The undecidability of $k$-provability

Samuel R. Buss*

Department of Mathematics, University of California, San Diego, CA 92182, USA

Communicated by A. Nerode
Received 14 February 1989
Revised 13 December 1990

Abstract


The $k$-provability problem is, given a first-order formula $\phi$ and an integer $k$, to determine if $\phi$ has a proof consisting of $k$ or fewer lines (i.e., formulas or sequents). This paper shows that the $k$-provability problem for the sequent calculus is undecidable. Indeed, for every r.e. set $X$ there is a formula $\phi(x)$ and an integer $k$ such that for all $n$, $\phi(S^n0)$ has a proof of $\leq k$ sequents if and only if $n \in X$.

1. Introduction

The concept of the length of a proof is important because it provides a measure of the difficulty of proving a given theorem in a given formal system. There are two common ways to measure the length of a proof; namely, to count the number of formulas or inferences in the proof or to count the number of symbols appearing in the proof. It is important to note that knowing the number of formulas in a proof does not give a bound on the number of symbols since the formulas may be very long; in particular, the terms used in the proof could be large. For this paper, the length of a proof will be defined to be the number of distinct lines in the proof, where a line is either a formula or, in the sequent calculus, a sequent. The $k$-provability problem for a first-order theory is, given a formula $A$ and an integer $k$, to determine if $A$ has a proof with $k$ or fewer lines.

The motivations for this paper arose out of work on Kreisel's conjecture\textsuperscript{1} [7] that if Peano arithmetic PA proves $A(S^n0)$ with a proof of $\leq k$ formulas for all $n$ then PA proves $(\forall x) A(x)$. Parikh [11] showed that this is true for a variant PA\textsuperscript{*}

Supported in part by NSF Grant DMS-8701828.

\textsuperscript{1} It is not clear to this author whether Professor Kreisel ever conjectured this or merely posed it as a problem. At any rate, Kreisel's conjecture was the original motivation for all the work outlined in this introduction.

0168-0072/91/$03.50 \copyright$ 1991 — Elsevier Science Publishers B.V. (North-Holland)
of PA where addition and multiplication are three-place relations. He did this by first showing that if $A$ is a formula and $k \in \mathbb{N}$ then there is an a priori bound $l$ such that if $A$ has a proof of $\leq k$ lines then it has a proof of $\leq k$ lines in which each formula contains $\leq l$ logical connectives — the bound $l$ is a function of $k$ and the logical complexity of $A$. Hence when searching for a proof of length $\leq k$ we can control the logical complexity of the formulas appearing in the proof; however, the terms appearing in the proof might be arbitrarily complicated. For his result on PA*, Parikh then exploited the fact that PA* has only one (unary) function symbol to show that the $k$-provability problem for PA* is definable in Presburger arithmetic and decidable.

A proof analysis is a partial description of a proof which describes the proof as a directed acyclic graph with a node for each formula (or sequent) in the proof. Each node is labelled with the rule of inference or axiom scheme which is used to derive the corresponding formula; incoming edges are ordered to specify which nodes represent which hypothesis of the inference. In short, a proof analysis specifies everything about the proof except the actual formulas in the proof. Every proof clearly has a proof analysis, but not all proof analyses correspond to proofs. Since first-order systems typically have only a finite number of axiom schemes and rules of inference, there are, for fixed $k$, only finitely many possible proof analyses for proofs of length $k$. Hence the $k$-provability problem can be reduced to the problem of, given a formula $A$ and a proof analysis, determining if $A$ has a proof with that proof analysis.

Farmer [2, 1] showed that if the substitution axiom is modified then the $k$-provability problem for PA is decidable, he emphasized the fact that finding the terms to flesh out a proof analysis is a version of second-order unification. Second-order unification was shown to be undecidable by Goldfarb [4]. Krajíček and Pudlák [6] showed that for the sequent calculus LK it is undecidable whether a given formula has a proof with a given proof analysis. Orevkov had earlier proved a similar result [10]. Other work related to Kreisel's conjecture has been done by Richardson [12], Miyatake [8, 9] and Yukami [14, 15]; see Krajíček [5] for a more complete survey. M. Baaz has recently announced a proof of Kreisel's conjecture.

The main result of this paper is:

**Main Theorem 1.** Let LK be Gentzen's sequent calculus with a unary function symbol $S$, a binary function symbol and infinitely many binary relation symbols. For every recursively enumerable set $X$ there is a formula $A(x)$ and an integer $k$ such that for all $n$, $n \in X$ if and only if $\rightarrow A(S^n0)$ has an LK-proof with $\leq k$ distinct sequents.

Hence the $k$-provability problem is undecidable for LK. The main theorem also holds for LK*, i.e., for LK augmented with equality axioms. It is permissible for there to be additional function and predicate symbols besides the ones required in
The undecidability of \( k \)-provability

the hypothesis of the Main Theorem. The hypothesis that there be infinitely many binary relation symbols can be weakened to require only some bounded number of binary relation symbols; the precise number required depends on the size of a diophantine equation which defines an r.e. complete set.

There are of course many ways to formalize first-order logic other than the sequent calculus. Unfortunately, our proof does not seem to apply immediately to all usual first-order logics; however, our technique could probably be adapted to a lot of other specific first-order logics. It would be desirable to improve our methods in this paper to be readily applicable to a wide range of formalizations of first-order logic.

M. Baaz has announced an approach towards proving Kreisel's conjecture; but the details have not been fully worked out yet. Baaz's method avoids the undecidability of \( k \)-provability for the Gentzen sequent calculus firstly by translating proofs into a Hilbert-style \( \varepsilon \)-calculus and secondly by circumventing the need to solve the \( k \)-decidability problem for the \( \varepsilon \)-calculus.

In Section 2 below we introduce a variant of second-order unification and show that it is undecidable. In Section 3 we review the sequent calculus and develop a tool called the 'logical flow graph' for analyzing sequent proofs. In Section 4 we prove the Main Theorem.

2. Undecidability of second-order unification with partial substitution

Goldfarb [4] proved that second-order unification is undecidable; see Krajíček Pudlák [6] for a simplified proof. We show here that a variant of second-order unification which allows partial substitution is also undecidable.

First some notation: \( a, b, c, \ldots \), possibly with subscripts, are first-order variables (not metavariables); \( S \) is a unary function symbol and \( \circ \) is a binary function symbol; both \( S \) and \( \circ \) act on first-order objects. Other function symbols may be present and will not affect the results. The usual conventions on parentheses and term formation apply; we will usually omit parentheses and it is understood that \( \circ \) associates from right to left. Symbols \( r, s, t, \ldots \) will be used to denote first-order terms. Greek letters \( \alpha, \beta, \gamma \) will be second order variables which will range over first-order terms. Finally, the symbols \( \rho, \sigma, \tau \) will be used to denote second-order terms built from \( S, \circ \) and first- and second-order variables. Note that \( a, b, c, S, \circ, \alpha, \beta, \gamma \) are symbols of a formal language whereas \( r, s, t, \rho, \sigma, \gamma \) are metasymbols. For \( k \geq 0 \), we write \( S^k \rho \) to denote the term consisting of \( S \) applied \( k \) times to \( \rho \); e.g., \( S^3 a \) is \( SSSa \).

If \( r \) and \( s \) are first-order terms we write \( r(s/a) \) to denote the result of replacing every occurrence of \( a \) in \( r \) by the term \( s \). Similarly, \( r(s_1/a_1, s_2/a_2) \) denotes the simultaneous substitution of \( s_1 \) and \( s_2 \) for \( a_1 \) and \( a_2 \). Note that this is not in general the same as \( r(s_1/a_1)(s_2/a_2) \) if \( a_2 \) occurs in \( s_1 \). A second-order unification
**Problem** is a finite set of equations

\[ \beta_i(\rho_i/a_i) = \sigma_j \]

for \( j = 1, \ldots, m \). Recall that \( a_i \) and \( \beta_i \) are specific first- and second-order variables and \( \rho_j \) and \( \sigma_j \) are metavariables for second-order terms. A solution to the second-order unification problem is an assignment of first-order terms to second-order variables such that, when all the second-order variables are replaced by their assigned terms, the equalities become true. For example, the unification problem consisting of the two equations \( \beta(a \circ b/a) = \gamma \circ b \) and \( \gamma(Sa/a) = S\gamma \) has as unique solution \( \gamma = a \) and \( \beta = a \).

We shall write \( r(s//a) \) to denote the result of a partial substitution of \( s \) for \( a \) in \( r \). Actually, \( r(s//a) \) by itself is not uniquely defined and represents one of finitely many possible terms; we shall use this notation only in an equation of the form

\[ r(s//a) = t. \]

Such an equation is true if and only if \( t \) can be obtained by replacing some (perhaps all or none) of the \( a \)'s in \( r \) by \( s \). A second-order unification problem with partial substitution is a finite set of equations of the form

\[ \beta_i(\rho_i//a_i) = \sigma_j \]

for \( j = 1, \ldots, m \) and a solution to this system of equations is an assignment of first-order terms to second-order variables that makes all of the equations true. For example, \( \beta(a \circ b//a) = \gamma \circ b \) and \( \gamma(Sa//a) = S\gamma \) has an infinite number of solutions: (1) \( \beta = \gamma = a \) and (2) \( \gamma = S^k a \) and \( \beta = (S^k a) \circ b \) for \( k = 0, 1, 2, \ldots \). To see this, note that the only solutions to the second equations are \( \gamma = S^k a \) for \( k \geq 0 \).

**Theorem 2.** The second-order unification problem with partial substitution is undecidable.

In [4] and [6] second-order unification (without partial substitution) is shown undecidable by use of Matijasevič's theorem; we shall use a similar technique to prove Theorem 2. In order to express the solvability of a diophantine equation as a second-order unification problem with partial substitution, we need to have a representation for integers and a way to force the correctness of addition and multiplication. A term of the form \( S^k a \) will represent the nonnegative integer \( k \). The following equation can be used to guarantee that \( \beta \) represents an integer:

\[ (1) \quad \beta(Sa//a) = S\beta. \]

The only solutions to (1) are \( \beta = S^k a \) for \( k \geq 0 \). To prove this note that either \( \beta = a \) or \( \beta = S\beta_1 \), where \( \rho_1 \) is a solution to \( \beta_1(Sa//a) = S\beta_1 \). Arguing inductively shows \( \beta = S^k a \) for some \( k \geq 0 \).
To express addition we need a set of equations whose only solutions are $\beta_1 = S^k a$, $\beta_2 = S^{k+2} a$, $\beta_3 = S^{k+3} a$. This is accomplished by:

(2)  
(i)  $\beta_j(Sa//a) = S\beta_j, \quad j = 1, 2, 3,$
(ii) $\beta_1(\beta_2//a) = \beta_3,$
(iii) $\beta_3(S\beta_2//a) = S\beta_3.$

By (2.i), $\beta_j = S^k a$ for $j = 1, 2, 3$. By (2.ii), depending on whether the substitution is performed, either $k_3 - k_1 + k_2$ or $k_3 - k_1$. By (2.iii), either $k_3 = k_1 + k_2$ or $k_3 + 1 = k_1$. Hence, $k_3 = k_1 + k_2$.

