Cycles through 4 vertices in 3-connected graphs

Xuezheng Lv ${ }^{\mathrm{a}, *}$, Chengdong Yi ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Department of Mathematics, Renmin University of China, Beijing 100872, China
${ }^{\mathrm{b}}$ School of Management Science and Engineering, Central University of Finance and Economics, Beijing, 100081, China

Received 3 November 2004; received in revised form 14 December 2007; accepted 17 December 2007
Available online 5 February 2008

Abstract

S.C. Locke proposed a question: If G is a 3-connected graph with minimum degree d and X is a set of 4 vertices on a cycle in G, must G have a cycle through X with length at least $\min \{2 d,|V(G)|\}$? In this paper, we answer this question. (C) 2008 Elsevier B.V. All rights reserved.

Keywords: Cycles; 3-Connected graphs; Prescribed vertex set

1. Introduction

All graphs considered here are finite, undirected, and without loops or multiple edges. Dirac has given two wellknown results about cycles. One [3] says that a k-connected graph has a cycle through any given k vertices in the graph. The other [4] is that if G is a 2-connected graph with minimum degree d, then G contains a cycle with length at least $\min \{2 d,|V(G)|\}$. Starting with the two results, many researchers have considered long cycles through a prescribed vertex set or a prescribed edge set. Egawa et al. [5] proved that if G is a k-connected graph with minimum degree d and X is a set of k vertices in G, then G has a cycle through X with length at least $\min \{2 d,|V(G)|\}$. Locke and Zhang [6] proved that if G is a 2-connected graph with minimum degree d and X is a set of 3 vertices on a cycle in G, then G has a cycle through X with length at least $\min \{2 d,|V(G)|\}$.

We prove Theorem 1 which gives the answer to the following question proposed by S.C. Locke in [7].
Question. If G is a 3 -connected graph with minimum degree d and X is a set of 4 vertices on a cycle in G, must G have a cycle through X with length at least $\min \{2 d,|V(G)|\}$?

Theorem 1. Let G be a 3-connected graph with minimum degree d and X be a set of 4 vertices on a cycle in G, then G contains a cycle through X with length at least $\min \{2 d,|V(G)|\}$.

[^0]
2. Some lemmas and results

Let G be a 3-connected graph with minimum degree d and X be a set of 4 vertices on a cycle in G. For any two vertices $u, v \in V(G)$ and an integer k, a $(u, v ; k)$-path denotes a path connecting u and v with length at least k. For a path P in G, we denote by $|P|$ the number of vertices that P contains. Suppose C is a longest cycle through X and $R=G-C$. When we consider a cycle, we always consider its orientation. Let C^{+}be an orientation of C and C^{-}be its reverse orientation. Let $C^{+}=c_{1} c_{2} \cdots c_{m} c_{1} . C^{+}\left[c_{i}, c_{j}\right]$ and $C^{-}\left[c_{i}, c_{j}\right]$ denote the segments of C with $C^{+}\left[c_{i}, c_{j}\right]=c_{i} c_{i+1} \cdots c_{j-1} c_{j}$ and $C^{-}\left[c_{i}, c_{j}\right]=c_{i} c_{i-1} \cdots c_{j+1} c_{j}$, respectively. Denote by $\left|C^{+}\left[c_{i}, c_{j}\right]\right|$ the number of vertices that $C^{+}\left[c_{i}, c_{j}\right]$ contains, and $\left|C^{-}\left[c_{i}, c_{j}\right]\right|$ is similarly defined. Also, let $C^{+}\left[c_{i}, c_{j}\right)$ be the segment $C^{+}\left[c_{i}, c_{j}\right]-c_{j}$. Analogously, $C^{+}\left(c_{i}, c_{j}\right], C^{+}\left(c_{i}, c_{j}\right), C^{-}\left[c_{i}, c_{j}\right), C^{-}\left(c_{i}, c_{j}\right], C^{-}\left(c_{i}, c_{j}\right)$ are also defined. We also denote $c_{i}^{+}=c_{i+1}, c_{i}^{-}=c_{i-1}, c_{i}^{++}=c_{i+2}, c_{i}^{--}=c_{i-2}$.

For a component H of R, let $W(H)=N_{C}(H)$, and label the vertices of $W(H)$ along C^{+}as $u_{1}, u_{2}, \ldots, u_{r}$. Let

$$
W_{2}(H)=\left\{u_{i} \in W(H):\left|N_{H}\left(\left\{u_{i}, u_{i+1}\right\}\right)\right| \geq 2\right\} \quad \text { and } \quad W_{1}(H)=W(H)-W_{2}(H) .
$$

Also let

$$
W_{2,0}(H)=\left\{u_{i} \in W_{2}(H): C\left(u_{i}, u_{i+1}\right) \cap X=\phi\right\} \quad \text { and } \quad W_{2,1}(H)=W_{2}(H)-W_{2,0}(H) .
$$

Denote $w(H)=|W(H)|$ and for an index $I, w_{I}(H)=\left|W_{I}(H)\right|$.
We use [1] for terminology and notation not defined here. Before proving the main result, we first give some lemmas.

Lemma 1 ([2]). Let B be a 2-connected graph on at least 4 vertices, x, y, z be 3 distinct vertices of B and $k>0$ an integer. Suppose that every vertex of B, except possibly x, y, z, has degree at least k, then there exist an $(x, y ; k)$-path, an $(x, z ; k)$-path and $a(y, z ; k)$-path in B.

Alternatively, if B is nonseparable on $|V(B)|=3$ vertices, then $B=K_{3}$ and there are an $(x, y ; 2)$-path, an ($x, z ; 2$)-path and $a(y, z ; 2)$-path in B.

Since C is a longest cycle through X, we can easily get the following lemma.
Lemma 2. Let $u, v \in W(H)$, then
(i) $W(H) \cap W(H)^{+}=\phi$;
(ii) There exists no path connecting u^{+}and v^{+}with all internal vertices in $R-H$;
(iii) There exists no path connecting u^{-}and v^{-}with all internal vertices in $R-H$;
(iv) Suppose that $\left|N_{H}(\{u, v\})\right| \geq 2$ and $v^{+} \notin X$, then there exists no path connecting u^{+}and v^{++}with all internal vertices in $R-H$;
(v) Suppose that $\left|N_{H}(\{u, v\})\right| \geq 2$ and $v^{-} \notin X$, then there exists no path connecting u^{-}and v^{--}with all internal vertices in $R-H$.

Theorem 2. Let G be a 3-connected graph with minimum degree d and X be a set of 4 vertices on a cycle in G. Suppose C is a longest cycle through X, if there exists a component H of $R=G-C$ such that $1 \leq|V(H)| \leq 3$, then $|V(C)| \geq 2 d$.

Proof. Suppose $C^{+}=c_{1} c_{2} \cdots c_{m} c_{1}$, we may assume $m<2 d$. Then by Lemma 2 (i), $w(H)<d$. Hence $\left|V\left(H^{\prime}\right)\right| \geq 2$ for any component H^{\prime} of R. So $2 \leq|V(H)| \leq 3$. Since G is 3 -connected, $w(H) \geq 3$ and so $d \geq 4$. Suppose $W(H)=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ that are arranged along C^{+}, and let $u_{r+1}=u_{1}$. For $i \neq j$, denote by $P_{H}\left(u_{i}, u_{j}\right)$ a longest path joining u_{i}, u_{j} with all internal vertices in H. First we prove the following claim.
Claim 1. Suppose that $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right|=\left|C^{+}\left(u_{j}, u_{j+1}\right)\right|=1, X \cap C^{+}\left(u_{k}, u_{k+1}\right)=\phi(i<j<k \leq r), H_{1}$ and H_{2} are components of R such that $N_{H_{1}}\left(u_{i}^{+}\right) \neq \phi$ and $N_{H_{2}}\left(u_{j}^{+}\right) \neq \phi$. Then
(i) $u_{j+1} \notin W\left(H_{1}\right)$ or $u_{i} \notin W\left(H_{2}\right)$;
(ii) If $\left|C^{+}\left(u_{k}, u_{k+1}\right)\right|<\left|P_{H}\left(u_{j+1}, u_{i}\right)\right|$, then $u_{k} \notin W\left(H_{1}\right)$ or $u_{k+1} \notin W\left(H_{2}\right)$;
(iii) If $\left|C^{+}\left(u_{k}, u_{k+1}\right)\right|<\left|P_{H}\left(u_{k+1}, u_{i+1}\right)\right|-1$, then $u_{k} \notin W\left(H_{1}\right)$; If $\left|C^{+}\left(u_{k}, u_{k+1}\right)\right|<\left|P_{H}\left(u_{k}, u_{i}\right)\right|-1$, then $u_{k+1} \notin W\left(H_{1}\right)$.

Proof. (i) Suppose $u_{j+1} \in W\left(H_{1}\right)$ and $u_{i} \in W\left(H_{2}\right)$, then there is a path $P_{H_{1}}\left(u_{i}^{+}, u_{j+1}\right)$ joining u_{i}^{+}, u_{j+1} with all internal vertices in H_{1} and a path $P_{H_{2}}\left(u_{i}, u_{j}^{+}\right)$with all internal vertices in H_{2}. Hence

$$
u_{i}^{+} P_{H_{1}}\left(u_{i}^{+}, u_{j+1}\right) C^{+}\left(u_{j+1}, u_{i}\right) P_{H_{2}}\left(u_{i}, u_{j}^{+}\right) C^{-}\left(u_{j}^{+}, u_{i}^{+}\right)
$$

is a cycle through X longer than C, a contradiction.
(ii) Suppose $u_{k} \in W\left(H_{1}\right)$ and $u_{k+1} \in W\left(H_{2}\right)$, then there is a path $P_{H_{1}}\left(u_{i}^{+}, u_{k}\right)$ joining u_{i}^{+}, u_{k} with all internal vertices in H_{1} and a path $P_{H_{2}}\left(u_{j}^{+}, u_{k+1}\right)$ with all internal vertices in H_{2}. Hence

$$
u_{i}^{+} P_{H_{1}}\left(u_{i}^{+}, u_{k}\right) C^{-}\left(u_{k}, u_{j+1}\right) P_{H}\left(u_{j+1}, u_{i}\right) C^{-}\left(u_{i}, u_{k+1}\right) P_{H_{2}}\left(u_{k+1}, u_{j}^{+}\right) C^{-}\left(u_{j}^{+}, u_{i}^{+}\right)
$$

is a cycle through X longer than C since $\left|C^{+}\left(u_{k}, u_{k+1}\right)\right|<\left|P_{H}\left(u_{j+1}, u_{i}\right)\right|$, a contradiction.
(iii) If $u_{k} \in W\left(H_{1}\right)$, there is a path $P_{H_{1}}\left(u_{k}, u_{i}^{+}\right)$joining u_{k}, u_{i}^{+}with all internal vertices in H_{1}. Hence

$$
u_{k} P_{H_{1}}\left(u_{k}, u_{i}^{+}\right) C^{-}\left(u_{i}^{+}, u_{k+1}\right) P_{H}\left(u_{k+1}, u_{i+1}\right) C^{+}\left(u_{i+1}, u_{k}\right)
$$

is a cycle through X longer than C since $\left|C^{+}\left(u_{k}, u_{k+1}\right)\right|<\left|P_{H}\left(u_{k+1}, u_{i+1}\right)\right|-1$, a contradiction. Similarly if $\left|C^{+}\left[u_{k}, u_{k+1}\right]\right|<\left|P_{H}\left(u_{k}, u_{i}\right)\right|-1$, then $u_{k+1} \notin W\left(H_{1}\right)$.

We divide the proof into two cases.
Case 1. $H=K_{2}$ or $H=K_{3}^{-}$.
Then there exist $u, v \in V(H)$ with $\left|N_{H}(u)\right|=\left|N_{H}(v)\right|=1$. Since $\delta(G) \geq d,\left|N_{C}(u)\right| \geq d-1$ and $\left|N_{C}(v)\right| \geq d-1$. Obviously we must have $\left|N_{C}(u)\right|=\left|N_{C}(v)\right|=r=d-1$ and $N_{C}(u)=N_{C}(v)=W(H)$, and then $W_{2}(H)=W(H)$. Since $w_{2}(H)=d-1$, and $|X|=4$, then $w_{2,0}(H) \geq d-5$. And if $u_{i} \in W_{2,0}(H)$, $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right| \geq 2$ since C is a longest cycle through X. We first prove
Claim 2. 1 $\leq\left|C^{+}\left(u_{i}, u_{i+1}\right)\right| \leq 2$ for $1 \leq i \leq d-1$; and if $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right|=2$, then $\left|C^{+}\left(u_{j}, u_{j+1}\right)\right|=1$ for $j \neq i(1 \leq i, j \leq d-1)$.
Proof. If $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right| \geq 3$ for some i, then $m \geq 4+2(d-2)=2 d$, a contradiction. And if there exist $1 \leq i, j \leq d-1$ and $i \neq j$ such that $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right|=2$ and $\left|C^{+}\left(u_{j}, u_{j+1}\right)\right|=2$, then $m \geq 3 \times 2+2(d-3)=2 d$, also a contradiction.

Then by Claim 2, $w_{2,0}(H) \leq 1$ and hence $4 \leq d \leq 6$. For any $1 \leq i \leq r$, if $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right|=1$, we know that $C^{+}\left(u_{i}, u_{i+1}\right) \cap X \neq \phi$, say $x_{i} \in C^{+}\left(u_{i}, u_{i+1}\right)$. By Claim 2 and Lemma 2(ii) and (iii), $N_{C}\left(x_{i}\right) \subseteq W(H)$. Then since $N_{H}\left(x_{i}\right)=\phi$ and $w(H)=d-1$, there should exist a component H_{i} of R such that $N_{H_{i}}\left(x_{i}\right) \neq \phi$. And obviously $W\left(H_{i}\right) \subseteq\left\{x_{i}\right\} \cup W(H)-\left\{u_{i}, u_{i+1}\right\}$.

Without loss of generality, we may assume $\left|C^{+}\left(u_{1}, u_{2}\right)\right|=1$ and H_{1} is component of R such that $N_{H_{1}}\left(x_{1}\right) \neq \phi$, $W\left(H_{1}\right) \subseteq\left\{x_{1}\right\} \cup W(H)-\left\{u_{1}, u_{2}\right\}$. Then if $d=4$, we get $w\left(H_{1}\right) \leq 2$, a contradiction to that G is 3-connected. So we may assume $d=5$ or 6 . If $w_{2,0}(H)=0$, then $d \leq 5$ and hence $d=5$. By symmetry, we may assume $\left|C^{+}\left(u_{2}, u_{3}\right)\right|=1$. Suppose $x_{2} \in C^{+}\left(u_{2}, u_{3}\right) \cap X$ and H_{2} is a component of R such that $N_{H_{2}}\left(x_{2}\right) \neq \phi$. Then $W\left(H_{2}\right) \subseteq\left\{x_{2}\right\} \cup W(H)-\left\{u_{2}, u_{3}\right\}$. By Claim 1 (i), $u_{3} \notin W\left(H_{1}\right)$ or $u_{1} \notin W\left(H_{2}\right)$, and hence $w\left(H_{1}\right) \leq 2$ or $w\left(H_{2}\right) \leq 2$, a contradiction to that G is 3-connected. If $w_{2,0}(H)=1$, suppose $u_{i} \in W_{2,0}(H)(1 \leq i \leq r)$. Then by Claim 2, $\left|C^{+}\left(u_{i-2}, u_{i-1}\right)\right|=1$. Suppose $x^{\prime} \in X \cap C^{+}\left(u_{i-2}, u_{i-1}\right), H^{\prime}$ is a component of R such that $N_{H^{\prime}}\left(x^{\prime}\right) \neq \phi$ and then $W\left(H^{\prime}\right) \subseteq\left\{x^{\prime}\right\} \cup W(H)-\left\{u_{i-2}, u_{i-1}\right\}$. By Claim 1(iii), $u_{i}, u_{i+1} \notin W\left(H^{\prime}\right)$. That means $w\left(H^{\prime}\right) \leq 2$, a contradiction to that G is 3-connected.

