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a b s t r a c t

Glassy polymers such as polycarbonate exhibit different behaviours in different loading
scenarios, such as tension and compression. To this end a flow rule is postulated within
a thermodynamic consistent framework in a mixed variant formulation and decomposed
into a sum of weighted stress mode related quantities. The different stress modes are cho-
sen such that they are accessible to individual examination in the laboratory, where ten-
sion and compression are typical examples. The characterisation of the stress modes is
obtained in the octahedral plane of the deviatoric stress space in terms of the Lode angle,
such that stress mode dependent scalar weighting functions can be constructed. Further-
more the numerical implementation of the constitutive equations into a finite element pro-
gram is briefly described. In a numerical example, the model is used to simulate the laser
transmission welding process.

� 2008 Published by Elsevier Ltd.
1. Introduction

The effect of asymmetry is an experimental observation for various materials, where the mechanical response is depen-
dent on the loading type such as tension and compression. An example is given e.g. in Spitzig et al. (1975) for a martensitic
steel. Concerning the asymmetry effect between tension and compression for polymers, results have been published, e.g., in
Spitzig and Richmond (1979) for two different polymer materials (polyethylene and polycarbonate). The yield stress in com-
pression is greater than that in tension (see also Haward et al., 1971 and Section 6.1 of this paper). This observation is la-
belled also strength-difference effect (SD-effect). More details can be found in Spitzig and Richmond (1979). Further
examples are presented in Altenbach et al. (1995) for different metallic, polymer and glass fiber-reinforced composite and
geomaterials.

In addition the pressure-dependent yield behaviour of several sintered materials and polymers (polypropylene (PP),
polycarbonate (PC), polymethylmethacrylate (PMMA), polyvinylchloride (PVC), polystyrene (PS)) including anisotropic ef-
fects have been investigated in more detail by Betten (1982a),Betten et al. (1982),Betten and Borrmann (1984). For creep
behaviour the SD-phenomenon is called creep-strength-differential effect or CSD-effect (Betten and Borrmann, 1987). Based
upon the theory of invariants Kolupaev (2006) has studied CSD-effects of thermoplastics including experiments on polyamide
(PA), PC, PS, PVC and PMMA under tension, compression and torsion.

The concept of stress mode dependent weighting functions has been introduced in Mahnken (2003) for simulation of
asymmetric effects within a geometrically linear theory and is applied to glassy polymers in Shaban et al. (2007). The key
idea here consists in an additive decomposition of the inelastic strain rate tensor. Each of the additive quantities incorporates
a weighting function dependent on the stress mode angle or Lode angle, respectively. One advantage of this approach is, that
y Elsevier Ltd.
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the chosen stress modes are accessible to individual examination in the laboratory, where tension and compression are typ-
ical examples. In this way also certain (though not all) material parameters, such as Norton-type constants, can be identified
individually from specific experiments.

To extend the previous concept to include the thermomechanical behaviour within a geometrically nonlinear case, sev-
eral publications can be found in the literature. Helm (2006) has introduced a constitutive theory in the framework of con-
tinuum thermomechanics to represent the viscoplastic behaviour of metals at finite deformations. In particular, the
experimentally observed thermomechanical coupling phenomena are described by the theory. Concerning the thermome-
chanical modelling of glassy polymers at large strains, further literature can be found. Boyce et al. (1988) has developed a
constitutive model based on the macromolecular structure of glassy polymers. Using the concept of the previous model, Arr-
uda et al. (1995) studied the effects of strain rate and temperature on the inelastic response of the glassy polymers.

The main purpose of the present work is to extend the concept introduced in Shaban et al. (2007) to the geometrically
nonlinear case taking into consideration the thermomechanical effects. To this end a flow rule is postulated within a ther-
modynamic consistent framework in a mixed variant formulation, which preserves the volumetric and deviatoric properties
for the pull-back and push-forward operations. Then, in accordance with the approach of Shaban et al. (2007) an additive
decomposition of the flow rule is assumed into a sum of weighted stress mode dependent quantities. Upon performing
pull-back and push-forward operations, the flow rule is also formulated with respect to different configurations. In a further
part of the paper numerical aspects are addressed. In particular the mixed-variant flow-rule is integrated by an exponential
integration scheme, thus leading to a formulation in principal directions and allowing the algorithm developed in Shaban
et al. (2007) for the geometrically nonlinear case. The proposed integration scheme can further be implemented into a finite
element program such as the UMAT subroutine of the commercial finite element program (ABAQUS-Version 6.5, 2004). Bet-
ter results are expected using the proposed model in the simulation of the laser transmission welding process.

The structure of the paper is as follows: Section 2 presents a general framework for stress mode dependent thermovisco-
plasticity at large strains. In particular a flow rule is postulated in a mixed variant formulation which is decomposed addi-
tively into stress mode related quantities. In Section 3 stress mode related weighting functions are introduced briefly, which
are incorporated into a prototype model of Section 4. Aspects of the numerical implementation into ABAQUS are briefly de-
scribed in Section 5. A simulation of the laser transmission welding process is presented in Section 6.

1.1. Notations

Square brackets ½�� are used throughout the paper to denote ’function of’ in order to distinguish from mathematical
groupings with parenthesis ð�Þ. Furthermore tensor calculus on manifolds as advocated by Marsden and Hughes (1993),van
der Giessen and Kollmann (1996) and Hackenberg (1992) is used. In particular rigorous application of the scalar product
(dual pairing) between co- and contra-variant vectors is employed, thus leading to a concept of simple tensors with unam-
biguous transformation rules between different vector and tensor spaces. Details on this mathematical formalism are pre-
sented, e.g., in Mahnken (2005a) and applied to the framework of multiplicative plasticity, some relevant relations of
kinematics are summarised in Appendix A.

