
Theoretical Computer Science 412 (2011) 5802–5807

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Note

From regular expressions to smaller NFAs✩

Pedro García a, Damián López a,∗, José Ruiz a, Gloria I. Álvarez b

a Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia, 46022 Valencia, Spain
b Pontificia Universidad Javeriana, Cali, Colombia

a r t i c l e i n f o

Article history:
Received 21 December 2010
Accepted 27 May 2011
Communicated by D. Perrin

Keywords:
Regular expression
Finite automata
Position automata quotients

a b s t r a c t

Severalmethods have beendeveloped to constructλ-free automata that represent a regular
expression. Among the most widely known are the position automaton (Glushkov), the
partial derivatives automaton (Antimirov) and the follow automaton (Ilie and Yu). All these
automata can be obtained with quadratic time complexity, thus, the comparison criterion
is usually the size of the resulting automaton. The methods that obtain the smallest
automata (although, for general expressions, they are not comparable), are the follow and
the partial derivatives methods. In this paper, we propose another method to obtain a
λ-free automaton from a regular expression. The number of states of the automata we
obtain is bounded above by the size of both the partial derivatives automaton and of
the follow automaton. Our algorithm also runs with the same time complexity of these
methods.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

One of the problems that have been studied in automata theory is the development of algorithms to construct automata
that represent regular expressions. The solution to this problempermits the efficient implementation of useful tools in fields
like text processing. Recently, programming languages such as Perl, Python, Java, C♯ or PHP consider regular expressions as
an extra tool that helps to decrease the programming effort.

One of the first methods for this task was the Thompson automaton [12], which is an inductive tool that defines the
automata for the basic regular expressions together with rules to construct the automata for the different operations
involved in a regular expression α. The cost of this construction is linear in the number of symbols and operators involved
in α, which will be denoted |α|, whereas in what follows, ‖α‖ will denote just the number of symbols.

The position automaton was proposed independently by Glushkov [9] and McNaughton and Yamada [10]. An intuitive
algorithm to construct it starts considering the linearized version α of a regular expression α, that is, one in which the
symbols are distinguished according to their position in α. The number of states of the automaton is the number of
occurrences of the symbols in α plus one (the initial state) and (ai, b, bj) is a transition of the automaton if bj is a successor of
ai in a word of L(α) and the symbol in the position j of α is b. Several methods have been proposed to obtain this automaton
with quadratic time complexity [13,8,4].

The partial derivatives automaton was proposed by Antimirov [1]. The concept of partial derivative can be seen as a
non-deterministic extension of the Brzozowski’s derivatives. The difference with the deterministic version arises when
the result of a derivative is a union of regular expressions. This union is changed by a set containing the expressions. The
construction of the automaton is very similar to Brzozowski’s construction. Antimirov proposes a O(|α|

2
‖α‖

3) algorithm to
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construct the partial derivatives automaton. Concerning this construction, it is shown in [6] that this automaton is a quotient
of the position automaton by a certain equivalence relation and that it can be constructed in O(|α|

2
||α‖) space and time

complexities. This method, aimed to improve the time complexity of the partial derivatives algorithm, is called the equation
automaton method and when it is applied to α obtains the same automaton as the partial derivatives method applied to α.
Champarnaud and Ziadi propose in [5] an improved algorithm that runs in O(|α|

2) space and time complexity.
The follow automaton, proposed by Ilie and Yu [11] is the quotient of the position automaton by the following equivalence

relation: two states are equivalent if they have the same successors (follow) and the same membership to the set of final
states. The algorithm they propose constructs an automaton in a similar way to the Thompson automaton, but with fewer
states and without λ-loops. This allows the authors to develop an algorithm to eliminate the λ-transitions that works in
O(|α|

2).
We note that all these methods have quadratic time complexity. Therefore, in order to compare all these approaches it

is important to take into account the size of the resulting automaton. Under this criterion, the best behavior is achieved by
the partial derivatives and the follow methods. In [7] the authors prove that, when a normal form version of the regular
expressions is considered, the partial derivatives method obtains automata with size bounded above by the size of the
follows automaton. This transformation into a normal form can be carried out in linear time. When general expressions are
considered, the size of the automata obtained from these methods cannot be compared.

In this paperwe propose a newmethod to construct a λ-free automaton from a regular expressionwhose size is bounded
above by the size of both the partial derivatives and of the follow automaton. Our method runs also with quadratic time
complexity with respect to the size of the regular expression.

2. Definitions and notation

Let A be a finite alphabet and A∗ the free monoid generated by A with concatenation as the binary operation and λ as
neutral element. A language L is any subset of A∗, the elements x ∈ A∗ are called words.

For any given language L over A∗ and a word u ∈ A∗, the left quotient of L by u is defined as u−1L = {v ∈ A∗
: uv ∈ L}.