From the proof of Case 1, we may assume that each component of R has at least 3 vertices.
Case 2. $H=K_{3}$.
Suppose $V(H)=\left\{y_{1}, y_{2}, y_{3}\right\}$, then it is easy to know that $d-2 \leq\left|N_{C}\left(y_{i}\right)\right| \leq d-1$ for $i=1,2$, 3. Hence $\left|N_{C}\left(y_{i}\right)-N_{C}\left(\left\{y_{j}, y_{k}\right\}\right)\right| \leq 1$ for any $1 \leq i, j, k \leq 3$. This implies $W(H)=W_{2}(H)$. Since $w_{2}(H)=r$, and $|X|=4$, then $w_{2,0}(H) \geq r-4$ and $w_{2,1}(H) \leq 4$. And if $u_{i} \in W_{2,0}(H),\left|C^{+}\left(u_{i}, u_{i+1}\right)\right| \geq 3$ since C is a longest cycle through X. Then if $w_{2,0}(H) \geq 2, m \geq 4 \times 2+2(r-2) \geq 2 d$. And if $r \geq 6$, we have $w_{2,0}(H) \geq 2$. We only need to prove the theorem when $w_{2,0}(H) \leq 1$ and $4 \leq d \leq 7$. We first prove
Claim 3. (i) $1 \leq\left|C^{+}\left(u_{i}, u_{i+1}\right)\right| \leq 4$ for $1 \leq i \leq r$ and if $r=d-1,1 \leq\left|C^{+}\left(u_{i}, u_{i+1}\right)\right| \leq 2$ for $1 \leq i \leq r$;
(ii) If $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right|=4$, then $\left|C^{+}\left(u_{j}, u_{j+1}\right)\right|=1$ for $j \neq i$;
(iii) If $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right|=3$, then $\left|C^{+}\left(u_{j}, u_{j+1}\right)\right| \leq 2$ for $j \neq i$; moreover, if $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right|=3$ and $\left|C^{+}\left(u_{j}, u_{j+1}\right)\right|=2$ for $j \neq i$, then $\left|C^{+}\left(u_{k}, u_{k+1}\right)\right|=1$ for $k \neq i, j$.

Proof. (i) If $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right| \geq 5$ for some $1 \leq i \leq r$, then $m \geq 6+2(r-1) \geq 2 d$, a contradiction. If $r=d-1$ and $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right| \geq 3$ for some $1 \leq i \leq r$, then $m \geq 4+2(d-2)=2 d$, a contradiction.
(ii) If there exist $1 \leq i, j \leq r$ and $i \neq j$ such that $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right|=4$ and $\left|C^{+}\left(u_{j}, u_{j+1}\right)\right| \geq 2$, then $m \geq 5+3+2(r-2) \geq 2 d$, a contradiction.
(iii) If there exist $1 \leq i, j \leq r$ and $i \neq j$ such that $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right|=3$ and $\left|C^{+}\left(u_{j}, u_{j+1}\right)\right| \geq 3$, then $m \geq 4 \times 2+2(r-2) \geq 2 d$, a contradiction. If $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right|=3$ and $\left|C^{+}\left(u_{j}, u_{j+1}\right)\right|=2$ for $1 \leq i \neq j \leq r$, then $m \geq 4+3+2(r-2) \geq 2 d-1$, so we must have $\left|C^{+}\left(u_{k}, u_{k+1}\right)\right|=1$ for $k \neq i, j$.

Then if $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right|=1(1 \leq i \leq r)$, say $x_{i} \in C^{+}\left(u_{i}, u_{i+1}\right) \cap X$, by Claim 3 and Lemma 2(ii)-(v), there exists a component H_{i} of R such that $N_{H_{i}}\left(x_{i}\right) \neq \phi$ and obviously $W\left(H_{i}\right) \subseteq\left\{x_{i}\right\} \cup W(H)-\left\{u_{i}, u_{i+1}\right\}$.
Subcase 2.1. $w_{2,0}(H)=1$.
Then by Claim 3(i), $r=d-2$ and hence $5 \leq d \leq 7$. By symmetry, we may assume $u_{1} \in W_{2,0}(H)$ and $\left|C^{+}\left(u_{2}, u_{3}\right)\right|=1$ by Claim 3(ii) or (iii). Suppose $x_{1} \in C^{+}\left(u_{2}, u_{3}\right) \cap X, H_{1}$ is a component of R such that $N_{H_{1}}\left(x_{1}\right) \neq \phi$. Then $W\left(H_{1}\right) \subseteq\left\{x_{1}\right\} \cup W(H)-\left\{u_{2}, u_{3}\right\}$. Since G is 3-connected, $3 \leq w\left(H_{1}\right) \leq w(H)-1$ and hence $r=w(H) \geq 4$. We may assume $d=6$ and $r=4$ or $d=7$ and $r=5$. Again by Claim 3(ii) or (iii), there exists another $u_{j}(j \neq 2)$ such that $\left|C^{+}\left(u_{j}, u_{j+1}\right)\right|=1$, say $x_{2} \in C^{+}\left(u_{j}, u_{j+1}\right)$. Suppose H_{2} is a component of R such that $N_{H_{2}}\left(x_{2}\right) \neq \phi$ and then $W\left(H_{2}\right) \subseteq\left\{x_{2}\right\} \cup W(H)-\left\{u_{j}, u_{j+1}\right\}$.

If $\left|C^{+}\left(u_{1}, u_{2}\right)\right|=3$, then by Claim 1(iii), $u_{1} \notin W\left(H_{1}\right)$ and $u_{1}, u_{2} \notin W\left(H_{2}\right)$. So if $d=6$ and $r=4$, we immediately get $w\left(H_{1}\right) \leq 2$, a contradiction to that G is 3 -connected. If $d=7$ and $r=5$, then by Claim 3 (iii), at least one of $\left|C^{+}\left(u_{3}, u_{4}\right)\right|=1$ and $\left|C^{+}\left(u_{4}, u_{5}\right)\right|=1$ holds. Without loss of generality, let $j=3$, then $W\left(H_{2}\right) \subseteq\left\{x_{2}\right\} \cup W(H)-\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. Thus we can get $w\left(H_{2}\right) \leq 2$, also a contradiction to that G is 3-connected.

If $\left|C^{+}\left(u_{1}, u_{2}\right)\right|=4$, then by Claim 3(ii), $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right|=1$ for $\forall i \neq 1$. If $d=6$ and $r=4$, let $j=3$, then by Claim 1(ii), $u_{1} \notin W\left(H_{1}\right)$ or $u_{2} \notin W\left(H_{2}\right)$. Thus we can get $w\left(H_{1}\right) \leq 2$ or $w\left(H_{2}\right) \leq 2$, a contradiction to that G is 3 -connected. If $d=7$ and $r=5$, suppose $x_{i-1} \in C^{+}\left(u_{i}, u_{i+1}\right) \cap X$ for $i=2,3,4,5$ where $u_{5+1}=u_{1}$, and H_{i-1} is the component of R such that $N_{H_{i-1}}\left(x_{i-1}\right) \neq \phi$. By Lemma 2, we know that $W\left(H_{i-1}\right) \subseteq\left\{x_{i-1}\right\} \cup W(H)-\left\{u_{i}, u_{i+1}\right\}$. And by Claim 1(ii), if $u_{1} \in W\left(H_{1}\right)$, then $u_{2} \notin W\left(H_{j}\right)$ for $j=2,3,4$. So if $u_{1} \in W\left(H_{1}\right)$, we should have $W\left(H_{2}\right)=\left\{x_{2}, u_{1}, u_{5}\right\}$ and $W\left(H_{3}\right)=\left\{x_{3}, u_{1}, u_{3}\right\}$ since G is 3-connected. But by Claim 1(i), $u_{5} \notin W\left(H_{2}\right)$ or $u_{3} \notin W\left(H_{3}\right)$, a contradiction. So we may assume $u_{1} \notin W\left(H_{1}\right)$, which means $W\left(H_{1}\right)=\left\{x_{1}, u_{4}, u_{5}\right\}$. And then by Claim 1(i), $u_{2} \notin W\left(H_{2}\right)$ and $u_{2} \notin W\left(H_{3}\right)$. Similarly we can get $W\left(H_{2}\right)=\left\{x_{2}, u_{1}, u_{5}\right\}$ and $W\left(H_{3}\right)=\left\{x_{3}, u_{1}, u_{3}\right\}$ and again by Claim 1 (i), $u_{5} \notin W\left(H_{2}\right)$ or $u_{3} \notin W\left(H_{3}\right)$, a contradiction.
Subcase 2.2. $w_{2,0}(H)=0$.
Then $3 \leq r=w(H)=w_{2,1}(H) \leq 4$.
Subcase 2.2.1. $r=3$. Then $d=4$ or 5 .
Claim 4. If $\left|C^{+}\left(u_{i}^{+}, u_{i+1}\right)\right| \leq 2$ and $C^{+}\left(u_{i}^{+}, u_{i+1}\right) \cap X=\phi$, then $u_{j}^{-} \notin N_{C}\left(u_{i}^{+}\right)$for any $j \neq i$.
Proof. If $u_{j}^{-} \in N_{C}\left(u_{i}^{+}\right)$for some $j \neq i$, then $u_{i}^{+} u_{j}^{-} C^{-}\left(u_{j}^{-}, u_{i+1}\right) P_{H}\left(u_{i+1}, u_{j}\right) C^{+}\left(u_{j}, u_{i}^{+}\right)$is a cycle through X and longer than C, a contradiction.

If $d=4$, or $d=5$ and $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right| \geq 3$ for some i, then by Claim 3(ii) or (iii), there exists u_{j} such that $\left|C^{+}\left(u_{j}, u_{j+1}\right)\right|=1$. Without loss of generality, assume $\left|C^{+}\left(u_{1}, u_{2}\right)\right|=1$, say $x_{1} \in X \cap C^{+}\left(u_{1}, u_{2}\right)$. Suppose H_{1} is a component of R such that $N_{H_{1}}\left(x_{1}\right) \neq \phi$ and then $W\left(H_{1}\right) \subseteq\left\{x_{1}\right\} \cup W(H)-\left\{u_{1}, u_{2}\right\}$, which implies $w\left(H_{1}\right) \leq 2$ since $w(H)=3$, a contradiction. So we may assume $d=5$ and $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right| \leq 2$ for each $1 \leq i \leq 3$. Since $w(H)=3$, there exists u_{i} such that $\left|C^{+}\left(u_{i}, u_{i+1}\right) \cap X\right|=1$. Without loss of generality, suppose $\left|C^{+}\left(u_{1}, u_{2}\right) \cap X\right|=1$ and $x_{1}=u_{1}^{+} \in X$. Then by Lemma 2 and Claim 4, $N_{C}\left(x_{1}\right) \subseteq W(H) \cup\left\{u_{1}^{++}\right\}$. Then there exists a component H_{1} of R such that $N_{H_{1}}\left(x_{1}\right) \neq \phi$, say $y_{1} \in N_{H_{1}}\left(x_{1}\right)$. By Lemma 2, we know that $W\left(H_{1}\right) \subseteq\left\{u_{2}, u_{3}, x_{1}\right\}$. Note that $\left|V\left(H_{1}\right)\right| \geq 3$, therefore $V\left(H_{1}\right)-\left\{y_{1}\right\} \neq \phi$. Since $x_{1}=u_{1}^{+} \in W\left(H_{1}\right),\left|C^{+}\left(x_{1}, u_{2}\right)\right| \leq 1$ and $C^{+}\left(x_{1}, u_{2}\right) \cap X=\phi$, it follows immediately that $u_{2} \notin N_{C}\left(H_{1}-\left\{y_{1}\right\}\right)$. Then if $N_{H_{1}}\left(x_{1}\right)=y_{1}$, we have $\left|N_{C}\left(H_{1}-\left\{y_{1}\right\}\right)\right| \leq 1$, a contradiction. Otherwise, if $\left|N_{H_{1}}\left(x_{1}\right)\right| \geq 2$, then $u_{2} \notin W\left(H_{1}\right)$. Thus we have $w\left(H_{1}\right) \leq 2$, a contradiction.
Subcase 2.2.2. $r=4$. Then $d=5$ or 6 .

If $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right| \geq 2$ for $1 \leq i \leq 4$, then $m \geq 3 r=12 \geq 2 d$, a contradiction. By symmetry, we may assume $\left|C^{+}\left(u_{1}, u_{2}\right)\right|=1$ and $x_{1} \in X \cap C^{+}\left(u_{1}, u_{2}\right)$. Suppose H_{1} is a component of R such that $N_{H_{1}}\left(x_{1}\right) \neq \phi$ and hence $W\left(H_{1}\right) \subseteq\left\{x_{1}\right\} \cup W(H)-\left\{u_{1}, u_{2}\right\}$. Since G is 3-connected, $W\left(H_{1}\right)=\left\{x_{1}, u_{3}, u_{4}\right\}$.

If $d=5$, or $d=6$ and $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right| \geq 3$ for some $i(2 \leq i \leq 4)$, then by Claim 3(ii) or (iii), there exists $u_{j}(2 \leq j \leq 4)$ such that $\left|C^{+}\left(u_{j}, u_{j+1}\right)\right|=1$, say $x_{2} \in X \cap C^{+}\left(u_{j}, u_{j+1}\right)$. Suppose H_{2} is a component of R such that $N_{H_{2}}\left(x_{2}\right) \neq \phi$ and then $W\left(H_{2}\right) \subseteq\left\{x_{2}\right\} \cup W(H)-\left\{u_{j}, u_{j+1}\right\}$. Since $u_{3}, u_{4} \in W\left(H_{1}\right)$, then by Claim 1(i), $u_{1} \notin W\left(H_{2}\right)$ if $j=2,3$ or $u_{2} \notin W\left(H_{2}\right)$ if $j=4$. In either case we have $w\left(H_{2}\right) \leq 2$, a contradiction. Hence we may assume $d=6$ and $\left|C^{+}\left(u_{i}, u_{i+1}\right)\right| \leq 2$ for each $i(2 \leq i \leq 4)$. Since $w(H)=4$ and $w_{2,0}(H)=0$, $\left|C^{+}\left(u_{i}, u_{i+1}\right) \cap X\right|=1$ for $2 \leq i \leq 4$. Without loss of generality, we may assume $x_{2}=u_{3}^{+} \in X$. By Lemma 2 and Claim 4, $N_{C}\left(x_{2}\right) \subseteq W(H) \cup\left\{u_{3}^{++}\right\}$. Then there exists a component H_{2} of R such that $N_{H_{2}}\left(x_{2}\right) \neq \phi$ and then $W\left(H_{2}\right) \subseteq\left\{x_{2}, u_{1}, u_{2}, u_{4}\right\}$. Since $W\left(H_{1}\right)=\left\{x_{1}, u_{3}, u_{4}\right\},\left|C^{+}\left(x_{2}, u_{4}\right)\right| \leq 1$ and $C^{+}\left(x_{2}, u_{4}\right) \cap X=\phi$, then by Lemma $2, u_{1}, u_{2} \notin W\left(H_{2}\right)$. That means $w\left(H_{2}\right) \leq 2$, a contradiction.

From the proof of Theorem 2, we know that the condition of $H=K_{2}$ or K_{3}^{-}can be replaced by that there are two vertices $y_{1}, y_{2} \in V(H)$ such that $\left|N_{H}\left(y_{1}\right)\right|=\left|N_{H}\left(y_{2}\right)\right|=1$. And the condition of $H=K_{3}$ can be replaced by that there are three vertices $y_{1}, y_{2}, y_{3} \in V(H)$ such that $\left|N_{H}\left(y_{i}\right)\right| \leq 2$ and there is a $\left(y_{i}, y_{j} ; 2\right)$-path in H for $1 \leq i \neq j \leq 3$.

3. Proof of Theorem 1

Let $C=c_{1} c_{2} \cdots c_{m} c_{1}$ be a longest cycle through $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ in G and assume $m \leq 2 d-1$. If there is a component H^{\prime} of R such that $\left|V\left(H^{\prime}\right)\right| \leq 3$ or H^{\prime} is separable and there are two end blocks of H^{\prime} with no more than 3 vertices, then Theorem 1 follows directly from Theorem 2 . Then if a component H^{\prime} of R is separable, we may assume at least one end block B of H^{\prime} with not less than 4 vertices and b is the unique cut vertex in B. And then we can get a new graph G^{\prime} by contracting $H-B$ to b and adding all the edges in $\left\{b u: u \in N_{C}(H-B)\right\}$. It is easy to see that G^{\prime} is 3-connected and C is still a longest cycle through X in G^{\prime} : If there exists a component H^{\prime} of R such that $w_{2,0}\left(H^{\prime}\right) \geq 2$. Choose $y \in V\left(H^{\prime}\right)$ such that $n(y)=\left|N_{C}(y)\right|=\max \left\{\left|N_{C}(x)\right|: x \in V\left(H^{\prime}\right)\right\}$. Then for any two vertices $y_{1}, y_{2} \in V\left(H^{\prime}\right)$, there is a $\left(y_{1}, y_{2} ; d-n(y)\right)$-path by Lemma 1 . Thus we have $m \geq 2(d-n(y)+2)+2(n(y)-2)=2 d$. From the above, we only need to prove Theorem 1 when every component H^{\prime} of R has at least 4 vertices, 2 -connected and $w_{2,0}\left(H^{\prime}\right) \leq 1$. Suppose H is a component of R such that $w_{2,0}(H) \geq w_{2,0}\left(H^{\prime}\right)$ for any component H^{\prime} of R and then $X \cap W(H)$ is as maximal as possible. Since G is 3 -connected and $|V(H)| \geq 4$, we can choose three disjoint edges $y_{1} v_{1}, y_{2} v_{2}$ and $y_{3} v_{3}$ in $E(H, C)$ where y_{1}, y_{2}, y_{3} are three distinct vertices in H, v_{1}, v_{2}, v_{3} are arranged along C^{+}. Suppose $y, y^{\prime} \in V(H)$ such that $n(y)=\left|N_{C}(y)\right|=\max \left\{\left|N_{C}(x)\right|: x \in V(H) \backslash\left\{y_{1}, y_{2}, y_{3}\right\}\right\}$ and $n\left(y^{\prime}\right)=$ $\max \left\{n(y), n\left(y_{1}\right)\right\}$. Then by Lemma 1, there exist a $\left(y_{i}, y_{j} ; d-n(y)\right)$-path $(1 \leq i \neq j \leq 3)$ and a $\left(y_{i}, y ; d-n\left(y^{\prime}\right)\right)$ path $(i=2,3)$ in H, denoted by $P\left(y_{i}, y_{j}\right)$ and $P\left(y_{i}, y\right)$ respectively. Suppose $A=N_{C}(y) \cap\left\{v_{1}, v_{2}, v_{3}\right\}$ and $a=|A|$.

