SOE MINIMAL PAIRS OF
α-RECURSIVELY ENUMERABLE DEGREES

Manuel LERMAN *

Department of Mathematics, Yale University, New Haven, Conn., U.S.A.

and

Gerald E. SACKS **

Massachusetts Institute of Technology, Cambridge, Mass. 02139, U.S.A.

Received 1 May 1972

§0. Introduction

Exploitation of the model theoretic properties of Gödel’s constructible sets led in [6] to a generalization of the Friedberg–Muchnik finite injury (or priority) method from ω to every Σ_1 admissible α. In order to generalize, it was necessary to sacrifice the standard indexing of α-recursively enumerable sets, and hence of the requirements associated with finite injury arguments. For some α’s the indexing was demonstrably not α-recursive. [3] gave an alternative view of [6] that centered on the nature of the indexing. This paper continues the study of indexing of requirements, and applies it to construct minimal pairs of α-recursively enumerable sets for some, but not all, α. The Friedberg–Muchnik solution of Post’s problem generalizes in a trivial fashion to every Σ_2 admissible ordinal. All the complications of [3] and [6] resulted from forcing a Σ_1 admissible ordinal α to do the work of a Σ_2 admissible ordinal. In this paper α is forced to do a much larger share of that work, and even

* Research partially supported by NSF contract GP-18728.
** Research partially supported by NSF contract GP-29079.
some of the work of a Σ_3 admissible, since the Lachlan-Yates minimal pair construction lifts easily to every Σ_3 admissible.

From now on α is invariably a Σ_1 admissible ordinal. A and B form a minimal pair of subsets of α if neither is α-recursive, and if every C (a subset of α) α-recursive in each is α-recursive. a and b form a minimal pair of α-degrees if neither is $\mathbf{0}$, and if $c \leq a$ and $c \leq b$ imply $c = \mathbf{0}$.

Lachlan [2] and Yates [8] constructed a minimal pair of recursively enumerable sets, and Sukonick [7] lifted their construction to meta-recursion theory ($\alpha = \text{least nonrecursive ordinal } \omega^\alpha_{\text{CK}}$). Sukonick used an effective ω-ordering of requirements, and consequently had no need of the α-finite injury method. He did however introduce one new twist. His A and B were hyperregular by design. Thus for each e and each metafinite K, if $\{e\}^A$ was total on K, then $\{e\}^A$ restricted to K was a metafinite partial function. He needed the hyperregularity to lift some of the convergence lemmas from ω to $\omega^\alpha_{\text{CK}}$. Something like Sukonick's twist will be needed in our argument as well. It was not essential to the solution of Post's problem [6].

Section 1 contains a review of elementary definitions, that of α-cardinal being typical. Section 2 is devoted to projecta, the means of indexing requirements in priority arguments, and in particular to the notion of tame Σ_2 projectum invented by Lerman [3]. Section 3 introduces refractory Σ_1 admissible α's, and constructs minimal pairs of α-recursively enumerable sets for all nonrefractory α's. Section 4 discusses further results and open questions.
§ 1. Preliminaries

The following concepts are defined in [6]: \(\Sigma_1 \) admissible ordinal, partial \(\alpha \)-recursive function, \(\alpha \)-recursively enumerable set, \(\alpha \)-recursive set, bounded (below \(\alpha \)) set, \(\alpha \)-finite set, regular set, hyperregular set, \(\leq_{wa} \) (weakly \(\alpha \)-recursive in), \(\leq_\alpha \) (\(\alpha \)-recursive in), \(\equiv_\alpha \) (\(\leq_\alpha \) and \(\geq_\alpha \)), \(\alpha \)-degree, \(\alpha \)-recursively enumerable degree.

If \(A \) is a bounded subset of \(\alpha \), then \(\text{lub} \, A \) is the least \(\gamma < \alpha \) such that for all \(\delta \in A \), \(\delta < \alpha \). \(A \oplus B \) is \(\{2x \mid x \in A \} \cup \{2x + 1 \mid x \in B \} \). If \(a \) is the \(\alpha \)-degree of \(A \) and \(b \) is the \(\alpha \)-degree of \(B \), then \(a \oplus b \) is the \(\alpha \)-degree of \(A \oplus B \). \(A \otimes i \) is the \(\alpha \)-degree of \(A \otimes i \).

\(\Upsilon_i \mid i < \alpha \) is the sequence of all partial \(\alpha \)-recursive functionals. There exists an \(\alpha \)-recursively enumerable sequence of \(\alpha \)-finite partial functionals \(\Upsilon_i \mid i < \alpha \) such that for all \(i \) and all regular \(A \),

\[
\Psi_i(A) = \lim_{\gamma \to \alpha} \Psi^\gamma_i(A). \tag{1}
\]

Similarly, \(\langle \Phi_i, \theta \mid i < \alpha \rangle \) is the sequence of all pairs of partial \(\alpha \)-recursive functionals and is the limit of the \(\alpha \)-recursively enumerable sequence \(\langle \Phi_i, \theta \mid i < \alpha \rangle \).

\(L \) is Gödel's class of constructible sets, and \(L_\gamma \) is the set of all sets constructible via ordinals less than \(\gamma \).

\(\gamma \) is an \(\alpha \)-cardinal if \(\gamma < \alpha \) and there is no one-one \(\alpha \)-finite map of \(\gamma \) onto some lesser ordinal. \(\gamma \) is a regular \(\alpha \)-cardinal if \(\gamma \) is not of the form \(\bigcup K_\beta \mid \beta \in I \) where \(K_\beta \) is the \(\alpha \)-finite set of canonical index \(\beta \) and \(I \) is an \(\alpha \)-finite set of \(\alpha \)-cardinality less than \(\gamma \). \(\gamma \) is a singular \(\alpha \)-cardinal if it is not regular. If \(K \) is \(\alpha \)-finite, then \(\alpha \)-card \(K \) is the least \(\alpha \)-cardinal \(\gamma \) such that there is a one-one \(\alpha \)-finite correspondence between \(K \) and \(\gamma \). \(\text{gca} \) is the greatest \(\alpha \)-cardinal if there is one, and \(\alpha \) otherwise.

1 The regularity of \(\alpha \) insures the consistency (or single-valuedness) of \(\Psi_i \) applied to \(A \). If \(A \) is regular, then computations based on \(\alpha \)-finite sets of membership facts about \(A \) can be replaced by computations based on \(\alpha \)-finite initial segments of the characteristic function of \(A \). And the consistency can be achieved, as in ordinary recursion theory, by preferring shorter to longer initial segments.
A relation \(R(x_1, \ldots, x_n) \) is \(\Sigma_2 \) over \(L_\alpha \) if there is an \(\alpha \)-recursive relation \(S(y, z, x_1, \ldots, x_n) \) such that \(R(x_1, \ldots, x_n) \leftrightarrow (E_{\forall})(z)S(y, z, x_1, \ldots, x_n) \).

\(f \) is a \(\Sigma_1 \) projection if \(f \) is a one-one \(\alpha \)-recursive map of \(\alpha \) into \(\alpha \). \(\alpha^* \), the \(\Sigma_1 \) projectum of \(\alpha \), is the least \(\beta \) for which there is a \(\Sigma_1 \) projection of \(\alpha \) into \(\beta \). (\(f \) need not be onto.)

\(g \) is a \(\Sigma_2 \) projection of \(\alpha \) into \(\beta \) if \(g \) is one-one and the graph of \(g \) is \(\Sigma_2 \) over \(L_\alpha \). The \(\Sigma_2 \)-ness of \(g \) is equivalent to the existence of an \(\alpha \)-recursive \(g' \) with the following property:

\[
(1.1) \quad gx = y \leftrightarrow (E_{\forall})[\tau \geq \sigma \rightarrow g'(\tau, x) = gx] ;
\]

i.e. \(gx = \lim_{\tau \to \alpha} g'(\tau, x) \). \(g \) is said to be tame \(\Sigma_2 \) if there exists a one-one \(\alpha \)-recursive \(g' \) such that:

\[
(1.2) \quad (z)_{z < \beta} (E_{\forall})(y)(\tau)[\tau \geq \sigma \& gx \leq z \rightarrow g'(\tau, x) = gx] ;
\]

\[
(1.3) \quad (z)_{z < \beta} (E_{\forall})(y)(\tau)[\tau \geq \sigma \& gx > z \rightarrow g'(\tau, x) > z] .
\]

\(g \) is said to be strong \(\Sigma_2 \) if \(g \) is \(\Sigma_2 \) and there exists a one-one \(\alpha \)-recursive \(g' \) such that:

\[
(1.4) \quad (z)(E_{\forall})(w)_{w \leq \tau}(\tau)[\tau \geq \sigma \rightarrow g'(\tau, w) = gw] ;
\]

i.e. \(g' \) defines \(g \) correctly on any proper initial segment of the domain of \(g \) for all sufficiently large \(\tau \).

Define \(p2\alpha \) (\(tp2\alpha \), \(sp2\alpha \)), the \(\Sigma_2 \) projectum of \(\alpha \) (tame \(\Sigma_2 \) projectum of \(\alpha \), strong \(\Sigma_2 \) projectum of \(\alpha \)), to be the least \(\beta \) such that there is a \(\Sigma_2 \) projection (tame \(\Sigma_2 \) projection, strong \(\Sigma_2 \) projection) of \(\alpha \) into \(\beta \).

Suppose \(\gamma \leq \alpha \), \(g : \gamma \to \alpha \) is a \(\Sigma_2 \) cofinality function if \(g \) is \(\Sigma_2 \) and its range is unbounded. Define \(\text{cf2}\alpha \), the \(\Sigma_2 \) cofinality of \(\alpha \), to be the least \(\gamma \leq \alpha \) for which there is a \(\Sigma_2 \) cofinality function \(g : \gamma \to \alpha \). Clearly \(\text{cf2}\alpha = \alpha \) if and only if \(L_\alpha \) satisfies \(\Sigma_2 \) replacement.