A regular expression can be recursively defined as follows:

1. ∅, λ and a ∈ A are regular expressions.
2. If α and β are regular expressions then α + β , α · β , α∗ and (α) are also regular expressions.
3. All regular expressions can be obtained by applying the rules 1 and 2 finitely many times.

The regular language denoted by a regular expression α is L(α). Then L((α)) = L(α), L(∅) = ∅, L(λ) = {λ}, L(a) = {a}
for a ∈ A, L(α + β) = L(α) ∪ L(β), L(α · β) = L(α) · L(β) and L(α∗) = L(α)∗. The alphabet of a regular expression α will
be denoted with Aα . We define Λ(α) = {λ} ∩ L(α). Derivatives and left quotients are denoted in the same way. This should
not lead to confusion as L(u−1α) = u−1L(α).

The linearized expression of a regular expression α, denoted by α, is obtained by marking each letter with a subindex
denoting its position in α. Thus, if the set of positions of α is pos(α) = {1, 2, . . . , ‖α‖} and pos0(α) = pos(α) ∪ {0}, then Aα

is the alphabet of symbols ai such that there is an a in position i of the regular expression α.
A finite automaton (NFA) is a 5-tuple A = (Q , A, δ, q0, F), where Q is a finite set of states, A is an alphabet, q0 ∈ Q is

the initial state, F ⊆ Q is the set of final states and δ : Q × (A ∪ {λ}) → 2Q is the transition function, which will also
be seen as δ ⊆ Q × (A ∪ {λ}) × Q . Given an automaton A and a state q ∈ Q , we denote the right language of q in A as
RA
q = {x ∈ A∗

: δ(q, x) ∩ F = ∅}.
If an automaton has no empty transitions and for every state q and every symbol a, the number of transitions δ(q, a) is

at most one, it is called deterministic (DFA).
Given a NFA A and any two states p q, the equivalence relation ≡R defined as p ≡R q if and only if RA

p = RA
q . This relation

defines a partial reduction of A. When a DFA is considered, this equivalence relation produces the minimal DFA.
Given two equivalence relations E1 and E2, the join relation, denoted with E1 ∨ E2, is defined as the smallest equivalence

relation that contains E1 and E2, that is, E1 ∨ E2 is the transitive closure of the relation E1 ∪ E2. Finally, we say that E1 refines
E2 (denoted E1 ≼ E2) when p ≡E1 q implies that p ≡E2 q.

3. Position, follow and partial derivatives automaton

In this section we summarize the most relevant previous results on this matter. We also recall a previous method by
Champarnaud and Ziadi [5] that runs with quadratic time complexity.

The position automaton of a regular expression α, which we will denote Apos(α), was introduced independently by
Glushkov [9] and McNaughton and Yamada [10]. This construction, for a given a regular expression α, for u, w ∈ A∗

α and
i ∈ pos(α), uses the following mappings:

• first(α) = {i : aiw ∈ L(α)}.
• last(α) = {i : wai ∈ L(α)}.
• follow(α, i) = {j : uaiajw ∈ L(α)}.
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Fig. 1. C-continuation automaton for α = (a + b)(a∗
+ ba∗

+ b∗)∗ .

Berstel and Pin [3] related this construction to the concept of local languages. They established that the position
automaton could be obtained from a standard local automaton for α, applying a strictly alphabetical morphism h : A∗

α → A∗
α

that erases the subindexes in α. Clearly h(α) = α.
Although they were not concerned on the development of efficient algorithms, Berstel and Pin [3], and also Berry and

Sethi [2] in an implicit way, have proved that α defines a local language for any regular expression α.
The partial derivatives automaton of an expression α, denoted Apd(α) in the following, was introduced by Antimirov [1].

Champarnaud and Ziadi propose in [5] an efficient method to build the position and the partial derivatives automaton. Their
method is based in the notion of c-continuations of a linear regular expression. Intuitively, for any linear regular expression
α, the computation of ca(α) traverses the regular expression, and searches for a non-empty derivative with respect to any
word whose last symbol is a. Note that, given any linear regular expression α, the c-continuation of α with respect to a
returns an expression of all the (non-null) derivatives with respect to (ua), no matter which u ∈ A∗

α is considered.
The c-continuations allows the definition of the c-continuation automaton Ac(α) = (Q , Aα, δ, q0, F), where:

• Q = {(ai, cai(α)), where ai is the symbol in the i-th position in α or λ and cai(α) is the c-continuation of α with respect
to the symbol whose position is i.

• q0 = (λ, α)
• F = {(ai, cai(α)) : Λ(cai(α)) ≠ ∅}

• δ((ai, cai(α)), b) = {(bj, cbj(α)) : h(bj) = b ∧ j ∈ follow(α, i)}.