2. Framework for stress mode dependent thermoviscoplasticity at large strains

2.1. Kinematics

The constitutive equations used in this work are formulated in the framework of large strain thermoviscoplasticity. To
this end an intermediate configuration is introduced as a consequence of the multiplicative decomposition of the deforma-
tion gradient
F ¼ Fe � Fc; ð1Þ
where Fe and Fc are the elastic and creep parts, respectively. Basic concepts of tensor calculus on manifolds with applications
to this concept are summarised in Appendix A. Here also relevant strain tensors, rate of deformation tensors related to dif-
ferent configurations and the associated pull-back and push-forward operations are summarised. Further details on the con-
cept of multiplicative plasticity with a plastic part instead of a creep part in Eq. (1) can be found in many references, see e.g.
Bertram (2005), Haupt (2000), Lee (1969), Miehe (1994), Simo and Hughes (1998), amongst others.

2.2. Entropy inequality principle

Thermodynamic formulations for the constitutive equations are based on the second law of thermodynamics which leads
to what is known as the Clausius–Duhem inequality
D ¼ Dloc þDcon P 0; ð2Þ

where
Dloc ¼
1
qR

P� otW� _#g ð3Þ



R. Mahnken et al. / International Journal of Solids and Structures 45 (2008) 4615–4628 4617
and
Dcon ¼ �
1

qR#
qR � Grad#: ð4Þ
Therein D is the dissipation which is splitted up into two parts Dloc and Dcon. P is the stress power, W the Helmholtz free
energy function, # the absolute temperature, g the entropy, qR the mass density in the reference configuration, qR the heat
flux vector in the reference configuration, and Grad the material gradient.

A stronger condition of the inequality (2) is introduced by setting both parts greater than zero, which yields
1: Clausius—Planck inequality : Dloc P 0;
2: heat conduction inequality : Dcon P 0:

ð5Þ
A common approach for the heat flux vector in Eq. (4) is
qR ¼ kðdetFÞC�1Grad#; ð6Þ
where F is the deformation gradient introduced in Eq. (1), k a non-negative heat conduction coefficient and C the right Cau-
chy–Green tensor introduced in Eq. (A.4) in Appendix A.

Several possibilities exist in order to formulate the stress-power P as a dual-pairing of conjugate stress and strain-rate
tensor quantities. E.g., relative to the actual configuration B it is given as a dual pairing P ¼ s : d in terms of the Kirchhoff
stress tensor s and the rate of deformation tensor d introduced in Eq. (A.6.2) Alternatively the stress power can be defined as
P ¼ S : D where the second Pilo-Kirchhoff stress tensor S ¼ �U[½s� and the rate of deformation tensor D ¼ �U]½d� is defined in
the reference configuration. An elastic pull-back operation renders a formulation for P relative to the intermediate config-
uration as P ¼M : L. Here M ¼ �U0e½m� ¼ Ft

e �m � F
�t
e is the Mandel stress tensor in a mixed variant representation, i.e.

M ¼ Tj
iG

i � Gj as a consequence of the mixed variant representation for the Kirchhoff stress tensor m ¼ g[ � s ¼ sj
i gi � gj. Fur-

thermore, L ¼ �U8

e½l� is the velocity gradient introduced in Eq. (A.7.1) related to the intermediate configuration.
Let us assume the functional relationship W ¼ W½Ce; q; #� ¼ Wel½Ce; #� þWp½q; #� for the Helmholtz free energy, where Ce is

the elastic right Cauchy–Green tensor introduced in Eq. (A.4.1), and q is a strain-like internal variable.Consequently, using the
additive decomposition Eq. (A.8) and the identity oW=oCe :

_Ce ¼ 2ðCe � oW=oCeÞ : Le the Clausius-Planck inequality (5.1) results
into
Dloc ¼
1
qR

M� 2Ce �
oW

oCe

� �
: L þ 2Ce �

oW

oCe

: Lc �
oW
oq

oq
ot
� gþ oW

o#

� �
_# P 0: ð7Þ
Note that in a more general case q can be replaced by a vector or a tensor of higher order. On defining relations for the Man-
del stress tensor M, stress like internal variable Q and the entropy g as
1: M ¼ 2Ce � qR
oW

oCe

; 2: Q ¼ qR
oWp

oq
; 3: g ¼ � oW

o#
ð8Þ
and using the standard argument, that the above relation holds for all processes L, the dissipation inequality (7) reduces to
qRD
red
loc ¼M : Lc � Q

oq
ot

P 0: ð9Þ
2.3. Flow rule for asymmetric thermoviscoplasticity

Modelling the evolution of inelastic deformations requires a flow rule for some kinematic quantities, which has been an
issue in many publications. In the framework of a geometrically linear theory for creep an extensive overview on different
concepts, the potential theory and the tensor function theory, has been published by Betten (2001).

In this work a creep potential theory is applied, although, as noted in Rice (1970), from the physical point of view the
assumption of a creep potential has limited justifications. Especially this holds in the anisotropic case and in the tertiary
creep stage, Betten (2004). For the plastic potential theory this aspect has been pointed out in more detail in Betten
(1985) from the mathematical point of view. As discussed by Betten (1982b) alternatively, constitutive equations can be rep-
resented as tensor-valued functions.