Proposition 1.1. Every \(\Sigma_1 \) projection is tame \(\Sigma_2 \).

1.1 is a triviality but it does introduce an important point. If \(\alpha^* < \alpha \),
then the α-finite injury method [6, section 4] is based on an α-recursive indexing of requirements of length α^*. If $\alpha^* = \alpha$ it is often necessary to use a tame Σ_2 indexing of requirements of length $tp2\alpha$. The virtue of tameness resides in: for each $\beta < tp2\alpha$ there is a $\gamma < \alpha$ and a Σ_1 projection of γ into β. In short, tame Σ_2 projections can be approximated on proper initial segments of their ranges by Σ_1 projections, and consequently are suited to α-finite injury arguments. 2

2 Similarly a tame Σ_{n+1} projection can be approximated on any proper initial segment of its range by a Σ_n projection.
§2. Tame Σ_2 projections

The lemmas of this section are needed to compute bounds on ordinals that crop up in the priority arguments of section 3, and (hopefully) in future priority developments. The first lemma says the tame Σ_2 projection could have been defined in terms of one-one onto maps.

Lemma 2.1. If $\beta = \text{tp}2\alpha$, then there exists a tame Σ_2 projection of α onto β.

Proof. Let $g : \alpha \to \beta$ be a tame Σ_2 projection, and let β' be the ordertype of the range of g. For each x in the range of g define

$$h_x = \text{lub} \{ h_w \mid w < x \& w \in \text{range } g \} .$$

Thus h is a one-one orderpreserving map of range g onto β'. We will show $f = hg$ is a tame Σ_2 projection of α onto β'. Since $\beta' \leq \beta = \text{tp}2\alpha$, it will then follow $\beta' = \beta$.

Suppose g' is an α-recursive function such that g and g' satisfy (1.2) and (1.3). Let $r_\sigma = \{ g'(\sigma, x) \mid x < \sigma \}$. For each $y \in r_\sigma$ define

$$h'(\sigma, y) = \text{lub} \{ h'(\sigma, w) \mid w < y \& w \in r_\sigma \} .$$

If $y \notin r_\sigma$ let $h'(\sigma, y) = \sigma$. Define

$$f'(\sigma, x) = h'(\sigma, g'(\sigma, x)) .$$

Clearly $f'(\sigma, x)$ is α-recursive. Fix $z < \beta'$. Choose σ_0 so that $\sigma_0 > \text{lub} \{ x \mid gx < h^{-1}z \}$ and

$$(x)(\sigma)[\sigma \geq \sigma_0 \& gx < h^{-1}z \to g'(\sigma, x) = gx] .$$

$$(x)(\sigma)[\sigma \geq \sigma_0 \& gx \geq h^{-1}z \to g'(\sigma, x) \geq h^{-1}z] .$$

Thus $r_\sigma \cap h^{-1}z = \text{range } g \cap h^{-1}z$ for all $\sigma \geq \sigma_0$. Consequently $h'(\sigma, x) = h_x$ for all $\sigma \geq \sigma_0$ and $x < h^{-1}z$. And so
(x)(σ)[σ ≥ σ₀ & fx < z → f' (σ, x) = fx] .

(x)(σ)[σ ≥ σ₀ & fx ≥ z → f' (σ, x) ≥ z] .

The tameness of f is now immediate if β' is a limit ordinal; if β' were a successor, there would be a tame Σ₂ projection of α into the greatest limit ordinal less than β, that projection differing only finitely from g.

The next lemma relates the Σ₂ cofinality of α to the tame Σ₂ projectum of α, and is the principal source of tame Σ₂ projections.

Lemma 2.2. Suppose \{ T_ξ | ξ < λ \} is a sequence of simultaneously α-recursively enumerable sets whose union is α. Let κ be an α-cardinal such that for each ξ < λ, T_ξ is α-finite and α-card T_ξ ≤ κ. Then there exists a tame Σ₂ projection of α into κ · λ₀ for some λ₀ ≤ λ.

Proof. Let λ₀ be the least z ≤ λ such that U \{ T_ξ | ξ < z \} is not α-finite. Then

\[V_ξ = T_ξ \setminus U \{ T_ρ | ρ < ξ \} \]

is α-finite for all ξ < λ₀. Clearly \{ V_ξ | ξ < λ₀ \} is a partition of a non-α-finite, α-recursively enumerable set; assume it is a partition of α. Let

\[K_ξ : V_ξ → κ \]

be an α-finite one-one map of least possible canonical index. Define

\[g : α → κ · λ₀ \]

by

\[gβ = \langle K_ξ (β), ξ \rangle \]

when β ∈ V_ξ. Let T_ξ^σ be the subset of T_ξ enumerated at stage σ of the simultaneous α-recursive enumeration of the T_ξ 's. Define

\[V_ξ^σ = T_ξ^σ \setminus U \{ T_ρ^σ | ρ < ξ \} . \]

Let K_ξ^σ : V_ξ^σ → κ be an α-finite one-one map of least possible canonical index. Define
\[g'(\sigma, \beta) = (K^\omega_{\xi}(\beta), \xi) \]

when \(\beta \in V_q^\omega \), and \(= \text{ lub } \{ g'(\sigma, \beta) | \beta \in U \{ V_q^\omega | \xi < \lambda_0 \} \} \) otherwise.

To check the tameness of \(g \), fix \(z < \lambda_0 \). Since \(U \{ T_\xi | \xi < z \} \) is \(\sigma \)-finite, there is a \(\sigma \) such that \(T_\tau^\sigma = T_\xi \) for all \(\tau \geq \sigma \) and \(\xi \leq z \). But then \(g'(\sigma, \beta) = g\beta \) for all \(\tau \geq \sigma \) and \(\beta \in U \{ V_\xi | \xi \leq z \} \). Consequently

\[\tau \geq \sigma & \implies g_x \leq \aleph \cdot z \implies g'(\tau, x) = g_x, \]

\[\tau \geq \sigma & \implies g_x > \aleph \cdot z \implies g'(\tau, x) > \aleph \cdot z. \]

Recall that \(gca \) denotes the greatest \(\alpha \)-cardinal if there is one, and \(\alpha \) otherwise. The next theorem is the most useful inequality relating the tame \(\Sigma_2 \) projectum of \(\alpha \) and the \(\Sigma_2 \) cofinality of \(\alpha \).

Theorem 2.3. \(\text{cf}2\alpha \leq \text{tp}2\alpha \leq gca \cdot \text{cf}2\alpha. \)

Proof. By 2.1 there exists a one-one \(\Sigma_2 \) map \(f \) of \(\alpha \) onto \(\text{tp}2\alpha \). But then \(f^{-1} \) is a \(\Sigma_2 \) map from \(\text{tp}2\alpha \) onto \(\alpha \) and so \(\text{cf}2\alpha \leq \text{tp}2\alpha \).

Let \(\lambda = \text{cf}2\alpha \) and assume \(gca < \alpha \). Thus there is a \(\Sigma_2 \) \(h : \lambda \rightarrow \alpha \) with unbounded range. Let \(R(u, v, \xi, y) \) be an \(\alpha \)-recursive relation such that

\[h_\xi = y \iff (\mathcal{E}u)(v)R(u, v, \xi, y) \]

for all \(\xi < \lambda \) and all \(y \). Let \(i : \alpha \rightarrow \alpha \times \alpha \) be an \(\alpha \)-recursive onto map:

\[i\beta = (u\beta, y\beta). \]

Define \(T_\xi \) to be the set of all \(\beta \) such that

\[(\delta)_{\delta \leq \beta}(\mathcal{E}v) \sim R(u\delta, v, \xi, y\delta). \]

\(T_\xi \) is \(\alpha \)-finite since it is an initial segment of \(\alpha \) that omits \(\beta \) when \(h_\xi = y\beta \) and \((v)R(u\beta, v, \xi, y\beta) \). \(U \{ T_\xi | \xi < \lambda \} = \alpha \) because the range of \(h \) is unbounded and \(i \) is \(\alpha \)-recursive. By 2.2 there is a tame \(\Sigma_2 \) projection of \(\alpha \) into \(gca \cdot \lambda \).

Lemma 2.4. \(\text{sp}2\alpha \geq gca. \)

Proof. Suppose \(\gamma = \text{sp}2\alpha < gca \). Then there must be an \(\alpha \)-cardinal \(\beta \)
such that $\gamma < \beta$. Let g be a strong Σ_2 projection of α into γ, and let g' be an α-recursive function such that g and g' satisfy (1.4). Choose σ so that

$$(w)_{w < \beta} \tau \geq \sigma \rightarrow g'(\tau, w) = gw.$$

Then g restricted to β is an α-finite one-one map of β into $\gamma < \beta$.

The next theorem, which was also proved independently by S. Simpson, will be used to describe those α's for which the existence of a minimal pair of α-recursively enumerable α-degrees is as yet unknown.

Theorem 2.5. Suppose $p2\alpha = gc\alpha < tp2\alpha \leq \alpha$. Then $tp2\alpha = gc\alpha \cdot cf2\alpha$.

Proof. Assume $tp2\alpha < \alpha$; then the tame Σ_2 projection is expressible as $\mathbb{N} \cdot \lambda + \gamma$, where \mathbb{N} is the greatest α-cardinal and $\gamma < \mathbb{N}$. Suppose $\gamma > 0$. By 2.1 there exists a one-one tame Σ_2 map f of α onto $\mathbb{N} \cdot \lambda + \gamma$. Since f is tame, $f^{-1} [\mathbb{N} \cdot \lambda]$ is α-finite, and consequently f maps the complement of an α-finite set one-one into $(\mathbb{N} \cdot \lambda + \gamma) - (\mathbb{N} \cdot \lambda)$. It follows that $p2\alpha < gc\alpha$. Hence $\gamma = 0$.

