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Abstract

S.C. Locke proposed a question: If G is a 3-connected graph with minimum degree d and X is a set of 4 vertices on a cycle in
G, must G have a cycle through X with length at least min{2d, |V (G)|}? In this paper, we answer this question.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

All graphs considered here are finite, undirected, and without loops or multiple edges. Dirac has given two well-
known results about cycles. One [3] says that a k-connected graph has a cycle through any given k vertices in the graph.
The other [4] is that if G is a 2-connected graph with minimum degree d , then G contains a cycle with length at least
min{2d, |V (G)|}. Starting with the two results, many researchers have considered long cycles through a prescribed
vertex set or a prescribed edge set. Egawa et al. [5] proved that if G is a k-connected graph with minimum degree
d and X is a set of k vertices in G, then G has a cycle through X with length at least min{2d, |V (G)|}. Locke and
Zhang [6] proved that if G is a 2-connected graph with minimum degree d and X is a set of 3 vertices on a cycle in
G, then G has a cycle through X with length at least min{2d, |V (G)|}.

We prove Theorem 1 which gives the answer to the following question proposed by S.C. Locke in [7].

Question. If G is a 3-connected graph with minimum degree d and X is a set of 4 vertices on a cycle in G, must G
have a cycle through X with length at least min{2d, |V (G)|}?

Theorem 1. Let G be a 3-connected graph with minimum degree d and X be a set of 4 vertices on a cycle in G, then
G contains a cycle through X with length at least min{2d, |V (G)|}.

∗ Corresponding author.
E-mail addresses: xzlv@ruc.edu.cn (X. Lv), chdyi@cufe.edu.cn (C. Yi).

0012-365X/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2007.12.076

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82299117?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/disc
mailto:xzlv@ruc.edu.cn
mailto:chdyi@cufe.edu.cn
http://dx.doi.org/10.1016/j.disc.2007.12.076


X. Lv, C. Yi / Discrete Mathematics 309 (2009) 64–76 65

2. Some lemmas and results

Let G be a 3-connected graph with minimum degree d and X be a set of 4 vertices on a cycle in G. For any two
vertices u, v ∈ V (G) and an integer k, a (u, v; k)-path denotes a path connecting u and v with length at least k.
For a path P in G, we denote by |P| the number of vertices that P contains. Suppose C is a longest cycle through
X and R = G − C . When we consider a cycle, we always consider its orientation. Let C+ be an orientation of
C and C− be its reverse orientation. Let C+ = c1c2 · · · cmc1. C+[ci , c j ] and C−[ci , c j ] denote the segments of C
with C+[ci , c j ] = ci ci+1 · · · c j−1c j and C−[ci , c j ] = ci ci−1 · · · c j+1c j , respectively. Denote by |C+[ci , c j ]| the
number of vertices that C+[ci , c j ] contains, and |C−[ci , c j ]| is similarly defined. Also, let C+[ci , c j ) be the segment
C+[ci , c j ] − c j . Analogously, C+(ci , c j ], C+(ci , c j ), C−[ci , c j ), C−(ci , c j ], C−(ci , c j ) are also defined. We also
denote c+i = ci+1, c−i = ci−1, c++i = ci+2, c−−i = ci−2.

For a component H of R, let W (H) = NC (H), and label the vertices of W (H) along C+ as u1, u2, . . . , ur . Let

W2(H) = {ui ∈ W (H) : |NH ({ui , ui+1})| ≥ 2} and W1(H) = W (H)−W2(H).

Also let

W2,0(H) = {ui ∈ W2(H) : C(ui , ui+1) ∩ X = φ} and W2,1(H) = W2(H)−W2,0(H).

Denote w(H) = |W (H)| and for an index I , wI (H) = |WI (H)|.
We use [1] for terminology and notation not defined here. Before proving the main result, we first give some

lemmas.

Lemma 1 ([2]). Let B be a 2-connected graph on at least 4 vertices, x, y, z be 3 distinct vertices of B and k > 0 an
integer. Suppose that every vertex of B, except possibly x, y, z, has degree at least k, then there exist an (x, y; k)-path,
an (x, z; k)-path and a (y, z; k)-path in B.

Alternatively, if B is nonseparable on |V (B)| = 3 vertices, then B = K3 and there are an (x, y; 2)-path, an
(x, z; 2)-path and a (y, z; 2)-path in B.

Since C is a longest cycle through X , we can easily get the following lemma.