We divide the proof of Theorem 1 into two parts according to $w_{2,0}(H)=0$ or 1 .
Part I. $w_{2,0}(H)=0$. Then $\left|\left\{v_{1}, v_{2}, v_{3}\right\} \cap X\right| \leq 1$.
Suppose $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ are arranged along C^{+}. If $X \cap W(H) \neq \phi$, we may choose v_{1}, v_{2}, v_{3} such that $\left\{v_{1}, v_{2}, v_{3}\right\} \cap X \neq \phi$, suppose $v_{1}=x_{1}$ by symmetry. And then $v_{2} \in C^{+}\left(x_{2}, x_{3}\right), v_{3} \in C^{+}\left(x_{3}, x_{4}\right)$. If $X \cap W(H)=\phi$, we may assume $v_{1} \in C^{+}\left(x_{1}, x_{2}\right), v_{2} \in C^{+}\left(x_{2}, x_{3}\right)$ and $v_{3} \in C^{+}\left(x_{3}, x_{4}\right)$ by symmetry. In either case, we have $\left\{x_{2}\right\}=C^{+}\left(v_{1}, v_{2}\right) \cap X,\left\{x_{3}\right\}=C^{+}\left(v_{2}, v_{3}\right) \cap X$ and $N_{C}(y) \cap C^{+}\left[x_{1}, x_{4}\right] \subseteq\left\{v_{1}, v_{2}, v_{3}\right\}$. Suppose $N_{C}(y) \cap C^{+}\left(x_{4}, x_{1}\right)=$ $\left\{w_{1}, w_{2}, \ldots, w_{q}\right\}$. We first prove:
Claim 1. $\left|N_{C}\left(x_{2}\right)\right|+\left|N_{C}\left(x_{3}\right)\right|<2 d$.
Proof. Suppose $C_{1}=C^{+}\left[v_{1}, x_{2}\right), C_{2}=C^{+}\left(x_{2}, v_{2}\right], C_{3}=C^{+}\left[v_{2}, x_{3}\right), C_{4}=C^{+}\left(x_{3}, v_{3}\right], C_{5}=C^{+}\left(v_{3}, x_{4}\right)$. If $v_{1} \neq x_{1}$, suppose $C_{6}=C^{+}\left[x_{4}, x_{1}\right], C_{7}=C^{+}\left(x_{1}, v_{1}\right)$. Otherwise suppose $C_{6}=C^{+}\left[x_{4}, x_{1}\right)$. Denote $c_{i}=\left|C_{i}\right|$. Note that $m=\sum_{i=1}^{f} c_{i}+1$ if $v_{1} \neq x_{1}$ and $m=\sum_{i=1}^{6} c_{i}+1$ if $v_{1}=x_{1}$.
(i) $x_{2} x_{3} \notin E(G)$.

If $x_{2} x_{3} \in E(G)$, we know that $x_{2} x_{3} C^{+}\left(x_{3}, v_{1}\right) y_{1} P\left(y_{1}, y_{2}\right) v_{2} C^{-}\left(v_{2}, x_{2}\right)$ and $x_{2} x_{3} C^{-}\left(x_{3}, v_{2}\right) y_{2} P\left(y_{2}, y_{3}\right)$ $v_{3} C^{+}\left(v_{3}, x_{2}\right)$ are two cycles through X. Thus we have $\left|C^{+}\left(v_{1}, x_{2}\right)\right|+\left|C^{+}\left(v_{2}, x_{3}\right)\right| \geq d-n(y)+1$ and $\left|C^{+}\left(x_{2}, v_{2}\right)\right|+\left|C^{+}\left(x_{3}, v_{3}\right)\right| \geq d-n(y)+1$. Then we have $m \geq 2 d$, a contradiction.
(ii) If $x_{2} v_{3}^{-} \in E(G)$, then $N_{C_{1}}\left(x_{3}\right)=\phi$; if $x_{3} v_{1}^{+} \in E(G)$, then $N_{C_{4}}\left(x_{2}\right)=\phi$.

If $x_{2} v_{3}^{-} \in E(G)$ and $s \in N_{C_{1}}\left(x_{3}\right)$, then $x_{2} v_{3}^{-} C^{-}\left(v_{3}^{-}, v_{2}\right) y_{2} P\left(y_{2}, y_{3}\right) v_{3} C^{+}\left(v_{3}, x_{2}\right)$ and $x_{3} s C^{-}\left(s, v_{3}\right) y_{3} P\left(y_{3}, y_{2}\right)$ $v_{2} C^{-}\left(v_{2}, x_{2}\right) v_{3}^{-} C^{-}\left(v_{3}^{-}, x_{3}\right)$ are two cycles through X. Thus we have $\left|C^{+}\left(x_{2}, v_{2}\right)\right| \geq d-n(y)+1$ and $\left|C^{+}\left(s, x_{2}\right)\right|+$ $\left|C^{+}\left(v_{2}, x_{3}\right)\right| \geq d-n(y)+1$, then we can get $m \geq 2 d$, a contradiction to $m<2 d$. By symmetry, we can prove if $x_{3} v_{1}^{+} \in E(G)$, then $N_{C_{4}}\left(x_{2}\right)=\phi$.
(iii) If $x_{2} v_{2}^{+} \in E(G)$, then $N_{C_{2}}\left(x_{3}\right)=\phi$; if $x_{3} v_{2}^{-} \in E(G)$, then $N_{C_{3}}\left(x_{2}\right)=\phi$.

If $x_{2} v_{2}^{+} \in E(G)$ and $s \in N_{C_{2}}\left(x_{3}\right)$, then $x_{2} v_{2}^{+} C^{+}\left(v_{2}^{+}, v_{1}\right) y_{1} P\left(y_{1}, y_{2}\right) v_{2} C^{-}\left(v_{2}, x_{2}\right)$ and $x_{3} s C^{+}\left(s, v_{2}\right) v_{2} y_{2} P\left(y_{2}, y_{3}\right)$ $v_{3} C^{+}\left(v_{3}, x_{2}\right) v_{2}^{+} C^{+}\left(v_{2}^{+}, x_{3}\right)$ are two cycles through X. Thus we have $\left|C^{+}\left(v_{1}, x_{2}\right)\right| \geq d-n(y)+1$ and $\left|C^{+}\left(x_{2}, s\right)\right|+$ $\left|C^{+}\left(x_{3}, v_{3}\right)\right| \geq d-n(y)+1$. So we can get $m \geq 2 d$, a contradiction. By symmetry, we can prove if $x_{3} v_{2}^{-} \in E(G)$, then $N_{C_{3}}\left(x_{2}\right)=\phi$.
(iv) If $x_{2} v_{3}^{+} \in E(G), N_{C_{5}}\left(x_{3}\right)=\phi$; if $v_{1} \neq x_{1}$ and $x_{3} v_{1}^{-} \in E(G), N_{C_{7}}\left(x_{2}\right)=\phi$.

If $x_{2} v_{3}^{+} \in E(G)$ and $s \in N_{C_{5}}\left(x_{3}\right)$, then $x_{2} v_{3}^{+} C^{+}\left(v_{3}^{+}, v_{1}\right) y_{1} P\left(y_{1}, y_{3}\right) v_{3} C^{-}\left(v_{3}, x_{2}\right)$ and $x_{3} s C^{+}\left(s, v_{2}\right) y_{2} P\left(y_{2}, y_{3}\right)$ $v_{3} C^{-}\left(v_{3}, x_{3}\right)$ are two cycles through X. Thus we have $\left|C^{+}\left(v_{1}, x_{2}\right)\right| \geq d-n(y)+1$ and $\left|C^{+}\left(v_{2}, x_{3}\right)\right|+\left|C^{+}\left(v_{3}, s\right)\right| \geq$ $d-n(y)+1$. So we can get $m \geq 2 d$, a contradiction. If $v_{1} \neq x_{1}$, we can prove if $x_{3} v_{1}^{-} \in E(G)$, then $N_{C_{7}}\left(x_{2}\right)=\phi$ by symmetry.
(v) $\left|N_{C_{1} \cup C_{4}}\left(x_{2}\right)\right|+\left|N_{C_{1} \cup C_{4}}\left(x_{3}\right)\right| \leq c_{1}+c_{4}+2$.

If there exist $s_{1} \in N_{C_{1}-\left\{v_{1}\right\}}\left(x_{2}\right)$ and $s_{2} \in C^{+}\left(s_{1}, x_{2}\right) \cap N_{C}\left(x_{3}\right)$, then $x_{2} s_{1} C^{+}\left(s_{1}, s_{2}\right) x_{3} C^{+}\left(x_{3}, v_{1}\right) y_{1} P\left(y_{1}, y_{2}\right) v_{2} C^{-}$ $\left(v_{2}, x_{2}\right)$ and $x_{2} s_{1} C^{-}\left(s_{1}, v_{3}\right) y_{3} P\left(y_{3}, y_{2}\right) v_{2} C^{+}\left(v_{2}, x_{3}\right) s_{2} C^{+}\left(s_{2}, x_{2}\right)$ are two cycles through X. Thus we have $\left|C^{+}\left(v_{1}, s_{1}\right)\right|+\left|C^{+}\left(s_{2}, x_{2}\right)\right|+\left|C^{+}\left(v_{2}, x_{3}\right)\right| \geq d-n(y)+1$ and $\left|C^{+}\left(s_{1}, s_{2}\right)\right|+\left|C^{+}\left(x_{2}, v_{2}\right)\right|+\left|C^{+}\left(x_{3}, v_{3}\right)\right| \geq d-n(y)+1$. Then $m \geq 2 d$, a contradiction. That means if $s \in N_{C_{1}-\left\{v_{1}\right\}}\left(x_{2}\right)$, then $N_{C}\left(x_{3}\right) \cap C^{+}\left(s, x_{2}\right)=\phi$. Suppose $N_{C_{1}}\left(x_{2}\right)=\left\{s_{1}, s_{2}, \ldots, s_{p}\right\}$ and they are arranged along C^{+}, then if $s_{1} \neq v_{1}, N_{C_{1}}\left(x_{3}\right) \subseteq C^{+}\left[v_{1}, s_{1}\right]$ and if $s_{1}=v_{1}$, $N_{C_{1}}\left(x_{3}\right) \subseteq C^{+}\left[v_{1}, s_{2}\right]$. Then we can get $\left|N_{C_{1}}\left(x_{2}\right)\right|+\left|N_{C_{1}}\left(x_{3}\right)\right| \leq p+c_{1}-(p-2)=c_{1}+2$ and the equality holds only if $x_{3} v_{1}^{+} \in E(G)$ and $N_{C_{1}}\left(x_{2}\right) \neq \phi$. By symmetry, we can prove $\left|N_{C_{4}}\left(x_{2}\right)\right|+N_{C_{4}}\left(x_{3}\right) \mid \leq c_{4}+2$ and the equality holds only if $x_{2} v_{3}^{-} \in E(G)$ and $N_{C_{4}}\left(x_{3}\right) \neq \phi$. Note the results of (ii), we know that $\left|N_{C_{1} \cup C_{4}}\left(x_{2}\right)\right|+\left|N_{C_{1} \cup C_{4}}\left(x_{3}\right)\right| \leq$ $c_{1}+c_{4}+2$.
(vi) $\left|N_{C_{2} \cup C_{3}}\left(x_{2}\right)\right|+\left|N_{C_{2} \cup C_{3}}\left(x_{3}\right)\right| \leq c_{2}+c_{3}$.

If there exist $s_{1} \in N_{C_{2}}\left(x_{3}\right)$ and $s_{2} \in C^{+}\left(s_{1}, v_{2}\right) \cap N_{C}\left(x_{2}\right)$, then $x_{3} s_{1} C^{+}\left(s_{1}, s_{2}\right) x_{2} C^{-}\left(x_{2}, v_{3}\right) y_{3} P\left(y_{3}, y_{2}\right) v_{2} C^{+}$ $\left(v_{2}, x_{3}\right)$ and $x_{3} s_{1} C^{-}\left(s_{1}, x_{2}\right) s_{2} C^{+}\left(s_{2}, v_{2}\right) y_{2} P\left(y_{2}, y_{1}\right) v_{1} C^{-}\left(v_{1}, x_{3}\right)$ are two cycles through X. Thus we have $\left|C^{+}\left(x_{2}, s_{1}\right)\right|+\left|C^{+}\left(s_{2}, v_{2}\right)\right|+\left|C^{+}\left(x_{3}, v_{3}\right)\right| \geq d-n(y)+1$ and $\left|C^{+}\left(v_{1}, x_{2}\right)\right|+\left|C^{+}\left(s_{1}, s_{2}\right)\right|+\left|C^{+}\left(v_{2}, x_{3}\right)\right| \geq d-n(y)+1$. Then $m \geq 2 d$, a contradiction. That means if $s \in N_{C_{2}}\left(x_{3}\right)$, then $N_{C}\left(x_{2}\right) \cap C^{+}\left(s, v_{2}\right)=\phi$. Then we can get $\left|N_{C_{2}-\left\{v_{2}\right\}}\left(x_{2}\right)\right|+\left|N_{C_{2}-\left\{v_{2}\right\}}\left(x_{3}\right)\right| \leq c_{2}$ and the equality holds only if $x_{3} v_{2}^{-} \in E(G)$. By symmetry, we can prove $\left|N_{C_{3}-\left\{v_{2}\right\}}\left(x_{2}\right)\right|+N_{C_{3}-\left\{v_{2}\right\}}\left(x_{3}\right) \mid \leq c_{3}$ and the equality holds only if $x_{2} v_{2}^{+} \in E(G)$. Note the results of (iii), we can get $\left|N_{C_{2} \cup C_{3}}\left(x_{2}\right)\right|+\left|N_{C_{2} \cup C_{3}}\left(x_{3}\right)\right| \leq c_{2}+c_{3}$.
(vii) $\left|N_{C_{5}}\left(x_{2}\right)\right|+\left|N_{C_{5}}\left(x_{3}\right)\right| \leq c_{5} ;\left|N_{C_{7}}\left(x_{2}\right)\right|+\left|N_{C_{7}}\left(x_{3}\right)\right| \leq c_{7}$ if $v_{1} \neq x_{1}$.

If there exist $s_{1} \in N_{C_{5}}\left(x_{3}\right)$ and $s_{2} \in C^{+}\left(s_{1}, x_{4}\right] \cap N_{C}\left(x_{2}\right)$, then $x_{3} s_{1} C^{+}\left(s_{1}, v_{2}\right) y_{2} P\left(y_{2}, y_{3}\right) v_{3} C^{-}\left(v_{3}, x_{3}\right)$ and $x_{3} s_{1} C^{-}\left(s_{1}, v_{3}\right) y_{3} P\left(y_{3}, y_{1}\right) v_{1} C^{-}\left(v_{1}, s_{2}\right) x_{2} C^{+}\left(x_{2}, x_{3}\right)$ are two cycles through X. Thus we have $\left|C^{+}\left(v_{2}, x_{3}\right)\right|+$ $\left|C^{+}\left(v_{3}, s_{1}\right)\right| \geq d-n(y)+1$ and $\left|C^{+}\left(v_{1}, x_{2}\right)\right|+\left|C^{+}\left(x_{3}, v_{3}\right)\right|+\left|C^{+}\left(s_{1}, s_{2}\right)\right| \geq d-n(y)+1$. Then $m \geq 2 d$, a contradiction. That means if $s \in N_{C_{5}}\left(x_{3}\right)$, then $N_{C}\left(x_{2}\right) \cap C^{+}\left(s, x_{4}\right]=\phi$. Then we can get $\left|N_{C_{5}}\left(x_{2}\right)\right|+\left|N_{C_{5}}\left(x_{3}\right)\right| \leq$ $p+c_{5}-(p-1)=c_{5}+1$ and the equality holds only if $x_{2} v_{3}^{+} \in E(G)$ and $N_{C_{5}}\left(x_{3}\right) \neq \phi$. Note the results of (iv), we have $\left|N_{C_{5}}\left(x_{2}\right)\right|+\left|N_{C_{5}}\left(x_{3}\right)\right| \leq c_{5}$. If $v_{1} \neq x_{1}$, we can prove $\left|N_{C_{7}}\left(x_{2}\right)\right|+N_{C_{7}}\left(x_{3}\right) \mid \leq c_{7}$ by symmetry.
(viii) If $v_{1}=x_{1}$, then $\left|N_{C_{6}}\left(x_{2}\right)\right|+\left|N_{C_{6}}\left(X_{3}\right)\right| \leq c_{6}-1$.