By 2.3, $\lambda \leq cf2\alpha$. Let g be a one-one tame Σ_2 map of α onto $\mathbb{N} \cdot \lambda$. For each $\delta < \lambda$, define

$$h\delta = \sup \{ g^{-1} \beta | \mathbb{N} \cdot \delta \leq \beta < \mathbb{N} \cdot (\delta + 1) \}.$$

The tameness of g implies $h\delta < \alpha$ for all $\delta < \lambda$. Clearly $h : \lambda \rightarrow \alpha$ is unbounded. In addition h is Σ_2, since g is Δ_2. Hence $cf2\alpha \leq \lambda$.

\section{Tame Σ_2 projections}
§3. Existence of minimal pairs

\(\alpha \) is said to be refractory if \(p^2\alpha = gca < tp^2\alpha \leq \alpha \). If \(\alpha \) is refractory, many theorems about recursively enumerable sets fail to lift readily to \(\alpha \), and in particular those theorems whose proofs permit requirements to be injured infinitely often. Theorem 2.5 pins down \(tp^2\alpha \) when \(\alpha \) is refractory, but gives no hint of how to perform nontrivial priority arguments.

Theorem 3.1. If \(\alpha \) is not refractory, then there exists a minimal pair of \(\alpha \)-recursively enumerable \(\alpha \)-degrees.

Proof. \(\alpha \)-recursively enumerable sets \(A \) and \(B \) are to be constructed so that neither is \(\alpha \)-recursive, and so that \(C \) is \(\alpha \)-recursive whenever \(C \) is \(\alpha \)-recursive in \(A \) and in \(B \). \(A^\alpha(B^\alpha) \) will be the \(\alpha \)-finite set of ordinals put in \(A \) (\(B \)) prior to stage \(\sigma \) of the construction. Let \(p_0 \) be a one-one tame \(\Sigma_2 \) map of \(\alpha \) onto \(tp^2\alpha \), and let \(p'_0 : \alpha \times \alpha \rightarrow tp^2\alpha \) be a one-one \(\alpha \)-recursive function such that for each \(z < tp^2\alpha \):

\[
(E\sigma)(x)(\tau)[\tau \geq \sigma \& p^*_0 \leq z \rightarrow p^*_0(\tau, x) = p^*_0 x]
\]

\[
(E\sigma)(x)(\tau)[\tau \geq \sigma \& p^*_0 > z \rightarrow p^*_0(\tau, x) > z].
\]

\(p_0 \) will define priorities for the positive requirements, which insure that neither \(A \) nor \(B \) are \(\alpha \)-recursive. Let \(p_1 \) be a one-one \(\Sigma_2 \) map of \(\alpha \) into \(p^2\alpha \), and let \(p'_1 : \alpha \times \alpha \rightarrow p^2\alpha \) be a one-one \(\alpha \)-recursive function such that for all \(x \) and \(y \):

\[
p_1 x = y \iff (E\sigma)(\tau)[\tau \geq \sigma \rightarrow p'_1(\tau, x) = p_1 x].
\]

\(p_1 \) will define priorities for the negative requirements, which insure that the only sets \(\alpha \)-recursive in both \(A \) and \(B \) are the \(\alpha \)-recursive sets.

The positive requirements are \(\{ \Psi_i \neq A \mid i < \alpha \} \cup \{ \Psi_i \neq B \mid i < \alpha \} \) and (after being interlaced) are denoted by \(\{ R_i \mid i < \alpha \} \). \(R_i \) has higher priority than \(R_j \) if \(p^*_0 i < p^*_0 j \). \(R_i \) has higher priority than \(R_j \) at stage \(\sigma \) if

\[
p^*_0(\sigma, i) < p^*_0(\sigma, j).
\]

Followers are appointed for the sake of \(R_e \) at certain stages; they are
subject to cancellation at later stages. At every stage a follower is either realized or unrealized and each R_e has at most one unrealized follower. p follows R_e if p is appointed to follow R_e and is never cancelled. p follows R_e at stage σ if p was appointed prior to stage σ and was not cancelled prior to stage σ. p has higher rank than q (at stage σ) if p follows R_i (at stage σ), q follows R_j (at stage σ), and R_i has higher priority than R_j (at stage σ). p has higher order than q (at stage σ) if p and q both follow R_i (at stage σ) and p was appointed before q was.

R_i is persistent at stage σ if there is a $\lambda < \sigma$ such that $(\tau)[\lambda \leq \tau \leq \sigma \rightarrow p'_0(\tau, i) = p'_0(\sigma, i)]$.

Suppose R_e is $\Psi_i \neq A$. p satisfies R_e at stage σ if p follows R_e at stage σ, $\Psi_i^\sigma(p)$ is defined, $\Psi_i^\sigma(p) \neq A^\sigma(p)$, and either $A^\sigma(p) = 0$ and p was realized at stage σ, or $A^\sigma(p) = 1$ and $p \notin \bigcup \{A_q \mid \gamma < \sigma\}$. R_e is satisfied at stage σ if there is a p such that p satisfies R_e at stage σ. R_e is satisfied (before stage σ) if there is a $\tau (\tau < \sigma)$ such that R_e is satisfied at stage τ. Similar definitions are made if R_e is $\Psi_i \neq B$.

Two auxiliary functions are needed, L and M. $L(\sigma, e)$ is the least $x < \sigma$ such that either $\Phi_e^\sigma(A^\sigma, x)$ is undefined, or $\theta_e^\sigma(B^\sigma, x)$ is undefined, or $\Phi_e^\sigma(A^\sigma, x)$ and $\theta_e^\sigma(B^\sigma, x)$ are defined and unequal; if no such x exists, $L(\sigma, e) = \sigma$. $M(\sigma, e)$ is the least x such that $L(\tau, e) \leq x$ for all $\tau \leq \sigma$.

The negative requirements are $\{\Psi_i(A) = \emptyset \mid i < \sigma\}$. They are denoted by $\{Q_i \mid i < \sigma\}$. Q_i has higher priority than R_i if $p_i < p_i$. Q_i has higher priority than R_j at stage σ if $p_i(\sigma, i) < p_i(\sigma, j)$.

Q_i is persistent at stage σ if there is a $\lambda < \sigma$ such that $(\tau)[\lambda \leq \tau \leq \sigma \rightarrow p'_i(\tau, i) = p'_i(\sigma, i)]$.

A follower p is associated with Q_i (at stage σ) if there is a stage $\tau (\tau < \sigma)$ such that p is associated with Q_i at stage τ of the construction and the association is not cancelled at any stage subsequent to τ (and prior to σ).

Suppose Q_i is $\Phi_i(A) = \emptyset$. σ satisfies Q_i if $L(\sigma, i) = M(\sigma, i)$ or Q_i is not persistent at stage σ.

Let R_e be $\Psi_i \neq A$ or $\Psi_i \neq B$. R_e requires attention through p at stage σ if p follows R_e at stage σ, R_e is not satisfied prior to stage σ, $e \leq \sigma$ and at least one of the next three clauses holds.

(3.1) p is a realized follower of R_e at stage σ, and p is not associated with any Q_j at stage σ;
(3.2) p is a realized follower of R_e at stage σ, and p is associated with some Q_j at stage σ and σ satisfies Q_j;

(3.3) p is an unrealized follower of R_e at stage σ and $\Psi_\sigma^p(p)$ is defined.

R_e requires attention at stage σ if for some p, R_e requires attention via p at stage σ; or if $e \leq \sigma$, R_e is not satisfied prior to stage σ, and

(3.4) R_e has no unrealized follower at stage σ.

A review of the minimal pair construction for ordinary recursively enumerable sets will speed comprehension of the proof of Theorem 3.1. Thus the requirements are $\{R_i\}_{i < \omega}$ and $\{Q_i\}_{i < \omega}$. Suppose R_j is $\Psi_i \neq A$. In order to satisfy R_j a follower p of R_j is sought such that $\Psi_j(p)$ is defined; suppose such a p is put in A if and only if $\Psi_j(p) = 0$. Then A is not recursive via Gödel number i.

The Q_i's oppose the deposit of followers in A and B. If $\Phi_i^r(A^r, x) = \theta_i^r(B^r, x) = q$, then for the sake of Q_i, it is preferable to add members to A or B at stage $r \geq \sigma$ only if $\Phi_i^r(A^r, x) = \theta_i^r(B^r, x) = q$. Honoring the preference results in $\Phi_i(A, x) = \theta_i(B, x) = q$, and ultimately in $\Phi_i(A)$ and $\theta_i(B)$ being recursive. The preference must occasionally be ignored in order to satisfy R_j but not too often if Q_i is to be satisfied. Thus followers of R_j are associated only with Q_i's of higher priority than R_j, and at most one follower of R_j is associated with any particular Q_i at any stage. Followers of R_k are cancelled at stage s only if R_k or some R_j of higher priority than R_k receives attention at stage s. Cancellation of associations of followers with negative requirements is also allowed. After such a cancellation the follower can be associated only with negative requirements of higher priority than those it was formerly associated with.

It then can be shown that each R_e receives attention only finitely often. Fix e and suppose R_i fails to receive attention after stage s for any $i < e$. The follower of R_e of highest order after stage s remains forever unrealized or is put in A or B (in either event R_e never again requires attention), or is associated with Q_i for some $i < e$ for all but finitely many stages. Once the follower in question is associated with some Q_i, a new unrealized follower is appointed and never cancelled. After finitely many such appointments, a follower p of R_e is developed such that p is never realized or p is placed in A or B. In either case R_e is met. (The
nonrealization of \(p \) means that \(\Psi_e \) is not total.) Hence \(R_e \) receives attention only finitely often.