Lemma 2. Let u, v ∈ W (H), then

(i) W (H) ∩W (H)+ = φ;
(ii) There exists no path connecting u+ and v+ with all internal vertices in R − H;

(iii) There exists no path connecting u− and v− with all internal vertices in R − H;
(iv) Suppose that |NH ({u, v})| ≥ 2 and v+ 6∈ X, then there exists no path connecting u+ and v++ with all internal

vertices in R − H;
(v) Suppose that |NH ({u, v})| ≥ 2 and v− 6∈ X, then there exists no path connecting u− and v−− with all internal

vertices in R − H.

Theorem 2. Let G be a 3-connected graph with minimum degree d and X be a set of 4 vertices on a cycle in G.
Suppose C is a longest cycle through X, if there exists a component H of R = G − C such that 1 ≤ |V (H)| ≤ 3,
then |V (C)| ≥ 2d.

Proof. Suppose C+ = c1c2 · · · cmc1, we may assume m < 2d . Then by Lemma 2 (i), w(H) < d . Hence |V (H ′)| ≥ 2
for any component H ′ of R. So 2 ≤ |V (H)| ≤ 3. Since G is 3-connected, w(H) ≥ 3 and so d ≥ 4. Suppose
W (H) = {u1, u2, . . . , ur } that are arranged along C+, and let ur+1 = u1. For i 6= j , denote by PH (ui , u j ) a longest
path joining ui , u j with all internal vertices in H . First we prove the following claim.

Claim 1. Suppose that |C+(ui , ui+1)| = |C+(u j , u j+1)| = 1, X ∩ C+(uk, uk+1) = φ(i < j < k ≤ r), H1 and H2
are components of R such that NH1(u

+

i ) 6= φ and NH2(u
+

j ) 6= φ. Then
(i) u j+1 6∈ W (H1) or ui 6∈ W (H2);
(ii) If |C+(uk, uk+1)| < |PH (u j+1, ui )|, then uk 6∈ W (H1) or uk+1 6∈ W (H2);
(iii) If |C+(uk, uk+1)| < |PH (uk+1, ui+1)| − 1, then uk 6∈ W (H1); If |C+(uk, uk+1)| < |PH (uk, ui )| − 1, then

uk+1 6∈ W (H1).
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Proof. (i) Suppose u j+1 ∈ W (H1) and ui ∈ W (H2), then there is a path PH1(u
+

i , u j+1) joining u+i , u j+1 with all
internal vertices in H1 and a path PH2(ui , u+j ) with all internal vertices in H2. Hence

u+i PH1(u
+

i , u j+1)C
+(u j+1, ui )PH2(ui , u+j )C

−(u+j , u+i )

is a cycle through X longer than C , a contradiction.
(ii) Suppose uk ∈ W (H1) and uk+1 ∈ W (H2), then there is a path PH1(u

+

i , uk) joining u+i , uk with all internal
vertices in H1 and a path PH2(u

+

j , uk+1) with all internal vertices in H2. Hence

u+i PH1(u
+

i , uk)C
−(uk, u j+1)PH (u j+1, ui )C

−(ui , uk+1)PH2(uk+1, u+j )C
−(u+j , u+i )

is a cycle through X longer than C since |C+(uk, uk+1)| < |PH (u j+1, ui )|, a contradiction.
(iii) If uk ∈ W (H1), there is a path PH1(uk, u+i ) joining uk , u+i with all internal vertices in H1. Hence

uk PH1(uk, u+i )C
−(u+i , uk+1)PH (uk+1, ui+1)C

+(ui+1, uk)

is a cycle through X longer than C since |C+(uk, uk+1)| < |PH (uk+1, ui+1)| − 1, a contradiction. Similarly if
|C+[uk, uk+1]| < |PH (uk, ui )| − 1, then uk+1 6∈ W (H1). �

We divide the proof into two cases.

Case 1. H = K2 or H = K−3 .
Then there exist u, v ∈ V (H) with |NH (u)| = |NH (v)| = 1. Since δ(G) ≥ d, |NC (u)| ≥ d − 1 and

|NC (v)| ≥ d − 1. Obviously we must have |NC (u)| = |NC (v)| = r = d − 1 and NC (u) = NC (v) = W (H),
and then W2(H) = W (H). Since w2(H) = d − 1, and |X | = 4, then w2,0(H) ≥ d − 5. And if ui ∈ W2,0(H),
|C+(ui , ui+1)| ≥ 2 since C is a longest cycle through X . We first prove

Claim 2. 1 ≤ |C+(ui , ui+1)| ≤ 2 for 1 ≤ i ≤ d − 1; and if |C+(ui , ui+1)| = 2, then |C+(u j , u j+1)| = 1 for
j 6= i(1 ≤ i, j ≤ d − 1).