The simulation of asymmetric material behaviour is formulated in Shaban et al. (2007) on the basis of a stress mode re-
lated approach within a geometrically linear theory. The key idea is an additive decomposition of the inelastic strain rate into
a sum of stress mode related quantities, which can be investigated individually in the laboratory. In order to extend this ap-
proach to the geometrically nonlinear case, in this work a general flow rule is formulated for the creep velocity tensor Lc

occurring in Eq. (9) in a nine dimensional space. According to Mahnken (2005b) a non-associated flow rule is postulated:
Lc ¼
XS

i¼1

wi
_Ki

oU�i
oM

ð10Þ
i.e. it is formulated as a sum of S individual quantities. The weighting functions wi are stipulated such that
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1:
XS

i¼1

wi½M� ¼ 1

2: wi½Mj� ¼ dij;

ð11Þ
i.e. the weighting functions wi are associated to different independent characteristic stress modes characterised by
stress tensors Mj; j ¼ 1;2; . . . ; S. Specific formulations referring to stress states which can be investigated experimen-
tally, e.g. in tension and compression, are given in the ensuing Section 3. We also remark, that Eq. (11.1) can be
regarded as a completeness condition, whereas Eq. (11.2) constitutes a normalisation condition for the weighting
functions.

Furthermore, in Eq. (10) U�i ¼ U�i ½M;Q �; i ¼ 1; . . . ; S are creep potentials, formulated in terms of the Mandel stress tensor M,
and internal stress-like variable Q, which appear as the conjugate (dual) variables of Lc and q in the inequality (9). Addition-
ally, in Eq. (10) flow factors are introduced with the functional relationship _Ki ¼ _Ki½M;Q �. In accordance to standard ap-
proaches a Norton rule, or in case of power law breakdown, a Garofalo rule (see e.g. Poirier, 1985) is postulated for each
flow factor, i.e.
1: Norton : _Ki ¼ Ai
hUi
r0

� �mi

; 2: Garofalo : _Ki ¼ Ki ðsinh aihUiÞni ð12Þ
and where Ai;mi and Ki; ai;ni are material parameters associated to each mode i ¼ 1; . . . ; S. Furthermore the notation hUi ¼ x
for x > 0; hUi ¼ 0 for x 6 0 has been used, such that the functions Ui ¼ Ui½M;Q � play the role of overstress functions. From now
on the case of isotropy is considered. Then the co-variant tensor Ce and the contra-variant tensor oW=oCe occurring in Eq. (8)
commute such that, with G[ introduced in Appendix A,
Ce �
oW

oCe

� G[ ¼ G[ � oW
oCe

� Ce ¼ Ce �
oW

oCe

� G[

� �t

ð13Þ
The above relation can be verified by a spectral decomposition for Ce. Consequently, from Eq. (8.1) it follows that
sym½M � G[� ¼ M � G[; skew½M � G[� ¼ 0 ð14Þ
which reveals the co-variant representation of the Mandel stress tensor M � G[ as symmetric. Thus
G[ � oU
�
i

oM
¼ G[ � oU�i

oðM � G[Þ
� G[ ¼ G[ � oU�i

oðM � G[Þ
� G[

 !t

; i ¼ 1; . . . ; S ð15Þ
which implies for the flow rule (10)
sym½G[ � Lc� ¼
XS

i¼1

wi
_KiG[ � oU

�
i

oM
; skew½G[ � Lc� ¼ 0: ð16Þ
The interpretation is, that for isotropy a non-associative concept based on a creep potential dependent on the Mandel stress
tensor renders the flow rule in a co-variant formulation as a symmetric tensor.

As explained below alternative mixed-variant representations of the above flow rule (10) relative to the configurations
B;B;B0, are as follows:
1: B : Lc ¼ �
1
2
L]

c½G]� � G[ ¼
XS

i¼1

wi½M� _Ki
oU�i
oM

;

2: B : �1
2
L]½be� � b�1

e ¼
XS

i¼1

wi½m� _Ki
oU�i
om

; where m ¼ �U0eðMÞ ¼ F�t
e �M � F

t
e

3: B0 : �1
2

otC
�1
c � Cc ¼

XS

i¼1

wi½M� _Ki
oU�i
oM

; where M ¼ �U0cðMÞ ¼ Ft
c �M � F

�t
c

ð17Þ
The flow rule (17.1) is obtained by inserting Lc ¼ �1=2L]
c½G]� � G[ into the relation (10). Here additionally the creep Lie

derivative operator L]
c½�� ¼ �U]

c½ot ½�U]
c½���� has been used, were �U]

c is explained in Eq. (A.3.1) and �U
]
c denotes its inverse

operation. An elastic push-forward �U
8

e½��Fe � ½�� � F�1
e of the flow rule (17.3) renders the relation (17.2). Here the mixed

variant Kirchhoff stress tensor is obtained from m ¼ �U0e½M�, and be is introduced in Eq. (A.3). Furthermore the Lie
derivative operator L]½�� ¼ �U]½ot ½�U]½���� has been used, were �U] is explained in Eq. (A.3.1) and �U

] denotes its inverse
operation. The flow rule (17.3) w.r.t. the reference configuration is a consequence of a creep pull-back
�U

8

c½�� ¼ F�1
c � ð�Þ � Fc of the flow rule Eq. (17.1), where the notation otð:Þ denotes the time derivative. Lastly we note

the following restrictions for the weighting functions
wi½M� ¼ wi½m� ¼ wi½M�; i ¼ 1; . . . ; S: ð18Þ
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3. Formulation of stress mode related weighting functions at large strains

The weighting functions wi for the flow rule Eq. (17) are firstly introduced in Eq. (11) to be dependent on the Mandel
stress tensor M, which is related to the intermediate configuration B. However, in order to associate the weighting functions
to stress states which can be investigated experimentally in the laboratory, it is natural to consist stress modes relative to the
actual configuration B, where the Cauchy stress tensor r defines the true stress state.