Now suppose that \(\Phi_i(A) \neq \theta_i(B) \) and that \(Q_i \) is \(\Phi_i(A) = \theta_i(B) \). Go to a stage after which no requirement of higher priority than \(Q_i \) receives attention. Then all followers appointed from now on are subject to association with \(Q_i \). There are of course only finitely many negative requirements of higher priority than \(Q_i \); some will always have their associations with followers cancelled, and some will not. For the latter there is a stage after which no association with a follower is cancelled. \(\Phi_i(A, x) \) can be computed effectively as follows. Go to a stage \(s \) such that

\[
\Phi_i^s(A^s, y) = \Psi_i^s(B^s, y)
\]

for all \(y \leq x \), and such that no followers associated with negative requirements of higher priority than \(Q_i \) can interfere with the computation of the above equation for any \(y \leq x \). The computation is protected at all subsequent stages in the sense that for all \(t \geq s \), either \(\Phi_i^t(A^t, y) = \Phi_i^s(A^s, y) \) or \(\Psi_i^t(B^t, y) = \Psi_i^s(B^s, y) \). Hence \(\Phi_i(A, x) \) must equal \(\Phi_i^s(A^s, x) \). The protection leads to cancellation of certain followers, and the cancellation of the association of \(p \) with \(Q_i \) at stage \(t \) only if \(L(i, t) = M(i, t) \), i.e. both sides of the requirement are equal on at least as long an initial segment as at the previous stage.

The problems encountered in lifting the minimal pair construction from \(\omega \) to \(\alpha \) have two sources: certain details peculiar to the construction; and the somewhat more general priority method used, to be termed the finite injury, infinite preservation method. The details of the construction rely on the following equality,

\[
\Phi_i(A) = \lim_{\sigma \to \alpha} \Phi_i^\sigma(A^\sigma),
\]

which can fail if \(A \) is not regular. \(^1\) So some further details, routine in

\(^1\) The regularity of \(A \) insures the consistency (or single-valuedness) of \(\Psi_I \) applied to \(A \). If \(A \) is regular, then computations based on \(\alpha \)-finite sets of membership facts about \(A \) can be replaced by computations based on \(\alpha \)-finite initial segments of the characteristic function of \(A \). And the consistency can be achieved, as in ordinary recursion theory, by preferring shorter to longer initial segments.
nature, will be added to insure the regularity of A and B. (Sukonick [7], faced with the same difficulty for $\alpha = \omega^\omega$, made A and B hyperregular.) Another peculiar detail is made more complicated by the presence of limit ordinals less than α. Suppose $\lambda < \alpha$ is a limit ordinal and $\Phi^\beta_\lambda(A^\beta, x) = q$ or $\theta^\beta_\lambda(A^\beta, x) = q$ for all $\beta < \lambda$. Then under certain conditions it will be necessary to have $\Phi^\lambda_\lambda(A^\lambda, x) = q$ or $\theta^\lambda_\lambda(A^\lambda, x) = q$, and this will be accomplished by permitting only finitely many changes of heart in deciding which of the two computations to protect.

The problems arising from the priority method itself are more severe than the two above. The most immediate problem is a consequence of the fact that followers of R_e are subject to association with negative requirements in order of increasing priority; i.e. followers associated with Q_i precede followers associated with Q_j if Q_j has higher priority than Q_i. Thus if the priority of R_e is infinite, then the ordering of followers of R_e is not a wellordering. If the ordering were reversed, it would become a wellordering, but the information needed to compute $\Phi_i(A) = \theta_i(B)$ recursively would be lost. When $\alpha = \omega$ the needed information is finite; when $\alpha > \omega$ it is bounded but not always α-finite if the ordering is not reversed. The compromise adopted below consists of reversing the ordering and repeating the process of associating followers with negative requirements ω times. The compromise works for two reasons: only finitely many changes of heart are permitted in deciding which side of a computation to preserve; each follower can be associated with a fixed negative requirement at all stages in a sequence cofinal with the stage at which the follower is put in A or B.

The most severe problem of all arises from the assignment of priorities. Recall the role of the priorities. First it was argued that if s is a stage after which no requirement of priority higher than that of R_e receives attention, then R_e receives attention at only finitely many stages after stage s. Then it was argued that if s is a stage after which no requirement of priority greater than that of Q_e receives attention, then $\Phi_e(A) = \theta_e(B)$ can be computed from the finite state of affairs at stage s. The first argument can be lifted to α by weakening the process of cancelling followers, thereby obviating the need for all requirements of higher priority than R_e to cease receiving attention at stage s. The second argument is less amenable; lifting it seems to require that each proper initial segment of the priority ordering of $\{R_i | i < \alpha\}$ be correct from some stage onward.
Consequently the priorities for the R_i's are generated by a tame Σ_2 projection. Curiously a Σ_2 projection suffices for the priorities of the Q_i's, because it is enough for each Q_i to attain its correct priority from some stage onward.

The assignment of priorities guarantees that each R_e receives attention only α-finitely often if α is not refractory. A preliminary indication of the reasoning behind the last assertion will prove helpful. If $\alpha > \omega$, then it is possible for R_e to receive attention infinitely often after all positive requirements of higher priority than R_e have ceased to receive attention. That infinite set must be α-finite if the construction is to succeed. The α-cardinality approach of [3] (or the Σ_1 substructure approach of [6]) seems to work only if there is an α-cardinal γ such that R_e receives attention less than γ times after some stage. Such a γ can be found when there is no greatest α-cardinal, or when the tame Σ_2 projectum of α does not exceed the greatest α-cardinal (if it exists), or when the Σ_2 projectum of α is less than some α-cardinal. Such a γ is not needed when α equals the Σ_2 projectum of α. Suppose the worst: there is a set S of stages cofinal with α and a proper initial segment I of requirements such that some member of I requires attention at every stage of S, but such that each member of I receives attention only boundedly often. Then $\alpha > \text{tp}2\alpha$. In addition the association of followers of a given R_e with negative requirements yields $\alpha > \text{sp}2\alpha$. Thus all is well when $\alpha = p2\alpha$. If α is refractory, then the desired γ does not exist and $\alpha > \text{sp}2\alpha$.

The construction of A and B is by stages.

Stage 0: $A^0 = B^0 = 0$.

Stage $\sigma > 0$: Let R_e be the positive requirement of highest priority at stage σ which requires attention at stage σ. If no such R_e exists, cancel all followers of all requirements that are not satisfied before stage σ and not persistent at stage σ, and all associations of such followers to negative requirements. Let $A^\sigma = U \{ A^\delta | \delta < \sigma \}$ and $B^\sigma = U \{ B^\delta | \delta < \sigma \}$ and go to the next stage.

Suppose such an R_e exists. Let S be $\{ x | R_x$ has lower priority than R_e at stage $\sigma \}$. Cancel all followers of R_x for all $x \in S$, and all associations of such followers with negative requirements. R_e is said to receive attention at stage σ.

Let p be the follower of R_e of highest order at stage σ such that R_e requires attention through p as defined earlier in terms of clauses (3.1)—
(3.3). (If no such \(p \) exists, adopt case 4 below.) Assume such a \(p \) exists. Cancel all followers of \(R_e \) of lower order than \(p \) at stage \(\sigma \), and all associations of such followers with negative requirements. \(R_e \) is said to receive attention through \(p \) at stage \(\sigma \). Adopt case 1, case 2 or case 3 respectively if \(R_e \) requires attention through \(p \) at stage \(\sigma \) and clause (3.1), clause (3.2) or clause (3.3) respectively holds.

Case 1. Let \(T_e^\sigma = \{ (y, n) \mid y < p^0_0(\sigma, e) \& n < \omega \} \). Wellorder \(T_e^\sigma \) by: \((y, n) \leq (u, m) \) if and only if \(n < m \) or \(n = m \) and \(y \leq u \). Let \(V_e^\sigma(p) \) be the set of all \((y, n) \) in \(T_e^\sigma \) such that for some \(z, r, u \) and \(m: r < \sigma \) and \(p \) is associated with \(Q_z \) at stage \(\tau \) through \((u, m) \) and \((y, n) \leq (u, m) \). (The association of a follower will always take place through some \((u, m) \) as specified below.) Let \(\langle y_0, n_0 \rangle \) be the least member of \(T_e^\sigma \setminus V_e^\sigma(p) \) such that \((\exists z)(z < \sigma \& p^1_0(\sigma, z) = y_0) \). If \(\langle y_0, n_0 \rangle \) is welldefined, then associate \(p \) with \(Q_{z_0} \) through \(\langle y_0, n_0 \rangle \); \(z_0 \) is the unique \(z \) such that \(z < \sigma \) and \(p^1_0(\sigma, z_0) = y_0 \) (recall that \(p^1_0 \) is one-one). Let \(A^\sigma = \bigcup \{ A^\delta \mid \delta < \sigma \} \), \(B^\sigma = \bigcup \{ B^\delta \mid \delta < \sigma \} \), and go to the next stage.

Suppose \(\langle y_0, n_0 \rangle \) is not welldefined. If \(R_e \) is \(\Psi_i \neq A \), let \(A^\sigma = \bigcup \{ A^\delta \mid \delta < \sigma \} \cup \{ p \} \) and \(B^\sigma = \bigcup \{ B^\delta \mid \delta < \sigma \} \cup \{ p \} \). If \(R_e \) is \(\Psi_i \neq B \), let \(A^\sigma = \bigcup \{ A^\delta \mid \delta < \sigma \} \) and \(B^\sigma = \bigcup \{ B^\delta \mid \delta < \sigma \} \). Cancel all followers of \(R_e \) at stage \(\sigma \) save for \(p \), and all associations of such followers with negative requirements, and go to the next stage.

Case 2. Suppose \(p \) is associated with \(Q_j \) at stage \(\sigma \). Cancel the association of \(p \) with \(Q_j \). Proceed as in Case 1.

Case 3. \(p \) is now realized. If \(\Psi_i(p) \neq 0 \), add nothing to \(A \) or \(B \), and cancel all followers of \(R_e \) at stage \(\sigma \) save for \(p \), and all associations of such followers with negative requirements, and go to the next stage. If \(\Psi_i(p) = 0 \), proceed as in Case 1.

Case 4. Define \(p \) to be \(\sigma \). \(R_e \) receives attention through \(p \) at stage \(\sigma \). Make \(p \) an unrealized follower of \(R_e \). Add nothing to \(A \) or \(B \), and go to the next stage.

End of construction.