Proof. If |C+(ui , ui+1)| ≥ 3 for some i , then m ≥ 4 + 2(d − 2) = 2d, a contradiction. And if there exist
1 ≤ i, j ≤ d − 1 and i 6= j such that |C+(ui , ui+1)| = 2 and |C+(u j , u j+1)| = 2, then m ≥ 3× 2+ 2(d − 3) = 2d,
also a contradiction. �

Then by Claim 2, w2,0(H) ≤ 1 and hence 4 ≤ d ≤ 6. For any 1 ≤ i ≤ r , if |C+(ui , ui+1)| = 1, we know that
C+(ui , ui+1) ∩ X 6= φ, say xi ∈ C+(ui , ui+1). By Claim 2 and Lemma 2(ii) and (iii), NC (xi ) ⊆ W (H). Then since
NH (xi ) = φ and w(H) = d − 1, there should exist a component Hi of R such that NHi (xi ) 6= φ. And obviously
W (Hi ) ⊆ {xi } ∪W (H)− {ui , ui+1}.

Without loss of generality, we may assume |C+(u1, u2)| = 1 and H1 is component of R such that NH1(x1) 6= φ,
W (H1) ⊆ {x1} ∪ W (H) − {u1, u2}. Then if d = 4, we get w(H1) ≤ 2, a contradiction to that G is 3-connected.
So we may assume d = 5 or 6. If w2,0(H) = 0, then d ≤ 5 and hence d = 5. By symmetry, we may assume
|C+(u2, u3)| = 1. Suppose x2 ∈ C+(u2, u3) ∩ X and H2 is a component of R such that NH2(x2) 6= φ. Then
W (H2) ⊆ {x2} ∪ W (H) − {u2, u3}. By Claim 1 (i), u3 6∈ W (H1) or u1 6∈ W (H2), and hence w(H1) ≤ 2 or
w(H2) ≤ 2, a contradiction to that G is 3-connected. If w2,0(H) = 1, suppose ui ∈ W2,0(H)(1 ≤ i ≤ r). Then by
Claim 2, |C+(ui−2, ui−1)| = 1. Suppose x ′ ∈ X ∩ C+(ui−2, ui−1), H ′ is a component of R such that NH ′(x ′) 6= φ
and then W (H ′) ⊆ {x ′} ∪ W (H) − {ui−2, ui−1}. By Claim 1(iii), ui , ui+1 6∈ W (H ′). That means w(H ′) ≤ 2, a
contradiction to that G is 3-connected.

From the proof of Case 1, we may assume that each component of R has at least 3 vertices.
Case 2. H = K3.

Suppose V (H) = {y1, y2, y3}, then it is easy to know that d − 2 ≤ |NC (yi )| ≤ d − 1 for i = 1, 2, 3. Hence
|NC (yi )− NC ({y j , yk})| ≤ 1 for any 1 ≤ i, j, k ≤ 3. This implies W (H) = W2(H). Since w2(H) = r , and |X | = 4,
then w2,0(H) ≥ r − 4 and w2,1(H) ≤ 4. And if ui ∈ W2,0(H), |C+(ui , ui+1)| ≥ 3 since C is a longest cycle through
X . Then if w2,0(H) ≥ 2, m ≥ 4 × 2 + 2(r − 2) ≥ 2d. And if r ≥ 6, we have w2,0(H) ≥ 2. We only need to prove
the theorem when w2,0(H) ≤ 1 and 4 ≤ d ≤ 7. We first prove

Claim 3. (i) 1 ≤ |C+(ui , ui+1)| ≤ 4 for 1 ≤ i ≤ r and if r = d − 1, 1 ≤ |C+(ui , ui+1)| ≤ 2 for 1 ≤ i ≤ r ;
(ii) If |C+(ui , ui+1)| = 4, then |C+(u j , u j+1)| = 1 for j 6= i ;
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(iii) If |C+(ui , ui+1)| = 3, then |C+(u j , u j+1)| ≤ 2 for j 6= i ; moreover, if |C+(ui , ui+1)| = 3 and
|C+(u j , u j+1)| = 2 for j 6= i , then |C+(uk, uk+1)| = 1 for k 6= i, j .

Proof. (i) If |C+(ui , ui+1)| ≥ 5 for some 1 ≤ i ≤ r , then m ≥ 6+ 2(r − 1) ≥ 2d , a contradiction. If r = d − 1 and
|C+(ui , ui+1)| ≥ 3 for some 1 ≤ i ≤ r , then m ≥ 4+ 2(d − 2) = 2d , a contradiction.

(ii) If there exist 1 ≤ i, j ≤ r and i 6= j such that |C+(ui , ui+1)| = 4 and |C+(u j , u j+1)| ≥ 2, then
m ≥ 5+ 3+ 2(r − 2) ≥ 2d, a contradiction.