Multiplication is more complicated. Consider the following set of equations:

(3)  
(i)  $\beta_j(Sa//a) = S\beta_j, \quad j = 1, 2, 3,$
(ii) $\beta_4(Sb//b) = S\beta_4,$
(iii) $\beta_j'(Sa'///a') = S\beta_j', \quad j = 1, 3,$
(iv) $\beta_4(Sb'///b') = S\beta_4',$
(v)  $\beta_j(a'//a) = \beta_j', \quad j = 1, 3,$
(vi) $\beta_4(b'//b) = \beta_4',$
(vii) $\beta_3(b//a) = \beta_3,$
(viii) $\beta_4(a'//a', Sb'//b', a \circ b \circ a' \circ b' \circ c // c) = \beta_3 \circ \beta_4 \circ \beta_3' \circ \beta_4', \alpha,$
(ix)  $\alpha(\beta_j//a, Sb//b, a'///a', Sb'///b', a \circ b \circ a' \circ b' \circ c // c) = \beta_3 \circ \beta_4 \circ \alpha.$

(Recall that $\circ$ associates from right to left.) Any solution to (3.i)–(3.vii) must have $\beta_j = S^k a$ and $\beta_j' = S^k a'$ for $j = 1, 2, 3$ and have $\beta_4 = S^{k+3} b$ and $\beta_4' = S^{k+3} b'$. We need to show that (3.viii) and (3.ix) are also satisfiable if and only if $k_1 \cdot k_2 = k_3$.

In fact we claim that the only solution has $\alpha$ equal to

$S^{(k_2 - 1)k_1} a \circ S^{k_1 - 1} b \circ S^{(k_2 - 1)k_1} a' \circ S^{k_1 - 1} b' \circ \cdots \circ$

$S^{2k_1} a \circ S^2 b \circ S^{2k_1} a' \circ S^2 b' \circ S^{k_1} a \circ S b \circ S^{k_1} a' \circ S b' \circ a \circ b \circ a' \circ b' \circ c$

where $k_1 \cdot k_2 = k_3$.

It is obvious that when $k_1 \cdot k_2 = k_3$ this value for $\alpha$ is a solution with all possible substitutions being made. It remains to see that this is the only possible solution. Suppose that values have been assigned to $\alpha$ and the $\beta$’s which satisfy the equations. First of all, $\alpha$ might be set equal to the term $c$; in this case $k_2 = k_3 = 0$. Otherwise, $\alpha$ must be of the form

$S^{m_1} a \circ S^{m_1} b \circ S^{m_1} a' \circ S^{m_1} b' \circ \alpha_2.$

This follows from equation (3.viii) since we can write $\alpha$ uniquely in the form $\rho_1 \circ \rho_2 \circ \rho_3 \circ \cdots \circ \rho_2$, and because of the form of the partial substitutions. From $\beta_1 = S^k a$ and $\beta_3 = S^{k+2} a$ it follows that $\rho_1$ must be either $S^k a$ or $S^{k+3} a$. Similarly $\rho_2$ must be either $S^k a$ or $S^{k+3} a$. and similarly for $\rho_3$ and $\rho_4$. Thus we have $m_1$.
and \( m'_i \) are either \( k_3 \) or \( k_3 - k_1 \) but not necessarily equal, and \( n_i \) and \( n'_i \) are \( k_2 \) or \( k_2 - 1 \) and again not necessarily equal. Furthermore, \( \alpha_2 \) satisfies the equation

\[
\alpha_2(\beta'_1//a, Sb'//b, \beta'_i//a', Sb'//b', a \circ b \circ a' \circ b' \circ c//c) = S^{m_i}a \circ S^{n_i}b \circ S^{m'_i}a' \circ S^{n'_i}b' \circ \alpha_2
\]

which is identical in form to (3.viii). Reasoning inductively shows that \( \alpha \) must be of the form

\[
S^{m_i}a \circ S^{n_i}b \circ S^{m'_i}a' \circ S^{n'_i}b' \circ \cdots \circ S^{m_i}a \circ S^{n_i}b \circ S^{m'_i}a' \circ S^{n'_i}b' \circ c
\]

where \( m_i \) and \( m'_i \) are \( k_3 \) or \( k_3 - k_1 \), \( n_i \) and \( n'_i \) are \( k_2 \) or \( k_2 - 1 \), \( m_{i+1} \) is \( m_i \) or \( m_i - k_1 \), \( m'_{i+1} \) is \( m'_i \) or \( m'_i - k_1 \), \( n_{i+1} \) is \( n_i \) or \( n_i - 1 \), \( n'_{i+1} \) is \( n'_i \) or \( n'_i - 1 \), and \( m_i = n_i = m'_i = n'_i = 0 \). Note that in each case the first choice of values holds when the corresponding instance of the substitution is not carried out; when the substitution is made, the second value applies.

Now consider the fact that equation (3.ix) is also satisfied. The right-hand side of the equation has the form

\[
S^{k_3}a' \circ S^{k_2}b' \circ S^{m_i}a \circ S^{n_i}b \circ S^{m'_i}a' \circ S^{n'_i}b' \circ \alpha_2
\]

The substitution must case the first \( a, b, a', \) and \( b' \) of \( \alpha \) to be replaced by \( S^{k_3}a' \), \( Sb' \), \( a \) and \( b \) respectively and thus \( k_3 = m_1 + k_1 \), \( k_2 = n_1 + 1 \), \( m_1 = m'_i \), and \( n_1 = n'_i \). Furthermore \( \alpha_2 \) satisfies the equation

\[
\alpha_2(\beta'_1//a, Sb'//b, a//a', b//=b', a' \circ b' \circ c//=c) = S^{m_i}a' \circ S^{n_i}b' \circ \alpha_2
\]

which, by the same reasoning, implies that \( m_i = m_2 + k_1 \), \( n'_i = n_2 + 1 \), \( m_2 = m'_i \), \( n_2 = n'_2 \). Continuing inductively we have that \( m_i = m'_i = k_3 - k_1 \), \( n_i = n'_i = k_2 - 1 \), \( m_{i+1} = m'_{i+1} = m_i - k_i \) and \( n_{i+1} = n'_{i+1} = n_i - 1 \), so \( m_i = k_1 \cdot n_i \) for all \( i \) and \( k_3 = k_1 \cdot k_2 \).

We have established that equation (3) correctly prescribes multiplication; however, the last two equations allow simultaneous partial substitutions in five variables and our definition of unification problems did not allow equations involving simultaneous substitutions. Fortunately, equation (3.viii) can easily be replaced by five single partial substitutions using new intermediate variables and equation (3.ix) can be equivalently replaced by two equations

\[\alpha(a''//=a', b''//=b') = \alpha',\]

\[\alpha'(\beta'_1//a, Sb'//=b, a//=a'', b//=b'', a' \circ b' \circ c//=c) = \beta'_3 \circ \beta'_4 \circ \alpha\]

and these two simultaneous partial substitutions can be replaced by seven equations using more intermediate variables.

Given the above equations for defining the integers and addition and multiplication it is easy to effectively transform any diophantine equation into a second-order unification problem with partial substitution so that the unification problem has a solution if and only if the diophantine equation has a zero. So
The undecidability of $k$-provability

Theorem 2 now follows from Matijacevič's theorem. The proof above establishes a stronger version of Theorem 2; namely, for any r.e. set $X$ there is a set $\Omega$ of partial substitution equations such that, for all $n, n \in X$ if and only if $\Omega \cup \{\beta_1 = S^n0\}$ has a solution.

For our proof of the undecidability of $k$-provability we shall use a restricted version of the unification problem with partial substitution:

**Definition.** A partial substitution satisfies the *special restriction* if it is of the form $\beta(s//a) = \sigma$ where $s$ is neither a second-order variable nor the first-order variable $a$.

The above partial substitution equations did not all satisfy the special restriction, but it is easy to modify them so that they do. First, equation (2.ii) can be replaced by $\beta_1(SS\beta_3//a) = SS\beta_3$ and the three equations still define addition. In equations (3.viii) and (3.ix), if $\beta_1$ and $\beta_1'$ are replaced by $S\beta_1$ and $S\beta_1'$ then the equations obey the special restriction and define the property $(k_1 + 1)k_2 = k_3$.

Now since multiplication can be defined by $xy = z \iff (x + 1)y = z + y$, Matijacevič's theorem implies:

**Theorem 3.** The second-order unification problem with partial substitution under the special restriction is r.e.-complete. Indeed, for any r.e. set $X$ there is a set $\Omega$ of partial substitution equations satisfying the special restriction such that, for all $n, n \in X$ if and only if $\Omega \cup \{\beta_1 = S^n0\}$ has a solution.

3. The sequent calculus

The sequent calculus is a formulation of the first-order logic due to Gentzen; this section contains a brief review (see [13] for a detailed exposition) and proves some lemmas needed for the proof of the Main Theorem.

The sequent calculus uses the logical symbols $\land, \lor, \neg, \exists$ and $\forall$; it has free variables denoted $a, b, c, \ldots$ and bound variables denoted $x, y, z, \ldots$. Terms are formed from constant symbols, free variables and function symbols; semiterms are like terms but may also contain bound variables. Formulas are defined as usual with the proviso that only bound variables may be quantified and only free variables may appear free. Semiformulas are defined similarly except both free and bound variables may occur free in a semiformula; note that in general a subformula of a formula is actually a semiformula. A sequent is a line of the form

$$A_1, \ldots, A_k \rightarrow B_1, \ldots, B_l,$$

where the $A_i$'s and $B_i$'s are formulas; its intended meaning is $\land_i A_i \Rightarrow \lor_i B_i$. We permit $k$ or $l$ to be zero. $\land$ (possibly empty) series of formulas separated by commas is a cedent; in the sequent above, $A_1, \ldots, A_k$ is the antecedent and $B_1, \ldots, B_l$ is the succedent.

A sequent calculus proof is a series of sequents; each sequent must either be an axiom or be derived by one of the rules of inference given below. To avoid
ambiguity, a proof also specifies explicitly how each sequent is derived by indicating which axiom or which rule and hypotheses are used. The size of a proof is the number of sequents in the proof.