\(R_e \) is discharged (at stage \(\sigma \)) if \(R_e \) does not receive attention at stage \(\tau \) for any \(\tau (\geq \sigma) \). \(R_e \) is discharged by \(p \) (at stage \(\sigma \)) if \(R_e \) does not receive attention through \(p \) at stage \(\tau \) for any \(\tau (\geq \sigma) \). The next four lemmas establish that every positive requirement is satisfied.

Lemma 3.2. Suppose \(e \) and \(\sigma \) are such that \(p^0_0(\tau, e) = p_0^e \) for all \(\tau \geq \sigma \).
§ 3. Existence of minimal pairs

Let $\gamma > \omega$ be a regular α-cardinal such that $\gamma > \min(p2\alpha, p_0e)$. Define $S_p = \{\tau | \tau \geq \sigma & R_e \text{ receives attention through } p \text{ at stage } \tau\}$. Then the ordertype of S_p is less than γ.

Proof. If p fails to follow R_e at any stage $\tau \geq \sigma$, then $S_p = 0$. So suppose σ_0 is the least $\tau \geq \sigma$ such that p follows f_e at stage σ_0. Thus p has been appointed an unrealized follower of R_e prior to stage $\sigma_0 + 1$. (If p is cancelled, p can never be reappointed.) If p is never realized, then R_e never receives attention through p at any stage after σ_0. So suppose σ_1 is the least $\tau \geq \sigma_0$ such that p is realized at stage τ. For each $\tau > \sigma_1$, if R_e receives attention through p at stage τ, then either R_e is satisfied at stage τ (and consequently never receives attention after stage τ) or p is associated with some Q_i through some $\langle y, n \rangle$ (as in Case 2) at stage τ.

Define a partial α-recursive f by: $f0$ is the least $\tau > \sigma_1$ such that R_e receives attention through p at stage τ; $f\nu (\nu > 0)$ is the least $\tau > \text{lub}\{|f\delta| \delta < \nu\}$ such that R_e receives attention through p at stage τ.

Define $g_\tau = \langle y, n \rangle$ if R_e receives attention at stage τ through p, R_e is not satisfied at stage τ, and p is associated with some Q_i through $\langle y, n \rangle$ at stage τ. Clearly g is partial α-recursive.

g is one-one on its domain, because $\langle y, n \rangle < \langle z, m \rangle$ if p is associated with Q_i through $\langle y, n \rangle$ at stage τ_1, and with Q_j through $\langle z, m \rangle$ at stage $\tau_2 > \tau_1$. The domain of g is an initial segment of α, and its range is a subset of $e_1 \times \omega$ where $e_1 = \min (p2\alpha, p_0e)$. g_γ is undefined, since otherwise g would map γ one-one onto $e_1 \times \omega$, a set whose α-cardinality is less than γ. Thus the ordertype of the domain of g is less than γ. The ordertype of S_p is at worst 2 plus the ordertype of the domain of f, which is at worst 2 plus the ordertype of the domain of $g + 1$.

Lemma 3.3. Suppose e and σ are such that $p_0'(\tau, e) = p_0e$ for all $\tau \geq \sigma$. Assume $p_0e < \omega$. Define $S_p = \{\tau | \tau \geq \sigma & R_e \text{ receives attention through } p \text{ at stage } \tau\}$. Then the ordertype of S_p is α-finite.

Proof. Similar to that of Lemma 3.2.

Lemma 3.4. Suppose σ, σ' and e are such that $\sigma < \sigma' \leq \alpha$ and

\[(3.5) \quad (z)(\tau)(y)\{\sigma \leq \tau < \sigma' \& z \leq e \& p_0y = z \Rightarrow p_0'(\tau, y) = z\},\]
(3.6) \((z)(r)(y)[\sigma \leq \tau < \sigma' \& z < e \& p_0 y = z \rightarrow R_y \text{ does not receive attention at stage } r]\).

Let \(\gamma > \omega\) be a regular \(\alpha\)-cardinal such that \(\gamma > \min \{e, \rho \alpha\}\). Assume \(\beta < \gamma\) and define \(T = \{\tau | \sigma \leq \tau < \sigma' \& (E p)(E y)(p'_0(\tau, y) = e \& R_y \text{ receives attention through } p \text{ at stage } \tau \text{ and } p \text{ is the follower of order } \beta \text{ of } R_y \text{ at stage } \tau\}\}. Then the ordertype of \(T\) is less than \(\gamma\).

Proof. Fix \(y\) so that \(p_0(\sigma, y) = e\). A follower \(p\) of \(R_y\) can be cancelled at stage \(\tau\) in only one of the following ways: a requirement of higher priority than \(R_y\) requires attention at stage \(\tau\); \(R_y\) is not persistent at stage \(\tau\); \(R_y\) receives attention through \(q\) at stage \(\tau\) and \(q\) has higher order than \(p\) at stage \(\tau\); \(R_y\) is satisfied at stage \(\tau\). If the first way occurs, then the requirement of highest priority at stage \(\tau\), which requires attention at stage \(\tau\), receives attention at stage \(\tau\). Hence by (3.6) \(p\) cannot be cancelled in the first way if \(\sigma < \tau < \sigma'\). By (3.5) \(R_y\) is persistent at stage \(\tau\), so \(p\) cannot be cancelled in the second way if \(\sigma < \tau < \sigma'\). Consequently if \(\sigma < \tau < \sigma'\) and \(p\) follows \(R_y\) at stage \(\tau\), then \(p\) can be cancelled at stage \(\tau\) only if \(R_y\) is satisfied at stage \(\tau\) or \(R_y\) receives attention via \(q\) at stage \(\tau\) and \(q\) has higher order than \(p\) at stage \(\tau\).

Define \(R(x, \tau)\) by \(\sigma \leq \tau < \sigma'\) and \((E p)(R_y \text{ receives attention through } p \text{ at stage } \tau \text{ and } p \text{ has order } x \text{ at stage } \tau)\). \(R(x, \tau)\) is an \(\alpha\)-recursive relation. Let \(T_x = \{u | R(z, u)\}\).

Let \(\beta\) be the least ordinal such that the ordertype of \(T_\beta\) is at least \(\gamma\). Then a contradiction will follow from Lemma 2.3 cf [6]. Suppose \(\sigma_1\) and \(\sigma_2\) are such that \(\sigma_1 < \sigma_2 \leq \alpha\) and

\[
U \{ T_z | z < \beta \} \cap \{ w | \sigma_1 < w < \sigma_2 \} = 0.
\]

If \(\sigma_1 < \tau < \sigma_2\) and \(R_y\) receives attention through \(q\) at stage \(\tau\) and \(\tau \in T_\beta\), then \(q\) has order at least \(\beta\) at stage \(\tau\). Consequently if \(\tau_1, \tau_2 \in T_\beta\), \(\sigma_1 < \tau_1 < \sigma_2\) and \(\sigma_1 < \tau_2 < \sigma_2\), \(R_y\) has a follower \(p_1\) of order \(\beta\) at stage \(\tau_1\), and \(R_y\) has a follower \(p_2\) of order \(\beta\) at stage \(\tau_2\), then \(p_1 = p_2\). By (3.5) and Lemma 3.2, the ordertype of \(T_\beta \cap \{ \tau | \sigma_1 < \tau < \sigma_2 \}\) is less than \(\gamma\). Finally by Lemma 2.3 of [6], the ordertype of \(T_\beta\) is less than \(\gamma\).
Lemma 3.5. Suppose \(\alpha, \alpha' \) and \(\epsilon \) satisfy hypotheses (3.5) and (3.6) of Lemma 3.4. Assume \(\alpha \) is not refractory, \(\alpha = \alpha' \) and \(p_0 \gamma = e \). Then \(R_y \) is discharged. In addition if \(\gamma > \omega \) is a regular \(\alpha \)-cardinal greater than \(\min \{ e, p2 \alpha \} \), then the ordertype of \(T = \{ \tau \mid \alpha \leq \tau < \alpha' \land R_y \) receives attention at stage \(\tau \} \) is less than \(\gamma \).

Proof. Define a partial \(\alpha \)-recursive \(g' \) by:
\[
g'(\tau, z) = v \text{ if } R_y \text{ has a follower } p \text{ of order } z \text{ at the end of stage } \alpha + \tau,
\text{and } p \text{ is associated with } Q_u \text{ at the end of stage } \alpha + \tau,
\text{and } p'_1(\alpha + \tau, u) = v.
\]
Define \(g \) by \(g(z) = v \) if
\[
(\exists \tau)(\rho)(\tau \leq \rho < \alpha' \rightarrow g'(\rho, z) = v).
\]
The conclusion of Lemma 3.5 will follow easily from four facts about \(g \).

Fact 1. The domain of \(g \) is an initial segment of \(\alpha \).

Fact 2. \(g \) is one-one on its domain.

Fact 3. If \(g \) is total and \(\alpha' = \alpha \), then \(g \) is a strong \(\Sigma_2 \) projection of \(\alpha \) into \(\epsilon \).

Fact 4. Assume \(\gamma = 2 \alpha < p2 \alpha = \alpha, \alpha' = \alpha \), and the domain of \(g \) is \(\beta < \alpha \). If \(R_y \) is not discharged, \(R_y \) is either \(\Psi_i \neq A \) or \(\Psi_i \neq B \), \(i \) is total, then \(tp2 \alpha < \alpha \).

The proofs of Fact 1--4 are momentarily deferred.

Let \(e_1 = \min \{ e, p2 \alpha \} \), and let \(\gamma > \omega \) be a regular \(\alpha \)-cardinal greater than \(e_1 \). By (3.5) and (3.6): if \(\alpha \leq \tau < \alpha' \), then no requirement of higher priority than \(R_y \) at stage \(\tau \) receives attention at stage \(\tau \); and if \(R_y \) receives attention at stage \(\tau \), then there is a follower \(p \) of \(R_y \) at stage \(\tau \) such that \(R_y \) receives attention through \(p \) at stage \(\tau \). Assume that the ordertype of \(T \) is at least \(\gamma \). Then there must be a \(\sigma_1 \) such that \(\sigma < \sigma_1 < \alpha' \) and \(T \cap \{ \tau \mid \tau < \sigma_1 \} \) has ordertype \(\gamma \). At stage \(\sigma_1 \), \(R_y \) has followers of all orders \(\beta < \gamma \) for some \(\beta \leq \gamma \).