(iii) If there exist 1 ≤ i, j ≤ r and i 6= j such that |C+(ui , ui+1)| = 3 and |C+(u j , u j+1)| ≥ 3, then
m ≥ 4× 2+ 2(r − 2) ≥ 2d, a contradiction. If |C+(ui , ui+1)| = 3 and |C+(u j , u j+1)| = 2 for 1 ≤ i 6= j ≤ r , then
m ≥ 4+ 3+ 2(r − 2) ≥ 2d − 1, so we must have |C+(uk, uk+1)| = 1 for k 6= i, j . �

Then if |C+(ui , ui+1)| = 1(1 ≤ i ≤ r), say xi ∈ C+(ui , ui+1) ∩ X , by Claim 3 and Lemma 2(ii)–(v), there exists
a component Hi of R such that NHi (xi ) 6= φ and obviously W (Hi ) ⊆ {xi } ∪W (H)− {ui , ui+1}.

Subcase 2.1. w2,0(H) = 1.
Then by Claim 3(i), r = d − 2 and hence 5 ≤ d ≤ 7. By symmetry, we may assume u1 ∈ W2,0(H) and

|C+(u2, u3)| = 1 by Claim 3(ii) or (iii). Suppose x1 ∈ C+(u2, u3) ∩ X , H1 is a component of R such that
NH1(x1) 6= φ. Then W (H1) ⊆ {x1} ∪ W (H) − {u2, u3}. Since G is 3-connected, 3 ≤ w(H1) ≤ w(H) − 1 and
hence r = w(H) ≥ 4. We may assume d = 6 and r = 4 or d = 7 and r = 5. Again by Claim 3(ii) or (iii), there exists
another u j ( j 6= 2) such that |C+(u j , u j+1)| = 1, say x2 ∈ C+(u j , u j+1). Suppose H2 is a component of R such that
NH2(x2) 6= φ and then W (H2) ⊆ {x2} ∪W (H)− {u j , u j+1}.

If |C+(u1, u2)| = 3, then by Claim 1(iii), u1 6∈ W (H1) and u1, u2 6∈ W (H2). So if d = 6 and r = 4, we
immediately get w(H1) ≤ 2, a contradiction to that G is 3-connected. If d = 7 and r = 5, then by Claim
3(iii), at least one of |C+(u3, u4)| = 1 and |C+(u4, u5)| = 1 holds. Without loss of generality, let j = 3, then
W (H2) ⊆ {x2}∪W (H)−{u1, u2, u3, u4}. Thus we can get w(H2) ≤ 2, also a contradiction to that G is 3-connected.

If |C+(u1, u2)| = 4, then by Claim 3(ii), |C+(ui , ui+1)| = 1 for ∀i 6= 1. If d = 6 and r = 4, let j = 3, then by
Claim 1(ii), u1 6∈ W (H1) or u2 6∈ W (H2). Thus we can get w(H1) ≤ 2 or w(H2) ≤ 2, a contradiction to that G is
3-connected. If d = 7 and r = 5, suppose xi−1 ∈ C+(ui , ui+1) ∩ X for i = 2, 3, 4, 5 where u5+1 = u1, and Hi−1 is
the component of R such that NHi−1(xi−1) 6= φ. By Lemma 2, we know that W (Hi−1) ⊆ {xi−1}∪W (H)−{ui , ui+1}.
And by Claim 1(ii), if u1 ∈ W (H1), then u2 6∈ W (H j ) for j = 2, 3, 4. So if u1 ∈ W (H1), we should have
W (H2) = {x2, u1, u5} and W (H3) = {x3, u1, u3} since G is 3-connected. But by Claim 1(i), u5 6∈ W (H2) or
u3 6∈ W (H3), a contradiction. So we may assume u1 6∈ W (H1), which means W (H1) = {x1, u4, u5}. And then by
Claim 1(i), u2 6∈ W (H2) and u2 6∈ W (H3). Similarly we can get W (H2) = {x2, u1, u5} and W (H3) = {x3, u1, u3}

and again by Claim 1 (i), u5 6∈ W (H2) or u3 6∈ W (H3), a contradiction.

Subcase 2.2. w2,0(H) = 0.
Then 3 ≤ r = w(H) = w2,1(H) ≤ 4.

Subcase 2.2.1. r = 3. Then d = 4 or 5.

Claim 4. If |C+(u+i , ui+1)| ≤ 2 and C+(u+i , ui+1) ∩ X = φ, then u−j 6∈ NC (u
+

i ) for any j 6= i .