It is actually more common to treat sequent proofs as trees of sequents; however, we define them here to be sequences of sequents or, equivalently, directed acyclic graphs. The results below also show that the Main Theorem also applies to the sequent calculus using proof trees. A sequent proof is said to be tree-like if every occurrence of a sequent in the proof other than the endsequent is used exactly once as a hypothesis of an inference. Obviously any proof can be transformed into a tree-like proof by duplicating subproofs to derive intermediate results multiple times.

The logical axioms are sequents of the form $A \rightarrow A$. The equality axioms are sequents of the form $t_1 = t_1$ or $t_1 = t_2 \rightarrow t_2 = t_1$ or

$s_1 = t_1, \ldots, s_k = t_k, P(s_1, \ldots, s_k) \rightarrow P(t_1, \ldots, t_k)$

or

$s_1 = t_1, \ldots, s_k = t_k \rightarrow f(s_1, \ldots, s_k) = f(t_1, \ldots, t_k)$

where $s_i$ and $t_i$ are terms, $P$ is a $k$-ary predicate symbol and $f$ is a $k$-ary function symbol. Since $P$ may be equality ($=$), these axioms imply the transitivity of equality.

Letting capital Greek letters $\Gamma, \Delta, \Pi, \Lambda, \ldots$ stand for cedents, the valid rules of inference are:

$$
\begin{align*}
\neg: & \text{left} & \Gamma \rightarrow \Delta, A & \quad \neg: & \text{right} & A, \Gamma \rightarrow \Delta \\
& & \neg A, \Gamma \rightarrow \Delta & & A, \Gamma \rightarrow \Delta & \rightarrow \Delta, \neg A \\
\wedge: & \text{right} & \Gamma \rightarrow \Delta, A & \quad \wedge: & \text{left} & B, \Gamma \rightarrow \Delta \\
& & \Gamma \rightarrow \Delta, A & \quad & A \wedge B, \Gamma \rightarrow \Delta & \quad B, \Gamma \rightarrow \Delta \\
\wedge: & \text{left} & A, \Gamma \rightarrow \Delta & \quad & A \wedge B, \Gamma \rightarrow \Delta & \quad A \wedge B, \Gamma \rightarrow \Delta \\
\vee: & \text{right} & \Gamma \rightarrow \Delta, A & \quad \vee: & \text{left} & B, \Gamma \rightarrow \Delta \\
& & \Gamma \rightarrow \Delta, A \vee B & \quad & A \vee B, \Gamma \rightarrow \Delta & \quad B, \Gamma \rightarrow \Delta \\
\Rightarrow: & \text{left} & \Gamma \rightarrow \Delta, A & \quad \Rightarrow: & \text{right} & A \Rightarrow B, \Gamma \rightarrow \Delta \\
& & B, \Gamma \rightarrow \Delta & \quad & A \Rightarrow \Delta, A \Rightarrow B & \quad \Gamma \rightarrow \Delta, B \\
\exists: & \text{left} & A(b), \Gamma \rightarrow \Delta & \quad \exists: & \text{right} & \Gamma \rightarrow \Delta, A(t) \\
& & (\exists x) A(x), \Gamma \rightarrow \Delta & \quad & (\exists x) A(x) & \quad \Gamma \rightarrow \Delta, A(t) \\
\forall: & \text{left} & A(t), \Gamma \rightarrow \Delta & \quad \forall: & \text{right} & \Gamma \rightarrow \Delta, A(b) \\
& & (\forall x) A(x), \Gamma \rightarrow \Delta & \quad & (\forall x) A(x) & \quad \Gamma \rightarrow \Delta, A(b)
\end{align*}
$$
In the ∃:left and ∀:right inferences the free variable $b$ is called the *eigenvariable* and must not appear in the lower sequent. The variable $x$ must be freely substitutable into $\Lambda$ for all four quantifier inferences.

**Cut**

$$\frac{\Gamma \rightarrow \Delta, A, \Pi \rightarrow \Lambda}{\Gamma, \Pi, \rightarrow \Delta, \Lambda}$$

**Weakening**

$$\frac{\Gamma \rightarrow \Delta}{\Lambda, \Gamma \rightarrow \Delta} \quad \frac{\Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta, A}$$

**Exchange**

$$\frac{\Gamma, \Lambda, B, \Pi \rightarrow \Delta}{\Gamma, B, A, \Pi \rightarrow \Delta} \quad \frac{\Gamma \rightarrow \Delta, A, B, \Lambda}{\Gamma \rightarrow \Delta, \Lambda, A, \Lambda}$$

**Contraction**

$$\frac{A, A, \Gamma \rightarrow \Delta}{A, \Gamma \rightarrow \Delta} \quad \frac{\Gamma \rightarrow \Delta, A, A}{\Gamma \rightarrow \Delta, A}$$

The final four types of rules, *Cut* through *Contraction*, are called *structural* inferences; the rest are called *logical* inferences.

The *principal formula* of an inference is the formula in the lower sequent of the inference upon which the inference acted; for example, the ∀:left inference above has $(\forall x) A(x)$ as principal formula. Note that cut inferences have no principal formula and exchange inferences have two principal formulas. The *auxiliary formula(s)* of an inference are the formulas in the upper sequent which are used by the inference — the rest of the formulas (in $\Gamma, \Delta, \Pi, \Lambda$) are the *side formulas*.

The above completes the definition of the sequent calculus LK$_\epsilon$. The system obtained by removing the equality symbol = and its associated initial sequents is called LK.$\epsilon$.

We wish to develop a theory of how the influence of a formula spreads through a proof. This will be done by defining a directed graph called the *logical flow graph*. The logical flow graph has as nodes the subformulas occurring in the proof. For convenience, suppose we have a fixed proof $P$ in hand; we define an *s-formula* to be an occurrence of a subformula of a formula occurring in $P$. (The ‘s-’ stands for ‘semi-‘ or ‘sub-‘.) It should be stressed that an s-formula is an occurrence of a semiformal in a proof as compared to the semiformal itself which may occur many times in the proof. An s-formula $A$ is a variant of $B$ if $A$ can be obtained from $B$ by changing some of the semiterms in $B$. The logical flow graph (defined below) will have as nodes the s-formulas in $P$; two s-formulas will be connected by an edge only if they are variants of each other. Furthermore, any two s-formulas connected by an edge will be in (distinct) sequents of some inference or will both be in an axiom on opposite sides of the sequent arrow ($\rightarrow$).

We define the logical flow graph by specifying the edges: First, in an axiom $A \rightarrow A$ there is an edge directed from the left-hand $A$ to the right-hand $A$. In an equality axiom

$$s_1 = t_1, \ldots, s_k = t_k, \ P(s_1, \ldots, s_k) \rightarrow P(t_1, \ldots, t_k)$$

2 Concepts similar to our definition of logical flow graph have already been introduced by J.Y. Girard [3] who discusses tracing the flow of formulas through linear logic proofs.
there is an edge directed from the \( P(s) \) to the \( P(t) \). In all other equality axioms (and when \( P \) is equality in the above axiom), there is an edge from each formula in the antecedent to the formula in the succedent. Second, in any logical or structural inference listed above, there is an edge directed from the \( i \)th formula in the cedent denoted \( \Gamma \) or \( \Pi \) in the lower sequent to the corresponding formula in the upper sequent. And, in each inference, there is an edge directed from the \( i \)th formula in the cedent denoted \( \Delta \) or \( \Lambda \) in the upper sequent to the corresponding formula in the lower sequent. Third, in any inference if \( A \) (sometimes \( B \)) is an auxiliary formula which appears in the succedent of an upper sequent of the inference then there is an edge directed from that \( A \) (or \( B \)) to the corresponding s-formula in the lower sequent. And if \( A \) (sometimes \( B \)) is an auxiliary formula which appears in the antecedent of an upper sequent of an inference then there is an edge directed towards that \( A \) (or \( B \)) from the corresponding s-formula in the lower sequent.

Before finishing the definition of the logical flow graph, let’s illustrate two examples of the third part of the definition. In the \( \land \text{right} \) inference there is an edge from the upper \( A \) to the lower \( A \) and an edge from the upper \( B \) to the lower \( B \). In an \( \exists \text{left} \) there is an edge from the \( A(x) \) to the \( A(b) \). Note there is no edge directed away from the s-formula \( (\exists x)A(x) \).

Fourth, in a cut inference there is an edge directed from the cut formula \( A \) in the succedent of the left-hand upper sequent to the occurrence of \( A \) in the antecedent of the right-hand upper sequent.

Fifth and finally, suppose there is a directed edge from an s-formula \( A_1 \) to \( A_2 \) and suppose \( B_1 \) is a subformula of \( A_1 \). Since \( A_1 \) and \( A_2 \) are variants there is a subformula \( B_2 \) of \( A_2 \) which corresponds to the subformula \( B_1 \) of \( A_1 \); \( B_1 \) and \( B_2 \) are, of course, variants. If \( R_1 \) occurs positively in \( A_1 \) then there is an edge from \( B_1 \) to \( B_2 \). If \( B_1 \) occurs negatively in \( A_1 \) then there is an edge directed from \( B_2 \) to \( B_1 \). Recall that \( B_1 \) occurs positively (negatively) in \( A \) if the \( B_1 \) occurs an even (odd) number of times in the scope of a negation or in the left-hand operand of an implication. Of course \( B_1 \) occurs positively in \( A_1 \) if and only if \( B_2 \) occurs positively in \( A_2 \).

The above concludes the definition of the logical flow graph. As an example consider the following proof:

\[
\begin{align*}
A \rightarrow A \\
\neg A, A \rightarrow \\
\neg A, A \rightarrow B \\
A \rightarrow (\neg A) \supset B \\
B \rightarrow B \\
\neg A, B \rightarrow B \\
B \rightarrow (\neg A) \supset B \\
A \lor B \rightarrow (\neg A) \supset B
\end{align*}
\]

The logical flow graph restricted to the formulas \( A \) and \( B \) is shown below (edges for \( \neg A \) and \( \neg A \supset B \) are not shown):
Looking at just the subgraph for $A$, there is a path from the $A$ in the final antecedent up to the logical axiom for $A$ and back down to the $A$ in the succedent of the endsequent. And there is a path of length two from the subformula $A$ of the $\neg A$ introduced with a Weak :left inference. Although this is a very simple example, it should be clear that the logical flow graph traces the influence of $A$ through the proof.

The concept of the logical flow graph will be useful in the next section for proving lower bounds on the number of inferences in a proof. First a few more definitions and some lemmas must be established.

**Definition.** An s-formula occurs positively if and only if it is in a sequent $\Gamma \rightarrow \Delta$ and either occurs positively in a formula in $\Delta$ or negatively in a formula in $\Gamma$. Otherwise the s-formula occurs negatively.