Suppose \(\beta = \gamma \). Let \(p \) be a follower of order \(x < \gamma \). \(p \) cannot be unrealized at stage \(\sigma_1 \), since otherwise \(R_y \) would have no follower of order \(x + 1 \) at stage \(\sigma_1 \). \(R_y \) cannot be satisfied before stage \(\sigma_1 \), since otherwise \(R_y \) would have only one follower at stage \(\sigma_1 \). The cofinality of \(\sigma_1 \) (in \(L_\gamma \)) must be \(\gamma \), because \(\gamma \) is regular. By Lemma 3.2 the set of stages prior to \(\sigma_1 \) at which \(R_y \) receives attention through \(p \) has ordertype less than \(\gamma \), and so cannot be cofinal with \(\sigma_1 \). Hence there is a \(\sigma_2 < \sigma_1 \) such that \(R_y \) does not receive attention through \(p \) at any stage after \(\sigma_2 \) and prior to \(\sigma_1 \). Hence there is a \(Q_u \) such that \(p \) is associated with \(Q_u \) at stages \(\sigma_2 \) and \(\sigma_1 \). \(Q_u \) must be persistent at every stage \(\tau \) such that...
\(\sigma_2 < \tau < \sigma_1 \), since otherwise \(R_y \) would require attention through \(p \) at stage \(\tau \), and either \(R_y \) would receive attention through \(p \) at stage \(\tau \) or \(p \) would be cancelled at stage \(\tau \). Define \(h \) by: \(hz = v \) if \(R_y \) has a follower of order \(z \) at stage \(\sigma_1 \), \(p \) is associated with \(Q_v \) at stage \(\sigma_1 \), and \(v \) satisfies \((E \rho)(\tau)[\rho < \sigma_1 \land (\rho \leq \tau < \sigma_1 \rightarrow p'_1(\tau, u) = v)] \). Clearly \(h z = \lim_{\tau \to \sigma_1} g'(\tau, z) \). \(h \) is a one-one, \(\alpha \)-finite map of \(\gamma \) into \(e_1 < \gamma \).

Thus \(\beta < \gamma \). By Lemma 3.4 the ordertype of \((\tau \mid \sigma < \tau < \sigma_1 \land R_y \text{ receives attention through a follower of order } \beta) \) is less than \(\gamma \). Hence there is a \(\sigma_3 < \sigma_1 \) such that \(R_y \) does not receive attention through a follower of order \(\beta \) at any stage between \(\sigma_3 \) and \(\sigma_1 \). In addition there is a \(\sigma_4 \) such that \(\sigma_3 < \sigma_4 < \sigma_1 \) and \(R_y \) has no follower of order \(\beta \) at any stage between \(\sigma_4 \) and \(\sigma_1 \). The defining properties of \(\sigma_1 \) imply there is a \(v < \gamma \) such that \(R_y \) never receives attention through a follower of order \(\beta \) at any stage between \(\sigma \) and \(\sigma_1 \). Define \(R(x, z) \) by \(\sigma_1 < z < \sigma_1 \) and \(R_y \) receives attention through a follower of order \(x \) at stage \(z \). Let \(T_x \) be \(\{ z \mid R(x, z) \} \). By Lemma 3.4 (and Lemma 2.3 of [6]), the ordertype \(U \{ T_z \mid z < v \} \) is less than \(\gamma \). But \(T \cap (\tau \mid \tau < \sigma_1) \) has ordertype \(\gamma \) and \(T = U \{ T_z \mid z < v \} \). Hence the ordertype of \(T \) is less than \(\gamma \).

The proof that \(R_y \) is discharged breaks into four cases. Remember that \(R_y \) receives attention at stage \(\tau \geq \sigma \) if \(R_y \) requires attention at stage \(\tau \).

Case 1. \(\alpha = \omega \). Hence there is a regular \(\alpha \)-cardinal \(\gamma \) such that \(\gamma > \omega \) and \(\gamma > \omega \). Consequently the set of stages at which \(R_y \) receives attention has ordertype \(\omega \) less than \(\gamma \) and is \(\alpha \)-finite, since (as was just shown) \(T \) has ordertype less than \(\gamma \).

Case 2. \(p2\alpha < gc\alpha < \alpha \). If \(gc\alpha \) is regular, let \(\gamma = gc\alpha \); if \(gc\alpha \) is singular, then there is a regular \(\alpha \)-cardinal \(\gamma \) such that \(p2\alpha < \gamma < gc\alpha \). Proceed as in Case 1.

Case 3. \(p2\alpha = tp2\alpha = gc\alpha < \alpha \). If \(gc\alpha > \omega \), then the argument of Case 1 succeeds. Suppose \(gc\alpha = \omega \). Then \(e \) is finite. Suppose \(R_y \) is not satisfied at any stage. Each realized follower of \(R_y \) at stage \(\tau \geq \sigma \) is associated with a different \(Q_n \) at the end of stage \(\tau \). Consequently \(R_y \) has at most \(e \) realized followers at the end of stage \(\tau \geq \sigma \), and at most one unrealized follower at stage \(\tau \). Let \(q_0 \) be the first follower of \(R_y \) of order \(0 \) at any stage after \(\sigma \). Then \(q_0 \) is never cancelled, and \(R_y \) is never satisfied. If \(q_0 \) is always unrealized, then \(R_y \) is discharged. Otherwise \(q_0 \) is associated with some \(Q_w \) for all sufficiently large stages. Let \(\sigma_0 \) be the stage at which \(q_0 \) is last associated with \(Q_w \). At stage \(\sigma_0 + 1 \) a follower
§ 3. Existence of minimal pairs

q_1 of R_y of order 1 is appointed, never to be cancelled. And so on until termination with at worst q_{e+1}. Either R_y is satisfied, or some q_i is never realized. In either event R_y is discharged.

Case 4. $g_c a < p_2 a = a$. Hence $e < tp_2 a = a$. If g were total, then $p_2 a$ would be at most e by Fact 3. So g must be partial. If R_y were not discharged, then $tp_2 a$ would be less than a by Fact 4.

If a is not refractory, then one of the above four cases must apply.

Only the proofs of Facts 1–4 remain.

Proof of Fact 1: If R_y is satisfied at some stage τ^*, then R_y has just one follower p at the end of stage τ for each $\tau \geq \tau^*$, and p is not associated with any negative requirement. So the domain of g is 0.

Assume R_y is not satisfied. Suppose $z_1 < z_2$ and $g(z_2)$ is defined with the intent of seeing that $g(z_1)$ is defined. Suppose $\tau_0 < \sigma'$ and $g'(\tau, z_2) = g'(\tau_0, z_2)$ whenever $\tau_0 \leq \tau < \sigma'$. Fix τ so that $\tau_0 \leq \tau < \sigma'$.

It is impossible for some requirement of higher priority than R_y at stage τ to receive attention at stage τ, or for R_y to receive attention at stage τ through a follower of higher order than z_2. Otherwise the follower of R_y of order z_2 at stage τ is cancelled at the end of stage τ and no new follower of R_y of order z_2 at stage $\tau + 1$ is appointed at stage τ. Consequently R_y has a follower p of order z_1 at the end of stage τ. p cannot be unrealized at stage τ; otherwise R_y would have no follower of higher order than z_1 at the end of stage τ. Since R_y is not satisfied, p must be associated with some Q_u at the end of stage τ and some Q_v at the end of stage τ_0. If $u \neq v$, then a requirement of higher priority than R_y at stage $p (\tau_0 < p \leq \tau)$ would have received attention at stage p, or R_y would have received attention at stage p through some follower of order at most z_1 at stage p. Each of the last two conclusions is impossible (recall hypothesis (3.655)), hence p is associated with Q_u at the end of stage τ and $u = v$. Q_u is persistent at stage τ, and $p'_1 (\tau, u) = p_1 u$. Thus $g'(\tau, z_1) = g'(\tau_0, z_1)$, and so $g(z_1)$ is defined.

Proof of Fact 2: Fix τ. The function $p'_1 (\tau, x)$ is one-one, and no two followers of R_y are associated with the same Q_u at the end of stage τ. Hence $g'(\tau, x)$ is one-one on its domain.

Proof of Fact 3: The proof of Fact 1 established: if $z_1 < z_2$ and $g'(\rho, z_2) = g'(\tau, z_2)$ for all $\rho \geq \tau$, then $g'(\rho, z_1) = g'(\tau, z_1)$ for all $\rho \geq \tau$.

Proof of Fact 4: Define $f' (\tau, u) = v$ if v is lub $\{ p \mid p \leq \tau \text{ and } R_y \text{ receives attention at stage } p \text{ through a follower of order } u \text{ at stage } p \}$. Define
fu = v if there is a \(\tau \) such that \(f'(\rho, u) = v \) for all \(\rho \geq \tau \). Clearly the domain of \(f' \) is \(\beta \). Since \(R_y \) is not discharged, \(R_y \) is never satisfied; and since \(\Psi_i \) is total, every unrealized follower of \(R_y \) is either cancelled or realized. Hence \(R_y \) must receive attention unboundedly often through a follower of order less than \(\beta \); otherwise \(g\beta \) would be defined. Thus \(f \) is a \(\Sigma_2 \) cofinality function and \(\text{cf} 2\alpha \leq \beta \). By 2.5 \(\text{tp}2\alpha < \alpha \).

Lemma 3.6. For each \(y \), \(R_y \) is discharged.

Proof. By induction on \(e < \text{tp}2\alpha \). Step \(e \) of the induction shows \(R_y \) is discharged for \(y = \rho \circ \nu e \). Recall \(\rho_0 \) maps \(\alpha \) onto \(\text{tp}2\alpha \).