Proof. If u−j ∈ NC (u
+

i ) for some j 6= i , then u+i u−j C−(u−j , ui+1)PH (ui+1, u j )C+(u j , u+i ) is a cycle through X and
longer than C , a contradiction. �

If d = 4, or d = 5 and |C+(ui , ui+1)| ≥ 3 for some i , then by Claim 3(ii) or (iii), there exists u j such that
|C+(u j , u j+1)| = 1. Without loss of generality, assume |C+(u1, u2)| = 1, say x1 ∈ X ∩C+(u1, u2). Suppose H1 is a
component of R such that NH1(x1) 6= φ and then W (H1) ⊆ {x1} ∪W (H)−{u1, u2}, which implies w(H1) ≤ 2 since
w(H) = 3, a contradiction. So we may assume d = 5 and |C+(ui , ui+1)| ≤ 2 for each 1 ≤ i ≤ 3. Since w(H) = 3,
there exists ui such that |C+(ui , ui+1) ∩ X | = 1. Without loss of generality, suppose |C+(u1, u2) ∩ X | = 1 and
x1 = u+1 ∈ X . Then by Lemma 2 and Claim 4, NC (x1) ⊆ W (H) ∪ {u++1 }. Then there exists a component H1
of R such that NH1(x1) 6= φ, say y1 ∈ NH1(x1). By Lemma 2, we know that W (H1) ⊆ {u2, u3, x1}. Note that
|V (H1)| ≥ 3, therefore V (H1)− {y1} 6= φ. Since x1 = u+1 ∈ W (H1), |C+(x1, u2)| ≤ 1 and C+(x1, u2) ∩ X = φ, it
follows immediately that u2 6∈ NC (H1−{y1}). Then if NH1(x1) = y1, we have |NC (H1−{y1})| ≤ 1, a contradiction.
Otherwise, if |NH1(x1)| ≥ 2, then u2 6∈ W (H1). Thus we have w(H1) ≤ 2, a contradiction.

Subcase 2.2.2. r = 4. Then d = 5 or 6.
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If |C+(ui , ui+1)| ≥ 2 for 1 ≤ i ≤ 4, then m ≥ 3r = 12 ≥ 2d , a contradiction. By symmetry, we may assume
|C+(u1, u2)| = 1 and x1 ∈ X ∩ C+(u1, u2). Suppose H1 is a component of R such that NH1(x1) 6= φ and hence
W (H1) ⊆ {x1} ∪W (H)− {u1, u2}. Since G is 3-connected, W (H1) = {x1, u3, u4}.

If d = 5, or d = 6 and |C+(ui , ui+1)| ≥ 3 for some i(2 ≤ i ≤ 4), then by Claim 3(ii) or (iii), there exists
u j (2 ≤ j ≤ 4) such that |C+(u j , u j+1)| = 1, say x2 ∈ X ∩ C+(u j , u j+1). Suppose H2 is a component of R
such that NH2(x2) 6= φ and then W (H2) ⊆ {x2} ∪ W (H) − {u j , u j+1}. Since u3, u4 ∈ W (H1), then by Claim 1(i),
u1 6∈ W (H2) if j = 2, 3 or u2 6∈ W (H2) if j = 4. In either case we have w(H2) ≤ 2, a contradiction. Hence
we may assume d = 6 and |C+(ui , ui+1)| ≤ 2 for each i(2 ≤ i ≤ 4). Since w(H) = 4 and w2,0(H) = 0,
|C+(ui , ui+1) ∩ X | = 1 for 2 ≤ i ≤ 4. Without loss of generality, we may assume x2 = u+3 ∈ X . By Lemma 2
and Claim 4, NC (x2) ⊆ W (H) ∪ {u++3 }. Then there exists a component H2 of R such that NH2(x2) 6= φ and
then W (H2) ⊆ {x2, u1, u2, u4}. Since W (H1) = {x1, u3, u4}, |C+(x2, u4)| ≤ 1 and C+(x2, u4) ∩ X = φ, then by
Lemma 2, u1, u2 6∈ W (H2). That means w(H2) ≤ 2, a contradiction. �

From the proof of Theorem 2, we know that the condition of H = K2 or K−3 can be replaced by that there are
two vertices y1, y2 ∈ V (H) such that |NH (y1)| = |NH (y2)| = 1. And the condition of H = K3 can be replaced
by that there are three vertices y1, y2, y3 ∈ V (H) such that |NH (yi )| ≤ 2 and there is a (yi , y j ; 2)-path in H for
1 ≤ i 6= j ≤ 3.