If $v_{1}=x_{1}$, then $q=0$, which means $n(y)=a$. If $x_{2} x_{4} \in E(G)$, then $x_{2} x_{4} C^{-}\left(x_{4}, v_{2}\right) y_{2} P\left(y_{2}, y_{1}\right) v_{1} C^{+}\left(v_{1}, x_{2}\right)$ and $x_{2} x_{4} C^{+}\left(x_{4}, v_{1}\right) y_{1} P\left(y_{1}, y_{3}\right) v_{3} C^{-}\left(v_{3}, x_{2}\right)$ are two cycles through X, thus $\left|C^{+}\left(x_{2}, v_{2}\right)\right|+\left|C^{+}\left(x_{4}, x_{1}\right)\right| \geq d-a+1$ and $\left|C^{+}\left(x_{1}, x_{2}\right)\right|+\left|C^{+}\left(v_{3}, x_{4}\right)\right| \geq d-a+1$. Then we can get $m \geq 2 d$, a contradiction. Similarly we can prove $x_{3} x_{4} \notin E(G)$.

If $s \in N_{C_{6}}\left(x_{3}\right)$, then $x_{3} s C^{-}\left(s, v_{3}\right) y_{3} P\left(y_{3}, y_{1}\right) v_{1} C^{+}\left(v_{1}, x_{3}\right)$ is a cycle through X, thus $\left|C^{+}\left(x_{3}, v_{3}\right)\right|+\left|C^{+}\left(s, x_{1}\right)\right| \geq$ $d-a+1$. Similarly if $t \in N_{C_{6}}\left(x_{2}\right)$, then $\left|C^{+}\left(x_{2}, v_{2}\right)\right|+\left|C^{+}\left(t, x_{1}\right)\right| \geq d-a+1$. If there exist vertices $s, s^{+} \in C^{+}\left(x_{4}, x_{1}\right)$ such that $x_{3} s, x_{3} s^{+} \in E(G)$, then $x_{3} s C^{-}\left(s, v_{3}\right) y_{3} P\left(y_{3}, y_{2}\right) v_{2} C^{-}\left(v_{2}, s^{+}\right) x_{3}$ is a cycle through X, thus $\left|C^{+}\left(v_{2}, x_{3}\right)\right|+\left|C^{+}\left(x_{3}, v_{3}\right)\right| \geq d-a+1$. Similarly if there exist vertices $t, t^{+} \in C^{+}\left(x_{4}, x_{1}\right)$ such that $x_{2} t, x_{2} t^{+} \in E(G)$, then $\left|C^{+}\left(v_{1}, x_{2}\right)\right|+\left|C^{+}\left(x_{2}, v_{2}\right)\right| \geq d-a+1$. Hence if there exist vertices $s, s^{+} \in C^{+}\left(x_{4}, x_{1}\right)$ such that $x_{3} s, x_{3} s^{+} \in E(G)$, then $N_{C_{6}}\left(x_{2}\right)=\phi$, thus $\left|N_{C_{6}}\left(x_{2}\right)\right|+\left|N_{C_{6}}\left(x_{3}\right)\right| \leq c_{6}-1$. Similarly if there exist vertices $t, t^{+} \in C^{+}\left(x_{4}, x_{1}\right)$ such that $x_{2} t, x_{2} t^{+} \in E(G)$, then $N_{C_{6}}\left(x_{3}\right)=\phi$, which also means $\left|N_{C_{6}}\left(x_{2}\right)\right|+\left|N_{C_{6}}\left(x_{3}\right)\right| \leq c_{6}-1$.

So we may assume there exist no such vertices. We know if $x_{2} x_{1}^{-} \in E(G),\left|C^{+}\left(x_{2}, v_{2}\right)\right| \geq d-a+1$. And then $N_{C_{6}}\left(x_{3}\right)=\phi$, thus $\left|N_{C_{6}}\left(x_{2}\right)\right|+\left|N_{C_{6}}\left(x_{3}\right)\right| \leq c_{6}-2$. Similarly if $x_{3} x_{1}^{-} \in E(G)$, then $\left|N_{C_{6}}\left(x_{2}\right)\right|+\left|N_{C_{6}}\left(x_{3}\right)\right| \leq c_{6}-2$. If $x_{2} x_{1}^{-}, x_{3} x_{1}^{-} \notin E(G)$, then $\left|N_{C_{6}}\left(x_{2}\right)\right| \leq \frac{\left|C^{+}\left(x_{4}, x_{1}\right)\right|}{2}$ and $\left|N_{C_{6}}\left(x_{3}\right)\right| \leq \frac{\left|C^{+}\left(x_{4}, x_{1}\right)\right|}{2}$, and hence $\left|N_{C_{6}}\left(x_{2}\right)\right|+\left|N_{C_{6}}\left(x_{3}\right)\right| \leq$ $\left|C^{+}\left(x_{4}, x_{1}\right)\right|=c_{6}-1$.
(ix) If $v_{1} \neq x_{1}$, then $\left|N_{C_{6} \cup C_{7}}\left(x_{2}\right)\right|+\left|N_{C_{6} \cup C_{7}}\left(x_{3}\right)\right| \leq c_{6}+c_{7}-1$.

Under this case, if $x_{2} x_{1} \in E(G)$, then $x_{2} x_{1} C^{-}\left(x_{1}, v_{2}\right) y_{2} P\left(y_{2}, y_{1}\right) v_{1} C^{+}\left(v_{1}, x_{2}\right)$ is a cycle through X. Thus $\left|C^{+}\left(x_{1}, v_{1}\right)\right|+\left|C^{+}\left(x_{2}, v_{2}\right)\right| \geq d-n(y)+1$. If $x_{2} x_{4} \in E(G)$, then $x_{2} x_{4} C^{+}\left(x_{4}, v_{1}\right) y_{1} P\left(y_{1}, y_{3}\right) v_{3} C^{-}\left(v_{3}, x_{2}\right)$ is a cycle through X. Thus $\left|C^{+}\left(v_{1}, x_{2}\right)\right|+\left|C^{+}\left(v_{3}, x_{4}\right)\right| \geq d-n(y)+1$. So $x_{2} x_{1} \notin E(G)$ or $x_{2} x_{4} \notin E(G)$. By symmetry, we can prove $x_{3} x_{1} \notin E(G)$ or $x_{3} x_{4} \notin E(G)$.

If $x_{2} x_{1} \in E(G)$, then $N_{C}\left(x_{3}\right) \cap C^{+}\left[x_{4}, x_{1}\right)=\phi$. Otherwise, suppose $x_{2} x_{1} \in E(G)$ and $s \in N_{C}\left(x_{3}\right) \cap C^{+}\left[x_{4}, x_{1}\right)$. Then if $q=0$ or $C^{+}\left(s, x_{1}\right) \cap N_{C}(y)=\phi$, then $x_{3} s C^{-}\left(s, v_{3}\right) y_{3} P\left(y_{3}, y_{1}\right) v_{1} C^{-}\left(v_{1}, x_{1}\right) x_{2} C^{+}\left(x_{2}, x_{3}\right)$ is a cycle through X, thus $\left|C^{+}\left(v_{1}, x_{2}\right)\right|+\left|C^{+}\left(x_{3}, v_{3}\right)\right|+\left|C^{+}\left(s, x_{1}\right)\right| \geq d-n(y)+1$; if $q \geq 1$ and $C^{+}\left(s, x_{1}\right) \cap N_{C}(y) \neq \phi$, choose a vertex $w_{j} \in C^{+}\left(s, x_{1}\right) \cap N_{C}(y)$ such that $C^{+}\left(s, w_{j}\right) \cap N_{C}(y)=\phi$. Then $x_{3} s C^{-}\left(s, v_{3}\right) y_{3} P\left(y_{3}, y\right) w_{j} C^{+}\left(w_{j}, x_{3}\right)$ is a cycle through X, thus $\left|C^{+}\left(x_{3}, v_{3}\right)\right|+\left|C^{+}\left(s, w_{j}\right)\right| \geq d-n\left(y^{\prime}\right)+1$. In either case, together with $\left|C^{+}\left(x_{1}, v_{1}\right)\right|+$ $\left|C^{+}\left(x_{2}, v_{2}\right)\right| \geq d-n(y)+1$, we can get a contradiction that $m \geq 2 d$. Similarly we can prove if $x_{3} x_{4} \in E(G)$, then $N_{C}\left(x_{2}\right) \cap C^{+}\left(x_{4}, x_{1}\right]=\phi$; if $x_{2} x_{4} \in E(G)$, then $N_{C}\left(x_{3}\right) \cap C^{+}\left(x_{4}, x_{1}\right]=\phi$; if $x_{3} x_{1} \in E(G)$, then $N_{C}\left(x_{2}\right) \cap C^{+}\left[x_{4}, x_{1}\right)=\phi$.

Similarly as in the proof of (viii), if there exist two vertices $t, t^{+} \in C^{+}\left(x_{4}, x_{1}\right) \cap N_{C}\left(x_{2}\right)$, then $\left|C^{+}\left(v_{1}, x_{2}\right)\right|+$ $\left|C^{+}\left(x_{2}, v_{2}\right)\right| \geq d-n(y)+1$. If $\left|N_{C}\left(x_{3}\right) \cap C^{+}\left(x_{4}, x_{1}\right)\right| \geq 2$, suppose $s, s^{\prime} \in N_{C}\left(x_{3}\right) \cap C^{+}\left(x_{4}, x_{1}\right)$ and $s^{\prime} \in C^{+}\left(s, x_{1}\right)$. Then if $q=0$ or $C^{+}\left(s, s^{\prime}\right) \cap N_{C}(y)=\phi, x_{3} s^{\prime} C^{+}\left(s^{\prime}, v_{2}\right) y_{2} P\left(y_{2}, y_{3}\right) v_{3} C^{+}\left(v_{3}, s\right) x_{3}$ is a cycle through X, thus $\left|C^{+}\left(v_{2}, x_{3}\right)\right|+\left|C^{+}\left(x_{3}, v_{3}\right)\right|+\left|C^{+}\left(s, s^{\prime}\right)\right| \geq d-n(y)+1$. If $C^{+}\left(s, s^{\prime}\right) \cap N_{C}(y) \neq \phi$, choose a vertex $w_{j} \in C^{+}\left(s, s^{\prime}\right) \cap N_{C}(y)$ such that $C^{+}\left(s, w_{j}\right) \cap N_{C}(y)=\phi$. Then $x_{3} s C^{-}\left(s, v_{3}\right) y_{3} P\left(y_{3}, y\right) w_{j} C^{+}\left(w_{j}, x_{3}\right)$ is a cycle through X, thus $\left|C^{+}\left(x_{3}, v_{3}\right)\right|+\left|C^{+}\left(s, w_{j}\right)\right| \geq d-n\left(y^{\prime}\right)+1$. So if there exist vertices $t, t^{+} \in C^{+}\left(x_{4}, x_{1}\right)$ such that $x_{2} t, x_{2} t^{+} \in E(G)$, then $\left|N_{C}\left(x_{3}\right) \cap C^{+}\left(x_{4}, x_{1}\right)\right| \leq 1$. Otherwise we can get a contradiction that $m \geq 2 d$.

Then if $N_{C}\left(\left\{x_{2}, x_{3}\right\}\right) \cap\left\{x_{1}, x_{4}\right\}=\phi$, and there exist two vertices $t, t^{+} \in C^{+}\left(x_{4}, x_{1}\right) \cap N_{C}\left(x_{2}\right)$, then $\left|N_{C_{6}}\left(x_{2}\right)\right|+\left|N_{C_{6}}\left(x_{3}\right)\right| \leq c_{6}-1$. By symmetry, if there exist vertices $s, s^{+} \in C^{+}\left(x_{4}, x_{1}\right)$ such that $x_{3} s, x_{3} s^{+} \in E(G)$, then $\left|N_{C_{6}}\left(x_{2}\right)\right|+\left|N_{C_{6}}\left(x_{3}\right)\right| \leq c_{6}-1$. And if there exists no such vertices, $\left|N_{C^{+}\left(x_{4}, x_{1}\right)}\left(x_{2}\right)\right| \leq \frac{\left|C^{+}\left(x_{4}, x_{1}\right)\right|+1}{2}$ and $\left|N_{C^{+}\left(x_{4}, x_{1}\right)}\left(x_{3}\right)\right| \leq \frac{\left|C^{+}\left(x_{4}, x_{1}\right)\right|+1}{2}$, and hence $\left|N_{C_{6}}\left(x_{2}\right)\right|+\left|N_{C_{6}}\left(x_{3}\right)\right| \leq c_{6}-1$. Together with the results of (vii), we know that $\left|N_{C_{6} \cup C_{7}}\left(x_{2}\right)\right|+\left|N_{C_{6} \cup C_{7}}\left(x_{3}\right)\right| \leq c_{6}+c_{7}-1$.

If $N_{C}\left(\left\{x_{2}, x_{3}\right\}\right) \cap\left\{x_{1}, x_{4}\right\} \neq \phi$, without loss of generality, suppose $x_{2} x_{1} \in E(G)$, then $x_{2} x_{4} \notin E(G)$ and $N_{C}\left(x_{3}\right) \cap C^{+}\left[x_{4}, x_{1}\right)=\phi$. If $x_{3} x_{1} \notin E(G)$, then $\left|N_{C_{6}}\left(x_{2}\right)\right|+\left|N_{C_{6}}\left(x_{3}\right)\right| \leq c_{6}-1$. If $x_{3} x_{1} \in E(G)$, we know that $N_{C}\left(x_{2}\right) \cap C^{+}\left[x_{4}, x_{1}\right)=\phi$. Thus we have $\left|N_{C_{6}}\left(x_{2}\right)\right|+\left|N_{C_{6}}\left(x_{3}\right)\right|=2$. So if $c_{6} \geq 3$, we have $\left|N_{C_{6}}\left(x_{2}\right)\right|+\left|N_{C_{6}}\left(x_{3}\right)\right| \leq c_{6}-1$. Then we can get $\left|N_{C_{6} \cup C_{7}}\left(x_{2}\right)\right|+\left|N_{C_{6} \cup C_{7}}\left(x_{3}\right)\right| \leq c_{6}+c_{7}-1$. So we may assume $c_{6}=2$ and $x_{2} x_{1}, x_{3} x_{1} \in E(G)$. Then if $c_{7}=0$, we know that $\left|C^{+}\left(x_{2}, v_{2}\right)\right| \geq d-n(y)+1$ and $\left|C^{+}\left(x_{3}, v_{3}\right)\right| \geq d-n(y)+1$, thus we can get a contradiction that $m \geq 2 d$. Thus we know that $c_{7}>0$. If $s \in N_{C_{7}}\left(x_{2}\right)$, then $x_{2} s C^{-}\left(s, v_{2}\right) y_{2} P\left(y_{2}, y_{1}\right) v_{1} C^{+}\left(v_{1}, x_{2}\right)$ and $x_{2} s C^{+}\left(s, v_{1}\right) y_{1} P\left(y_{1}, y_{3}\right) v_{3} C^{+}\left(v_{3}, x_{1}\right) x_{3} C^{-}\left(x_{3}, x_{2}\right)$ are two cycles through X, then $\left|C^{+}\left(s, v_{1}\right)\right|+\left|C^{+}\left(x_{2}, v_{2}\right)\right| \geq d-n(y)+1$ and $\left|C^{+}\left(x_{1}, s\right)\right|+C^{+}\left(v_{1}, x_{2}\right)\left|+C^{+}\left(x_{3}, v_{3}\right)\right| \geq d-n(y)+1$, thus we can get $m \geq 2 d$, a contradiction. Similarly we can prove if $x_{2} x_{1} \in E(G)$, then $N_{C_{7}}\left(x_{3}\right)=\phi$. So if $x_{2} x_{1}, x_{3} x_{1} \in E(G)$, then $\left|N_{C_{7}}\left(x_{2}\right)\right|+\left|N_{C_{7}}\left(x_{3}\right)\right|=0 \leq c_{7}-1$ and then $\left|N_{C_{6} \cup C_{7}}\left(x_{2}\right)\right|+\left|N_{C_{6} \cup C_{7}}\left(x_{3}\right)\right| \leq c_{6}+c_{7}-1$.