In the following we will concentrate on the two independent stress modes of tension and compression with applications
to isotropic materials. In order to have a quantity which serves as an indicator for the related stress mode, we define the Lode
angle (stress mode angle)
1: h ¼ 1
3

arccos½n�; where

2: n ¼
ffiffiffiffiffiffi
27
p

2

rdev I3

ðrdev I2Þ3=2

3: rdev Ii ¼
1
i

g[ : ðrdevÞi; i ¼ 2;3:

ð19Þ
Upon using the definition (19.1), the weighting functions wi½h� for the loading of tension and compression (S ¼ 2) can be
rewritten in terms of the stress mode factor n as
1: tension : w1½n� ¼
1
2
ð1þ nÞ

2: compression : w2½n� ¼
1
2
ð1� nÞ:

ð20Þ
More details about the stress mode angle h, the stress mode factor n and the weighting functions wi½h� have been introduced
in Mahnken (2005b) and Shaban et al. (2007) which shall not be repeated here.

In order to verify the restriction (18) firstly we note the relations s ¼ Jr and m ¼ g[ � s for the Kirchhoff stress tensor and
the mixed variant Kirchhoff stress tensor, respectively. It follows, that alternatively the stress mode angle Eq. (19) can be
expressed as
1: h ¼ 1
3

arccos½n�; where

2: n ¼
ffiffiffiffiffiffi
27
p

2

s0
dev I3

ðs0dev I2Þ3=2

3: s0
dev Ii ¼

1
i

1
8

: ðmdevÞi; i ¼ 2;3:

ð21Þ
Furthermore, upon exploiting the relations
Mdev ¼ �U0e½mdev� ) s0
dev Ii ¼ Tdev Ii; where Tdev Ii ¼

1
i

1
8

: ðMdevÞi; i ¼ 2;3

Mdev ¼ �U0½mdev� ) s0
dev Ii ¼ Tdev Ii; where Tdev Ii ¼

1
i

1
8

: ðMdevÞi; i ¼ 2;3
ð22Þ
finally ensures the relations (18).

4. Modelling of stress mode dependent thermoviscoplasticity at large strains

4.1. Prototype model

Upon applying the thermodynamic framework of the previous sections to a specific free energy function, an overstress func-
tion and a creep potential, respectively, the purpose of this subsection is the formulation of a constitutive equations capable to
simulate the asymmetry in creep within a geometrically nonlinear theory, and, furthermore, to satisfy the thermodynamic
restrictions. The constitutive relations formulated relative to the intermediate configurationB in terms of contra-variant tensor
objects are summarised in Eq. (I) to Eq. (X) of Table 1. The multiplicative decomposition of the deformation gradient is intro-
duced in Eq. (I). The quantity ev in Eq. (II) is a strain-like internal variable which describes the hardening state of the material
with associated material parameters q; b and H. As a specific example of a free energy function we consider Eq. (III) in Table 1.

The free energy function W is splitted into two parts (thermoelastic and inelastic) as introduced in Eq. (III.1). The thermo-
elastic part Wel is given in Eq. (III.2). Therein, the first term represents the free energy due to volumetric deformations (cf.
Simo and Pister, 1984) and the second term describes the energy storage as a result of isochoric thermoelastic strains (cf.
Simo et al., 1985; Simo, 1988). The third term models the thermoelastic coupling phenomena. The last two terms of Eq.
(III.2) describe the energy storage due to thermal effects. In the thermoelastic part of the free energy, K½#� and G½#� are
the bulk modulus and the shear modulus respectively. Moreover, a½#� defines the coefficient of thermal expansion, #0

represents the reference temperature, cd is the specific heat capacity. In addition to the thermoelastic part of the free energy,
the inelastic part Wp of the free energy is defined in Eq. (III.3) (cf. Lemaitre and Chaboche, 1990) in order to describe the en-
ergy storage due to viscoplastic deformations.



Table 1
Constitutive relations for stress mode dependent thermoviscoplasticity related to the intermediate configuration