**Definition.** Let $P$ be a proof and let $E$ be an edge in the logical flow graph of $P$ directed from $A$ to $B$. Note that either (1) there is a unique common inference $J$ containing both $A$ and $B$ such that $J$ gave rise to $E$ or (2) $A$ and $B$ are in an axiom. (There may be more than one inference containing both $A$ and $B$ but there is only one that caused $E$ to be in the logical flow graph.) If $A$ is in an upper sequent of $J$ and $B$ is in the lower sequent of $J$ then we say $E$ is a downward edge. If $B$ is in an upper sequent and $A$ in a lower sequent then $E$ is an upward edge. If $A$ and $B$ are both in upper sequents (so $J$ is a cut) or if $A$ and $B$ are in an axiom then $E$ is a lateral edge.

**Proposition 4.** Let $P$ be a proof. Every downward edge connects two s-formulas which occurs positively. Every upward edge connects s-formulas which occur negatively. Every lateral edge is incident on an s-formula which occurs positively and on an s-formula which occurs negatively.

**Proposition 5.** Let $P$ be a proof and $A$ an s-formula in $P$.

(a) Suppose $A$ occurs positively in $P$. Then each edge directed towards $A$ in the logical flow graph is either lateral or downward; all incoming edges have the same direction. If the incident edges are downward, there may be 0, 1, or 2 of them. Furthermore, if $P$ is tree-like, the outdegree of $A$ in the logical flow graph will be one (or zero if $A$ is in the endsequent or in a sequent not used in the proof).
(b) Suppose $A$ occurs negatively in $P$. Then either there is one lateral edge directed away from $A$ or there are up to two upward edges directed away from $A$. Furthermore, if $P$ is tree-like, the indegree of $A$ will be one (or zero if $A$ is in the endsequent or in a sequent not used in the proof).

Propositions 4 and 5 are easily proved by examining the definition of the logical flow graph. For example, in Proposition 5 when $A$ occurs positively, $A$ will have lateral incoming edges only if $A$ appears in an axiom. Otherwise the indegree is zero if and only if $A$ is a subformula of a formula introduced by a weakening inference. The indegree is two if $A$ is a subformula of a formula which is merged with an identical formula by a contraction, $\lor:\text{left}$ or $\land:\text{right}$ inference. There is one incoming downward edge in the other cases. Similar considerations apply to Proposition 5(b).

For the rest of this section we shall let $T$ be an abbreviation for some (arbitrary) valid formula and $\bot$ be an abbreviation for its negation. So $T$ and $\bot$ are formulas such that $\rightarrow T$ and $\bot \rightarrow$ are LK-provable. We are not however adding these to our language for first-order logic; in particular, it is important for Proposition 6 and 10 that atomic formulas $A$ and $B$ are not $T$ or $\bot$.

**Definition.** Given a proof $P$, a *forward* (respectively, *backward*) path is a non-trivial path in the logical flow graph of $P$ which traverses edges in the forward (backward) direction. By *path* we always mean non-trivial path. The $s$-formula $B$ is *forward-reachable* from the $s$-formula $A$ if and only if $B$ is a subformula of $A$. If $A$ is forward-reachable from $B$, then $B$ is *backward-reachable* from $A$ if $A$ is forward-reachable from $B$.

**Proposition 6.** Let $P$ be a proof of $\Gamma \rightarrow \Delta$ and let $A$ be an atomic $s$-formula appearing negatively (respectively, positively) in $\Gamma \rightarrow \Delta$ such that $A$ does not have equals (=) as its relation symbol. Then either there is a forward (respectively, backward) path from $A$ to another $s$-formula $B$ in $\Gamma \rightarrow \Delta$ or the sequent $\Gamma^* \rightarrow \Delta^*$ obtained by replacing $A$ with $T$ (respectively, $\bot$) is valid.

The gist of Proposition 6 is that if $A$ occurs negatively in $\Gamma \rightarrow \Delta$ and is essential to the validity of the sequent then there is a forward path from $A$ back to another $s$-formula $B$ in $\Gamma \rightarrow \Delta$; note that $B$ must occur positively in $\Gamma \rightarrow \Delta$. Note that this proposition implies the elementary fact that if $B$ is a valid formula and if a predicate symbol $Q$ appears only positively in $B$ then every atomic subformula $Q(\cdot \cdot \cdot)$ of $B$ may be replaced by $\bot$ and the resulting formula will still be valid. This fact has a simple model-theoretic proof; Proposition 6 gives a proof-theoretic proof.

**Proof of Proposition 6.** We shall only treat the case of $A$ occurring negatively; the other case is handled similarly. Suppose there is no forward path from $A$ back to the endsequent.
Claim. There is a tree-like proof $P_1$ of $\Gamma \rightarrow \Delta$ such that in the logical flow graph of $P_1$ there is no forward path from $A$ to another $s$-formula in $\Gamma \rightarrow \Delta$.

Proof of Claim. $P_1$ is formed by converting $P$ to a tree-like proof in the following manner: Find the first sequent in $P$ which is used multiple times as a hypothesis and duplicate the subproof of this sequent as necessary to remove the multiple usage of that sequent. Iterate this process until a tree-like proof is obtained. It is easy to see that this transformation can not create a new path from $A$ back to the endsequent (although if such a path existed it might be destroyed). This proves the claim. □ Claim

Since $A$ is atomic, it is of the form $Q(s_1, \ldots, s_k)$ for some predicate symbol $Q$. Form $P_2$ from $P_1$ by replacing every $s$-formula forward reachable from $A$ by $\top$. To prove Proposition 6 it suffices to show that the endsequent of $P_2$ is valid. To accomplish this we show that $P_2$ can be modified to be a correct proof. There are several ways in which $P_2$ might fail to be a proof: First, an equality axiom forward-reachable from $A$ might have been changed to (for example):

$$r_1 = t_1, \ldots, r_k = t_k, \top \rightarrow \top.$$ 

This is not longer an axiom, but it is valid; indeed, $\top \rightarrow \top$ is valid. Second, where $P_1$ had a contraction, $P_2$ might contain (for example):

$$\Gamma \rightarrow \Delta, C', C''$$

$$\Gamma \rightarrow \Delta, C^*$$

where $C'$, $C''$ and $C^*$ are obtained from a formula $C$ replacing some subformulas of the form $Q(\cdot \cdot \cdot)$ by $\top$. If a subformula $Q(\cdot \cdot \cdot)$ is negatively occurring in $C$ and it is replaced by $\top$ in any one of the formulas $C'$, $C''$ or $C^*$ then it will also be replaced by $\top$ in all three of them; this is because $P_1$ is tree-like and the only edges in the logical flow graph of $P_1$ directed towards the occurrences of negatively occurring subformulas of $C'$ and $C''$ come from the corresponding subformulas of $C^*$. Furthermore if $Q(\cdot \cdot \cdot)$ is a positively occurring subformula of $C$ and is replaced by $\top$ in $\top$ in either $C'$ or $C''$ then it will also be replaced in $C^*$. Thus $C^*$ can be obtained from either one of $C'$ and $C''$ by changing some positively occurring subformulas to $\top$. It follows that $C' \Rightarrow C^*$ and $C'' \Rightarrow C^*$ are valid. Hence the above 'inference' in $P_2$ is sound. Third, $\lor: \text{right}$ and $\land: \text{left}$ inferences contain implicit contractions of the side formulas; these are handled in the same way as contractions. Because $P_2$ is tree-like, these three cases are the only way in which $P_2$ can fail to be a valid proof and its final sequent must be valid. (Note that if $P_1$ contains an inference

$$\Gamma \rightarrow \Delta$$

$$\Pi \rightarrow \Lambda$$
then a negatively occurring s-formula in \( \Gamma \rightarrow \Delta \) is forward-reachable from \( A \) only via a path which goes through \( \Pi \rightarrow \Lambda \). This will not necessarily be true of a non-tree-like proof\(^3\).

**Proposition 6**

**Proposition 7.** Let \( P \) be a proof and \( A \lor B \) be an s-formula occurring negatively in the endsequent \( \Gamma \rightarrow \Delta \) of \( P \). Then at least one of the following holds:

(a) There is a forward path from \( A \lor B \) to another s-formula in \( \Gamma \rightarrow \Delta \).

(b) There is an \( \lor : \text{left} \) inference with principal formula \( A^* \lor B^* \) forward-reachable from \( A \lor B \).

(c) \( \Gamma \rightarrow \Delta \) is still valid after \( A \lor B \) is replaced by \( \top \).

There is a dual version of Proposition 7 regarding \( A \land B \) occurring positively in \( \top \); it is stated with ‘backward’, ‘\( \land : \text{right} \)’, and ‘\( \bot \)’ replacing ‘forward’, ‘\( \lor : \text{left} \)’ and ‘\( \top \)’.

**Proof of Proposition 7.** Suppose there is no forward path from \( A \lor B \) back to the endsequent and that there is no \( \lor : \text{left} \) inference satisfying (b). We show that the result of changing \( A \lor B \) to \( \top \) in \( \Gamma \rightarrow \Delta \) is valid — the proof is similar to the proof of Proposition 6. First form a tree-like proof \( P_1 \) of \( \Gamma \rightarrow \Delta \) by duplicating subproofs of \( P_1 \) as necessary. There will still be no forward path from \( A \lor B \) back to the endsequent and no inference satisfying (b). Now form \( P_2 \) from \( P_1 \) by replacing every s-formula forward-reachable from \( A \lor B \) with \( \top \). Just as in the proof of Proposition 6 every ‘inference’ in \( P_2 \) is valid and hence the endsequent of \( P_2 \) is valid. \( \square \)

Propositions 6 and 7 are special cases of the following more general result.

**Proposition 8.** Let \( P \) be a proof and \( A \) an s-formula occurring negatively (respectively, positively) in the endsequent \( \Gamma \rightarrow \Delta \) of \( P \). Then (at least) one of the following holds:

(a) There is a forward (respectively, backward) path from \( A \) to another s-formula in \( \Gamma \rightarrow \Delta \).

(b) There is an s-formula forward- (respectively, backward-) reachable from \( A \) which is the principal formula of a logical inference.

(c) \( \Gamma \rightarrow \Delta \) is still valid if the s-formula \( A \) is replaced by \( \top \) (respectively, \( \bot \)).

Basically, Proposition 8 states that if an s-formula \( A \) of \( \Gamma \rightarrow \Delta \) is not used in an essential way in the proof of \( \Gamma \rightarrow \Delta \) then \( \Gamma \rightarrow \Delta \) maybe weakened by changing \( A \) to \( \top \) or \( \bot \) as appropriate and still remain valid. The proof of Proposition 8 is similar to the proofs Propositions 6 and 7 and is omitted.

The next proposition gives a related result for negatively occurring s-formulas which are conjunctions.

\(^3\) Our construction works for non-tree-like proofs as well, but the proof is less clear.
Proposition 9. Let \( P \) be a proof and \( A \land B \) be an \( s \)-formula occurring negatively in the endsequent \( \Gamma \rightarrow \Delta \) of \( P \). Then at least one of the following holds:

(a) There is a forward path from \( A \land B \) to another \( s \)-formula in \( \Gamma \rightarrow \Delta \).

