointed out that one could also develop a harmonic-superspace formulation for 5D
N = 1 supergravity, in complete analogy with the 4D N = 2 case [27]. But the action functional for supergravity-matter systems
in harmonic superspace, as presented in [27], is given in terms of the supergravity prepotential, and some work is still required to
reduce it to a form useful for component reduction.

Without loss of generality, one can assume that the integration contour in (4.10) does not pass through the north pole u+i ∼ (0,1).
Then, one can introduce the complex variable ζ as in (3.9), and fix the projective invariance (4.3) as in (3.10). If we also represent
the Lagrangian in the form

(4.11)L++(
z,u+) = iu+1u+2L(z, ζ ) = i

(
u+1)2

ζL(z, ζ ),

the line integral in (4.10) reduces to a complex contour integral of a function that is holomorphic almost everywhere in C except a
few points. Let us introduce several supergravity-matter systems.

Given a set of O(2) or tensor multiplets H++I , with I = 1, . . . , n, their dynamics can be generated by a Lagrangian L++ =
L(H++I ) that is a real homogeneous function of first degree in the variables H++,

(4.12)H++I ∂

∂H++I
L

(
H++) = L

(
H++)

.

This is a generalization of superconformal tensor multiplets [1,28].
Given a system of arctic weight-one multiplets Υ +(z, u+) and their smile-conjugates Υ̃ +, their dynamics can be described by

the Lagrangian

(4.13)L++ = iK
(
Υ +, Υ̃ +)

,
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with K(ΦI , Φ̄J̄ ) a real analytic function of n complex variables ΦI , where I = 1, . . . , n. For L++ to be a weight-two real projective
superfield, it is sufficient to require

(4.14)ΦI ∂

∂ΦI
K(Φ, Φ̄) = K(Φ, Φ̄).

This is a generalization of superconformal polar multiplets [4,18,21].
Let H++ be a tensor multiplet, and λ an arctic weight-zero multiplet. Then, the action generated by L++ = H++λ vanishes,

S(H++λ) = 0, since the corresponding integrand in (4.10) can be seen to possess no poles (upon fixing the projective gauge). Thus

(4.15)S
(
H++(λ + λ̃)

) = 0.

A massless vector multiplet V(z, u+) is described by a weight-zero tropical multiplet possessing the gauge invariance

(4.16)δV = λ + λ̃,

with λ a weight-zero arctic multiplet. Given a tensor multiplet H++, the Lagrangian L++ = H++V generates a gauge-invariant
action.

The minimal supergravity involves a vector multiplet associated with the central charge. If V(z, u+) denotes the corresponding
gauge prepotential, then the Lagrangian S++V leads to gauge-invariant coupling. If supersymmetric matter (including a compen-
sator) is described by weight-one polar multiplets, then the supergravity-matter Lagrangian can be chosen to be

(4.17)L++ = S++V + iK
(
Υ +, Υ̃ +)

,

with the real function K(Φ, Φ̄) obeying the homogeneity condition (4.14). Here we have used the fact that S++ is covariantly
analytic, as a consequence of (2.12).

As a generalization of the model given in [4], a system of interacting arctic weight-zero multiplets Υ and their smile-conjugates
Υ̃ can be described by the Lagrangian

(4.18)L++ = S++K(Υ , Υ̃ ),

with K(ΦI , Φ̄J̄ ) a real function which is not required to obey any homogeneity condition. The action is invariant under Kähler
transformations of the form

(4.19)K(Υ , Υ̃ ) → K(Υ , Υ̃ ) + Λ(Υ ) + Λ̄(Υ̃ ),

with Λ(ΦI ) a holomorphic function.
In conclusion, we briefly discuss couplings of vector multiplets to supergravity. A U(1) vector multiplet can be described by its

gauge-invariant field strength, W(z), which is a real scalar superfield obeying the Bianchi identity (compare with the AdS case [4]),

(4.20)D(i

α̂
Dj)

β̂
W = 1

4
ε
α̂β̂
Dγ̂ (iDj)

γ̂
W.