Case 1. \(\text{gca} = \alpha \). Let \(\sigma' = \alpha \), and assume \(\sigma' \), \(\sigma \) and \(e \) satisfy (3.5). Further assume \(\sigma \) and \(e \) satisfy (3.7).

(3.7) For each \(x < \text{tp}2\alpha \) and \(\tau \), define \(T^\tau_x \) to be \(\{ \rho \mid \rho \geq \tau \) and \(R_{\rho \circ \nu e x} \) receives attention at stage \(\rho \} \). If \(\gamma > \omega \) is an infinite \(\alpha \)-cardinal and \(e < \gamma \), then the ordertype of \(T^\sigma_x \) is less than \(\gamma \) for all \(x < e \).

Fix \(\gamma \) as the least \(\alpha \)-cardinal greater than \(\max(e, \omega) \). (\(\gamma \) exists because \(\text{gca} = \alpha \).) Clearly \(\gamma \) is regular. According to (3.7) \(T^\gamma_x \) has ordertype less than \(\gamma \) for every \(x < e \). It follows from Lemma 2.3 of [6] that \(T^\gamma = \bigcup \{ T^\gamma_z \mid z < e \} \) has ordertype less than \(\gamma \) and so is \(\alpha \)-finite. Thus for some \(\sigma_3 \geq \sigma \), it is the case that \(\sigma' (= \alpha) \), \(\sigma_3 \) and \(e \) satisfy (3.5) and (3.6). Suppose \(\sigma_1 < \sigma_2 \leq \alpha \) and \(\{ T^\gamma_z \mid z < e \} \cap \{ \delta \mid \sigma_1 \leq \delta < \sigma_2 \} = \emptyset \). By Lemma 3.5, \(T^\gamma_e \cap \{ \delta \mid \sigma_1 \leq \delta < \sigma_2 \} \) has ordertype less than \(\gamma \). But then by Lemma 3.5 and Lemma 2.3 of [6], \(R_{\rho \circ \nu e} \) is discharged.

Case 2. \(\text{p}2\alpha < \text{gca} < \alpha \). If \(\text{tp}2\alpha \leq \text{gca} \), then proceed as in Case 1. If \(\text{tp}2\alpha > \text{gca} \), then \(\text{tp}2\alpha \leq \text{gca} \cdot \text{cf}2\alpha \) by Theorem 2.3. In the hope of a contradiction, let \(e \) be the least \(x < \text{tp}2\alpha \) such that \(R_{\rho \circ \nu e x} \) is not discharged. Then \(e = \text{gca} \cdot \nu + \eta \) for some \(\nu < \text{cf}2\alpha \) and \(\eta < \text{gca} \). Let \(\sigma' = \alpha \), and let \(\sigma_0 \) be the least \(\sigma \) such that \(\sigma' \), \(\sigma \) and \(e \) satisfy (3.5). There is no \(\tau \) such that \(\sigma_0 \leq \tau < \alpha \) and \(\sigma' \), \(\tau \) and \(e \) satisfy (3.6) (with \(\sigma = \tau \)); otherwise Lemma 3.5 implies \(R_{\rho \circ \nu e} \) is discharged. Thus the set of stages after stage \(\sigma_0 \) at which \(R_{\rho \circ \nu e x} \) receives attention for some \(x < e \) must be cofinal with \(\alpha \).
§ 3. Existence of minimal pairs

If \(\eta = 0 \), define \(f: \nu \mapsto \alpha \) by: \(f^\nu \) is the least \(\tau \) such that \(R^{p_0^{-1} \omega} \) does not receive attention at any stage after stage \(\tau \) for any \(z < \text{gca} \cdot x \). Then \(f \) is a \(\Sigma_2 \) cofinality function and \(\text{cf} 2 \alpha \leq \nu < \text{cf} 2 \alpha \).

Suppose \(\eta > 0 \). There is a \(\sigma_1 \) such that \(\sigma' (= \alpha) \), \(\sigma_1 \) and \(\text{gca} \cdot \nu \) satisfy (3.5) and (3.6) (with \(\sigma_1 \) as \(\sigma \) and \(\text{gca} \cdot \nu \) as \(\epsilon \)). But no requirement of priority greater than \(R^{p_0^{-1} (\text{gca} \cdot \nu)} \) receives attention after stage \(\sigma \). For each \(s \) such that \(\text{gca} \cdot \nu \leq x \leq e \) and each \(\tau \), define \(T^\tau_x = \{ \rho \mid \rho \geq \tau \) and \(R^{p_0^{-1} (\text{gca} \cdot \nu + x)} \) receives attention at stage \(\rho \} \). There is a regular \(\alpha \)-cardinal \(\gamma \) such that \(\text{p} 2 \alpha < \gamma \leq \text{gca} \). Proceed as in Case 1 to show \(R^{p_0^{-1} e} \) is discharged.

Case 3. \(\text{tp} 2 \alpha = \text{gca} < \alpha \). Hence for each \(e < \text{tp} 2 \alpha \), there is a regular \(\alpha \)-cardinal \(\gamma \) such that \(e < \gamma \leq \text{gca} < \alpha \). Proceed as in Case 1.

Case 4. \(\text{gca} < \text{p} 2 \alpha = \text{tp} 2 \alpha = \alpha \). Let \(e \) be the least \(x < \text{tp} 2 \alpha \) such that \(R^{p_0^{-1} x} \) is not discharged. As in Case 2, the set of stages at which \(R^{p_0^{-1} x} \) receives attention for some \(x < e \) must be cofinal with \(\alpha \) and so \(\text{cf} 2 \alpha \leq e \). But then \(\text{tp} 2 \alpha < \alpha \) by Theorem 2.3.

If none of the last four cases apply, then \(\alpha \) is refractory.

Lemma 3.7. Neither \(A \) nor \(B \) is \(\alpha \)-recursive.

Proof. Suppose \(A \) is \(\alpha \)-recursive. Then \(A = \Psi_i \) for some \(i \). If \(p \) is an unrealized follower of requirement \(\Psi_i \neq A \) at stage \(\sigma \), then \(p \) is either cancelled or eventually realized. By 3.6 requirement \(\Psi_i \neq A \) is discharged. Hence there is a stage \(\sigma \) such that \(\Psi_i \neq A \) does not require attention at stage \(\tau \) for any \(\tau \geq \sigma \). \(\Psi_i \neq A \) does not have an unrealized follower at stage \(\sigma \); otherwise it would not be satisfied at stage \(\sigma \), hence never satisfied, and either \(p \) would be cancelled or \(\Psi_i(p) \) would be defined, and so \(\Psi_i \neq A \) would require attention after stage \(\sigma \). Since \(\Psi_i \neq A \) has no unrealized follower at stage \(\sigma \) and does not require attention at stage \(\sigma \), \(\Psi_i \neq A \) must be satisfied prior to stage \(\sigma \). Hence there is a \(p \) that follows \(\Psi_i \neq A \) such that \(p \in A \iff \Psi_i(p) = 0 \). Thus \(A(p) \neq \Psi_i(p) \).

Lemma 3.8. Suppose \(p \) follows \(R_i \) at stage \(\sigma \), \(q \) follows \(R_j \) at stage \(\sigma \), \(p \in (A \cup B) \setminus (A^\sigma \cup B^\sigma) \) and \(q \in (A \cup B) \setminus (A^\sigma \cup B^\sigma) \). Let \(\sigma_1 \) (\(\sigma_2 \) respectively) be the first stage such that \(p \) (\(q \) respectively) is put in \(A \cup B \). Assume \(\sigma_1 < \sigma_2 \). Then \(p_0(\sigma, i) < p_0'(\sigma, j) \).
Proof. Since \(q \) is not cancelled at stage \(\sigma_1 \), it must be that
\[
p_0'(\sigma_1, i) < p_0'(\sigma_1, j).
\]
If \(p_0'(\sigma_1, i) \neq p_0'(\sigma, i) \), then there is a \(\tau \) such that
\(\sigma < \tau \leq \sigma_1 \), \(R_i \) is not persistent at stage \(\tau \), and \(p \) is cancelled at stage \(\tau \).
A cancelled follower can never be reappointed, hence \(p \) is never cancelled.
Thus \(p_0'(\sigma_1, i) = p_0'(\sigma, i) \).
Similarly \(p_0'(\sigma_2, j) = p_0'(\sigma_1, j) = p_0'(\sigma, j) \).

Lemma 3.9. A and B are regular.

Proof. Fix \(x \) to see \(A \cap x \) is \(\alpha \)-finite. If \(z \in A \cap x \), then \(z \in A^x \) or \(z \) is a follower at stage \(x \). Let \(\sigma_0 \geq x \) be the least stage such that some \(z < x \) is placed in \(A \) at stage \(\sigma_0 \). For each \(i < \omega \), let \(\sigma_{i+1} \geq \sigma_i \) be the least stage such that some \(z < x \) is placed in \(A \) at stage \(\sigma_{i+1} \). Suppose \(\sigma_i \) is welldefined for all \(i < \omega \). Let \(R_{k_i} \) be the requirement satisfied at stage \(\sigma_i \). By Lemma 3.8, \(p_0'(x, k_0) > p_0'(x, k_1) > \ldots \), an impossibility. If \(\sigma_0 \) is not defined, then \(z \in A \cap x \iff z \in A^x \cap x \). If \(\sigma_n \) is the last welldefined \(\sigma_i \), then \(z \in A \cap x \iff z \in A^{\sigma_n} \cap x \). The proof for \(B \) is similar.

Lemma 3.10. If \(C \) is \(\alpha \)-recursive in \(A \), and in \(B \), then \(C \) is \(\alpha \)-recursive.