The c-continuation automaton by Champarnaud and Ziadi provides an efficient way to obtain the partial derivatives
automaton. Briefly, given a regular expression α, the method considers equivalent those states p = (ai, cai(α)) and
q = (bj, cbj(α)) (i.e. p ≡pd q) such that h(cai(α)) = h(cbj(α)), with h : A∗

α → A∗
α where h(ai) = a. In other words,

those states whose c-continuation are identical when the subindexes are erased.
The authors propose a quadratic algorithm to obtain the c-continuation automaton. This algorithm allows them to obtain

(also with quadratic time complexity) both the position and the partial derivatives automata for a given regular expression.
An example of the c-continuation automaton for a regular expression α is shown in Fig. 1. The depicted automaton is the

position automaton for α. Example 1 illustrates the process to obtain the partial derivatives automaton.

Example 1. Let α = (a + b)(a∗
+ ba∗

+ b∗)∗. The linearized expression is α = (a1 + b2)(a∗

3 + b4a∗

5 + b∗

6)
∗. The partial

derivatives automaton can be obtained from the c-continuation automaton shown in Fig. 1.
Note that the states (a1, (a∗

3+b4a∗

5+b∗

6)
∗) and (b2, (a∗

3+b4a∗

5+b∗

6)
∗) aremerged. The resulting state is identifiedwith the

state q1 in Fig. 2. In the sameway, the states (a3, a∗

3(a
∗

3 +b4a∗

5 +b∗

6)
∗), (b4, a∗

5(a
∗

3 +b4a∗

5 +b∗

6)
∗) and (a5, a∗

5(a
∗

3 +b4a∗

5 +b∗

6)
∗)

are also merged (state q2 in Fig. 2). The state (b6, b∗

6(a
∗

3 + b4a∗

5 + b∗

6)
∗) of the c-continuation automaton is not merged with

anyone and is denoted with q3 in the partial derivatives automaton.

Proposition 2 (Champarnaud and Ziadi [6]). Apos(α)/ ≡pd= L(α).

Proof. The proof is based in the fact that ≡pd≼≡R. �

In [11], Ilie and Yu propose a new algorithm to construct NFAs from regular expressions named follow automaton. The
authors propose a constructive algorithm, and also prove that the follow automaton is a quotient of the position automaton
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Fig. 2. Apd(α) for α = (a + b)(a∗
+ ba∗

+ b∗)∗ .

Fig. 3. Follow automaton for α = (a + b)(a∗
+ ba∗

+ b∗)∗ . The equivalence classes are inside the states.

by the equivalence relation ≡f defined as:

ai ≡f aj ⇔


ai ∈ last(α) ↔ aj ∈ last(α) and
follow(α, i) = follow(α, j).

That is, given aNFAA = (Q , Σ, δ, q0, F), for any pair of states p and q, p ≡f q if and only if∀a ∈ Σ , δ(p, a) = δ(q, a)∧(p ∈

F ⇔ q ∈ F). Thus, it is easy to see that ≡f ≼≡R. Proposition 3 follows from this fact.

Proposition 3 (Ilie and Yu [11]). L(Apos(α)/ ≡f ) = L(α).

We note here that the quotient automaton Apos(α)/ ≡f (i.e. the follow automaton) can also be computed efficiently
using the c-continuation automaton.

Example 4. Let us consider the position automaton shown in Fig. 1. We identify three equivalence classes of the follow
relation: {λ}, {a1, b2, a3, b6} and {b4, a5} (for the sake of brevity, we do not show the second component of the states). The
quotient of the position automaton by the relation ≡f is depicted in Fig. 3.

4. A newmethod to obtain λ-free NFAs from regular expressions

In this section wewill describe a newmethod that obtains finite automata from regular expressions. It uses the concepts
of follow [11] and equation automata [6]. The size of these automata for a given regular expression are upper bounds of the
size of the automaton obtained by the method we propose below.

Let us define ≡∨ as the join of the relations ≡pd and ≡f .

Proposition 5. L(Apos(α)/ ≡∨) = L(α).

Proof. To prove the proposition it will be enough to prove that ≡∨≼≡R.
Given any pair of states p and q of Apos(α), if p ≡∨ q, then two cases arise:

1. if p ≡f q or p ≡pd q, then p ≡R q,
2. if p ≢f q and p ≢pd q, then there exists r such that p ≡f r and r ≡pd q. Due to the fact that, ≡f ≼≡R and ≡pd≼≡R, it

follows that RApos
r = RApos

p and RApos
r = RApos

q , therefore, RApos
p = RApos

p and p ≡R q. �

Proposition 6. The size of the automaton Apos/ ≡R is bounded above by the size of Apos/ ≡f and Apos/ ≡pd.