The Bianchi identity implies that

(4.21)G++(
z,u+) = Gij (z)u+

i u+
j := i

{
D+α̂WD+

α̂
W + 1

2
W

(
D+)2

W + 2iS++W 2
}

is a composite real O(2) multiplet, D+
α̂

G++ = 0. The coupling of the vector multiplet to supergravity is obtained by adding G++V

to the Lagrangian (4.17). For the central-charge vector multiplet, its O(2)-descendant G++ reduces to (−2)S++, as a result of a
super-Weyl gauge fixing W = 1 implicitly made in Howe’s formulation [8].

5. Λ-group and supersymmetric action

In this section, we formulate a locally supersymmetric action underlying the dynamics of supergravity-matter systems. Our
construction has some analogies with the prepotential formulation for 4D N = 1 supergravity reviewed in [25,26], specifically the
supergravity gauge or Λ group [29,30]. It is also analogous to the harmonic-superspace approach to the minimal multiplet for 4D
N = 2 supergravity [27] as re-formulated in Appendix A of [31].

5.1. Λ-group

Consider the space of analytic multiplets of weight n, Q̂(n)(z, u+), in flat superspace R5|8. Such superfields are defined by
Eqs. (3.2)–(3.4) in which the curved-superspace covariant derivatives D+

α̂
have to be replaced by flat ones, D+

α̂
. Introduce a Lie

algebra of first-order differential operators acting on this linear functional space. Such an operator Λ generates an infinitesimal
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variation of Q̂(n)(z, u+) of the form9:

(5.1)δQ̂(n) = ΛQ̂(n), Λ = Λm̂∂m̂ − 1

(u+u−)

(
Λ+μ̂D−

μ̂
+ Λ++D−−) + nΣ.

The transformation parameters Λm̂, Λ+μ̂, Λ++ and Σ are such that the variation of Q̂(n), ΛQ̂(n), is also a flat analytic superfield
of weight n. The requirement of analyticity, D+

α̂
Q̂(n) = 0, can be seen to imply

(5.2)D+
μ̂

Λν̂γ̂ = 8i

(
δ
[ν̂
μ̂

Λ+γ̂ ] + 1

4
εν̂γ̂ Λ+μ̂

)
, D+

μ̂
Λ+ν̂ = δν̂

μ̂
Λ++, D+

μ̂
Λ++ = D+

μ̂
Σ = 0.

The requirement of ΛQ̂(n) to be independent of u−
i can be shown to hold if

(5.3)
∂

∂u−i
Λm̂ = ∂

∂u−i
Λ+μ̂ = ∂

∂u−i
Λ++ = 0, u−i ∂

∂u−i
Σ = 0, D++Σ = Λ++

(u+u−)
.

It is also clear that the requirement of ΛQ̂(n) to have weight n holds if Λm̂, Σ , Λ+μ̂ and Λ++ are homogeneous functions of u+
of degrees 0,0,1 and 2, respectively.

A solution to the above constraints is:

(5.4a)Λμ̂ν̂ = i

(
D+μ̂D+ν + 1

4
εμ̂ν̂

(
D+)2

)
Ω−−, Λ+μ̂ = −1

2
D+μ̂

(
D+)2

Ω−−,

(5.4b)Λ++ = −1

8

(
D+)2(

D+)2
Ω−−,

as well as

(5.5)2Σ = ∂m̂Λm̂ + 1

(u+u−)

(
D−

μ̂
Λ+μ − D−−Λ++)

.

Here the parameter Ω−− is required to be (i) independent of u−; and (ii) homogeneous in u+ of degree −2.
Let L̂++(z, u+) be a real analytic superfield of weight +2. Its transformation can be seen to be a total derivative:

(5.6)ΛL̂++ = ∂m̂

(
Λm̂L̂++) + 1

(u+u−)
D−

μ̂

(
Λ+μL̂++) − 1

(u+u−)
D−−(

Λ++L̂++)
.

Therefore, the following functional

(5.7)S = − 1

2π

∮
u+

i du+i

(u+u−)4

∫
d5x

(
D−)4L̂++

is invariant under (5.6).
A crucial element in the above construction is the Lie algebra of first-order operators of the form

(5.8)A= (
D++Σ

)
D−− − nΣ, u+i ∂

∂u+i
Σ = u−i ∂

∂u−i
Σ = 0,

(
D++)2

Σ = 0,

which act on the space F (n) of functions Q(n)(u+) being homogeneous in u+ of order n. This algebra can be viewed to be a gauging
of the algebra su(2) ⊕ R naturally acting on F (n), where R corresponds to infinitesimal scale transformations.