(b) There are at least two \( \land \) :left inferences with principal formulas forward-reachable from \( A \land B \).

(c) \( \Gamma \rightarrow \Delta \) is still valid if \( A \land B \) is replaced by \( A \).

(d) \( \Gamma \rightarrow \Delta \) is still valid if \( A \land B \) is replaced by \( B \).

Again there is a dual version of Proposition 9 regarding an \( s \)-formula \( A \lor B \) occurring negatively in the endsequent of \( P \).

Proof of Proposition 9. Suppose that neither (a) nor (b) hold and that the only (if any) \( \land \) :left inference with principal formula forward-reachable from \( A \land B \) is of the form

\[
A^*, \Pi \rightarrow \Lambda \\
A^* \land B^*, \Pi \rightarrow \Lambda
\]

(The case where \( B^* \) appears in the upper sequent instead of \( A^* \) is handled similarly.) Obtain a tree-like proof \( P_1 \) of \( \Gamma \rightarrow \Delta \) by duplicating subproofs of \( P \) as necessary. As before, there will be no forward path from \( A \land B \) back to the endsequent of \( P_1 \). Also, every \( \land \) :left inference with principal formula forward-reachable from \( A \land B \) will be identical to the one in \( P \). Now form \( P_2 \) from \( P_1 \) by replacing each \( s \)-formula \( A' \land B' \) forward-reachable from \( A \land B \) by \( A' \). \( P_2 \) can fail to be a proof in several ways: First, the \( \land \) :right inference will become

\[
A^*, \Pi \rightarrow \Lambda \\
A^*, \Pi \rightarrow \Lambda
\]

which is clearly a valid ‘inference’. Second, a contraction of a formula \( C \) in \( P_1 \) may become an ‘inference’ of the form (for example):

\[
\Pi \rightarrow \Lambda, C', C'' \\
\Pi \rightarrow \Lambda, C'^*
\]

Here \( C' \), \( C'' \) and \( C'^* \) are formed by replacing some subformulas of the form \( A_i \land B_i \) by \( A_i \). Now if \( A_i \land B_i \) is a negatively occurring subformula of \( C \) which is replaced by \( A_i \) in any one of \( C' \), \( C'' \) or \( C^* \) then it will be replaced by \( A_i \) in all three formulas; this is because \( P_1 \) is tree-like and the only edges in the logical flow graph directed towards a negatively occurring subformula in the upper sequent come from the lower sequent of the contraction inference. If \( A_i \land B_i \) is a positively occurring subformula of \( C \) and it is replaced by \( A_i \) in either \( C' \) or \( C'' \), then it is also replaced by \( A_i \) in \( C^* \). Thus \( C^* \) can be obtained from \( C' \) by replacing some positively occurring subformulas of the form \( A_i \land B_i \) by \( A_i \) and hence \( C' \vdash C^* \) is valid. Similarly, \( C'' \vdash C^* \) is valid. Hence the above ‘inference’ in \( P_2 \) is valid. The implicit contractions of side formulas in \( \lor \) :left and \( \land \) :right inferences are handled the same way. Hence final sequent of \( P_2 \) is valid. \( \square \)
Suppose $A \lor B$ occurs negatively in the endsequent $\Gamma \rightarrow \Delta$ of a proof $P$ with $A$ and $B$ atomic formulas not involving equality. According to Proposition 6, under certain circumstances there are forward paths $\pi_A$ and $\pi_B$ from $A$ and $B$ back to the endsequent. We shall say that the two paths parallel each other for as long as they travel together along a path from $A \lor B$. Of course there may be no path from $A \lor B$ back to the endsequent and $\pi_A$ and $\pi_B$ may be forced to stop paralleling each other and diverge at an $\lor$-left inference. The next proposition states sufficient conditions for there to be paths $\pi_A$ and $\pi_B$ that parallel each other until an $\lor$-left inference separates them.

**Proposition 10.** Suppose $P$ is a proof with endsequent $\Gamma \rightarrow \Lambda$ and $A \lor R$ is a negatively occurring $s$-formula in $\Gamma \rightarrow \Delta$ with $A$ and $B$ atomic formulas not involving the equality sign. Then at least one of the following holds:

(a) There is a forward path from $A \lor B$ back to $\Gamma \rightarrow \Delta$.

(b) There are forward paths $\pi_A$ and $\pi_B$ from $A$ and $B$, respectively, back to $\Gamma \rightarrow \Delta$ such that $\pi_A$ and $\pi_B$ parallel each other until they diverge at an $\lor$-left inference.

(c) $\Gamma \rightarrow \Delta$ is still valid after $A \lor B$ is replaced by $\top$.

**Proof.** As usual, it will suffice to prove the theorem for the cut-free proof $P_1$ obtained by duplicating subproofs of $P$ as necessary. This is because any path in $P_1$ can be mapped back down to a path in $P$. It will suffice to show that there is an $\lor$-left inference

\[
\begin{array}{c}
A^*, \Pi \rightarrow \Lambda \\
B^*, \Pi \rightarrow \Lambda \\
\hline
A^* \lor B^*, \Pi \rightarrow \Lambda
\end{array}
\]

in $P_1$ with a forward path from $A \lor B$ to $A^* \lor B^*$ and with forward paths from $A^*$ and from $B^*$ back to $\Gamma \rightarrow \Delta$. So suppose not. For each $\lor$-left inference of the form above with principal inference forward-reachable from $A \lor B$, if no path exists from $A^*$ (respectively, $B^*$) to $\Gamma \rightarrow \Delta$, replace $A^*$ (respectively $B^*$) and every $s$-formula forward-reachable from it by $\top$. And replace every $s$-formula forward-reachable from the $A \lor B$ in $\Gamma$ by $\top$. The same argument used for proving Propositions 6 and 7 shows that this transforms $P_1$ into a valid 'proof'; note that the inference displayed above will become vacuous with one of its upper sequents equal to the lower sequent. Unless (a) holds, the resulting endsequent is $\Gamma \rightarrow \Delta$ with the $s$-formula $A \lor B$ replaced by $\top$. □

4. The undecidability proof for $k$-provability

We shall first prove Main Theorem 1 for the system LK with no equality axioms. To do this, we reduce the second-order unification problem with partial substitution problem to the $k$-provability problem for LK. Given a second-order
The undecidability of k-provability

91

unification problem satisfying the special restriction consisting of equations

\[ \beta_j(a_j/a_i) = \sigma_j \]

for \( j = 1, \ldots, m \), we shall produce a formula \( \Phi \) and an integer \( N \) such that \( \rightarrow \Phi \) has a proof of \( \Xi N \) lines if and only if the unification problem has a solution. The formula \( \Phi \) will always be valid and have a very straightforward proof; however, a solution to the unification problem will give a slightly shorter proof (in terms of number of sequents in the proof).

Recall that the \( \beta_i \)'s are second-order variables, \( a_i \)'s are first-order variables and \( \rho_j \) and \( \sigma_i \) are terms involving \( \beta_i \)'s, \( a_i \)'s and function and constant symbols. We shall also use the \( \beta_i \)'s as bound variables in the sequent calculus. Let \( U_i \) be the semiformula

\[ P_i(\beta_j, a_j) \vee P_i(z^1_j, b^1_j) \vee \cdots \vee P_i(z^m_j, b^m_j) \]

where \( P_i \) is a binary relation symbol and \( z^1_j, \ldots, z^m_j \) are new bound variables and \( b^1_j, \ldots, b^m_j \) are new free variables. (We adopt the convention that conjunction and disjunction always associate from right to left.) Then \( \Phi \) is the formula

\[
\left( \forall z_1^1 \forall z_1^2 \cdots \forall z_m^1 \forall z_m^2 \forall \beta_1 \cdots \forall \beta_k \bigwedge_{j=1}^m U_j \right) \rightarrow \left( \bigwedge_{j=1}^m \exists y \exists x P_j(x, y) \right)
\]

where \( \beta_1, \ldots, \beta_k \) are the second-order variables appearing in the unification problem.

By Theorem 3 we need only consider unification problems of the form \( \Omega \cup \{ \beta_1 = S^0 \} \); note that in this case, \( \Phi \) can be written as \( A(S^0) \) where \( A(x) \) depends only on \( \Omega \).

\( \Phi \) is obviously a valid formula; the question is what the minimum size proof of \( \Phi \) is. Let's begin by outlining a (non-optimal) proof of \( \Phi \). For arbitrary terms \( t_1, \ldots, t_k, r_1^1, \ldots, r_m^k \) let \( U(t, r) \) be the result of substituting the \( t_i \)'s for the \( \beta_i \)'s and the \( r_i \)'s for the \( z_i^r \)'s in \( U_j \). Then \( \rightarrow \Phi \) will be derived by \( k + 4m \) \( \forall \) left inferences and one \( \Rightarrow \) right inference from

\[
\bigwedge_{j=1}^m U_j(t, r) \rightarrow \bigwedge_{j=1}^m \exists y \exists x P_j(x, y).
\]

This can be derived from the \( m \) sequents

\[ U_j(t, r) \rightarrow \exists y \exists x P_j(x, y) \]

by \( m - 1 \) \( \land \Rightarrow \) right inferences and \( 2(m - 1) \) \( \land \Rightarrow \) left inferences; this derivation begins with

\[
\frac{U_m(t, r) \rightarrow \exists y \exists x P_m(x, y) \quad U_{m-1}(t, r) \land U_m(t, r) \rightarrow \exists y \exists x P_m(x, y)}{U_{m-1}(t, r) \land U_m(t, r) \rightarrow \exists y \exists x P_{m-1}(x, y) \land \exists y \exists x P_m(x, y)}
\]

\[
\frac{U_{m-1}(t, r) \rightarrow \exists y \exists x P_{m-1}(x, y) \quad U_m(t, r) \rightarrow \exists y \exists x P_m(x, y)}{U_{m-1}(t, r) \land U_m(t, r) \rightarrow \exists y \exists x P_{m-1}(x, y) \land \exists y \exists x P_m(x, y)}
\]

\[
\frac{U_{m-1}(t, r) \rightarrow \exists y \exists x P_{m-1}(x, y) \quad U_m(t, r) \rightarrow \exists y \exists x P_m(x, y)}{U_{m-1}(t, r) \land U_m(t, r) \rightarrow \exists y \exists x P_{m-1}(x, y) \land \exists y \exists x P_m(x, y)}
\]
and continues this pattern \( m - 1 \) times. Now \( U_j(t, r) \) is of the form

\[
P_j(\sigma^*, \rho^*) \vee P_j(t_j, a_i) \vee P_j(r_j^i, b_j) \vee P_j(r_j^i, b_j^i) \vee P_j(r_j^i, b_j)
\]

where \( \rho^* \) and \( \sigma^* \) are the terms obtained from \( \rho \) and \( \sigma \) after the \( \beta_i \)'s are changed to \( t_i \)'s. The sequent \( U_j(t, r) \rightarrow \exists y \quad \forall x \ P(x, y) \) can be derived by using five \( \forall \text{left} \) inferences to combine sequents of the form \( P(v, w) \rightarrow \exists y \quad \forall x \ P(x, y) \). These latter sequents, of course, have simple proofs, each containing one logical axiom and two \( \exists \text{left} \) inferences. This proof of \( U_j(t, r) \rightarrow \exists y \quad \forall x \ P(x, y) \) has exactly 23 sequents (all distinct since, because of the special restriction, \( \rho^*_j \) will not be equal to \( a_i \) or any \( b_j \)).