3. Proof of Theorem 1

Let C = c1c2 · · · cmc1 be a longest cycle through X = {x1, x2, x3, x4} in G and assume m ≤ 2d − 1. If there is
a component H ′ of R such that |V (H ′)| ≤ 3 or H ′ is separable and there are two end blocks of H ′ with no more
than 3 vertices, then Theorem 1 follows directly from Theorem 2. Then if a component H ′ of R is separable, we may
assume at least one end block B of H ′ with not less than 4 vertices and b is the unique cut vertex in B. And then we
can get a new graph G ′ by contracting H − B to b and adding all the edges in {bu : u ∈ NC (H − B)}. It is easy to see
that G ′ is 3-connected and C is still a longest cycle through X in G ′: If there exists a component H ′ of R such that
w2,0(H ′) ≥ 2. Choose y ∈ V (H ′) such that n(y) = |NC (y)| = max{|NC (x)| : x ∈ V (H ′)}. Then for any two vertices
y1, y2 ∈ V (H ′), there is a (y1, y2; d−n(y))-path by Lemma 1. Thus we have m ≥ 2(d−n(y)+2)+2(n(y)−2) = 2d.
From the above, we only need to prove Theorem 1 when every component H ′ of R has at least 4 vertices, 2-connected
and w2,0(H ′) ≤ 1. Suppose H is a component of R such that w2,0(H) ≥ w2,0(H ′) for any component H ′ of R and
then X ∩ W (H) is as maximal as possible. Since G is 3-connected and |V (H)| ≥ 4, we can choose three disjoint
edges y1v1, y2v2 and y3v3 in E(H,C) where y1, y2, y3 are three distinct vertices in H , v1, v2, v3 are arranged along
C+. Suppose y, y′ ∈ V (H) such that n(y) = |NC (y)| = max{|NC (x)| : x ∈ V (H) \ {y1, y2, y3}} and n(y′) =
max{n(y), n(y1)}. Then by Lemma 1, there exist a (yi , y j ; d − n(y))-path (1 ≤ i 6= j ≤ 3) and a (yi , y; d − n(y′))-
path (i = 2, 3) in H , denoted by P(yi , y j ) and P(yi , y) respectively. Suppose A = NC (y)∩{v1, v2, v3} and a = |A|.

We divide the proof of Theorem 1 into two parts according to w2,0(H) = 0 or 1.

Part I. w2,0(H) = 0. Then |{v1, v2, v3} ∩ X | ≤ 1.
Suppose {x1, x2, x3, x4} are arranged along C+. If X ∩ W (H) 6= φ, we may choose v1, v2, v3 such that

{v1, v2, v3}∩ X 6= φ, suppose v1 = x1 by symmetry. And then v2 ∈ C+(x2, x3), v3 ∈ C+(x3, x4). If X ∩W (H) = φ,
we may assume v1 ∈ C+(x1, x2), v2 ∈ C+(x2, x3) and v3 ∈ C+(x3, x4) by symmetry. In either case, we have
{x2} = C+(v1, v2)∩X , {x3} = C+(v2, v3)∩X and NC (y)∩C+[x1, x4] ⊆ {v1, v2, v3}. Suppose NC (y)∩C+(x4, x1) =

{w1, w2, . . . , wq}. We first prove:

Claim 1. |NC (x2)| + |NC (x3)| < 2d.

Proof. Suppose C1 = C+[v1, x2), C2 = C+(x2, v2], C3 = C+[v2, x3), C4 = C+(x3, v3], C5 = C+(v3, x4). If
v1 6= x1, suppose C6 = C+[x4, x1], C7 = C+(x1, v1). Otherwise suppose C6 = C+[x4, x1). Denote ci = |Ci |. Note
that m =

∑7
i=1 ci + 1 if v1 6= x1 and m =

∑6
i=1 ci + 1 if v1 = x1.

(i) x2x3 6∈ E(G).
If x2x3 ∈ E(G), we know that x2x3C+(x3, v1)y1 P(y1, y2)v2C−(v2, x2) and x2x3C−(x3, v2)y2 P(y2, y3)

v3C+(v3, x2) are two cycles through X . Thus we have |C+(v1, x2)| + |C+(v2, x3)| ≥ d − n(y) + 1 and
|C+(x2, v2)| + |C+(x3, v3)| ≥ d − n(y)+ 1. Then we have m ≥ 2d , a contradiction.