5.2. A partial solution to the constraints

Given a covariantly analytic superfield Q(n), Eq. (3.1) implies that the covariant derivatives D+
α̂

and Q(n) can be represented as
follows:

(5.9a)D+
α̂

= eHΔ+
α̂

e−H, Δ+
α̂

= Nα̂
β̂D+

β̂
+ Ω̂+

α̂
β̂γ̂ M

β̂γ̂
+ Φ̂−

α̂
J++,

(5.9b)Q(n) = eHQ̂(n), D+
α̂

Q̂(n) = 0.

Here H(z, u) is some first-order differential operator, and Q̂(n)(z, u+) a flat analytic superfield of weight n. The covariant derivatives
are left invariant under gauge transformations of the prepotentials of the form:

(5.10)δeH = −eHΛ, δΔ+
α̂

= [
Λ,Δ+

α̂

]
, Λ = Λ + ρ−μ̂D+

μ̂
+ ρβ̂γ̂ M

β̂γ̂
+ ρ−−J++,

9 For simplicity, the analytic multiplets are chosen to be independent of the central charge, ZQ̂(n) = 0. It is not difficult to extend out analysis to the general case;
compare also with [31].
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where Λ is the same as in Eq. (5.1), while the parameters ρ−μ̂, ρβ̂γ̂ and ρ−− are arbitrary modulo homogeneity conditions. The
analytic superfield Q̂(n) transforms as in (5.1). The variation Q̂(n) involves not only general coordinate and local SO(4,1) × SU(2)

transformations, but also Weyl transformations.
Let L++ be the covariantly analytic Lagrangian in the action (4.10). It can be represented in the form L++ = eHL̂++, for

some flat analytic superfield L̂++(z, u+) of weight +2. Then, the action (5.7) generated by L̂++ is locally supersymmetric and
projective-invariant. In the Wess–Zumino gauge, it should turn into (4.10).

In order to extend our construction to the case of 4D N = 2 supergravity, one should build on the superspace formulation for the
minimal supergravity multiplet given in [32].
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[6] E. Cremmer, in: S.W. Hawking, M. Roček (Eds.), Supergravity and Superspace, Cambridge Univ. Press, 1981, p. 267.
[7] P. Breitenlohner, A. Kabelschacht, Nucl. Phys. B 148 (1979) 96.
[8] P.S. Howe, in: M.J. Duff, C.J. Isham (Eds.), Quantum Structure of Space and Time, Cambridge Univ. Press, 1982, p. 239.
[9] P.S. Howe, U. Lindström, Phys. Lett. B 103 (1981) 422.

[10] M. Günaydin, G. Sierra, P.K. Townsend, Nucl. Phys. B 242 (1984) 244;
M. Günaydin, G. Sierra, P.K. Townsend, Nucl. Phys. B 253 (1985) 573.

[11] M. Günaydin, M. Zagermann, Nucl. Phys. B 572 (2000) 131, hep-th/9912027.
[12] A. Ceresole, G. Dall’Agata, Nucl. Phys. B 585 (2000) 143, hep-th/0004111.
[13] M. Zucker, Nucl. Phys. B 570 (2000) 267, hep-th/9907082;

M. Zucker, JHEP 0008 (2000) 016, hep-th/9909144;
M. Zucker, Fortschr. Phys. 51 (2003) 899.

[14] T. Kugo, K. Ohashi, Prog. Theor. Phys. 105 (2001) 323, hep-ph/0010288;
T. Fujita, K. Ohashi, Prog. Theor. Phys. 106 (2001) 221, hep-th/0104130.

[15] E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, R. Halbersma, S. Vandoren, A. Van Proeyen, JHEP 0210 (2002) 045, hep-th/0205230;
E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, S. Vandoren, A. Van Proeyen, Class. Quantum Grav. 21 (2004) 3015, hep-th/0403045.

[16] K. Galicki, Nucl. Phys. B 271 (1986) 402.
[17] N. Dragon, Z. Phys. C 2 (1979) 29.
[18] S.M. Kuzenko, JHEP 0712 (2007) 010, arXiv: 0710.1479.
[19] A.S. Galperin, E.A. Ivanov, S.N. Kalitsyn, V. Ogievetsky, E. Sokatchev, Class. Quantum Grav. 1 (1984) 469.
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