I. Kinematic decomposition

F ¼ Fe � Fc

II. Strain like internal variable

q ¼ ev

III. Free energy function

1: qRW ¼ qRW
el½Ce; #� þ qRW

p½ev; #�; where

2: qRW
el ¼ 1

2
K½#�ðln JeÞ

2 þ G½#�
4
ðtrðln ĈeÞ2Þ � 3K½#�a½#�ð#� #0Þðln JeÞ

þ cd½#�ð#� #0Þ � cd½#�# ln
#

#0

� �

3: qRW
p ¼ q ev þ

1
b

expð�bevÞ
� �

� q
b
þ 1

2
He2

v

IV. Mandel stress tensor and stress-like internal variables

1: M ¼ 2Ce � qR
oW

oCe

¼ K½#� ln Je1þ G½#�dev ln Ce � 3K½#�a½#�ð#� #0Þ1

2: R ¼ qR
oW
oev
¼ qð1� expð�bevÞÞ þ Hev

V. Overstress function and creep potential

U½M̂;R� ¼ U�½M̂;R� ¼ rv � JðY0 þ RÞ; rv ¼
ffiffiffi
3
2

r
jjM̂devjj ¼

ffiffiffi
3
2

r
jjMdevjj

VI. Flow rule

1. Lc ¼ _KN
2. _K ¼

PS
i¼1wi

_Ki

VII. Flow factor associated to each mode

_Ki ¼ Ai exp � DU
Rg#

� �
hUi
r0

� �mi

i ¼ 1; . . . ; S

VIII. Flow direction

N ¼ oU�

oM̂
¼

ffiffiffi
3
2

r
ðMdevÞt

jjMdevjj
¼

ffiffiffi
3
2

r
ðM̂devÞt

jjM̂devjj
IX. Equivalent inelastic strain

_ev ¼ J _K

X. Material parameters

j ¼ ½K;G;Ai;mi; fi ¼ 1; . . . ; Sg;Y0; q; b;H;DU�T
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In Eq. (IV.1) the Mandel stress tensor M is obtained from the relation (8.1) applied to the free energy function in Eq. (III).
The first two terms in Eq. (IV.1) represent the spherical and deviatoric stress tensors whereas the third term represents the
thermomechanical coupling. Next, we identify the stress-like and strain-like internal variables as Q ¼ ½R� and q ¼ ½ev�, respec-
tively. Then the relation (8.2) yields the hardening variable R as the thermodynamic force conjugate to the internal variable
ev as summarised in Eq. (IV.2) of Table 1. The two terms of R represent a mixed nonlinear and linear isotropic hardening.

Concerning the creep potentials and the overstress functions introduced in Eq. (10) and Eq. (12) the following simplifi-
cation is made
U ¼ Ui ¼ U�i ¼ U�; i ¼ 1; . . . ; S: ð23Þ
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Furthermore, we restrict the dependency of these functions on the second invariant of the deviatoric effective Mandel stress
tensor M̂. This renders Eq. (V) in Table 1 for the overstress function U½M̂dev;Q � and the creep potential U�½M̂dev;Q �. Recall, that
J ¼ det½F� is the determinant of the deformation gradient F introduced in Appendix A.

The general flow rule formulated for the creep velocity Lc is obtained in Eq. (VI.1) of Table 1 by the application of Eq.
(17.1) to the creep potential U� of Eq. (V). Eq. (VI.2) in Table 1 represents the weighted decomposition of the flow factor
_K into individual flow factors _Ki. Based on a Norton structure of the relation (12.a) these are specified in Eq. (VII). Note,
that the constants Ai and mi are material parameters associated to the i-th mode where all the material parameters of
the proposed model are summarized in Eq. (X). Furthermore, Eq. (VIII) specifies the flow direction N, which as a conse-
quence of the relation (23), is identical for all stress modes. The evolution of the equivalent inelastic strain is given in Eq.
(IX). Finally we note, that the notation hUi ¼ x for x > 0, hUi ¼ 0 for x 6 0 introduced in Table 1 renders the following
relations for the flow factor
_Ki ¼ 0 for U 6 0; _Ki > 0 for U > 0: ð24Þ
4.2. Thermodynamic consistency

According to the second law of thermodynamics the dissipation inequality (9) must be satisfied for the evolution equa-
tions. Using the expressions Eq. (VI.2) and Eq. (VIII) in Table 1 for the flow rule we obtain
qRD
red
loc ¼M : Lc � Q

oq
ot
¼M : Lc � R _ev ¼M : _K

ffiffiffi
3
2

r
ðMdevÞt

jjMdevjj
� JR _K; ð25Þ
and using Eq. (V) in Table 1, the reduced dissipation is written as
qRD
red
loc ¼ _Kðrv � JRÞ ¼ _KðUþ JY0Þ: ð26Þ
Due to the relations (24) the reduced dissipation satisfies
qRD
red
loc P JY0

_K P 0: ð27Þ
5. Numerical implementation at large strains

In this section the numerical integration of the evolution equations of the previous sections is briefly described. To this
end we consider a finite time step Dt ¼ nþ1t � nt with given initial data nev;

nC�1
c ¼ nF�1 � nbe � nF�t , deformation gradient nþ1F

and its determinant nþ1J ¼ det½nþ1F�. For our purpose an exponential map integrator is applied to the flow rule (17.3) (see e.g.
Eterovic and Bathe (1990) and Simo (1992)).

5.1. Integration scheme

An Euler backward rule is applied to the rate equations (VI.1) and (VI.2) of Table 1. By the use of Eq. (IX), this leads to the
following incremental objective integration algorithm with respect to the actual configuration (compare also the similar ap-
proach described in Steinmann et al., 1993 and Mahnken, 2000).
1: nþ1be ¼ expð�2DK nþ1nÞ � nþ1btr
; where nþ1btr ¼ nþ1F � nC�1

c � nþ1FT

2: nþ1ev ¼ nev þ Dev:
ð28Þ
Here the increments on the r.h.s in the above equations are obtained from
1: DK ¼
XS

i¼1

DKiwi

2: DKi ¼ DtAi exp � DU
Rg#

� �
hUi
r0

� �mi

3: wi ¼ wi½n�ðsee Eq: ð20ÞÞ

4: r2
v ¼

3
2

ŝdev : ŝdev ¼ 3s0
dev I2

5: n ¼ 3
2rv

ŝdev

6: R ¼ qð1� expð�bevÞÞ þ Hev

7: U ¼ rv � JðY0 þ RÞ
8: De ¼ JDK;

ð29Þ
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where for notational brevity the index nþ 1 referring to the actual time step has been neglected. Without going into detail
we follow the derivations of Simo (1992) thus rendering the Kirchhoff stresses as
s ¼ ŝvol þ ŝdev and