(ii) If x2v
−

3 ∈ E(G), then NC1(x3) = φ; if x3v
+

1 ∈ E(G), then NC4(x2) = φ.
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If x2v
−

3 ∈ E(G) and s ∈ NC1(x3), then x2v
−

3 C−(v−3 , v2)y2 P(y2, y3)v3C+(v3, x2) and x3sC−(s, v3)y3 P(y3, y2)

v2C−(v2, x2)v
−

3 C−(v−3 , x3) are two cycles through X . Thus we have |C+(x2, v2)| ≥ d − n(y)+ 1 and |C+(s, x2)| +

|C+(v2, x3)| ≥ d − n(y) + 1, then we can get m ≥ 2d, a contradiction to m < 2d . By symmetry, we can prove if
x3v
+

1 ∈ E(G), then NC4(x2) = φ.
(iii) If x2v

+

2 ∈ E(G), then NC2(x3) = φ; if x3v
−

2 ∈ E(G), then NC3(x2) = φ.
If x2v

+

2 ∈ E(G) and s ∈ NC2(x3), then x2v
+

2 C+(v+2 , v1)y1 P(y1, y2)v2C−(v2, x2) and x3sC+(s, v2)v2 y2 P(y2, y3)

v3C+(v3, x2)v
+

2 C+(v+2 , x3) are two cycles through X . Thus we have |C+(v1, x2)| ≥ d − n(y)+ 1 and |C+(x2, s)| +
|C+(x3, v3)| ≥ d − n(y) + 1. So we can get m ≥ 2d, a contradiction. By symmetry, we can prove if x3v

−

2 ∈ E(G),
then NC3(x2) = φ.

(iv) If x2v
+

3 ∈ E(G), NC5(x3) = φ; if v1 6= x1 and x3v
−

1 ∈ E(G), NC7(x2) = φ.
If x2v

+

3 ∈ E(G) and s ∈ NC5(x3), then x2v
+

3 C+(v+3 , v1)y1 P(y1, y3)v3C−(v3, x2) and x3sC+(s, v2)y2 P(y2, y3)

v3C−(v3, x3) are two cycles through X . Thus we have |C+(v1, x2)| ≥ d−n(y)+1 and |C+(v2, x3)|+ |C+(v3, s)| ≥
d − n(y) + 1. So we can get m ≥ 2d, a contradiction. If v1 6= x1, we can prove if x3v

−

1 ∈ E(G), then NC7(x2) = φ

by symmetry.
(v) |NC1∪C4(x2)| + |NC1∪C4(x3)| ≤ c1 + c4 + 2.
If there exist s1 ∈ NC1−{v1}(x2) and s2 ∈ C+(s1, x2)∩NC (x3), then x2s1C+(s1, s2)x3C+(x3, v1)y1 P(y1, y2)v2C−

(v2, x2) and x2s1C−(s1, v3)y3 P(y3, y2)v2C+(v2, x3)s2C+(s2, x2) are two cycles through X . Thus we have
|C+(v1, s1)|+|C+(s2, x2)|+|C+(v2, x3)| ≥ d−n(y)+1 and |C+(s1, s2)|+|C+(x2, v2)|+|C+(x3, v3)| ≥ d−n(y)+1.
Then m ≥ 2d, a contradiction. That means if s ∈ NC1−{v1}(x2), then NC (x3) ∩ C+(s, x2) = φ. Suppose
NC1(x2) = {s1, s2, . . . , sp} and they are arranged along C+, then if s1 6= v1, NC1(x3) ⊆ C+[v1, s1] and if s1 = v1,
NC1(x3) ⊆ C+[v1, s2]. Then we can get |NC1(x2)| + |NC1(x3)| ≤ p + c1 − (p − 2) = c1 + 2 and the equality holds
only if x3v

+

1 ∈ E(G) and NC1(x2) 6= φ. By symmetry, we can prove |NC4(x2)| + NC4(x3)| ≤ c4 + 2 and the equality
holds only if x2v

−

3 ∈ E(G) and NC4(x3) 6= φ. Note the results of (ii), we know that |NC1∪C4(x2)| + |NC1∪C4(x3)| ≤

c1 + c4 + 2.
(vi) |NC2∪C3(x2)| + |NC2∪C3(x3)| ≤ c2 + c3.
If there exist s1 ∈ NC2(x3) and s2 ∈ C+(s1, v2) ∩ NC (x2), then x3s1C+(s1, s2)x2C−(x2, v3)y3 P(y3, y2)v2C+

(v2, x3) and x3s1C−(s1, x2)s2C+(s2, v2)y2 P(y2, y1)v1C−(v1, x3) are two cycles through X . Thus we have
|C+(x2, s1)|+|C+(s2, v2)|+|C+(x3, v3)| ≥ d−n(y)+1 and |C+(v1, x2)|+|C+(s1, s2)|+|C+(v2, x3)| ≥ d−n(y)+1.
Then m ≥ 2d, a contradiction. That means if s ∈ NC2(x3), then NC (x2) ∩ C+(s, v2) = φ. Then we can get
|NC2−{v2}(x2)| + |NC2−{v2}(x3)| ≤ c2 and the equality holds only if x3v

−

2 ∈ E(G). By symmetry, we can prove
|NC3−{v2}(x2)| + NC3−{v2}(x3)| ≤ c3 and the equality holds only if x2v

+

2 ∈ E(G). Note the results of (iii), we can get
|NC2∪C3(x2)| + |NC2∪C3(x3)| ≤ c2 + c3.