From the above, we know that $\left|N_{C}\left(x_{2}\right)\right|+\left|N_{C}\left(x_{3}\right)\right| \leq m<2 d$.
Since $w_{2,0}(H)=0$, we know that $N_{H}\left(x_{2}\right)=N_{H}\left(x_{3}\right)=\phi$. By Claim 1, $\left|N_{C}\left(x_{2}\right)\right|+\left|N_{C}\left(x_{3}\right)\right|<2 d$, so there exists a component H_{1} of R such that $N_{H_{1}}\left(x_{i}\right) \neq \phi$ for $i=2$ or 3 . Without loss of generality, suppose $N_{H_{1}}\left(x_{2}\right) \neq \phi$ which means $X \cap W\left(H_{1}\right) \neq \phi$. Then if $X \cap W(H)=\phi,\left|X \cap W\left(H_{1}\right)\right|>|X \cap W(H)|$. It contradicts to the choice of H. So we may assume $X \cap W(H) \neq \phi$. Then $v_{1}=x_{1}, N_{C}(y) \subseteq\left\{v_{1}, v_{2}, v_{3}\right\}$ and thus $n(y)=a$. For H_{1}, we also can choose three vertex disjoint edges $z_{1} x_{2}, z_{2} s$ and $z_{3} s^{\prime}$ in $E\left(H_{1}, C\right)$ where $s \in C^{+}\left(x_{3}, x_{4}\right)$ and $s^{\prime} \in C^{+}\left(x_{4}, x_{1}\right)$. Suppose $z \in V\left(H_{1}\right) \backslash\left\{z_{1}, z_{2}, z_{3}\right\}$ such that $n(z)=\left|N_{C}(z)\right|=\max \left\{\left|N_{C}(x)\right|: x \in V\left(H_{1}\right) \backslash\left\{z_{1}, z_{2}, z_{3}\right\}\right\}$. Then by Lemma 1, there exists a $\left(z_{i}, z_{j} ; d-n(z)\right)$-path in H_{1}. For simplification, we denote such a path by $Q\left(z_{i}, z_{j}\right)(1 \leq i \neq j \leq 3)$. Now $x_{2} z_{1} Q\left(z_{1}, z_{3}\right) s^{\prime} C^{-}\left(s^{\prime}, v_{2}\right) v_{2} y_{2} P\left(y_{2}, y_{1}\right) v_{1} C^{+}\left(v_{1}, x_{2}\right)$ is a cycle through X. Thus we have $\left|C^{+}\left(x_{2}, v_{2}\right)\right|+$ $\left|C^{+}\left(s^{\prime}, v_{1}\right)\right| \geq d-a+1+d-n(z)+1$. Then $m \geq(d-a+1)+(d-n(z)+1)+2(\max \{a, n(z)\}-2)+2 \geq 2 d$, a contradiction.

Part II. $w_{2,0}(H)=1$.
Then we may choose v_{1}, v_{2}, v_{3} such that $C^{+}\left(v_{1}, v_{2}\right) \cap X=\phi,\left|\left\{v_{1}, v_{2}\right\} \cap X\right|$ as large as possible and then $N_{H}\left(C^{+}\left(v_{2}, v_{3}\right)\right) \subseteq\left\{y_{1}, y_{2}\right\}$.
Case 1. $\left|C^{+}\left(v_{2}, v_{3}\right) \cap X\right|=1$, say $x_{1} \in C^{+}\left(v_{2}, v_{3}\right) \cap X$.
Since $w_{2,0}(H)=1, N_{C}(y) \cap C^{+}\left[v_{1}, v_{3}\right] \subseteq\left\{v_{1}, v_{2}, v_{3}\right\}$ and $N_{H}\left(x_{1}\right)=\phi$. Suppose $N_{C}(y) \cap C^{+}\left(v_{3}, v_{1}\right)=$ $\left\{w_{1}, w_{2}, \ldots, w_{q}\right\}$ where $q=n(y)-a$, and they are arranged along C^{+}. Let $x_{2}^{\prime}, x_{3}^{\prime}$ denote vertices lying in $C^{+}\left(v_{3}, v_{1}\right) \cap X$ such that $C^{+}\left(v_{3}, x_{2}^{\prime}\right) \cap X=\phi$ and $C^{+}\left(x_{3}^{\prime}, v_{1}\right) \cap X=\phi$ (It is possible that $\left.x_{2}^{\prime}=x_{3}^{\prime}\right)$. Then if $q \neq 0, x_{2}^{\prime} \in C^{+}\left(v_{3}, w_{1}\right)$ and $x_{3}^{\prime} \in C^{+}\left(w_{q}, v_{1}\right)$ since $w_{2,0}(H)=1$. We first prove
Claim 2. (1) There exists no path connecting x_{1} and a vertex in $C^{+}\left(v_{1}, v_{2}\right) \cup C^{+}\left(v_{3}, x_{2}^{\prime}\right] \cup C^{+}\left[x_{3}^{\prime}, v_{1}\right)$ with all internal vertices in $R-H$;
(2) If $C^{+}\left(w_{j}, w_{j+1}\right) \cap X=\phi$ for $1 \leq j \leq q-1$, then there exists no path connecting x_{1} and a vertex in $C^{+}\left[w_{j}, w_{j+1}\right)$ with all internal vertices in $R-H$;
(3) If $\left|C^{+}\left(w_{j}, w_{j+1}\right) \cap X\right|=1(1 \leq j \leq q-1)$, then there exists no path connecting x_{1} and a vertex in $C^{+}\left(w_{j}, w_{j+1}\right)$ with all internal vertices in $R-H$;
(4) If $C^{+}\left(x_{2}^{\prime}, w_{1}\right) \cap X=\phi$, there exists no path connecting x_{1} and a vertex in $C^{+}\left[x_{2}^{\prime}, w_{1}\right)$ with all internal vertices in $R-H$;
(5) If $C^{+}\left(w_{q}, x_{3}^{\prime}\right) \cap X=\phi$, there exists no path connecting x_{1} and a vertex in $C^{+}\left(w_{q}, x_{3}^{\prime}\right]$ with all internal vertices in $R-H$;
(6) If $C^{+}\left(s_{1}, s_{2}\right) \cap\left(X \cup N_{C}(y)\right)=\phi$ where $s_{1}, s_{2} \in C^{+}\left[x_{2}^{\prime}, x_{3}^{\prime}\right]$, then there do not exist two disjoint paths connecting x_{1} and two vertices in $C^{+}\left[s_{1}, s_{2}\right]$ with all internal vertices in $R-H$.

Proof. (1) Otherwise suppose Q is a path connecting x_{1} and a vertex $z \in C^{+}\left(v_{1}, v_{2}\right) \cup C^{+}\left(v_{3}, x_{2}^{\prime}\right] \cup C^{+}\left[x_{3}^{\prime}, v_{1}\right)$ with all internal vertices in $R-H$. Then if $z \in C^{+}\left(v_{1}, v_{2}\right), x_{1} Q z C^{-}\left(z, v_{3}\right) y_{3} P\left(y_{3}, y_{2}\right) v_{2} C^{+}\left(v_{2}, x_{1}\right)$ and $x_{1} Q z C^{+}\left(z, v_{2}\right) y_{2} P\left(y_{2}, y_{1}\right) v_{1} C^{-}\left(v_{1}, x_{1}\right)$ are two cycles through X. Then we know that $\left|C^{+}\left(z, v_{2}\right)\right|+\left|C^{+}\left(x_{1}, v_{3}\right)\right| \geq$ $d-n(y)+1$ and $\left|C^{+}\left(v_{1}, z\right)\right|+\left|C^{+}\left(v_{2}, x_{1}\right)\right| \geq d-n(y)+1$. Thus $m \geq(d-n(y)+1) \times 2+4+2(n(y)-3)=$ $2 d$, a contradiction. If $z \in C^{+}\left(v_{3}, x_{2}^{\prime}\right]$, then $x_{1} Q z C^{+}\left(z, v_{2}\right) y_{2} P\left(y_{2}, y_{3}\right) v_{3} C^{-}\left(v_{3}, x_{1}\right)$ is a cycle through X. So $\left|C^{+}\left(v_{2}, x_{1}\right)\right|+\left|C^{+}\left(v_{3}, z\right)\right| \geq d-n(y)+1$. Together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-n(y)+1$, we have $m \geq 2 d$, a contradiction. If $z \in C^{+}\left[x_{3}^{\prime}, v_{1}\right)$, then $x_{1} Q z C^{-}\left(z, v_{3}\right) y_{3} P_{H}\left(y_{3}, y_{1}\right) v_{1} C^{+}\left(v_{1}, x_{1}\right)$ is a cycle through X. Similarly we have $\left|C^{+}\left(z, v_{1}\right)\right|+\left|C^{+}\left(x_{1}, v_{3}\right)\right| \geq d-n(y)+1$, and then $m \geq 2 d$, a contradiction.
(2) If $C^{+}\left(w_{j}, w_{j+1}\right) \cap X=\phi(1 \leq j \leq q-1)$, suppose Q is a path connecting x_{1} and a vertex $z \in C^{+}\left[w_{j}, w_{j+1}\right)$ with all internal vertices in $R-H$, then $x_{1} Q z C^{-}\left(z, v_{3}\right) y_{3} P\left(y_{3}, y\right) w_{j+1} C^{+}\left(w_{j+1}, x_{1}\right)$ is a cycle through X and we get $\left|C^{+}\left(x_{1}, v_{3}\right)\right|+\left|C^{+}\left(z, w_{j+1}\right)\right| \geq d-n\left(y^{\prime}\right)+1$. Together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-n(y)+1$, we have $m \geq\left(d-n\left(y^{\prime}\right)+1\right) \times 2+5+2\left(n\left(y^{\prime}\right)-3\right)>2 d$ since $N_{C}\left(y_{1}\right) \cap C^{+}\left(w_{j}, w_{j+1}\right)=\phi$, a contradiction.
(3) Say $x_{4}^{\prime} \in C^{+}\left(w_{j}, w_{j+1}\right)$ for $1 \leq j \leq q-1$, if there exists a path Q connecting x_{1} and a vertex $z \in C^{+}\left(w_{j}, x_{4}^{\prime}\right]$ with all internal vertices in $R-H$, then $x_{1} Q z C^{+}\left(z, v_{2}\right) y_{2} P\left(y_{2}, y\right) w_{j} C^{-}\left(w_{j}, x_{1}\right)$ is a cycle through X. Thus we have $\left|C^{+}\left(v_{2}, x_{1}\right)\right|+\left|C^{+}\left(w_{j}, z\right)\right| \geq d-n\left(y^{\prime}\right)+1$. Together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-n(y)+1$, we can get $m \geq\left(d-n\left(y^{\prime}\right)+1\right) \times 2+4+2\left(n\left(y^{\prime}\right)-3\right)=2 d$ since $N_{C}\left(y_{1}\right) \cap C^{+}\left(w_{j}, x_{4}^{\prime}\right)=\phi$, a contradiction. Similarly we can prove there exists no path connecting x_{1} and a vertex $z \in C^{+}\left(x_{4}^{\prime}, w_{j+1}\right)$ with all internal vertices in $R-H$.
(4) If $C^{+}\left(x_{2}^{\prime}, w_{1}\right) \cap X=\phi$ and there exists a path Q connecting x_{1} and a vertex $z \in C^{+}\left[x_{2}^{\prime}, w_{1}\right)$, then $x_{1} Q z C^{-}\left(z, v_{3}\right) y_{3} P\left(y_{3}, y\right) w_{1} C^{+}\left(w_{1}, x_{1}\right)$ is a cycle through X. Thus we have $\left|C^{+}\left(x_{1}, v_{3}\right)\right|+\left|C^{+}\left(z, w_{1}\right)\right| \geq d-$ $n\left(y^{\prime}\right)+1$. Then together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-n(y)+1$, we have $m \geq 2 d$, a contradiction.
(5) If $C^{+}\left(w_{q}, x_{3}^{\prime}\right) \cap X=\phi$ and there exists a path Q connecting x_{1} and a vertex $z \in C^{+}\left(w_{q}, x_{3}^{\prime}\right]$, then $x_{1} Q z C^{+}\left(z, v_{2}\right) y_{2} P\left(y_{2}, y\right) w_{1} C^{-}\left(w_{1}, x_{1}\right)$ is a cycle through X. Thus we have $\left|C^{+}\left(v_{2}, x_{1}\right)\right|+\left|C^{+}\left(w_{q}, z\right)\right| \geq d-$ $n\left(y^{\prime}\right)+1$. Then together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-n(y)+1$, we have $m \geq 2 d$, a contradiction.
(6) If $C^{+}\left(s_{1}, s_{2}\right) \cap\left(X \cup N_{C}(y)\right)=\phi$ and there are two disjoint paths Q_{1}, Q_{2} connecting x_{1} and two vertices $z, z^{\prime} \in C^{+}\left[s_{1}, s_{2}\right]$ with all internal vertices in $R-H$. Without loss of generality, assume $z^{\prime} \in C^{+}\left(z, s_{2}\right)$, then $x_{2} Q_{1} z C^{-}\left(z, v_{3}\right) y_{3} P\left(y_{3}, y_{2}\right) v_{2} C^{-}\left(v_{2}, z^{\prime}\right) Q_{2} x_{1}$ is a cycle through X. Thus we have $\left|C^{+}\left(v_{2}, x_{1}\right)\right|+\left|C^{+}\left(x_{1}, v_{3}\right)\right|+$ $\left|C^{+}\left(z, z^{\prime}\right)\right| \geq d-n(y)+1$. Then together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-n(y)+1$, we have $m \geq 2 d$ since $C^{+}\left(s_{1}, s_{2}\right) \cap N_{C}(y)=\phi$, a contradiction.

Claim 3. If $w_{2,0}(H)=1$ and $C^{+}\left(v_{2}, v_{3}\right) \cap X=\left\{x_{1}\right\}$, then $\left|N_{C}\left(x_{1}\right)\right|<d$.

Proof. Suppose $z \in N_{C}\left(x_{1}\right)$, then by Claim 2(1), $z \notin C^{+}\left(v_{1}, v_{2}\right) \cup C^{+}\left(v_{3}, x_{2}^{\prime}\right] \cup C^{+}\left[x_{3}^{\prime}, v_{1}\right)$. If $x_{2}^{\prime}=x_{3}^{\prime}$, $N_{C}\left(x_{1}\right) \subseteq C^{+}\left[v_{2}, v_{3}\right] \cup\left\{v_{1}\right\}$ which means $\left|N_{C}\left(x_{1}\right)\right| \leq\left|C^{+}\left[v_{2}, v_{3}\right]\right|$ since $x_{1} \in C^{+}\left[v_{2}, v_{3}\right]$. If $x_{2}^{\prime} \neq x_{3}^{\prime}$, then $\left|C^{+}\left(x_{2}^{\prime}, x_{3}^{\prime}\right) \cap X\right| \leq 1$. If $\left|C^{+}\left(x_{2}^{\prime}, x_{3}^{\prime}\right) \cap X\right|=1$, say $x_{4}^{\prime} \in C^{+}\left(x_{2}^{\prime}, x_{3}^{\prime}\right)$, then $\left|N_{C}\left(x_{1}\right) \cap C^{+}\left(x_{2}^{\prime}, x_{4}^{\prime}\right]\right| \leq 1$ and $\left|N_{C}\left(x_{1}\right) \cap C^{+}\left[x_{4}^{\prime}, x_{3}^{\prime}\right)\right| \leq 1$ by Claim 2(2)-(6). If $C^{+}\left(x_{2}^{\prime}, x_{3}^{\prime}\right) \cap X=\phi,\left|N_{C}\left(x_{1}\right) \cap C^{+}\left(x_{2}^{\prime}, x_{3}^{\prime}\right)\right| \leq 1$ by Claim 2(6). In either case, $\left|N_{C}\left(x_{1}\right)\right| \leq\left|C^{+}\left[v_{2}, v_{3}\right]\right|+2$.

Then if $\left|N_{C}\left(x_{1}\right)\right| \geq d$, we have $\left|C^{+}\left[v_{2}, v_{3}\right]\right|+2 \geq d$. Together with $C^{+}\left(v_{1}, v_{2}\right) \mid \geq d-n(y)-1=d-(a+q)+1$, we have $m \geq(d-a-q+2)+(d-2)+3+2 q=2 d$, a contradiction.