ŝvol ¼ pg]; p ¼ Kðln Jtr � 3að#� #0ÞÞ; Jtr ¼ det½btr�1=2

ŝdev ¼ ŝdev;tr � 2GDKn; where ŝdev;tr ¼ Gdev ln btr
:

ð30Þ
Upon using a spectral decomposition of the right elastic Cauchy Green tensor and using the fact, that due to isotropy btr and s

commute, we have
1: btr ¼
X3

A¼1

ðktr
A Þ

2mA ) 2: ŝ ¼
X3

A¼1

bAmA: ð31Þ
Here bA;A ¼ 1;2;3 are the principal values of the effective Kirchhoff stresses, which by use of the vector/matrix notations
etr :¼
ln ktr

1

ln ktr
2

ln ktr
3

2
64

3
75; b :¼

b1

b2

b3

2
64

3
75; 1 :¼

1
1
1

2
64

3
75; I3 :¼

1
1

1

2
64

3
75; Idev

3 :¼ I3 �
1
3

1� 1 ð32Þ
satisfy
b ¼ b̂vol þ b̂dev and

b̂vol ¼ p1; p ¼ Kð1 � etr � 3að#� #0ÞÞ

b̂dev ¼ b̂dev;tr � 2GDkm; where b̂dev;tr ¼ 2GIdev
3 � etr; m ¼

b̂devffiffi
3
2

q
jjb̂devjj

:

ð33Þ
Note that Idev
3 is defined as Idev

3 � a ¼ adev where trðadevÞ ¼ 0 and a 2 IR3. The previous sets of Eqs. (32) and (33) can be regarded
as the counterpart of the relations (30) in the principal directions. Note, that the above structure for the principal Kirchhoff
stresses is identical as in the geometrically linear theory. This allows the algorithm developed in Shaban et al. (2007) where
the resulting set of algebraic equations is reduced to one single scalar equation dependent on one unknown DK.

5.2. Algorithmic tangent modulus

The finite element equilibrium iteration requires the spatial algorithmic tangent operator defined as c ¼ 2os=og[. As
shown in Simo (1992) and Mahnken (1999) the result is
c ¼
X3

A¼1

X3

B¼1

dbA

detr
B

mA �mB þ
X3

A¼1

2bA
dmA

dg[
þ
X3

A¼1

J
dbA

dJ
mA � g] ð34Þ
where the detailed expression for dmA=dg[ is given in Simo (1992). As remarked in Simo (1992) the above result incorporates
also dbA=detr

B , which is the consistent tangent operator of the geometrically linear theory, and which for the case with asym-
metric effects has been developed in Shaban et al. (2007).

6. Simulation of laser transmission welding

6.1. Principle and modelling of laser transmission welding

The proposed constitutive model is used to simulate the laser transmission welding (LTW) process. In the LTW a laser-
transparent and a laser-absorbent semi-finished product are joined together, thus ensuring that the adherends come into
contact with each other (see Fig. 1).

The laser beam passes through the transparent part virtually unimpeded and is converted into heat as it is absorbed by
the absorbent semi-finished product. The adherend that is transparent to the laser beam heats up through thermal conduc-
tion, therefore the adherends weld together. The reader is referred to Potente et al. (2006), Shaban et al. (2007) and Potente
et al. (2008) for a detailed description of the LTW process.

Our concern is devoted to the simulation of contour LTW, which is one type of the LTW processes. In this process, the laser
beam is moved along the weld with relatively slow speeds (V = 0.1–500 mm/s). The weld is only heated up on a partial basis,
i.e. only part of the weld is melted, and there is no melting displacement.

A simulation of the contour LTW process is performed with the finite element program (ABAQUS-Version 6.5, 2004) using
the two dimensational discretization of Fig. 2. The transparent part is shown in the left of Fig. 2, while the absorbant part is
shown in the right. The joining surface coincides with the vertical centerline. The total length of the two parts is 12 mm
while the width is 1.35 mm. The mesh for the LTW process in Fig. 2 consists of elements with 8-node biquadratic displace-
ments, bilinear temperature and reduced integration with linear pressure. The mesh has 105� 17 elements, which means
that the number of elements is 1785 and the number of nodes is 5600.
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Fig. 1. Principle of the laser transmission welding process (Potente et al., 2002).

x

y

upper surface vertical centerline

transparent part absorbent part

12 mm

1.35 mm

z x

y

horizontal
centerline

z

Fig. 2. The finite element mesh of the laser transmission welding process.
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The lower surface is chosen as a symmetry boundary about the x-axis while the left and the right surfaces are constrained
in the x-direction. The thermal effects of the convection and radiation in the upper surface are taken into account. The laser
power is treated as a body heat flux with a Gaussian distribution for its intensity. The scanning velocity of the laser beam is
30 mm/s.

6.2. Experimental data bases and parameter identification

The constitutive equations of Table 1 have been implemented into UMAT subroutine. The material of the simulated spec-
imen is polycarbonate (Lexan 104 R, GE Plastics). Experimental results in Shaban et al. (2007) are recalled in Fig. 3. This figure
presents the results of both, the uniaxial tensile and compression true stress - true strain curves of polycarbonate at two dif-
ferent strain rates (8:3� 10�3 s�1 and 8:3� 10�2 s�1) and at three different temperatures (23, 70 and 120 �C). In total the
number of experiments is 12. Note that for each experiment in tension and compression a newly prepared specimen has
been used. It is observed that the yield stress increases with increasing strain rate. A similar increase of the yield stress is
seen at lower temperatures. Furthermore the yield stress in compression is higher than that in tension for the same strain
rate and temperature, thus revealing the asymmetric behaviour.

