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1. INTRODUCTION 

In their very influential paper [3], Fermi, Pasta, and Ulam studied 
numerically the motion of linearly arranged particles driven by nonlinear 
forces between nearest neighbors. Contrary to their expectation, the 
motions were far from being ergodic; on the contrary, each trajectory 
seemed to occupy only a small portion of phase space; furthermore 
some of these motions appeared to be almost periodic. 

In this talk I shall report briefly on recent theoretical results con- 
cerning three nonlinear systems which have a bearing on the questions 
raised by FPU; here is a brief summary: 

Each of the systems discussed has an unusually large number of 
integrals, i.e., functionals which are conserved during motion; this 
might explain why some numerically computed trajectories of these 
systems seem to be confined to such an unexpectedly small portion 
of phase space. It should be pointed out however, that this cannot 
be the whole story, since the available part of phase space is still pretty 
large; in fact other computed trajectories seem to occupy a fairly large 
portion of phase space. It should be added that it is not known whether 
the FPU system has any integrals other than total momentum and 
energy, although the contrary has not been demonstrated either. This 
shows that there must be an additional mechanism at work; this addi- 
tional mechanism might very well be the one discovered in low dimen- 
sions by Moser, Kolmogoroff, and Arnold. 

The first of the systems discussed is Hamiltonian and completely 
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integrable; accumulating evidence indicates that so is the second example, 
with infinitely many degrees of freedom. If so, one might prove the 
almost periodic behavior of these systems by introducing action and 
angle variables. Even then it would be desirable to relate the size of 
almost periods predicted by theory to those observed in calculation. 

2. A METHOD FOR CONSTRUCTING NONLINEAR SYSTEMS 
WITH MANY INTEGRALS 

In [9] a fairly general method was described for constructing nonlinear 
systems with many integrals. This method has, in the hands of the 
author and others, led to a number of interesting examples. This section 
presents very briefly the general method. 

Let L(t) be a one-parameter family of operators all of which are 
similar to each other. That is, we assume that each L(t) can be mapped 
by a similarity transformation into L(0): 

U(t)-X(t) U(t) = L(0). (2-l) 

We assume that both L and U depend differentiably on t, and we 
introduce the notation 

UJJ-l = B(t), (2.2) 

from which we deduce 

U, = BU. (2.3) 

Differentiate (2.1) with respect to t; using 

g u-1 = -u-qJJJ-1 

and (2.3) we get 

-FBLU + U-ILJJ f U-ILBU = 0 

which implies 
L, = BL-LB. (2.4) 

Conversely, suppose (2.4) is satisfied and suppose the initial value 
problem for the differential equation 

vt = B(t)v (2.5) 

607/16/3-8 
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can be solved for a sufficiently wide class of initial values v(0). Then 
the operator 

U(t): v(0) --f v(t) 

satisfies (2.1). 
Similar operators L have the same spectrum; so it follows from (2.1) 

that the eigenvalues {A,} of L(t) are independent of t. 
In any concrete representation the operator L appears as an integral 

or differential operator, described in terms of coefficients. Relation 
(2.4) is a nonlinear differential equation for these coefficients. The 
eigenvalues of L are functionals of the coefficients; being independent 
of t, they constitute the sought-after integrals. 

If the operators L are symmetric or hermitean symmetric then 
similarity implies unitary equivalence. In fact if the spectrum of L 
is simple then the operator U appearing in (2.1) must be unitary. 

If U(t) is unitary 

uu* = I; 

differentiating with respect to t we get 

uJJ* + vu,* = 0 . 

The meaning of this equation is that U,U* is antisymmetric. Since U 
is unitary, U,U * = U&F, the operator denoted in (2.2) as B. So we 
conclude: 

For L hermitean symmetric, B should be chosen antisymmetric: 

B* = -B. 

3. THE TODA LATTICE 

In his recent interesting paper [4], Flaschka has carried out the 
following construction: 

Denote by u a vector: 

u = (Ul ,--*, UN), 

11 24 112 = c ui2. (3.1) 

Denote by T cyclic translation: 

( w, = uj-1 9 (3.2) 
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where we set 

Clearly T is a unitary operator: 

T* = T-1. (3.3) 

Let a be any vector; it is convenient to introduce the abbreviations 

Ta = a+ , T-la = a- . (3.4) 

The following relations are easy to verify: 

Tau = a,Tu, T-lau = a_Tu. 

Define the operator L by 

L = a-T-l + c + aT. 

Using the relation (3.5) we see that L is symmetric: 

L* =L. 

Define B by 

B = --a-T-l + aT. 

(3.5) 

(3.6) 

(3.7) 

Again we see easily that B is antisymmetric: 

B” = -B. 