Since $N_{H}\left(x_{1}\right)=\phi$ and $\left|N_{C}\left(x_{1}\right)\right|<d$, there should exist a component H_{1} of R such that $N_{H_{1}}\left(x_{1}\right) \neq \phi$ and then $W\left(H_{1}\right) \subseteq\left\{x_{1}\right\} \cup N_{C}\left(x_{1}\right)$ by Claim 2. For H_{1}, we can choose three disjoint edges $z_{1} x_{1}, z_{2} s, z_{3} s^{\prime}$ in $E\left(H_{1}, C\right)$ where z_{1}, z_{2}, z_{3} are three disjoint vertices in $V\left(H_{1}\right)$. Suppose $z \in V\left(H_{1}\right) \backslash\left\{z_{1}, z_{2}, z_{3}\right\}$ such that $n(z)=\left|N_{C}(z)\right|=$ $\max \left\{\left|N_{C}(x)\right|: x \in V\left(H_{1}\right) \backslash\left\{z_{1}, z_{2}\right\}\right\}$. Then by Lemma 2, we know that there exists a $\left(z_{i}, z_{j} ; d-n(z)\right)$-path for $1 \leq i \neq j \leq 3$ in H_{1}, denote it by $Q\left(z_{i}, z_{j}\right)$. If $s \in C^{+}\left[v_{2}, v_{3}\right]$ or $s^{\prime} \in C^{+}\left[v_{2}, v_{3}\right]$, without loss of generality, suppose $s \in C^{+}\left(x_{1}, v_{3}\right]$, then $\left|C^{+}\left(x_{1}, s\right)\right| \geq d-n(z)+1$. Together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-n(y)+1$, we can get $m \geq(d-n(y)+1)+(d-n(z)+1)+2(\max \{n(y), n(z)\}-2) \geq 2 d$, a contradiction. So we assume $s, s^{\prime} \notin C^{+}\left[v_{2}, v_{3}\right]$. If $W\left(H_{1}\right) \subseteq C^{+}\left[v_{2}, v_{3}\right] \cup\left\{v_{1}\right\}$, then $s \in C^{+}\left[v_{2}, v_{3}\right]$ or $s^{\prime} \in C^{+}\left(v_{2}, v_{3}\right]$. So we may assume $W\left(H_{1}\right) \nsubseteq C^{+}\left[v_{2}, v_{3}\right] \cup\left\{v_{1}\right\}$.

Note $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, we suppose $x_{1}, x_{2}, x_{3}, x_{4}$ to be arranged along C^{+}in the following proof. According to the different positions of $\left\{v_{1}, v_{2}, v_{3}\right\}$ on C, we prove the theorem in seven subcases by symmetry.
Subcase 1.1. $v_{1}=x_{3}, v_{2}=x_{4}$ and $v_{3} \in C^{+}\left(x_{1}, x_{2}\right)$.
Subcase 1.2. $v_{1}=x_{4}, v_{2} \in C^{+}\left(x_{4}, x_{1}\right)$ and $v_{3}=x_{2}$.
Subcase 1.3. $v_{1} \in C^{+}\left(x_{3}, x_{4}\right), v_{2}=x_{4}$, and $v_{3}=x_{2}$.
Under the above three subcases, we know that $N_{C}\left(x_{1}\right) \subseteq C^{+}\left[v_{2}, v_{3}\right] \cup\left\{v_{1}\right\}$ and then $W\left(H_{1}\right) \subseteq C^{+}\left[v_{2}, v_{3}\right] \cup\left\{v_{1}\right\}$ by Claim 2, a contradiction.
Subcase 1.4. $v_{1}=x_{4}, v_{2} \in C^{+}\left(v_{1}, x_{1}\right)$ and $v_{3} \in C^{+}\left(x_{1}, x_{2}\right)$.
Then $N_{C}(y) \subseteq C^{+}\left(x_{2}, x_{3}\right) \cup\left\{v_{1}, v_{2}, v_{3}\right\}$ since $w_{2,0}(H)=1$. If $q \geq 2$, by Claim $2, W\left(H_{1}\right) \subseteq C^{+}\left[v_{2}, v_{3}\right] \cup\left\{v_{1}\right\}$, a contradiction. If $q \leq 1$, by Claim 2, $W\left(H_{1}\right) \subseteq C^{+}\left[v_{2}, v_{3}\right] \cup\left\{v_{1}, w\right\}$ where $w \in C^{+}\left(x_{2}, x_{3}\right)$. Without loss of generality, we may assume $s=w$ and $s^{\prime}=v_{1}=x_{4}$. Then $w_{2,0}\left(H_{1}\right)=1$ and $\left|X \cap W\left(H_{1}\right)\right|=2>|X \cap W(H)|$, which contradict the choice of H.
Subcase 1.5. $v_{1} \in C^{+}\left(x_{4}, x_{1}\right), v_{2} \in C^{+}\left(v_{1}, x_{1}\right)$ and $v_{3}=x_{2}$.
Then $N_{C}(y) \subseteq C^{+}\left(x_{3}, x_{4}\right) \cup\left\{v_{1}, v_{2}, v_{3}\right\}$ since $w_{2,0}(H)=1$. If $q \geq 2$, then $W\left(H_{1}\right) \subseteq C^{+}\left[v_{2}, v_{3}\right] \cup\left\{v_{1}\right\}$ by Claim 2, a contradiction. If $q \leq 1, W\left(H_{1}\right) \subseteq C^{+}\left[v_{2}, v_{3}\right] \cup\left\{v_{1}, w\right\}$ where $w \in C^{+}\left(x_{3}, x_{4}\right)$ by Claim 2. Without loss of generality, we may assume $s=w$ and $s^{\prime}=v_{1}$. Then we can choose H_{1} instead of H and reverse the orientation of C, thus we can prove the theorem similarly as in Subcase 1.4.
Subcase 1.6. $v_{1} \in C^{+}\left(x_{3}, x_{4}\right), v_{2}=x_{4}$, and $v_{3} \in C^{+}\left(x_{1}, x_{2}\right)$.
Then $N_{C}(y) \subseteq C^{+}\left(x_{2}, x_{3}\right) \cup\left\{v_{1}, v_{2}, v_{3}\right\}$ since $w_{2,0}(H)=1$. If $q \geq 2$, then $W\left(H_{1}\right) \subseteq C^{+}\left[v_{2}, v_{3}\right] \cup\left\{v_{1}\right\}$ by Claim 2, a contradiction. If $q \leq 1, W\left(H_{1}\right) \subseteq C^{+}\left[v_{2}, v_{3}\right] \cup\left\{v_{1}, w\right\}$ where $w \in C^{+}\left(x_{2}, x_{3}\right)$ by Claim 2. Without loss of generality, we may assume $s=w$ and $s^{\prime}=v_{1}$. Note that $z \in V\left(H_{1}\right)-\left\{z_{1}, z_{2}, z_{3}\right\}$ with $n(z)=\left|N_{C}(z)\right|=\max \left\{\left|N_{C}(v)\right|: v \in V\left(H_{1}\right)-\left\{z_{1}, z_{2}, z_{3}\right\}\right.$. It is easy to see that $N_{C}(z) \subseteq\left\{v_{1}, w\right\}$. Then $x_{1} z_{1} Q\left(z_{1}, z_{3}\right) v_{1} C^{-}\left(v_{1}, v_{3}\right) y_{3} P\left(y_{3}, y_{2}\right) v_{2} C^{+}\left(v_{2}, x_{1}\right)$ is a cycle through X. Thus we know that $\left|C^{+}\left(v_{1}, x_{4}\right)\right|+$ $\left|C^{+}\left(x_{1}, v_{3}\right)\right| \geq d-n(y)+1+d-n(z)+1$. Thus we can get $m \geq(d-n(y)+2)+(d-n(z)+2)+2(\max \{n(y), n(z)\}-$ $2) \geq 2 d$, a contradiction.
Subcase 1.7. $v_{1} \in C^{+}\left(x_{4}, x_{1}\right), v_{2} \in C^{+}\left(v_{1}, x_{1}\right)$, and $v_{3} \in C^{+}\left(x_{1}, x_{2}\right)$.
Then $N_{C}(y) \subseteq C^{+}\left(x_{2}, x_{4}\right) \cup\left\{v_{1}, v_{2}, v_{3}\right\}$ and $N_{H}\left(x_{2}\right) \subseteq\left\{y_{3}\right\}$ since $w_{2,0}(H)=1$. Suppose $N_{C}(y) \cap C^{+}\left(x_{2}, x_{3}\right]=$ $\left\{w_{1}, w_{2}, \ldots, w_{q_{1}}\right\}, N_{C}(y) \cap C^{+}\left(x_{3}, x_{4}\right)=\left\{w_{q_{1}+1}, \ldots, w_{q}\right\}$. If $q_{1} \geq 2$ and $q-q_{1} \geq 2$, then by Claim 2, $W\left(H_{1}\right) \subseteq C^{+}\left[v_{2}, v_{3}\right] \cup\left\{v_{1}\right\}$, a contradiction. If $q_{1} \geq 2$ and $q-q_{1} \leq 1$, then $W\left(H_{1}\right) \subseteq C^{+}\left[v_{2}, v_{3}\right] \cup\left\{v_{1}, w\right\}$ where $w \in C^{+}\left(x_{3}, x_{4}\right)$. Without loss of generality, suppose $s=w$ and $s^{\prime}=v_{1}$. Then choose H_{1} instead of H and reverse the orientation of C, we can prove the theorem similarly as in Subcase 1.4. If $q_{1} \leq 1$ and $q-q_{1} \geq 2$, then $W\left(H_{1}\right) \subseteq C^{+}\left[v_{2}, v_{3}\right] \cup\left\{v_{1}, w\right\}$ where $w \in C^{+}\left(x_{2}, x_{3}\right)$. Without loss of generality, suppose $s=w$ and $s^{\prime}=v_{1}$. Then choose H_{1} instead of H, we can prove the theorem similarly as in Subcase 1.6. If $q_{1} \leq 1$ and $q-q_{1} \leq 1$, then $W\left(H_{1}\right) \subseteq C^{+}\left[v_{2}, v_{3}\right] \cup\left\{v_{1}, w, w^{\prime}\right\}$ where $w \in C^{+}\left(x_{2}, x_{3}\right), w^{\prime} \in C^{+}\left(x_{3}, x_{4}\right)$. If $s=v_{1}$ or $s^{\prime}=v_{1}$, we can prove the theorem similarly as in Subcase 1.4 or Subcase 1.6. So we may assume $s=w$ and $s^{\prime}=w^{\prime}$. Note that
$z \in V\left(H_{1}\right)-\left\{z_{1}, z_{2}, z_{3}\right\}$ with $n(z)=\left|N_{C}(z)\right|=\max \left\{\left|N_{C}(v)\right|: v \in V\left(H_{1}\right)-\left\{z_{1}, z_{2}, z_{3}\right\}\right.$. It is easy to see that $N_{C}(z) \subseteq\left\{x_{1}, w, w^{\prime}\right\}$. We can prove the following claim.
Claim 4. There exists no path connecting x_{2} and a vertex in $C^{+}\left(s, x_{1}\right)-\left\{s^{\prime}\right\}$ with all internal vertices in $R-\left\{H, H_{1}\right\}$.
Proof. Otherwise suppose K is a path connecting x_{2} and a vertex $t \in C^{+}\left(s, x_{1}\right)-\left\{s^{\prime}\right\}$ with all internal vertices in $R-\left\{H, H_{1}\right\}$. Then if $t \in C^{+}\left(s, x_{3}\right]$, then $x_{2} K^{\prime} C^{+}\left(t, x_{1}\right) z_{1} Q\left(z_{1}, z_{2}\right) s C^{-}\left(s, x_{2}\right)$ is a cycle through X. So we have $\left|C^{+}\left(x_{1}, x_{2}\right)\right|+\left|C^{+}(s, t)\right| \geq d-n(z)+1$. If $t \in C^{+}\left(x_{3}, s^{\prime}\right)$, then $x_{2} K t C^{-}(t, s) z_{2} Q\left(z_{2}, z_{3}\right) s^{\prime} C^{+}\left(s^{\prime}, x_{2}\right)$ is a cycle through X. So we have $\left|C^{+}\left(x_{2}, s\right)\right|+\left|C^{+}\left(t, s^{\prime}\right)\right| \geq d-n(z)+1$. If $t \in C^{+}\left(s^{\prime}, x_{4}\right)$, $x_{2} K t C^{+}\left(t, x_{1}\right) z_{1} Q\left(z_{1}, z_{3}\right) s^{\prime} C^{-}\left(s^{\prime}, x_{2}\right)$ is a cycle through X. Then we know that $\left|C^{+}\left(x_{1}, x_{2}\right)\right|+\left|C^{+}\left(s^{\prime}, t\right)\right| \geq$ $d-n(z)+1$. If $t \in C^{+}\left[v_{2}, x_{1}\right), x_{2} K t C^{-}(t, s) z_{2} Q\left(z_{2}, z_{1}\right) x_{1} C^{+}\left(x_{1}, x_{2}\right)$ is a cycle through X. Then we know that $\left|C^{+}\left(x_{2}, s\right)\right|+\left|C^{+}\left(t, x_{1}\right)\right| \geq d-n(z)+1$. In any of the above four cases, together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-n(y)+1$, we can get $m \geq 2 d$, a contradiction. If $t \in C^{+}\left[x_{4}, v_{2}\right), x_{2} K t C^{-}(t, s) z_{2} Q\left(z_{2}, z_{1}\right) x_{1} C^{-}\left(x_{1}, v_{2}\right) y_{2} P\left(y_{2}, y_{3}\right) v_{3} C^{+}\left(v_{3}, x_{2}\right)$ is a cycle through X. Then we know that $\left|C^{+}\left(t, v_{2}\right)\right|+\left|C^{+}\left(x_{1}, v_{3}\right)\right|+\left|C^{+}\left(x_{2}, s\right)\right| \geq d-n(y)+1+d-n(z)+1$. Thus we have $m \geq 2 d$, a contradiction.

Then $N_{C}\left(x_{2}\right) \subseteq C^{+}\left[x_{1}, s\right] \cup\left\{s^{\prime}\right\}$. So if $\left|N_{C}\left(x_{2}\right)\right| \geq d-1$, then $m \geq 2 d$, a contradiction. Since $\left|N_{H}\left(x_{2}\right)\right| \leq 1$ and $N_{H_{1}}\left(x_{2}\right)=\phi$ and $\left|N_{C}\left(x_{2}\right)\right|<d-1$, there should exist a component H_{2} of R such that $N_{H_{2}}\left(x_{2}\right) \neq \phi$ and then $W\left(H_{2}\right) \subseteq C^{+}\left[x_{1}, s\right] \cup\left\{s^{\prime}\right\}$ by Claim 4. Thus we know that $w_{2,0}\left(H_{2}\right) \geq 1$, and if suppose $t \in W_{2,0}\left(H_{2}\right)$ and t^{\prime} is the next vertex after t along C^{+}in $W\left(H_{2}\right)$, then $C^{+}\left(t, t^{\prime}\right) \cap C^{+}\left(v_{1}, v_{2}\right)=\phi$. Then it is easy to get $m \geq 2 d$, a contradiction.
Case 2. $\left|C^{+}\left(v_{3}, v_{1}\right) \cap X\right|=1$, say $x_{1} \in C^{+}\left(v_{3}, v_{1}\right) \cap X$.
Then we have $\left|N_{C}(y)\right|=a$. And in fact for any vertex $y^{\prime} \in V(H)-\left\{y_{1}, y_{2}, y_{3}\right\}$, we have $N_{C}\left(y^{\prime}\right) \subseteq\left\{v_{1}, v_{2}, v_{3}\right\}$ by the choice of v_{1}, v_{2}, v_{3}. Thus we can reverse the orientation of C and then we can prove the theorem similarly as in Case 1.
Case 3. $\left|C^{+}\left(v_{2}, v_{3}\right) \cap X\right| \geq 2$ and $\left|C^{+}\left(v_{3}, v_{1}\right) \cap X\right| \geq 2$.
Then we may suppose $\left\{x_{1}, x_{2}\right\}=C^{+}\left(v_{2}, v_{3}\right) \cap X$ and $\left\{x_{3}, x_{4}\right\}=C^{+}\left(v_{3}, v_{1}\right) \cap X$ since $|X|=4$. It is easy to see that $m \geq 9$ and hence $d \geq 5$. Since $w_{2,0}(H)=1$ and by the choice of v_{1}, v_{2}, v_{3}, we know that $N_{C}(y) \subseteq C^{+}\left(x_{3}, x_{4}\right) \cup\left\{v_{1}, v_{2}, v_{3}\right\}, N_{H}\left(x_{i}\right)=\phi$ for $i=1,2,4$ and $N_{H}\left(x_{3}\right) \subseteq\left\{y_{3}\right\}$. But if $N_{C}(y) \cap C^{+}\left(x_{3}, x_{4}\right) \neq \phi$, we can reverse the orientation of C and prove the theorem just as in Subcase 1.7. And if $y_{3} x_{3} \in E(H, C)$, we can also reverse the orientation of C and prove the theorem similarly as in Subcase 1.5 or 1.6. So we may assume $N_{C}(y) \cap C^{+}\left(x_{3}, x_{4}\right)=\phi$, which means $n(y)=a$, and $N_{H}\left(x_{i}\right)=\phi$ for $1 \leq i \leq 4$.
Claim 5. $\sum_{i=1}^{4}\left|N_{C}\left(x_{i}\right)\right|<4 d$.
Proof. Denote $C_{1}=C^{+}\left(v_{1}, v_{2}\right), C_{2}=C^{+}\left[v_{2}, x_{1}\right), C_{3}=C^{+}\left[x_{1}, x_{2}\right), C_{4}=C^{+}\left[x_{2}, x_{3}\right], C_{5}=C^{+}\left(x_{3}, x_{4}\right]$ and $C_{6}=C^{+}\left(x_{4}, v_{1}\right]$. For $1 \leq i \leq 6$, let $c_{i}=\left|C_{i}\right|$.
(i) $x_{1} v_{1}^{+} \notin E(G), x_{4} v_{2}^{-} \notin E(G), x_{1} v_{1}^{+} \notin E(G)$ and $x_{2} v_{2}^{-} \notin E(G) ; x_{3} v_{2} \notin E(G)$ or $x_{1} x_{4} \notin E(G) ; x_{2} v_{1} \notin E(G)$ or $x_{1} x_{4} \notin E(G)$; if $x_{1} x_{4} \in E(G)$, then $N_{C_{3}-\left\{x_{1}\right\}}\left(x_{3}\right)=\phi$ and $N_{C_{5}-\left\{x_{4}\right\}}\left(x_{2}\right)=\phi ; N_{C}\left(x_{2}\right) \cap C^{+}\left[x_{4}, v_{1}\right)=\phi$ and $N_{C}\left(x_{3}\right) \cap C^{+}\left(v_{2}, x_{1}\right]=\phi$.