Counting the number of inferences and axioms in the above proof of \( \Phi \) we see that there are \( (k + 4m + 1) + (3m - 3) + 23m \) sequents. So the proof of \( \Phi \) has \( k + 30m - 2 \) sequents. However, this proof of \( \Phi \) is not the most efficient proof. Suppose the terms \( t \) are chosen so that setting \( \beta_i = t_i \) provides a solution to

\[
\beta_i(\rho_i/a_i) = \sigma_i
\]

for some particular value of \( j \). Since this equation is satisfied, there must be some set \( S \) of occurrences of \( a_i \) in \( t_i \) such that changing each \( a_i \) in \( S \) to \( \rho^*_i \) yields the term \( \sigma^*_i \). Let \( v(w) \) denote the result of substituting \( w \) into \( t_i \) for each \( a_i \in S \). Thus \( v(\rho^*_i) = \sigma^*_i \). If we further suppose that the terms \( r_j^i \) are equal to \( v(b_j^i) \) for \( i = 1, 2, 3, 4 \) there is a shorter derivation of the sequent \( U_j \rightarrow \exists y \quad \forall x \ P(x, y) \): First derive the six sequents

\[
P_j(\sigma^*_j, \rho^*_j) \rightarrow \exists y \quad P_j(v(y), y),
P_j(t_j, a_i) \rightarrow \exists y \quad P_j(v(y), y),
P_j(r_j^i, b_j) \rightarrow \exists y \quad P_j(v(y), y).
\]

This takes a total of six inferences and six logical axioms. Then use five \( \forall \text{left} \) inferences to derive \( U_j \rightarrow \exists y \quad P_j(v(y), y) \). Finally use the following four inferences and one logical axiom:

\[
\begin{align*}
P_j(v(a), a) & \rightarrow P_j(v(a), a) \\
P_j(v(a), a) & \rightarrow \exists x \quad P_j(x, a) \\
P_j(v(a), a) & \rightarrow \exists y \quad \exists x \quad P_j(x, y) \\
U_j & \rightarrow \exists y \quad P_j(v(y), y) & \exists y \quad P_j(v(y), y) & \rightarrow \exists y \quad \exists x \quad P_j(x, y)
\end{align*}
\]

where \( a \) is a free variable not occurring in \( t_i \). This derivation of \( U_j \rightarrow \exists y \quad \exists x \quad P_j(x, y) \) contains 22 sequents, one less than the earlier derivation which had 23 sequents.

If the second-order unification has a solution, then by appropriate choices for the \( t_i \)'s and \( r_j^i \)'s, the formula \( \Phi \) can be proved with a proof containing \( (k + 4m + 1) + (3m - 3) + 22m = k + 29m - 2 \) sequents. So we let \( N \) be \( k + \)
we need to show that if the unification problem has no solution then any proof of $\Phi$ requires at least $N + 1$ lines. (However, if there is a solution to all but one of the unification equations, $\Phi$ will have a proof of exactly $N + 1$ lines.)

Suppose $P$ is a proof of $\Phi$. We say that a term $t$ is assigned to $\beta_i$ in $P$ if there is an inference in $P$ of the form

$$A(t), \Gamma \rightarrow \Delta$$

such that there is a forward path from the $s$-formula $\forall \beta_i \cdot \ldots \forall \beta_k \land U_j$ in the endsequent to the $(\forall \beta_i) A(\beta_i)$ in the inference displayed above. We call such an inference a term-assigning inference and its lower sequent is called a term-assigning sequent. Of course, more than one $t$ may be assigned to $\beta_i$ in $P$.

By Propositions 7 through 9, $P$ must contain at least one $\Rightarrow$-right inference, $k + 4m \forall$-left inferences, $m - 1 \land$-right inferences, $2m - 2 \land$-left inferences and $5m \lor$-left inferences. Since any sequent is derived by a unique inference this accounts for $k + 12m - 2$ sequents in $P$. (Note that we also know there are at least $2m \exists$-left inferences in $P$; however, these will be counted separately below.)

To further count sequents in $P$ we will form $m + 1$ disjoint classes $S_1, \ldots, S_m$ and $X_S$ of sequents such that no member of these classes is one of the $k + 12m - 2$ sequents already accounted for. Nor will these classes contain any term-assigning sequent. The idea is that $S_j$ is the set of sequents used to handle the derivation of

$$U_j \rightarrow \exists y \exists x P_j(x, y)$$

although, in general, the proof $P$ might not actually contain this sequent. The set $X_S$ will be a set of 'excess sequents'.

**Claim.** The classes $S_1, \ldots, S_m$ and $X_S$ can be defined so that the cardinality of each $S_j$ is at least 17 and so that if each $S_j$ has cardinality exactly 17 and if $X_S$ is empty then there are terms $t_1, \ldots, t_k$ assigned to $\beta_1, \ldots, \beta_k$ so that

$$t_i(\rho_i^* / a_i^*) = \sigma_i^*$$

where $\rho_i^*$ and $\sigma_i^*$ are obtained from $\rho_i$ and $\sigma_i$ by replacing each $\beta_i$ by $t_i$ for all $i$.

Before proving the claim, let us show that it suffices to prove the Main Theorem 1. If the $S_j$'s have cardinality 17 and are disjoint, the proof $P$ has $(k + 12m - 2) + 17m$ sequents which have already been accounted for or are in the $S_j$'s. In order to have exactly $N - k + 29m - 2$ sequents this must be all of the sequents of $P$; this implies that there are no excess sequents and $X_S$ is empty and there is exactly one term assigned to $\beta_i$ for each $i = 1, \ldots, k$. That is because no $S_j$ contains a term-assigning sequent and we only counted one term-assigning inference for each value of $i$. Now, by the Claim, the terms assigned to the $\beta_i$'s provide a solution to the second-order unification problem. If, on the other hand, $X_S$ is nonempty or any $S_j$ contains more than 17 sequents or any $\beta_i$ is assigned
more than one term, then $P$ has more than $N$ lines. Thus we have established that
$\rightarrow \Phi$ has a proof of $\leq N$ if and only if the unification problem has a solution.

It remains to prove the Claim. Fix for the moment a value for $j$. In $\Phi$ there are
six atomic subformulas of the form $P_j(\cdots)$ on the left-hand side of the implication
$\supset$ and only one on the right-hand side. Let $v_1 = \alpha_j$, $w_1 = \rho_j$, $v_2 = \beta_i$, $w_2 = a_i$,
$v_{2+i} = z_j$, $w_{2+i} = b_j^i$; so the six atomic subformulas on the right are $P_j(v_i, w_i)$ for
$1 \leq i \leq 6$. (We are suppressing a second subscript, $j$, on the $v$'s and $w$'s to avoid
excessive notation.) By Proposition 7, there exists at least one forward path from
each $P_j(v_i, w_i)$ on the left to the $P_j(x, y)$ on the right. We are going to choose six
forward paths $\pi_i$ for $i = 1, \ldots, 6$, from the s-formula $P_j(v_i, w_i)$ to $P_j(x, y)$. These
paths must satisfy the following three restrictions:

(R1) The initial parts of the paths $\pi_1, \ldots, \pi_6$ parallel each other for as long as
possible — they diverge at $\forall$; left inferences.

(R2) If $P_j(\tau_i, \tau'_i) \lor \cdots \lor P_j(\tau_6, \tau'_6)$ is an s-formula that paths $\pi_i, \ldots, \pi_6$ ($i < 6$)
pass through while still paralleling each other then $\tau'_i, \ldots, \tau'_6$ are distinct
semiterms.

(R3) It is not possible to replace any one of the six paths by a shorter path and
still have conditions (R1) and (R2) hold.

It is not immediately obvious that there are paths that satisfy the three conditions;
it will suffice to show that there are paths that fulfill conditions (R1) and (R2)
since by shortening these paths one at a time until no further shortening is
possible we obtain paths satisfying all three conditions.

**Proposition 11.** Fix $j$ and let $P$ be a proof of $\Phi$. In $P$'s logical flow graph, there are
six paths $\pi_i$ from $P_j(v_i, w_i)$ to $P_j(x, y)$ that satisfy conditions (R1) and (R2)).

**Proof.** As usual it will suffice to assume $P$ is tree-like; otherwise, $P$ may be
transformed into a tree-like proof and paths in the logical flow graph of the
tree-like proof can be mapped back to paths in $P$'s logical flow graph. Suppose
that there is no set of six paths that satisfy (R1) and (R2). We shall show below
that there is an LK$_e$-proof $P^*$ of the formula $\Phi^*$ obtained from $\Phi$ by replacing $U_j$
either with $\top$ or with

$$\bigwedge_{1 \leq n < j \leq 6} w_n \neq w_i.$$  

Recall that $w_2, \ldots, w_6$ are distinct free variables and $w_1 = \rho_j^*$ is distinct from
them by the special restriction. Therefore, $\Phi^*$ is not valid and we have a
contradiction. Thus our assumption that the six paths do not exist will be shown
to be wrong. (Note that $P^*$ is an LK$_e$-proof even though $P$ may not involve
identity.)
Consider the six subformulas

\[ A_i = \bigvee_{n=i}^{6} P_j(v_n, w_n) \]

of \( U_j \) occurring in the endsequent of \( P \). If \( B \) is an s-formula in \( P \) forward-reachable from \( A_i \), then \( B \) is of the form \( \bigvee_{n=i}^{6} P_j(\tau_n, \tau'_n) \); we say that \( B \) is R2-bad if \( \tau_n \) and \( \tau'_n \) are identical semiterms for some \( n \neq s \). We say that a path in the logical flow graph is R2-bad if some s-formula on the path is R2-bad. And an s-formula \( B \) forward-reachable from some \( A_i \) is R2-good if and only if there is a path from \( A_i \) to \( B \) which is not R2-bad. (So R2-good is not the opposite of R2-bad.) An s-formula \( B \) is R2-borderline if it is R2-bad and there is an edge in the logical flow graph from an R2-good formula to \( B \). An s-formula \( P_j(\cdot) \) is viable if there is a forward path from it to the \( P_j(x, y) \) in the endsequent of \( P \).