Proof. There is an \(i \) such that \(C = \Phi_i A = \Theta_i B \). Let \(\sigma_1 \) be the least \(\sigma \) such that \(p_1'(\tau, i) = p_1 i \) for all \(\tau \geq \sigma \). Let \(\sigma_2 \) be the least \(\sigma \geq \sigma_1 \) such that \(R_y \) has been discharged prior to stage \(\sigma \) for every \(y \) with the property that \(p_0 y \leq p_1 i \). The existence of \(\sigma_2 \) follows from the proof of Lemma 3.6. The latter established the existence of a \(\sigma \) such that all requirements of higher priority than \(R_\varepsilon \) are discharged prior to stage \(\sigma \), whenever \(e < \text{tp}2\alpha \). \(\sigma_2 \) exists because \(p2\alpha \leq \text{tp}2\alpha \). Any requirement that receives attention at stage \(\tau \geq \sigma_2 \) has its followers subject to association with \(Q_i \) at stage \(\tau \).

To decide whether or not \(x \in C \), search for a stage \(\sigma_3 \geq \sigma_2 \) such that
\[
L(\sigma_3, i) = M(\sigma_3, i) > x. \sigma_3 \text{ exists by Lemma 3.9. Clearly}
\]
\[
\Phi_i^{\sigma_3}(A^{\sigma_3}, x) = \Theta_i^{\sigma_3}(B^{\sigma_3}, x) = q
\]
for some \(q. A \) and \(B \) are regular, so \(\Phi_i(A, x) = \lim_{\sigma \to \alpha} \Phi_i^\sigma(A, x) \) and
\[
\Theta_i(B, x) = \lim_{\sigma \to \alpha} \Theta_i^\sigma(B, x). \text{Thus to show } C(x) = q, \text{ it suffices to show}
\]
\[
\Phi_i^\tau(A^\tau, x) = q \text{ or } \Theta_i^\tau(B^\tau, x) = q \text{ for all } \tau \geq \sigma_3.
\]
Let c_0 be the computation of $q^{3}(A^{03}, x)$ and d_0 be the computation of $q^{3}(B^{03}, x)$. c_0 (d_0 respectively) will be invalid at stage $\tau > \sigma_3$ only if some $z < \sigma_3$ is put in A (B respectively) before stage τ and after stage σ_3. Let τ_1 be the least $\tau \geq \sigma_3$ such that some $z < \sigma_3$ is put in A or B at stage τ. Let z_1 be a z put in A at stage τ_1, let z_1 follow R_{y_1} and let $p'(\tau_1, y_1) = u_1$. Computation d_0 is still valid at stage $\tau_1 + 1$. R_{y_1} must be persistent at every stage τ such that $\sigma_3 \leq \tau \leq \tau_1$, otherwise z_1 would be cancelled and would not be put in A at stage τ_1. Let R_ν be a requirement such that R_ν has a follower p at the end of stage τ and is not satisfied before the end of stage τ. Then $p'(\tau_1, v) < p'(\tau_1, y_1)$. To see that $p < \sigma_3$, assume $p \geq \sigma_3$. Then there is a δ such that $\sigma_3 \leq \delta < \tau$ and p is appointed to follow R_ν at stage δ. Since z_1 is not cancelled at stage δ, $p'(\delta, y_1) < p'(\delta, v)$. Since R_{y_1} is persistent for all τ such that $\sigma_3 \leq \tau \leq \tau_1$, R_{y_1} cannot be persistent for all τ such that $\delta < \tau \leq \tau_1$. Hence p is cancelled before the end of stage τ_1. Thus all followers in existence at the end of stage τ_1, and not satisfied before the end of stage τ_1, are less than σ_3.

If no $z < \sigma_3$ is put in B after stage τ_1, then the computation d_0 is valid forever, and $q^3(B^\tau, x) = z$. So assume there is a $\tau > \tau_1$ such that some $z < \sigma_3$ is put in B^τ. Let the least such τ be τ_2, and let z_2 be such a z. Suppose z_2 follows R_{y_2}. Two cases occur.

Case 1. z_2 is not associated with Q_i at any stage τ such that $\tau_1 < \tau \leq \tau_2$. Since $z_2 < \sigma_3$, z_2 existed as a follower at the end of stage τ_1. If z_2 was unrealized at the end of stage τ_1, then z_2 was eligible for association with Q_i through $(i, 0)$; and if z_2 was associated with some Q_j through (i, n) at the end of stage τ_1, then z_2 was eligible for association with Q_i through $(i, n + 1)$. Since z_2 is not associated with Q_i, some follower r of R_{y_2} of higher order than that of z_2 was associated with Q_i at stage λ, where λ is the least stage such that z_2 was associated with some Q_j through some (u, k) (if there is no such stage, let $\lambda = \tau_2$). $(u, k) > (i, 0)$ if z_2 was unrealized at stage τ_1, and $(u, k) > (i, n + 1)$ if z_2 was realized at stage τ_1. But since r has higher order than z_2 at stage λ, $r < z_2$, so r existed at stage σ_3. If r were not associated with Q_i at stage σ_3, then R_{y_2} must have received attention through r at stage δ ($\sigma_2 \leq \delta < \lambda$), but then z_2 would have been cancelled at stage δ and could not have been a follower at stage τ_2. Hence r is associated with Q_i at stage σ_3. But $L(\sigma_3, i) = M(\sigma_3, i)$, hence either R_{y_2} is not persistent at
stage \(\sigma_3 \) (impossible because \(z_2 \) would be cancelled at stage \(\sigma_3 \)), or \(R_{y_2} \) requires attention through \(r \) at stage \(\sigma_3 \). There are now only three possibilities at stage \(\sigma_3 \): \(R_{y_2} \) receives attention through \(r \) and \(z_2 \) is cancelled; \(R_{y_2} \) receives attention through a follower of higher order than \(r \) and \(z_2 \) is cancelled; and some \(R_v \) of higher priority than \(R_{y_2} \) receives attention and \(z_2 \) is cancelled. None of the three can occur, hence case 1 cannot occur.

Case 2. \(z_2 \) is associated with \(Q_i \) at stage \(\tau \) for some \(\tau \) such that \(\tau_1 \leq \tau \leq \tau_2 \); let \(\tau'_1 \) be the least such \(\tau \). Since \(z_2 \in B \), there is a first stage \(\tau''_1 \) such that \(\tau'_1 < \tau''_1 \leq \tau_2 \) and the association of \(z_2 \) with \(Q_i \) is cancelled at stage \(\tau''_1 \). Since \(z_2 \) is still a follower at the end of stage \(\tau''_1 \), \(L(\tau''_1, i) = M(\tau''_1, i) \) and there is a computation \(c_1 \) of

\[
\Phi_{A(\tau''_1, x)} = q.
\]

If \(c_1 \) were invalid at the end of stage \(\tau_2 \), then some follower \(x \) would land in \(A \) at some stage \(\lambda(\tau''_1 < \lambda < \tau_2) \). Suppose \(x \) follows \(R_v \). \(x < \tau''_1 \) and \(x \) exists as a follower at stage \(\tau''_1 \). Also \(p'_0(\tau''_1, v) < p'_0(\tau''_1, y_2) \). For each \(\tau (\tau''_1 \leq \tau \leq \lambda) \), \(R_v \) must be persistent at stage \(\tau \) (otherwise \(x \) would be cancelled by the end of stage \(\lambda \) and so could not land in \(A \)), and \(R_{y_2} \) must be persistent at stage \(\lambda \) (otherwise \(z_2 \) would be cancelled by the end of stage \(\lambda < \tau_2 \)). Hence \(p'_0(\lambda, v) < p'_0(\lambda, y_2) \). Since \(R_v \) receives attention at stage \(\lambda \), \(z_2 \) is cancelled at stage \(\lambda \). Consequently \(c_1 \) is valid at the end of stage \(\tau_2 \). All followers in existence at the end of stage \(\tau_2 \) are less than \(\sigma_3 \). Let \(c_2 = c_1 \).

If no \(z < \sigma_3 \) is placed in \(A \) after stage \(\tau_2 \), then computation \(c_2 \) is valid forever. Assume some \(z < \sigma_3 \) is placed in \(A \) after stage \(\tau_2 \).

Continue to alternate as above between \(A \) and \(B \). If for some \(n < \omega \), \(z_n \) fails to be defined, then the lemma is proved. Suppose \(z_n \) is defined for all \(n < \omega \). \(z_n \) follows \(R_{y_n} \) at stage \(\sigma_3 \). By Lemma 3.8, \(p'_0(\sigma_3, y_1) > p'_0(\sigma_3, y_2) > \ldots \), an impossibility.

Theorem 3.1 is a consequence of Lemmas 3.7 and 3.10.
§4. Further results and open questions

The following Theorem will appear in Lerman [4]. Its proof is not an injury argument.

Theorem 4.1. Let α be any Σ_1 admissible ordinal. Suppose A and B are non-α-recursive, α-recursively enumerable sets whose α-recursive disjoint union is complete. Then there exists a non-α-recursive, α-recursively enumerable C such that C is α-recursive in A, and in B.

Let T_α be the elementary theory of the partial ordering of the α-recursively enumerable degrees. Nothing is known about the dependence (if any) of T_α on α. Lerman [3] proved that the Σ_1 sentences of T_α are independent of α.

Question 1. Is there a minimal pair of α-recursively enumerable degrees for every Σ_1 admissible α?

Theorem 3.1 provides such a pair when α is not refractory. It might be wise to study those refractory α with the following properties: $\omega < p2\alpha = gca < \alpha; tp2\alpha = gca \cdot \omega; cf2\alpha = \omega$.

Question 2. Are the α-recursively enumerable degrees dense for every Σ_1 admissible α?

The answer is yes when $\alpha = \omega$ by Sacks [5], and when $\alpha^* = \omega$ by Driscoll [1]. An affirmative answer to Question 1 will probably include an account of the α-infinite injury method, a method as yet unknown.

Question 3. For which Σ_1 admissible α's can every finite distributive lattice be embedded in the α-recursively enumerable degrees?

Lerman and Thomason showed every one could be embedded when $\alpha = \omega$. Their arguments extended the minimal pair construction.
References