If $x_{1} v_{1}^{+} \in E(G)$, then $x_{1} v_{1}^{+} C^{+}\left(v_{1}^{+}, v_{2}\right) y_{2} P\left(y_{2}, y_{1}\right) v_{1} C^{-}\left(v_{1}, x_{1}\right)$ is a cycle through X. Then we have $\left|C^{+}\left(v_{2}, x_{1}\right)\right| \geq d-a+1$, together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-a+1$, we can get $m \geq 2 d$, a contradiction. So $x_{1} v_{1}^{+} \notin E(G)$. By symmetry, we can prove $x_{4} v_{2}^{-} \notin E(G)$. If $x_{3} v_{1}^{+} \in E(G)$, then $x_{3} v_{1}^{+} C^{+}\left(v_{1}^{+}, v_{3}\right) y_{3} P\left(y_{3}, y_{1}\right) v_{1} C^{-}\left(v_{1}, x_{3}\right)$ is a cycle through X. Then we have $\left|C^{+}\left(v_{3}, x_{3}\right)\right| \geq d-a+1$, together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-a+1$, we can get $m \geq 2 d$, a contradiction. So $x_{3} v_{1}^{+} \notin E(G)$. By symmetry, we can prove $x_{2} v_{2}^{-} \notin E(G)$.

If $x_{3} v_{2}, x_{1} x_{4} \in E(G)$, then $x_{4} x_{1} C^{+}\left(x_{1}, v_{3}\right) y_{3} P\left(y_{3}, y_{1}\right) v_{1} C^{+}\left(v_{1}, v_{2}\right) x_{3} C^{+}\left(x_{3}, x_{4}\right)$ is a cycle through X. Thus we have $\left|C^{+}\left(v_{2}, x_{1}\right)\right|+\left|C^{+}\left(v_{3}, x_{3}\right)\right|+\left|C^{+}\left(x_{4}, v_{1}\right)\right| \geq d-a+1$, together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-a+1$, we can get $m \geq 2 d$, a contradiction. By symmetry, we can prove $x_{2} v_{1} \notin E(G)$ or $x_{1} x_{4} \notin E(G)$.

If $x_{1} x_{4} \in E(G)$ and $s \in N_{C_{3}-\left\{x_{1}\right\}}\left(x_{3}\right)$, then $x_{4} x_{1} C^{-}\left(x_{1}, v_{1}\right) y_{1} P\left(y_{1}, y_{3}\right) v_{3} C^{-}\left(v_{3}, s\right) x_{3} C^{+}\left(x_{3}, x_{4}\right)$ is a cycle through X. Thus we have $\left|C^{+}\left(x_{1}, s\right)\right|+\left|C^{+}\left(v_{3}, x_{3}\right)\right|+\left|C^{+}\left(x_{4}, v_{1}\right)\right| \geq d-a+1$, then $m \geq 2 d$, a contradiction. By symmetry, we can prove if $x_{1} x_{4} \in E(G)$, then $N_{C_{5}-\left\{x_{4}\right\}}\left(x_{2}\right)=\phi$.

If there is a vertex $s \in N\left(x_{2}\right) \cap C^{+}\left[x_{4}, v_{1}\right)$, then $x_{2} s C^{-}\left(s, v_{3}\right) y_{3} P\left(y_{3}, y_{1}\right) v_{1} C^{+}\left(v_{1}, x_{2}\right)$ is a cycle through X. Thus we have $\left|C^{+}\left(x_{2}, v_{3}\right)\right|+\left|C^{+}\left(s, v_{1}\right)\right| \geq d-a+1$, then $m \geq 2 d$, a contradiction. By symmetry, we can prove $N_{C}\left(x_{3}\right) \cap C^{+}\left(v_{2}, x_{1}\right]=\phi$.
(ii) $\sum_{i=1}^{4}\left|N_{C_{1}}\left(x_{i}\right)\right| \leq 2 c_{1}-2$;

Note that $c_{1} \geq d-a+1 \geq 3$. If $s_{1} \in N_{C_{1}}\left(x_{1}\right)$ and $s_{2} \in N_{C}\left(x_{2}\right) \cap C^{+}\left(s_{1}, v_{2}\right)$, then $x_{1} s_{1} C^{-}\left(s_{1}, v_{3}\right) y_{3} P\left(y_{3}, y_{2}\right) v_{2} C^{-}\left(v_{2}, s_{2}\right) x_{2} C^{-}\left(x_{2}, x_{1}\right)$ and $x_{1} s_{1} C^{+}\left(s_{1}, s_{2}\right) x_{2} C^{+}\left(x_{2}, v_{1}\right) y_{1} P\left(y_{1}, y_{2}\right) v_{2} C^{+}\left(v_{2}, x_{1}\right)$ are two cycles through X. Thus we have $\left|C^{+}\left(x_{2}, v_{3}\right)\right|+\left|C^{+}\left(s_{1}, s_{2}\right)\right|+\left|C^{+}\left(v_{2}, x_{1}\right)\right| \geq d-a+1$ and $\left|C^{+}\left(x_{1}, x_{2}\right)\right|+$ $\left|C^{+}\left(v_{1}, s_{1}\right)\right|+\left|C^{+}\left(s_{2}, v_{2}\right)\right| \geq d-a+1$, then $m \geq(d-a+1) \times 2+4 \geq 2 d$, a contradiction. If $t_{1} \in N_{C_{1}}\left(x_{2}\right)$ and $t_{2} \in N_{C}\left(x_{1}\right) \cap C^{+}\left(t_{1}, v_{2}\right)$, then $x_{2} t_{1} C^{-}\left(t_{1}, v_{3}\right) y_{3} P\left(y_{3}, y_{2}\right) v_{2} C^{-}\left(v_{2}, t_{2}\right) x_{1} C^{+}\left(x_{1}, x_{2}\right)$ and $x_{2} t_{1} C^{+}\left(t_{1}, t_{2}\right) x_{1} C^{-}\left(x_{1}, v_{2}\right) y_{2} P\left(y_{2}, y_{1}\right) v_{1} C^{-}\left(v_{1}, x_{2}\right)$ are two cycles through X. Thus we have $\left|C^{+}\left(x_{2}, v_{3}\right)\right|+$ $\left|C^{+}\left(t_{1}, t_{2}\right)\right|+\left|C^{+}\left(v_{2}, x_{1}\right)\right| \geq d-a+1$ and $\left|C^{+}\left(x_{1}, x_{2}\right)\right|+\left|C^{+}\left(v_{1}, t_{1}\right)\right|+\left|C^{+}\left(t_{2}, v_{2}\right)\right| \geq d-a+1$, then $m \geq(d-a+1) \times 2+4 \geq 2 d$, a contradiction. Suppose $N_{C_{1}}\left(x_{1}\right)=\left\{s_{1}, s_{2}, \ldots, s_{p}\right\}$. Then if $p \geq 2, N_{C_{1}}\left(x_{2}\right)=\phi$ and thus $\left|N_{C_{1}}\left(x_{1}\right)\right|+\left|N_{C_{1}}\left(x_{2}\right)\right| \leq p \leq c_{1}-1$ since $x_{1} v_{1}^{+} \notin E(G)$. If $p=1$, then $N_{C_{1}}\left(x_{2}\right) \subseteq\left\{s_{1}\right\}$, thus $\left|N_{C_{1}}\left(x_{1}\right)\right|+\left|N_{C_{1}}\left(x_{2}\right)\right| \leq 2 \leq c_{1}-1$. If $p=0$, then $\left|N_{C_{1}}\left(x_{1}\right)\right|+\left|N_{C_{1}}\left(x_{2}\right)\right| \leq c_{1}-1$ since $x_{2} v_{2}^{-} \notin E(G)$. Thus we have $\left|N_{C_{1}}\left(x_{1}\right)\right|+\left|N_{C_{1}}\left(x_{2}\right)\right| \leq c_{1}-1$. Similarly we can prove $\left|N_{C_{1}}\left(x_{3}\right)\right|+\left|N_{C_{1}}\left(x_{4}\right)\right| \leq c_{1}-1$.
(iii) $\sum_{i=1}^{4}\left|N_{C_{2}}\left(x_{i}\right)\right| \leq 2 c_{2}+2$ and the equality holds only if $x_{1} x_{4} \notin E(G) ; \sum_{i=1}^{4}\left|N_{C_{6}}\left(x_{i}\right)\right| \leq 2 c_{6}+2$ and the equality holds only if $x_{1} x_{4} \notin E(G)$;

By (i), $N_{C}\left(x_{3}\right) \cap C^{+}\left(v_{2}, x_{1}\right]=\phi$, so obviously $\left|N_{C_{2}}\left(x_{1}\right)\right|+\left|N_{C_{2}}\left(x_{3}\right)\right| \leq c_{2}+1$, and the equality holds only if $x_{3} v_{2} \in E(G)$. If $s_{1} \in N_{C_{2}}\left(x_{2}\right), s_{2} \in N_{C}\left(x_{4}\right) \cap C^{+}\left(s_{1}, x_{1}\right)$, then $x_{2} s_{1} C^{-}\left(s_{1}, v_{1}\right) y_{1} P\left(y_{1}, y_{3}\right) v_{3} C^{+}\left(v_{3}, x_{4}\right) s_{2} C^{+}\left(s_{2}, x_{2}\right)$ is a cycle through X. Thus we have $\left|C^{+}\left(x_{2}, v_{3}\right)\right|+\left|C^{+}\left(x_{4}, v_{1}\right)\right|+\left|C^{+}\left(s_{1}, s_{2}\right)\right| \geq d-a+1$, together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-a+1$, we can get $m \geq 2 d$, a contradiction. So we know that $\left|N_{C_{2}}\left(x_{2}\right)\right|+\left|N_{C_{2}}\left(x_{4}\right)\right| \leq c_{2}+1$. So $\sum_{i=1}^{4}\left|N_{C_{2}}\left(x_{i}\right)\right| \leq 2 c_{2}+2$ and the equality holds only if $x_{3} v_{2} \in E(G)$, which means $x_{1} x_{4} \notin E(G)$ by (i).

By symmetry, we can prove $\sum_{i=1}^{4}\left|N_{C_{6}}\left(x_{i}\right)\right| \leq 2 c_{6}+2$ and the equality holds only if $x_{1} x_{4} \notin E(G)$.
(iv) $\sum_{i=1}^{4}\left|N_{C_{3}}\left(x_{i}\right)\right| \leq 2 c_{3}$ and the equality holds only if $x_{1} x_{4} \in E(G)$ or $x_{3} x_{2}^{-} \in E(G) ; \sum_{i=1}^{4}\left|N_{C_{5}}\left(x_{i}\right)\right| \leq 2 c_{5}$ and the equality holds only if $x_{1} x_{4} \in E(G)$ or $x_{2} x_{3}^{+} \in E(G)$;

If $s_{1} \in N_{C^{+}\left(x_{1}, x_{2}\right)}\left(x_{3}\right)$ and $s_{2} \in C^{+}\left(s_{1}, x_{2}\right) \cap N_{C}\left(x_{1}\right)$, then $x_{3} s_{1} C^{-}\left(s_{1}, x_{1}\right) s_{2} C^{+}\left(s_{2}, v_{3}\right) y_{3} P\left(y_{3}, y_{2}\right) v_{2} C^{-}\left(v_{2}, x_{3}\right)$ is a cycle through X. Thus we have $\left|C^{+}\left(s_{1}, s_{2}\right)\right|+\left|C^{+}\left(v_{3}, x_{3}\right)\right|+\left|C^{+}\left(v_{2}, x_{1}\right)\right| \geq d-a+1$, together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-a+1$, we can get $m \geq 2 d$, a contradiction. Since $x_{1} x_{3} \notin E(G)$, so $\left|N_{C_{3}}\left(x_{1}\right)\right|+$ $\left|N_{C_{3}}\left(x_{3}\right)\right| \leq c_{3}$ and the equality holds only if $x_{3} x_{2}^{-} \in E(G)$. If $t_{1} \in N_{C_{2}}\left(x_{2}\right), t_{2} \in C^{+}\left(t_{1}, x_{2}\right) \cap N_{C}\left(x_{4}\right)$, then $x_{2} t_{1} C^{-}\left(t_{1}, v_{1}\right) y_{1} P\left(y_{1}, y_{3}\right) v_{3} C^{+}\left(v_{3}, x_{4}\right) t_{2} C^{+}\left(t_{2}, x_{2}\right)$ is a cycle through X. Thus we have $\left|C^{+}\left(t_{1}, t_{2}\right)\right|+\left|C^{+}\left(x_{2}, v_{3}\right)\right|+$ $\left|C^{+}\left(x_{4}, v_{1}\right)\right| \geq d-a+1$, together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-a+1$, we can get $m \geq 2 d$, a contradiction. So $\left|N_{C_{3}}\left(x_{2}\right)\right|+\left|N_{C_{3}}\left(x_{4}\right)\right| \leq c_{3}+1$ and the equality holds only if $x_{1} x_{4} \in E(G)$. But by (i), if $x_{1} x_{4} \in E(G)$, then $x_{3} x_{2}^{-} \notin E(G)$. Thus $\sum_{i=1}^{4}\left|N_{C_{3}}\left(x_{i}\right)\right| \leq 2 c_{3}$ and the equality holds only if $x_{1} x_{4} \in E(G)$ or $x_{3} x_{2}^{-} \in E(G)$.

By symmetry, we can prove $\sum_{i=1}^{4}\left|N_{C_{5}}\left(x_{i}\right)\right| \leq 2 c_{5}$ and the equality holds only if $x_{1} x_{4} \in E(G)$ or $x_{2} x_{3}^{+} \in E(G)$.
(v) $N_{C}\left(x_{1}\right) \cap C^{+}\left(v_{3}, x_{3}\right]=\phi$ and $N_{C}\left(x_{4}\right) \cap C^{+}\left[x_{2}, v_{3}\right)=\phi$; if $x_{2} v_{3}^{+} \in E(G)$, then $N_{C}\left(x_{1}\right) \cap C^{+}\left(x_{2}, v_{3}\right]=\phi$ and $N_{C}\left(x_{4}\right) \cap C^{+}\left(x_{2}, v_{3}\right]=\phi$; if $x_{3} v_{3}^{-} \in E(G)$, then $N_{C}\left(x_{1}\right) \cap C^{+}\left[v_{3}, x_{3}\right)=\phi$ and $N_{C}\left(x_{4}\right) \cap C^{+}\left[v_{3}, x_{3}\right)=\phi$; $x_{2} x_{3}^{+} \notin E(G)$ or $x_{3} x_{4} \notin E(G) ; x_{3} x_{2}^{-} \notin E(G)$ or $x_{1} x_{2} \notin E(G)$.

If $s \in N_{C}\left(x_{1}\right) \cap C^{+}\left(v_{3}, x_{3}\right]$, then $x_{1} s C^{+}\left(s, v_{2}\right) y_{2} P\left(y_{2}, y_{3}\right) v_{3} C^{-}\left(v_{3}, x_{1}\right)$ is a cycle through X. Thus we have $\left|C^{+}\left(v_{3}, s\right)\right|+\left|C^{+}\left(v_{2}, x_{1}\right)\right| \geq d-a+1$. Together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-a+1$, we can get $m \geq 2 d$, a contradiction. By symmetry, we can prove $N_{C}\left(x_{4}\right) \cap C^{+}\left[x_{2}, v_{3}\right)=\phi$.