Proof. Note that it follows from the fact that ≡∨ is coarser than both ≡pd and ≡f . �

Algorithm4.1 showshow the newautomaton can be obtained. This algorithm firstmerges the states of the c-continuation
automaton that are equivalent under the follow relation. In this merging step the algorithm does not discard the different
c-continuations of the merged states. This provides, for each state q in the resulting automaton , several expressions for the
same language. The second step uses the morphism that erases the subindexes of the expression in each state. Those states
that have in common a regular expression (i.e. their right languages are the same) are also merged.

Example 7. Let us consider the regular expression (a + b)(a∗
+ ba∗

+ b∗)∗. Fig. 1 shows the c-continuation automaton for
α. The quotient of this automaton by the relation ≡f is shown in Fig. 4.

Note that h(a∗

3(a
∗

3 + b4a∗

5 + b∗

6)
∗) = h(a∗

5(a
∗

3 + b4a∗

5 + b∗

6)
∗). Thus, the resulting automaton is shown in Fig. 5.
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Algorithm 4.1 Algorithm to obtain small NFA for any given regular expression.
Input: A regular expression α.

Output: A non-deterministic automaton A such that L(A) = L(α) .

Method:
Obtain the c-continuation automaton Ac(α)
Compute the relation ≡f
Obtain Ac(α)/ ≡f .

(* The c-continuations of the merged states are not discarded *)
Erase the subindexes to each c-continuation
Merge those states which have at least one expression in common
Return the resulting automaton

EndMethod:

Fig. 4. Quotient automata Ac(α)/ ≡f , for the expression (a + b)(a∗
+ ba∗

+ b∗)∗ . First step performed by our algorithm.

Fig. 5. Automaton for α = (a + b)(a∗
+ ba∗

+ b∗)∗ with our method.

Our algorithm can take profit from the result in [5] to achieve also quadratic complexity with respect to the size of the
regular expression. Note that computing the relation ≡f as well as obtaining the quotient automaton does not increase the
quadratic complexity. The c-continuations are not discarded in the first step, therefore the quotient automaton has, at most,
the same number of c-continuations than the c-continuation automaton, and thus it is possible to check which states to
merge without increasing the complexity.

4.1. Relations between approaches

As mentioned, for any given regular expression, the follow and partial derivatives methods are not comparable with
respect to the size of the output automata. In [11] Ilie and Yu state the difficulty of such a study and propose an empirical
study using real-life applications.

In [7] the authors tackle this comparative task, and they prove that, whenever the regular expression is normalized, then
the partial derivatives automaton is a quotient of the follow automaton.

For any given regular expression α, it is said that α is a normalized expression if it is reduced and it is in Star Normal Form
(SNF) [4]. A expression is reduced if it contains neither ∅ nor unnecessary λ and it has no nested star operators. For any
expression, it is possible to use the syntactic tree of it to obtain a reduced version in linear time.

We refer the interested reader to [4] for more details on the algorithm to obtain the SNF version of any given regular
expression. We only note that: first, this computation can be done in linear time; and second, a regular expression α is said
to be in SNF if and only if, for every subexpression β∗ of α the next condition holds:

∀i ∈ last(β), follow(β, i) ∩ first(β) = ∅.

Proposition 8 (Champarnaud et al. [7]). When normalized expressions are considered, ≡f ≼≡pd.

Proposition 9. When normalized expressions are considered. The size of Apos/ ≡∨ is equal to the size of Apd.

Proof. By Proposition 8 and the definition of ≡∨. �
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When normalized expressions are considered, our algorithm returns the same automaton output by the partial
derivatives method. Note that this is easy to prove because our approach applies the follow and partial derivatives
equivalence relations.

It isworth to be noted that,when anormalized regular expression is considered, there is no difference between the output
obtained by ours and the partial derivatives methods. We also note that, normalized expressions does not offer always an
advantage. The following example illustrates this fact.

Example 10. Let us consider the regular expression of Example 1. The normalized version of this expression is αn =

(a + b)(a + ba∗
+ b)∗. Both the follow and partial derivatives methods output the automata shown in Fig. 4 when they

run with the normalized expression as input. We recall that the partial derivatives method output a four-states automaton
when the non-normalized version of α is used.

Algorithm 4.1 returns the same automaton when the normalized version of α is used. Nevertheless, as shown in
Example 7, it is possible to obtain a smaller automaton using the original expression.

5. Conclusions

Although the time complexity of both the follow automaton and the equation automaton (partial derivatives) method
is the same, taking into account general expressions, the size of the automata they obtain cannot be compared. When
normalized expressions are considered, the size of the automata output by the partial derivatives method is upper bounded
by the size of the follows automaton.

In this paper we propose a new method to construct automata from regular expressions. The algorithm runs also with
quadratic time complexity and assures that the size of the automata obtained is upper bounded by the size of the smallest
automata obtained by the previous methods.
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