In Shaban et al. (2007) the corresponding material parameters have been obtained with the least squares method and are
repeated in Table 2 of this work. The comparison of the experimental data with the simulated data is depicted in Fig. 3, and
clearly demonstrates the capability of the constitutive equations to simulate the asymmetric behaviour of the material w.r.t.
tension and compression.

The glass transition range of the polycarbonate is assumed to be between 140 �C and 150 �C. The effect of the temperature
on Young’s modulus is taken into account as mentioned in Shaban et al. (2007) using the following equation:
E½#� ¼
1831:926 MPa; if # 6 140 	C
�183:56� #þ 27536:0; if 140 	C < # 6 150 	C
2:0 MPa; if # > 150 	C:

8><
>: ð35Þ
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Fig. 3. Comparison between experimental and numerical data of the polycarbonate.

Table 2
Material parameters for polycarbonate corresponding to tension and compression modes

E [MPa] m [�] Y0 [MPa] r0 [MPa] b [�] q [MPa] H [MPa]

1831.926 0.38 5.718 10.0 236.297 21.689 43.636

A1 [�] m1 [�] A2 [�] m2 [�] Rg [J/mol K] DU[J/mol]

0.00589 21.45 0.0727 17.751 8.314 82:063� 103
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The thermodynamic parameters of state such as the density qR in Eq. (4), the specific heat capacity cd in Eq. (III.2) of Table 1,
the heat conductivity k in Eq. (6) as well as the coefficient of thermal expansion a in Eq. (III.2) of Table 1 was implemented as
temperature dependent properties as shown in Fig. 4.

6.3. Results and discussion

6.3.1. Temperature distribution
Fig. 5 shows the temperature development with time at three different positions in the horizontal centerline of Fig. 2,

namely x = 0.0, 0.15 and 0.30 mm where x represents the x coordinate in Fig. 2. It can be seen that the temperature undergoes
a pronounced increase during the time at which the laser acts, passing through the material’s glass transition temperature.
The temperature reaches its maximum value after about 0.3 s. After the laser has run through the welded parts, the material
cools down slowly, passing through the glass transition temperature for a second time and then cools down to room tem-
perature as shown in Fig. 5. In other words, the heating phase lasts about 0.3 s after which the cooling phase starts and con-
tinues. It is observed from Fig. 5 that the maximum temperature (291.1 �C) is found at a distance of 0.15 mm from the
vertical centerline (the temperature at x = 0 mm is 224.5 �C and at x = 0.30 mm is 246.1 �C). This observation means that
the maximum temperature is not located in the joining area but in the absorbing adherend behind.

6.3.2. Residual stresses
The residual Cauchy stresses are calculated using the proposed constitutive model at large strains. The residual stresses

are observed at the point x = 0.15 mm, y = 0.0 mm (maximum stress), where x and y represent the x and y coordinates in
Fig. 2 respectively. Compressive stresses are first seen to develop as a result of the thermal expansion (see Fig. 6). Following
that, they drop to a very low level (zero value) when the glass transition temperature is reached. This abrupt change in the
stress distribution happens during the glass transition range. The zero stress value is maintained for such a time in which the
joining zone is in the molten state. During the cooling phase, tensile stresses develop after about 1.0 s, which increase to a
maximum value and then relax as the cooling time increases.
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Comparing the stress components in different directions according to x,y and z coordinates of Fig. 2, it is seen in Fig. 6, that
the stress component in z-direction has the highest stress value. In other words, in contour laser transmission welding, the
maximum stresses occur in the direction of the part’s length.

Fig. 7 detects the distribution of the stress component in z-direction at two different surfaces, namely the horizontal cen-
terline and the upper surface of Fig. 2, after 20.0 s. The maximum stress is found in the absorbing material at the same posi-
tion of the maximum temperature (x = 0.15 mm). While tensile stresses prevails in the region of the weld seam, compressive
stresses are found in the neighbour material. It is observed that the stress peak values are higher in the centerline because it
receives more heating energy than the upper surface. Furthermore it is clearly observed that the compressive and tensile
stresses are not symmetric in magnitude which highlights the capability of the model equations to simulate the asymmetric
effects.
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7. Summary and conclusions

This contribution was directed to the simulation of asymmetric effects within a geometrically nonlinear theory. To this
end a flow rule is postulated on the basis of a thermodynamic consistent framework in a mixed variant formulation. The flow
rule is decomposed into a sum of weighted quantities, each of them related to a certain stress mode. The characterisation of
the stress modes is obtained in the octahedral plane of the deviatoric stress space in terms of a single scalar variable, which
enables for construction of scalar weighting functions. A main advantage of the concept is that the stress modes can directly
be associated to certain characteristic loading scenarios, such as tension and compression, which are experimentally inves-
tigated in the laboratory.

Furthermore the numerical implementation of the model equations is described briefly, which has been implemented
into the UMAT subroutine of the commercial finite element program ABAQUS. The simulation of the laser transmission weld-
ing process highlights the capability of the model equations to simulate the asymmetric effects for polycarbonate.