A simple computation gives 

BL -LB = a-(c - c-) T-l + 2(a2 - am2) + a(c+ - c)T. (3.8) 

Differentiating (3.6) we get 

L, = a-,T-1 -/- ct + a,T. (3.8’) 

Observe that the commutator of B and L belongs to the same class 
as L, . Now set, following (2.4) 

L,=BL-LB. (3.9 
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Equating coefficients we get from (3.8), (3.8’) 

Ct = 2(a2 - a-2), (3SOc) 

at = u(c+ - c). (3JOa) 

As we saw in Section 2, it follows from Eq. (3.9) that the operators 
L are similar to one another, and therefore their eigenvalues don’t 
change with t. 

L is a matrix, and its eigenvalues are rather complicated functions 
of its entries. The elementary symmetric functions of the eigenvalues 
however, being the coefficients of the characteristic polynomial of L, 
are polynomials in the entries of L. Since L is tridiagonal, the first 
few are easily computed: 

Then 

det(XI-L) = hN +I,hN-’ + *‘* +IN. 

I1 = -c cj , 

I2 = C CjCK - C at, 

I3 = cubic, etc. 

Using the well known relations 

1 Ajhk = I, , etc. 

we get from (3.11) 

C hj2 = II” - U2 = C Cj2 + 2 C aj2, 

C xj3 = cubic, etc. 

(3.11) 

(3.12) 

We turn now to lattice vibrations; denote by qj the lateral displacement 
of the jth particle from equilibrium; each particle is linked to its two 
neighbors by identical springs. We denote by f(s) the force exerted 
by the spring when stretched by the amount s; f(s) is in physically 
meaningful cases an increasing function of s. 

We take the arrangement of the particles to be periodic, i.e. 
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Assume that each particle has unit mass; then the equations of motion are 

a2 
s % = f(%+1 - sd - f(% - !h-J~ (3.13) 

This can be written in Hamiltonian form by setting 

1% = Pi 9 

the Hamiltonian being 

41 Pj2 + lp+zi+l - 9J7 
where 

(3.14) 

(3.15) 

(3.16) 

Iff(s) is a linear function of s, the Eqs. (3.13) are linear and analyzable 
in terms of normal modes. FPU investigated two nonlinear cases, 
where f was either of the following two forms: 

f(s) = s + a33 or f(s) piecewise linear, 

Toda, [12], has introduced and studied the lattice where the dependence 
off on s is exponential: 

f(s) = -e-+. (3.17) 

The equations of motion are 

(3.18) 
4W = exphl - qJ - exdqj - qj+d. 

If one introduces new variables 

cj = BP, , aj = 3 exp(qj-l - q,)/2 (3.19) 

then we can using (3.18) ex p ress the derivatives of the new variables 
as fohows: 

-$ cj = ; $pj = 2(4 - uj:J, (3.20~) 

$ uj = $(pfml - p*) = Uf = uj(cj-1 - Cj). (3.2Oa) 
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Observe that (3.20~) and (3.20a) are the same as (3.10a) and (3.10~). 
So one can conclude that the quantities (3.11) are conserved functionals 
for the Hamiltonian system (3.18). These conserved quantities as well 
as the transformation (3.19) were originally found by HCnon [7]; he 
and Flaschka have proved that the quantities Ij are in involution, so 
that the Hamiltonian system (3.18) is completely integrable. 

Note that the first two functionals (3.12) are total momentum and 
total energy. 

4. THE KdV EQUATION 

In this application the underlying Hilbert space consists of periodic 
L, functions on the unit interval of the x-axis, and L is the Schroedinger 
operator 

L = 32 + u, a = dldx. (4.1) 

This is the selfadjoint operator, with a discrete spectrum {hi>. 
For L given by (4.1), L, = ut is multiplication by uf ; therefore 

in order to satisfy Eq. (2.4) we need operators Bj whose commutator 
with L is multiplication. In [9] the author has shown how to construct 
a sequence Bj of such operators; these operators have these properties: 

(i) B* is a differential operator of order 2j + 1. 

(ii) B3 is antisymmetric. 

(iii) BjL -LB, is multiplication by K5(u); K5(u) depends in a 
nonlinear fashion on u and its derivatives up to order 2j + 1. 

Following (2.4) we consider the equations 

ut = B,L -LB, = K,(a); (4.2) 

these equations have the property that for their solutions the spectrum 
of L defined by (4.1) is independent of t. 

The first two of these operators are 

and 

B, = a, [B, , Ll = J&,(4 = u, (4.30) 

4 = a3 + w  + 4u,, 

P, 9 Ll = JW) = he, + W, . 
(4.3,) 
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The zeroth equation (4.2,) is 

and the first one is 

Ut = II, (4.2,) 

Ut = *u,,, + +4u, . (4.2,) 

(4.2,) describes translation along the x-axis; (4.2,) is the KdV equation, 
with some inessential resealing. The general equation (4.2,) is usually 
called the jth generalized KdV equation. 