If $x_{2} v_{3}^{+} \in E(G)$ and $s \in N_{C}\left(x_{1}\right) \cap C^{+}\left(x_{2}, v_{3}\right]$, then $x_{2} v_{3}^{+} C^{+}\left(v_{3}^{+}, v_{2}\right) y_{2} P\left(y_{2}, y_{3}\right) v_{3} C^{-}\left(v_{3}, s\right) x_{1} C^{+}\left(x_{1}, x_{2}\right)$ is a cycle through X. Thus we have $\left|C^{+}\left(x_{2}, s\right)\right|+\left|C^{+}\left(v_{2}, x_{1}\right)\right| \geq d-a+1$, together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq$ $d-a+1$, we can get $m \geq 2 d$, a contradiction. If $x_{2} v_{3}^{+} \in E(G)$ and $t \in N_{C}\left(x_{4}\right) \cap C^{+}\left(x_{2}, v_{3}\right]$, then $x_{2} v_{3}^{+} C^{+}\left(v_{3}^{+}, x_{4}\right) t C^{+}\left(t, v_{3}\right) y_{3} P\left(y_{3}, y_{1}\right) v_{1} C^{+}\left(v_{1}, x_{2}\right)$ is a cycle through X. Thus we have $\left|C^{+}\left(x_{2}, t\right)\right|+\left|C^{+}\left(x_{4}, v_{1}\right)\right| \geq$ $d-a+1$, and then $m \geq 2 d$, a contradiction. By symmetry, we can prove if $x_{3} v_{3}^{-} \in E(G)$, then $N_{C}\left(x_{1}\right) \cap C^{+}\left[v_{3}, x_{3}\right)=$ ϕ and $N_{C}\left(x_{4}\right) \cap C^{+}\left[v_{3}, x_{3}\right)=\phi$.

If $x_{2} x_{3}^{+}, x_{3} x_{4} \in E(G)$, then $x_{2} x_{3}^{+} C^{+}\left(x_{3}^{+}, x_{4}\right) x_{3} C^{-}\left(x_{3}, v_{3}\right) y_{3} P\left(y_{3}, y_{1}\right) v_{1} C^{+}\left(v_{1}, x_{2}\right)$ is a cycle through X. Thus we have $\left|C^{+}\left(x_{2}, v_{3}\right)\right|+\left|C^{+}\left(x_{4}, v_{1}\right)\right| \geq d-a+1$, together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-a+1$, we have $m \geq 2 d$, a contradiction. By symmetry, we can prove $x_{3} x_{2}^{-} \notin E(G)$ or $x_{1} x_{2} \notin E(G)$.
(vi) $\sum_{i=1}^{4}\left|N_{C_{4}}\left(x_{i}\right)\right| \leq 2 c_{4}$; if $x_{2} x_{3}^{+} \in E(G)$ or $x_{3} x_{2}^{-} \in E(G), \sum_{i=1}^{4}\left|N_{C_{4}}\left(x_{i}\right)\right| \leq 2 c_{4}-1$; if $x_{2} x_{3}^{+}, x_{3} x_{2}^{-} \in E(G)$, $\sum_{i=1}^{4}\left|N_{C_{4}}\left(x_{i}\right)\right| \leq 2 c_{4}-2$;

Suppose $C_{41}=C^{+}\left[x_{2}, v_{3}\right), C_{42}=C^{+}\left(v_{3}, x_{4}\right]$ and $c_{41}=\left|C_{41}\right|, c_{42}=\left|C_{42}\right|$.
By (v), $N_{C_{41}}\left(x_{4}\right)=\phi$ and $N_{C_{42}}\left(x_{1}\right)=\phi$. So we have $\left|N_{C_{41}}\left(x_{2}\right)\right|+\left|N_{C_{41}}\left(x_{4}\right)\right| \leq c_{41}-1$ and $\left|N_{C_{42}}\left(x_{1}\right)\right|+\left|N_{C_{42}}\left(x_{3}\right)\right| \leq c_{42}-1$. If $s_{1} \in N_{C_{41}}\left(x_{3}\right)$ and $s_{2} \in C^{+}\left(s_{1}, v_{3}\right) \cap N_{C}\left(x_{1}\right)$, then
$x_{3} s_{1} C^{-}\left(s_{1}, x_{1}\right) s_{2} C^{+}\left(s_{2}, v_{3}\right) y_{3} P\left(y_{3}, y_{2}\right) v_{2} C^{-}\left(v_{2}, x_{3}\right)$ is a cycle through X, thus $\left|C^{+}\left(s_{1}, s_{2}\right)\right|+\left|C^{+}\left(v_{3}, x_{3}\right)\right|+$ $\left|C^{+}\left(v_{2}, x_{1}\right)\right| \geq d-a+1$. Together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-a+1$, we can get $m \geq 2 d$, a contradiction. So $\left|N_{C_{41}}\left(x_{1}\right)\right|+\left|N_{C_{41}}\left(x_{3}\right)\right| \leq c_{41}+1$ and the equality holds only if $x_{1} x_{2} \in E(G)$ and $x_{3} v_{3}^{-} \in E(G)$. By symmetry, we can prove $\left|N_{C_{42}}\left(x_{2}\right)\right|+\left|N_{C_{42}}\left(x_{4}\right)\right| \leq c_{42}+1$ and the equality holds only if $x_{3} x_{4} \in E(G)$ and $x_{2} v_{3}^{+} \in E(G)$. So $\sum_{i=1}^{4}\left|N_{C_{41}}\left(x_{i}\right)\right| \leq 2 c_{41}$ and the equality holds only if $x_{1} x_{2}, x_{3} v_{3}^{-} \in E(G) . \sum_{i=1}^{4}\left|N_{C_{42}}\left(x_{i}\right)\right| \leq 2 c_{42}$ and the equality holds only if $x_{3} x_{4}, x_{2} v_{3}^{+} \in E(G)$.

By (v), if $x_{2} v_{3}^{+} \in E(G)$ or $x_{3} v_{3}^{-} \in E(G)$, then $x_{1} v_{3}, x_{4} v_{3} \notin E(G)$. Then if one and only one of $x_{3} v_{3}^{-} \in E(G)$ and $x_{2} v_{3}^{+} \in E(G)$ holds, we have $\sum_{i=1}^{4}\left|N_{C_{4}}\left(x_{i}\right)\right| \leq 2 c_{4}-1$. If both of $x_{3} v_{3}^{-} \in E(G)$ and $x_{2} v_{3}^{+} \in E(G)$ hold or both of $x_{3} v_{3}^{-} \notin E(G)$ and $x_{2} v_{3}^{+} \notin E(G)$ hold, we have $\sum_{i=1}^{4}\left|N_{C_{4}}\left(x_{i}\right)\right| \leq 2 c_{4}$ and the equality holds only if $x_{1} x_{2} \in E(G)$ and $x_{3} x_{4} \in E(G)$. By (v), $x_{2} x_{3}^{+} \notin E(G)$ or $x_{3} x_{4} \notin E(G), x_{3} x_{2}^{-} \notin E(G)$ or $x_{1} x_{2} \notin E(G)$, so if $x_{2} x_{3}^{+} \in E(G)$ or $x_{3} x_{2}^{-} \in E(G)$, then $\sum_{i=1}^{4}\left|N_{C_{4}}\left(x_{i}\right)\right| \leq 2 c_{4}-1$; if $x_{2} x_{3}^{+}, x_{3} x_{2}^{-} \in E(G)$, then $\sum_{i=1}^{4}\left|N_{C_{4}}\left(x_{i}\right)\right| \leq 2 c_{4}-2$.

From the above, we can get $\sum_{i=1}^{4}\left|N_{C}\left(x_{i}\right)\right| \leq 2 m<4 d$ easily.
Then there should exist a component H_{1} of R such that $N_{H_{1}}\left(x_{i}\right) \neq \phi$ for some $i \in\{1,2,3,4\}$ which means $X \cap W\left(H_{1}\right) \neq \phi$. Then if $w_{2,0}\left(H_{1}\right)=1$, we can choose H_{1} instead of H and prove the theorem similarly as in Case 1 . So we may assume $w_{2,0}\left(H_{1}\right)=0$. We can choose three disjoint edges $z_{1} x_{i}, z_{2} s$ and $z_{3} s^{\prime}$ in $E\left(H_{1}, C\right)$ where z_{1}, z_{2}, z_{3} are three different vertices in $V\left(H_{1}\right)$. Suppose $z \in V\left(H_{1}\right) \backslash\left\{z_{1}, z_{2}, z_{3}\right\}$ such that $n(z)=\left|N_{C}(z)\right|=\max \left\{\left|N_{C}(v)\right|\right.$: $\left.v \in V\left(H_{1}\right) \backslash\left\{z_{1}, z_{2}, z_{3}\right\}\right\}$. Then by Lemma 1, there exists a $\left(z_{i}, z_{j} ; d-n(z)\right.$)-path in H_{1}, denoted by $Q\left(z_{i}, z_{j}\right)$ for $1 \leq i \neq j \leq 3$. By symmetry, we only need to prove the theorem for $i=1$ or 2 .

For $i=1$, we may assume $N_{H_{1}}\left(x_{3}\right)=\phi, s \in C^{+}\left(x_{2}, x_{3}\right)$ and $s^{\prime} \in C^{+}\left(x_{3}, x_{4}\right)$ since $w_{2,0}\left(H_{1}\right)=0$. And it is easy to see $N_{C}(z) \subseteq\left\{x_{1}, s, s^{\prime}\right\}$.
Claim 6. There exists no path connecting x_{3} and a vertex in $C^{+}\left(v_{1}, x_{2}\right)$ with all internal vertices in $R-\left\{H, H_{1}\right\}$.
Proof. Otherwise suppose K is a path connecting x_{3} and a vertex $t \in C^{+}\left(v_{1}, x_{2}\right)$ with all internal vertices in $R-\left\{H, H_{1}\right\}$. Then if $t \in C^{+}\left(v_{1}, v_{2}\right], x_{3} K t C^{+}\left(t, v_{3}\right) y_{3} P\left(y_{3}, y_{1}\right) v_{1} C^{-}\left(v_{1}, x_{3}\right)$ and $x_{3} K t C^{-}\left(t, s^{\prime}\right) z_{3} Q\left(z_{3}, z_{1}\right) x_{1} C^{+}\left(x_{1}, x_{3}\right)$ are two cycles through X. Then we know that $\left|C^{+}\left(v_{1}, t\right)\right|+\left|C^{+}\left(v_{3}, x_{3}\right)\right| \geq$ $d-a+1$ and $\left|C^{+}\left(t, x_{1}\right)\right|+\left|C^{+}\left(x_{3}, s^{\prime}\right)\right| \geq d-n(z)+1$. Thus we can get $m \geq 2 d$, a contradiction. And by Claim 5, $N_{C}\left(x_{3}\right) \cap C^{+}\left(v_{2}, x_{1}\right]=\phi$ which means $t \notin C^{+}\left(v_{2}, x_{1}\right]$. If $t \in C^{+}\left(x_{1}, x_{2}\right)$, then $x_{3} K t C^{+}(t, s) z_{2} Q\left(z_{2}, z_{1}\right) x_{1} C^{-}\left(x_{1}, x_{3}\right)$ is a cycle through X. So we have $\left|C^{+}\left(x_{1}, t\right)\right|+\left|C^{+}\left(s, x_{3}\right)\right| \geq d-n(z)+1$. Together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-a+1$, we have $m \geq 2 d$, a contradiction.

Then $N_{C}\left(x_{3}\right) \subseteq C^{+}\left[x_{2}, v_{1}\right]$. So if $\left|N_{C}\left(x_{3}\right)\right| \geq d,\left|C^{+}\left[x_{2}, v_{1}\right]\right| \geq d+1$, together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-a+1$, we can get $m \geq 2 d$, a contradiction. So we may assume $\left|N_{C}\left(x_{3}\right)\right|<d$. Since $N_{H}\left(x_{3}\right)=N_{H_{1}}\left(x_{3}\right)=\phi$, there should exist a component H_{2} of R such that $N_{H_{2}}\left(x_{3}\right) \neq \phi$. Then $W\left(H_{2}\right) \subseteq C^{+}\left[x_{2}, v_{1}\right]$, thus $w_{2,0}\left(H_{2}\right)=1$ and $W\left(H_{2}\right) \cap X \neq \phi$, we can choose H_{2} instead of H and prove the theorem similarly as in Subcase 1.4, 1.5 or 1.6.

For $i=2$, we may assume $N_{H_{1}}\left(x_{3}\right)=\phi, s \in C^{+}\left(x_{3}, x_{4}\right)$ and $s^{\prime} \in C^{+}\left(x_{4}, x_{1}\right)$.
Claim 7. There exists no path connecting x_{3} and a vertex in $C^{+}\left(x_{4}, x_{2}\right)-\left\{v_{2}\right\}$ with all internal vertices in $R-\left\{H, H_{1}\right\}$.
Proof. Otherwise suppose K is a path connecting x_{3} and a vertex $t \in C^{+}\left(x_{4}, x_{2}\right)-\left\{v_{2}\right\}$ with all internal vertices in $R-\left\{H, H_{1}\right\}$. If $t \in C^{+}\left(x_{4}, v_{2}\right), x_{3}{K t C^{-}}^{(t, s) z_{2} Q\left(z_{2}, z_{1}\right) x_{2} C^{-}\left(x_{2}, v_{2}\right) y_{2} P\left(y_{2}, y_{3}\right) v_{3} C^{+}\left(v_{3}, x_{3}\right) \text { is a cycle through }}$ X. Then we know that $\left|C^{+}\left(t, v_{2}\right)\right|+\left|C^{+}\left(x_{2}, v_{3}\right)\right|+\left|C^{+}\left(x_{3}, s\right)\right| \geq d-a+1+d-n(z)+1$. Thus we can get $m \geq 2 d$, a contradiction. By Claim 5, $N_{C}\left(x_{3}\right) \cap C^{+}\left(v_{2}, x_{1}\right]=\phi$ which means $t \notin C^{+}\left(v_{2}, x_{1}\right]$. If $t \in C^{+}\left(x_{1}, x_{2}\right)$, then $x_{3} K t C^{-}(t, s) z_{2} Q\left(z_{2}, z_{1}\right) x_{2} C^{+}\left(x_{2}, x_{3}\right)$ is a cycle through X. So we have $\left|C^{+}\left(t, x_{2}\right)\right|+\left|C^{+}\left(x_{3}, s\right)\right| \geq d-n(z)+1$. Together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-a+1$, we can get $m \geq 2 d$, a contradiction.

Then $N_{C}\left(x_{3}\right) \subseteq C^{+}\left[x_{2}, x_{4}\right] \cup\left\{v_{2}\right\}$. So if $\left|N_{C}\left(x_{3}\right)\right| \geq d,\left|C^{+}\left[x_{2}, x_{4}\right]\right| \geq d$, together with $\left|C^{+}\left(v_{1}, v_{2}\right)\right| \geq d-a+1$, we can get $m \geq 2 d$, a contradiction. So we may assume $\left|N_{C}\left(x_{3}\right)\right|<d$. Since $N_{H}\left(x_{3}\right)=N_{H_{1}}\left(x_{3}\right)=\phi$, there should exist a component H_{2} of R such that $N_{H_{2}}\left(x_{3}\right) \neq \phi$. Then $W\left(H_{2}\right) \subseteq C^{+}\left[x_{2}, x_{4}\right] \cup\left\{v_{2}\right\}$, thus $w_{2,0}\left(H_{2}\right)=1$ and $W\left(H_{2}\right) \cap X \neq \phi$, we can choose H_{2} instead of H and prove the theorem similarly as in Subcase 1.4 or 1.6.

Acknowledgements

We are very grateful to the referees for their helpful suggestions.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, The Macmillan Press LTD, 1976.
[2] J.A. Bondy, B. Jackson, Long paths between specified vertices of a block, Ann. Discrete Math. 27 (1985) 195-200.
[3] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
[4] G.A. Dirac, In abstrakten Graphen vorhandene vollstandige 4-Graphen und ihre Unterteilungen, Math. Nachr. 22 (1960) 61-85.
[5] Y. Egawa, R. Glas, S.C. Locke, Cycles and paths through specified vertices in k-connected graphs, J. Combin. Theory Ser. B 52 (1991) 20-29.
[6] S.C. Locke, C.-Q. Zhang, Cycles through three vertices in 2-connected graphs, Graphs Combin. 7 (1991) 265-269.
[7] Research problems, Discrete Math. 257 (2002) 599-624.

[^0]: * Corresponding author.

 E-mail addresses: xzlv@ruc.edu.cn (X. Lv), chdyi@cufe.edu.cn (C. Yi).