We modify \( P \) to form \( P^* \) by the following transformations:

1. If \( B \) is a maximal s-formula forward-reachable from one of the \( A_i \)'s such that one of \( B \)'s disjuncts is not viable, replace \( B \) by \( \top \).
2. Any remaining non-viable s-formulas \( P_j(\cdot) \) are replaced by \( \top \).
3. Suppose that \( B \) is a maximal s-formula in \( P \) of the form

\[ \bigvee_{n=i}^{6} P_j(\tau_n, \tau'_n) \]

with \( i \leq 5 \) and that \( B \) is not altered by (1) or (2). If \( B \) is not R2-good it is replaced by

\[ B_{\text{bad}} = \left( \bigvee_{n=i}^{6} P_j(\tau_n, \tau'_n) \right) \land \left( \bigwedge_{i \leq n < s \leq 6} \tau_n' \neq \tau'_s \right), \]

and if \( B \) is R2-good it is replaced by \( B_{\text{good}} = \bigwedge_{n<s} \tau'_n \neq \tau'_s \).

The first two transformations apply to meeting condition (R1); compare with the proof of Proposition 10. The third transformation is used to handle condition (R2). We now claim that \( P^* \) is a 'proof' in that every inference in \( P^* \) is sound. There are several ways in which \( P^* \) can fail to be a valid LKc-proof. Firstly, consider an inference in \( P \) of the form

\[
\frac{P_j(\tau_i, \tau'_i), \Pi \to \Lambda}{\bigvee_{i<n} P_j(\tau_n, \tau'_n), \Pi \to \Lambda}
\]

If \( \bigvee_{i<n} P_j(\tau_n, \tau'_n) \) was replaced by \( \top \) in \( P^* \) then so is at least one of the indicated formulas in the upper sequents; thus this is a vacuous inference in \( P^* \) with one of the upper sequents equal to the lower sequent. The subproof of the other upper sequent can be ignored or discarded since \( P \) is tree-like. Otherwise, If
\[ \forall i \leq n P_j(\tau_n, \tau_n') \text{ is not RZ-good then in } P^* \text{ the inference is replaced by} \]

\[
\begin{align*}
P_j(\tau_i, \tau_i'), \Pi \rightarrow \Lambda & \quad \left( \forall i \leq n P_j(\tau_n, \tau_n') \right) \land \left( \bigwedge_{i < n < s} \tau_n' \neq \tau_i' \right), \Pi \rightarrow \Lambda \\
\left( \forall i \leq n P_j(\tau_n, \tau_n') \right) \land \left( \bigwedge_{i < n < s} \tau_n' \neq \tau_i' \right), \Pi \rightarrow \Lambda
\end{align*}
\]

which is a sound `inference'. And if \( \forall i \leq n P_j(\tau_n, \tau_n') \) is RZ-good we must treat the cases \( i < 5 \) and \( i = 5 \) separately. For \( i < 5 \), we have that the inference becomes

\[
\begin{align*}
P_j(\tau_i, \tau_i'), \Pi \rightarrow \Lambda & \quad \bigwedge_{i < n < s} \tau_n' \neq \tau_i', \Pi \rightarrow \Lambda \\
\bigwedge_{i < n < s} \tau_n' \neq \tau_i', \Pi \rightarrow \Lambda
\end{align*}
\]
in \( P^* \); this inference is sound (with the left upper sequent unnecessary for the soundness). If \( i = 5 \), then by our hypothesis that there are no paths satisfying (R1) and (R2) we must have that some s-formulas on the path from \( P_j(\nu_k, w_k) \) to \( P_j(\tau_n, \tau_n') \) were not viable. And because \( P \) is tree-like we were able to discard a subproof of \( P \) containing the inference under consideration; hence this inference is not needed in the proof \( P^* \). Secondly, \( P^* \) will not be a correct proof at a sequent containing an RZ-borderline formula; such a sequent must be the upper sequent of a quantifier inference that causes an RZ-good formula in the lower sequent to become RZ-bad in the upper sequent. But the formula \( B_{\text{bad}} \) is actually equivalent to \( B_{\text{good}} \) when \( B \) is RZ-bad, because two of the semiterms \( \tau_n', \tau_n' \) are equal \((n \neq s)\). Hence the `inference' in \( P^* \) is sound. Thirdly we have to consider contractions in \( P^* \) that may be contracting unequal formulas (this is similar to the proofs of Propositions 6–10). Contractions can occur explicitly in contraction inferences and implicitly in \( \forall \text{left} \) and \( \forall \text{right} \) inferences. Suppose, for example, that \( P \) contains a contraction inference

\[
\Pi \rightarrow \Lambda, B_1, B_2
\]

\[
\Pi \rightarrow \Lambda, B_3
\]

where \( B_1 = B_2 = B_3 \) are three occurrences of the same formula. In \( P^* \) this becomes

\[
\Pi^* \rightarrow \Lambda^*, B_1^*, B_2^*
\]

\[
\Pi^* \rightarrow \Lambda^*, B_3^*
\]

Let \( C_1, C_2, C_3 \) be corresponding (equal) subformulas of \( B_1, B_2, B_3 \). Suppose each \( C_i \) is replaced by \( C_i^* \) in \( P^* \) with at least one \( C_i \neq C_i^* \). If \( C_n \) occurs positively in \( B_n \) then there are edges in the logical flow graph from \( C_1 \) and from \( C_2 \) to \( C_3 \) and these are the only edges out of \( C_1 \) and \( C_2 \) (since \( P \) is tree-like) and the only edges into \( C_3 \). Thus \( C_3 \) is transformed to \( \top \) by transformations (1) and (2) iff either (both) of \( C_1 \) and \( C_2 \) is (are). Also if one of \( C_1 \) or \( C_2 \) is RZ-good then \( C_3 \) is RZ-good. If however, \( C_i \) is not RZ-good we still have \( LK_e \vdash (C_i^* \rightarrow (C_3^* \rightarrow \top)) \). In all cases we have that \( LK_e \vdash C_i^* \rightarrow C_3^* \) for \( i = 1, 2 \). On the other hand, if \( C_n \) occurs negatively in \( B_n \) then the directions of the edges in the logical flow graph are
The undecidability of k-provability

reversed. Thus if \( C_3 \) is transformed to \( T \) by (1) or (2) then both \( C_1 \) and \( C_2 \) are. Also, \( C_3 \) is \( R2 \)-good if and only if either (both) of \( C_1 \) and \( C_2 \) is (are). In any case, we have that \( \text{LK}_k \vdash C_i^3 \supset C_i^* \) for \( i = 1, 2 \). By repeating this analysis for all appropriate subformulas \( C_1, C_2, C_3 \) of \( B_1, B_2, B_3 \), we have that \( \text{LK}_k \vdash B_1 \supset B_3 \) and \( \text{LK}_k \vdash B_2 \supset B_3 \). Hence this contraction ‘inference’ preserves validity and is sound. \( \Box \) Proposition 11

Returning to the proof of our Main Theorem, we now need to establish the Claim. The general idea for proving the Claim is to attempt to associate three sequents in \( P \) with each path \( \pi_i \). If we are able to do this then we have 18 sequents in \( S_j \). However, we will not always be successful in finding three sequents per path \( \pi_i \)—in these cases we must either associate more than three sequents with the other paths or find sequents which, although they can not be associated with just one of the paths, can be put in \( S_j \). For example, we will often want to associate two sequents with each of the six paths and associate an additional five sequents with the paths as a group: this will yield 17 sequents in \( S_j \).

Fix two values \( 1 \leq i < n \leq 6 \) and consider \( \pi_i \) and \( \pi_n \). Since \( \pi_i \) and \( \pi_n \) both end at the \( P_j(x, y) \) in \( \Phi \), there must be an \( s \)-formula \( \psi \) which is the first one in the path \( \pi_i \) which is also in the path \( \pi_n \). Since \( \pi_n \) is a shortest path (condition (R3)), \( \psi \) is in addition the first \( s \)-formula on \( \pi_n \) which is also on \( \pi_i \). Furthermore, without loss of generality, \( \pi_i \) and \( \pi_n \) coincide from \( \psi \) onward. The \( s \)-formula \( \psi \) must be of the form \( P_j(\tau_1, \tau_2) \) for some semiterms \( \tau_1 \) and \( \tau_2 \). There are several possibilities to consider:

Case (1). If \( \psi \) occurs as a subformula of the formula \( (\exists y)(\exists x) P_j(x, y) \) then each path must contain two \( \exists \)-right inferences to introduce the two existential quantifiers. Furthermore, both paths must pass through at least one axiom of the form \( \exists.(\cdots \rightarrow \exists.(\cdots) \) before the \( \exists \)-right inferences. This associates three inferences with each of \( \pi_i \) and \( \pi_n \).

Case (2). Other cases where \( \psi \) is in the scope of two or more quantifiers are handled similarly.

Case (3). If \( \psi \) occurs as a subformula of a formula of the form \( (\exists y) P_j(\tau, y) \) then by the reasoning above, each of \( \pi_i \) and \( \pi_n \) has two sequents associated with it; namely, a logical axiom and an \( \exists \)-right inference. We may assume that \( \pi_i \) and \( \pi_n \) are going downward as they reach \( \psi \) (otherwise there are \( \text{Cut} \) inferences on \( \pi_i \) and \( \pi_n \) where the paths turn upwards after going downward through the \( \exists \)-right inferences). Now we claim that there must be at least five sequents on the paths after \( \phi \) before the endsequent \( \Phi \) is reached. Namely, one \( \text{Cut} \) inference to turn the paths upward again, one \( \exists \)-left inference to strip off the \( (\exists y) \), one axiom to turn the path downward and two \( \exists \)-right inference to put \( (\exists y)(\exists x) \) on. However, these five inferences cannot be associated with \( \pi_i \) and \( \pi_n \) separately but must be shared among all six paths.