Gardner has shown that the jth KU operator Kj has the following 
structure: 

K,(u) = aGj(u), 

where Gj is the gradient of a functional F,(U). That is 

-&(u + EV) IA = (Gdu), v). 

Furthermore Gardner has shown [6] that each functional F,(U) is a 
conserved quantity for each generalized KdV $0~ (4.2). From this it is 
easy to deduce, using the Hamiltonian formalism introduced by 
Gardner, that the generalized KdV jl ows (4.2,) commute with each other. 

Numerical calculations by Kruskal and Zabusky have indicated an 
almost periodic behavior of those solutions of KdV which are periodic 
in space. In [lo] the author has constructed an abundance of solutions 
of KdV which are periodic in x and almost periodic in t. These solutions 
can be characterized by a variational problem suggested by Kruskal 
and Zabusky: minimize FN(u) subject to the constraints that Fj(U) 
have prescribed values of i < N. The set of solutions of this variational 
problem consist of smooth N-dimensional tori on which the KdV 
flow-in fact all generalized KdV flows-are almost periodic. For 
details the reader is referred to [lo]. 

I suspect, but cannot prove, that as N tends to co these special 
solutions become dense among all I? solutions. 

5. THE SINE-GORDON EQUATION 

In this section we show how to present in the framework of Section 2 
a portion of a very interesting theory developed by Ablowitz, Kaup, 
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Newell, and Segur, [l]. AKNS consider the first order matrix operator 

The analysis of AKNS suggests to seek B of the form 

B = RL-I, 

where 

R= ,” ;. 
( ) 

Setting B as given by (5.2) into (2.4) gives 

L, = R - LRL-I. 

Multiplying by L on the right we get 

L,L = RL - LR. 

(5.2) 

(5.3) 

(5.4) 

We proceed now to solve this equation for R of form (5.3) when L 
is of form (5.1). 

A straightforward calculation gives 

--aa + br 
RL = (4 + dr 

aq + ba 
cq + da 1 ’ 

LR = 
( 
-aa + pc --ab + qd 
ra + ac rb + ad ) * 

so 

liL - LR = ( -2c;:c;&;m ,-a 
2ba + b, + aq - qd 

-d, + cq - rb 1 . (5.5) 

Differentiating (5.1) we get 

Lt = (Ft “d). 

A straightforward calculation gives 

L,L = 
( 

thy 48 
+,a 1 r,q - (5.6) 
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Substituting (5.5) and (5.6) into (5.4) we get 4 sets of relations from 
the 4 components: 

(i) qtr = a, - qc + br, 

(ii) qt = 2b, b, + aq - qd = 0, 

(iii) rt = 2c, -c, + dr - ra = 0, (5.7) 

(iv) r,q = -d, + cq - rb. 

Substituting the first relation in (5.7ii) into (5.7i) and the first relation 
in (5.7iii) into (5.7iv) we get 

br + qc = a, (5.81) 
and 

qc + rb = -d, . (5.82~ 

Subtracting these two we get 

a, + 4 = 0, 

which we satisfy by setting d = -a. Substituting this into the second 
relation in (5.7ii) and the second relation in (5.7iii) gives 

b, = (d - a)q = -2~4, (5.91) 

c, = (d - a)r = -2ar. (5.9,) 

Multiply (5.9,) by c, (5.9,) by b, and (5.8,) by 2a, and add; we get 

cb, + bc, + 2aa, = 0; 

from this we conclude that 

cb + a2 = const. 

We take that constant to be 1; so 

a = (1 - bc)1/2. (5.10) 

Relations (5.9) and (5.10) constitute a system of differential equations 
for b and c; if initial values are specified, b and c are uniquely determined 
in terms of 4 and Y. The first relations in (5.7ii) and (5.7iii): 

qt = 2b, rt = 2c (5.11) 
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is a system of evolution equations for q and r; the right side is a nonlocal 
function of q and r. 

Equation (5.11) is particularly simple when q = r; in this case we 
choose b = c; the resulting system occurs in the theory of self-induced 
transparency, see [S]. Relation (5.10) suggests the parametrization 

b = sin II, a = cos u. (5.12) 

Substituting this into (5.9) gives 

cos uu, = -2 cosuq 

from which we deduce 

!7= -+uz . 

Substituting this into (5.11) and using (5.12) we get 

uzt + 4 sin u = 0, (5.13) 

the so-called sine-Gordon equation. For application of these ideas to 
solutions of the sine-Gordon equation we refer the reader to [l]. 
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