It appears, that the proposed model equations offer further flexibility to simulate asymmetric effects combined to different
effects. Therefore the combination of asymmetry and induced anisotropy should constitute an area of the future research work.
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Appendix A. Basic concepts of tensor calculus on manifolds with application to multiplicative plasticity

A.1. Metric tensors and tensor invariants

Upon introducing an intermediate configuration B in addition to a reference configuration B0 and a spatial configuration
B, the underlying concept of multiplicative elasto-plasticity assumes the decomposition of the deformation gradient F into
elastic and creep parts, respectively, i.e.
F ¼ Fe � Fc ðA:1Þ
The three associated tangent spaces TB0; TB and TB are equipped with co-variant Riemannian metric tensors G[;g[;G[,
respectively, and analogously the associated dual spaces TB�0; TB

� and TB� with contra-variant Riemannian metric tensors
G] ¼ ðG[Þ�1;g] ¼ ðg[Þ�1;G] ¼ ðG[Þ�1, respectively, see e.g. Marsden and Hughes (1993), van der Giessen and Kollmann (1996)
and Hackenberg (1992). The above tensor objects can be used to define invariants of second order tensors. E.g. we define all
three basic invariants of a mixed-variant second order tensor A0 ¼ Aj

iG
i � Gj, related to the intermediate configuration as

follows:
A0 Ii :¼ 1
i

1
8

: ðA0Þi ¼ 1
i

10 : ðA8 Þi ¼ 1
i

G] : ðA0 � G[Þi ¼ 1
i

G[ : ðA8 � G]Þi; i ¼ 1;2;3: ðA:2Þ
Here A8 ¼ ðA0Þt and 18 ¼ Gi � Gi ¼ ð10Þt is a (mixed-variant) second order unit tensor with basis vectors Gi and Gi. In this re-
spect the first and second relation of Eq. (A.2) represent the invariants as dual pairings of mixed-variant tensors. By use of
18 ¼ G[ � G] these can also be written as dual pairings of co-variant and contra-variant tensors introduced in the third and
fourth relation of Eq. (A.2). Without going into details we remark that in complete analogy to the relations (A.2) invariants
can be defined relative to the reference configuration and the spatial configuration, respectively. To this end the (mixed-var-
iant) second order unit tensors 1

8

¼ Gi � Gi ¼ ð10Þt and 1
8

¼ gi � gi ¼ ð1
8

Þt , respectively, are introduced.

A.2. Strain tensors

Several strain measures can be constructed within the framework of multiplicative plasticity, see e.g. Haupt (2000), Mars-
den and Hughes (1993). In this work specific attention is directed to the following quantities:
1: C�1
c :¼ �U]

c½G]� ¼ F�1
c � G] � F�t

c ¼ F�1 � be � F�t ¼ �U]½be�
2: be :¼ �U]

e½G]� ¼ Fe � G] � Ft
e ¼ F � C�1

c � F
t ¼ �U]½C�1

c �
ðA:3Þ
Here the operators �U]
c;
�U]; �U

]
e; �U

] denote creep pull-back, full pull-back, elastic push-forward, and full push-forward operations
of contra-variant tensor objects, respectively. An extended survey is given e.g. in Mahnken (2005a). Furthermore, in Eq.
(A.3.1) C�1

c is the inverse creep right Cauchy–Green tensor and be is the elastic left Cauchy–Green tensor. Upon replacing
the contra-variant metric tensor G] by the co-variant right elastic Cauchy–Green strain tensor Ce ¼ Ft

e � g[ � Fe, the relations
(A.3) are written analogously as
1: C :¼ �U[
c½Ce� ¼ Ft

c � Ce � Fc ¼ Ft � g] � F ¼ �U[½g]�
2: g[ :¼ �U[

e½Ce� ¼ Fe � G] � Ft
e ¼ F � C � Ft ¼ �U[½C�

ðA:4Þ
Here the operators �U[
c;
�U[; �U

[
e; �U

[ represent creep pull-back, full pull-back, elastic push-forward and full push-forward opera-
tions of co-variant tensor objects, respectively. Note, that C�1

c is related to the reference configuration whereas Ce is related to
the intermediate configuration. Next, associated to Ce and be the multiplicative splits
be ¼ J2=3
e b̂e;Ce ¼ J2=3

e Ĉe; where Je ¼ ðdet½Ce � G]�Þ1=2 ¼ ðdet½g] � be�Þ1=2 ðA:5Þ
are introduced, such that Ĉe; b̂e and Je represent the isochoric and volumetric part of the elastic deformation, respectively.
Note, that the metric tensors G] and g] are introduced in the above definitions for the determinants, thus allowing directly
for unambiguous transformation between different configurations.

A.3. Rate of deformation tensors

Analogously to strain measures several rate of deformation tensors are defined in the literature, see e.g. Haupt (2000),
Marsden and Hughes (1993). A well known quantity is the velocity gradient and its symmetric part
1: l ¼ gradv ¼ _F � F�1; 2: d ¼ sym½g[ � l� ðA:6Þ
where the time derivative of the displacement u defines the velocity v ¼ otu. Note that l ¼ li
jgi � gj is a mixed variant tensor,

which induces the symmetric rate of deformation tensor d. An elastic pull-back renders the following quantities related to
the intermediate configuration
L ¼ �U8

e½l� ¼ F�1
e � l � Fe ) D ¼ �U]

e½d� ¼ Ft
e � d � Fe ¼ sym½Ce � L�: ðA:7Þ
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By use of the multiplicative decomposition (A.1) L rewrites as
L :¼ Le þ Lc; Le :¼ F�1
e � _Fe; Lc :¼ _Fc � F�1

c ¼ �Fc � _F�1
c ; ðA:8Þ
such that Le and Lc represent the elastic and creep parts, respectively, of the velocity gradient with respect to the interme-
diate configuration.
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