We have argued that, in this case (3), each of \( \pi_i \) and \( \pi_n \) has two associated sequents and that there are five additional sequents which may be put into \( S_j \).
This counting of sequents is in fact optimal; furthermore, to achieve this small number of sequents either some sort of unification must occur or there are excess sequents we can put in XS. Indeed at the beginning of the path $\pi_i$ is an s-formula $P(v_i, w_i)$ where $v_i$ is a semiterm. Following (upwards) along $\pi_i$, various $\forall$-left inferences assign terms $t_1, \ldots, t_m$ to $\beta_1, \ldots, \beta_m$ and assign terms to $z_i$'s. We can assume that the process of $\forall$-left inferences assigning terms is uninterrupted by any downward path segments and therefore uninterrupted by any inferences which introduce a quantifier; otherwise, the logical axiom and the Cut inferences used to change the direction of the path and the lower sequent of any quantifier introduction inference can be put in XS. Eventually, the $\forall$-left term-assigning inferences transform $v_i$ into a term $v_i^*$ with no bound variables. A similar process gives $v_n^*$. Now there must be a common term $q(x)$ such that $q(w_i) = v_i^*$ and $q(w_n) = v_n^*$ if our lower bound on the number of sequents associated with $\pi_i$ and $\pi_n$ is to be achieved. This is because only then can $\exists$-right inferences transform $P(v_i^*, w_i)$ and $P(v_n^*, w_n)$ into $(\exists y) P(\tau, y)$ — here $\tau$ will be $q(y)$. But because we are dealing with LK-proofs and there are no equality axioms, the only way to change a term is by quantifier inferences. The lower sequent of such quantifier inference can be put into XS. Thus we have shown that if $S_j$ has cardinality 17 then either there are sequents we can put in XS or the term assignments along the initial part of $\pi_i$ and $\pi_n$ provide a solution to the unification equation 

$$v_i(w_n/w_i) = v_n.$$ 

Case (4). Other cases where $\psi$ is $P(\tau, y)$ for $y$ a bound variable are handled similarly.

Case (5). Finally we must consider the case where $\psi$ is a (sub)formula of the form $P(\tau, t)$ where $t$ is a term with no bound variables and $\tau$ is a semiterm which may in general contain variables bound in the formula in which $\psi$ occurs. Since $w_i \neq w_n$ either $w_i$ or $w_n$ must have been changed along the path from $P(v_i, w_i)$ or $P(v_n, w_n)$; we shall show that at least four sequents can be associated with the change from $w_i$ or $w_n$ to $t$. Because $\pi_i$ and $\pi_n$ parallel each other for as long as possible (by condition (R1)), they will diverge at an $\forall$-left inference while travelling upwards. By condition (R2) at the $\forall$-left inference where the paths $\pi_i$ and $\pi_n$ diverge, the s-formulas are $P(u_i', w_i')$ and $P(u_n', w_n')$ with $w_i' \neq w_n'$. Hence one of $w_i'$ or $w_n'$ must be changed to $t$: this requires a logical axiom to change the path direction downward, an $\exists$-right or $\forall$-left inference to quantify the $w_i$ or $w_n$, a Cut inference to turn back upwards, and another quantifier inference to remove the quantifier. (Here we use the fact that LK has no equality axioms.) These inferences and axiom give four sequents which can be associated with one of the paths and put into $S_j$.

The above concludes the analysis of the intersection of two paths $\pi_i$ and $\pi_n$. This analysis actually needs to be performed five times to merge all six paths for atomic s-formulas involving $P_i$. This should be done by considering intersections first (in order of travel along the paths). The result is that either (a) there are at least three sequents associated with each path or if case (5) applies each time
there are four sequents associated with five of the paths, and hence there are \(\geq 18\) total sequents to be put in \(S_j\), or (b) each path has at least two associated sequents and there are five additional 'shared' sequents. Also, if exactly 17 sequents are in \(S_j\), case (b) holds and \(P\) contains a 'solution' to \(\beta_j(p_i//a_i) = \alpha_j\).

It may appear that the Claim is now proved; however, there is a small gap in our argument so far: we still need to show that the \(S_j\)'s are disjoint. Unfortunately, the above argument does not work since the \(\exists\):right inferences in case (1) above and the first \(\exists\):right of case (3) might be put into more than one \(S_j\). For instance, it may be that in case (3) the \(S\)-formula \(\psi\) above occurs in a formula

\[(\exists z)(P_1(\tau, z) \lor P_1'(\tau', z))\]

with \(j' \neq j\). And if the \(P_j(x, y)\) is a point where two paths for \(P_j(\cdot, \cdot)\) merge then we will have to put the \(\exists\):right and \(\exists\):left inferences which introduce and eliminate the \((\exists z)\) into both \(S_j\) and \(S_{j'}\).

To fix this problem, we need to count the inferences which are necessary to introduce and eliminate the disjunction and put these into \(S_j\). Consider what happens along a path that leads to \(P_j(\tau', z)\). The path begins at the endsequent and must pass through an axiom of the form \(P_j(\cdot, \cdot) \rightarrow P_j(\cdot, \cdot)\) before reaching an \(\lor\):right inference to introduce the disjunction. There is an additional \(\lor\):left inference on each path leading to \(P_j(\tau, z)\). This gives a total of three sequents which we can associate with the path leading to \(P_j(\tau', z)\) and which are put into \(S_j\). Note we haven't even counted inferences necessary to eliminate the disjunction.

A similar and slightly more complicated argument works for the implication connective \(\rightarrow\) replacing \(\lor\); we leave this to the reader.

The case where a conjunction links \(P_j(\cdot, \cdot)\) and \(P_j'(\cdot, \cdot)\) is similar but more complicated. First along a forward path leading to \(P_j(\tau', z)\) there is an axiom and an \(\land\):right inference; this provides only two sequents to be associated with the path and to be put into \(S_j\). To eliminate the conjunction requires two \(\land\):left inferences; there is also an axiom \(P_j(\cdot, \cdot) \rightarrow P_j(\cdot, \cdot)\) and two \(\exists\):right inferences which introduce the quantifiers in the endsequent (i.e., in \(\Phi\)). Furthermore, before reaching the endsequent, the subformula \(P_j(\tau, z) \land P_j'(\tau', z)\) must be split into two copies, one on the \(P_j\)-path and one on the \(P_j'\)-path (as in Proposition 9). Splitting into two can occur either (1) by a contract:left inference on an upward path, or (2) while on a downward path. The latter requires no extra inferences since it can be that the sequent is merely used twice as a hypothesis. However, in case (2), there are two Cut inferences required to turn upward towards the \(\land\):right inferences (because both copies of the conjunction need to be handled with a \(\land\):left).

Thus there are at least six inferences associated with eliminating the conjunction along the forward paths. These six sequents may be shared among the six paths for \(P_j\) and put into \(S_j\). Thus \(S_j\) will contain a total of 18 inferences.
So far we have discussed the very simple case of a formula with one binary connective linking two atomic subformulas $P_j(\cdots)$ and $P_j(\cdots)$; however, in principle, arbitrary Boolean combinations of multiple predicates might occur. (Actually this will always be grossly inefficient, but we need merely find the requisite 18 sequents for each $S_j$.) Luckily, our technique extends to handling complicated formulas. In any Boolean formula with $n$ atomic formulas there are $n - 1$ binary connectives. We set up a one-to-one correspondence between the binary connectives and $n - 1$ of the atomic subformulas by assigning a given binary connective to the first atomic subformula of its second operand. Now in a proof $P$ of the sequent $\rightarrow \Phi$ if there is a formula with $n - 1$ binary connective and $n$ atomic subformulas, for each atomic subformula $P_j(\cdots)$ associated with one of the binary connectives we find three sequents to be associated with each path to the $s$-formula $P_j(\cdots)$ by the analysis used above. For the one atomic subformula $P_j(\cdots)$ not associated with a binary connective we use the original analysis which found either 17 or 18 sequents to put in $S_j$.

That completes the proof of the Claim and of Main Theorem 1. It remains to prove the Main Theorem for $\text{LK}_c$, the logical calculus for first-order logic with equality.

**Main Theorem 12.** Let $\text{LK}_c$ be Gentzen's sequent calculus with the nonlogical equality symbol, a unary function symbol $S$, a binary function symbol and infinitely many unary relation symbols. For every recursively enumerable set $X$ there is a formula $A(x)$ and an integer $k$ such that for all $n$, $n \in X$ if and only if $\rightarrow A(S^n0)$ has an $\text{LK}_c$-proof with $=k$ distinct sequents.

**Proof.** The proof is almost exactly like the proof of Main Theorem 1 except we need to modify $\Phi$ somewhat so as to make sure that the equality axioms can't help prove $\Phi$. What is done is to replace every subformula of $\Phi$ of the form $P_j(\cdots)$ by

$$\Leftrightarrow (((P_j(\cdots) \land T) \land T) \land \cdots \land T).$$

where there are $N$ disjunctions in this formula. ($N$ is the same number as for the previous proof.) Since the equality axiom apply only to atomic formulas at least $N$ \land:leq inferes would be needed to apply even one equality axiom to a formula containing a $P_j$. □

The proof above for $\text{LK}_c$ is somewhat unsatisfactory since it depend on the fact that equality axioms only apply to atomic formulas. It seems likely that the $k$-provability problem remains undecidable even for more general equality axioms. In connection with this let us state an open problem. Suppose a formula $\phi$ does not involve the equality symbol and has an $\text{LK}_c$-proof of $k$ lines; does $\phi$ necessarily have a proof of $=k$ lines in which no equality symbol occurs?
5. Conclusion

Our proof of the undecidability of the $k$-provability problem for the sequent calculus depended of course on the details of the definition of the sequent calculus; however, it doesn’t seem to exploit any unusual features of the sequent calculus. For $\text{LK}_\omega$, our proof did exploit the fact that equality axioms only apply to atomic formulas; however, this is a common feature of many systems of first-order logic. Thus it seems reasonable that our method of proof might work for other systems of first-order logic. The main proviso is that the system of first-order logic should have some general version of cut or modus ponens and substitution axioms: Farmer [1] has proved decidability results for first-order proof systems with restricted substitution axioms and Orekov [10] and Krajiček and Pudlák [6] show that the $k$-provability problem is decidable for the cut-free sequent calculus. (Recall that substitution axioms are of the form $(\forall x) A \supset A(t/x)$; the $\forall$-left rule in the sequent calculus corresponds to the substitution axioms.) Another feature of the sequent calculus that our proof exploited is the fact that quantifier rules can only add or remove one quantifier at a time.

Our original motivation for looking at the $k$-provability problem was to approach Kreisel’s problem. For this, we had hoped to show, for instance, that there is a formula $\phi(x)$ such that each $\phi(S^0)$ either has a proof of $\approx n$ lines or has no proof with $\leq 2^n$ lines and such that it is undecidable which case holds. Such a result would likely be very useful in extending the undecidability of $k$-provability to other systems of first-order logic. It should be noted that there is no hope of proving such a result with $2^n$ replaced by a function which grows faster than the superexponential function; this is because if there is a proof of $n$ lines then there is a cut-free proof with number of lines bounded by a stack of $O(n)$ 2’s and, as mentioned above, the $k$-provability problem for cut-free proofs is decidable.

Acknowledgements

I wish to thank J. Krajiček and M. L. Bonet for suggesting improvements to a preliminary version of this paper and G. Kreisel for useful comments on an earlier version of this introduction.

References