(vii) |NC5(x2)| + |NC5(x3)| ≤ c5; |NC7(x2)| + |NC7(x3)| ≤ c7 if v1 6= x1.
If there exist s1 ∈ NC5(x3) and s2 ∈ C+(s1, x4] ∩ NC (x2), then x3s1C+(s1, v2)y2 P(y2, y3)v3C−(v3, x3)

and x3s1C−(s1, v3)y3 P(y3, y1)v1C−(v1, s2)x2C+(x2, x3) are two cycles through X . Thus we have |C+(v2, x3)| +

|C+(v3, s1)| ≥ d − n(y) + 1 and |C+(v1, x2)| + |C+(x3, v3)| + |C+(s1, s2)| ≥ d − n(y) + 1. Then m ≥ 2d , a
contradiction. That means if s ∈ NC5(x3), then NC (x2) ∩ C+(s, x4] = φ. Then we can get |NC5(x2)| + |NC5(x3)| ≤

p+ c5− (p− 1) = c5+ 1 and the equality holds only if x2v
+

3 ∈ E(G) and NC5(x3) 6= φ. Note the results of (iv), we
have |NC5(x2)| + |NC5(x3)| ≤ c5. If v1 6= x1, we can prove |NC7(x2)| + NC7(x3)| ≤ c7 by symmetry.

(viii) If v1 = x1, then |NC6(x2)| + |NC6(X3)| ≤ c6 − 1.
If v1 = x1, then q = 0, which means n(y) = a. If x2x4 ∈ E(G), then x2x4C−(x4, v2)y2 P(y2, y1)v1C+(v1, x2)

and x2x4C+(x4, v1)y1 P(y1, y3)v3C−(v3, x2) are two cycles through X , thus |C+(x2, v2)|+|C+(x4, x1)| ≥ d−a+1
and |C+(x1, x2)| + |C+(v3, x4)| ≥ d − a + 1. Then we can get m ≥ 2d, a contradiction. Similarly we can prove
x3x4 6∈ E(G).

If s ∈ NC6(x3), then x3sC−(s, v3)y3 P(y3, y1)v1C+(v1, x3) is a cycle through X , thus |C+(x3, v3)|+|C+(s, x1)| ≥

d − a + 1. Similarly if t ∈ NC6(x2), then |C+(x2, v2)| + |C+(t, x1)| ≥ d − a + 1. If there exist vertices
s, s+ ∈ C+(x4, x1) such that x3s, x3s+ ∈ E(G), then x3sC−(s, v3)y3 P(y3, y2)v2C−(v2, s+)x3 is a cycle through
X , thus |C+(v2, x3)| + |C+(x3, v3)| ≥ d − a + 1. Similarly if there exist vertices t, t+ ∈ C+(x4, x1) such that
x2t, x2t+ ∈ E(G), then |C+(v1, x2)| + |C+(x2, v2)| ≥ d − a + 1. Hence if there exist vertices s, s+ ∈ C+(x4, x1)

such that x3s, x3s+ ∈ E(G), then NC6(x2) = φ, thus |NC6(x2)| + |NC6(x3)| ≤ c6− 1. Similarly if there exist vertices
t, t+ ∈ C+(x4, x1) such that x2t, x2t+ ∈ E(G), then NC6(x3) = φ, which also means |NC6(x2)|+|NC6(x3)| ≤ c6−1.
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So we may assume there exist no such vertices. We know if x2x−1 ∈ E(G), |C+(x2, v2)| ≥ d − a + 1. And then
NC6(x3) = φ, thus |NC6(x2)| + |NC6(x3)| ≤ c6− 2. Similarly if x3x−1 ∈ E(G), then |NC6(x2)| + |NC6(x3)| ≤ c6− 2.

If x2x−1 , x3x−1 6∈ E(G), then |NC6(x2)| ≤
|C+(x4,x1)|

2 and |NC6(x3)| ≤
|C+(x4,x1)|

2 , and hence |NC6(x2)| + |NC6(x3)| ≤

|C+(x4, x1)| = c6 − 1.
(ix) If v1 6= x1, then |NC6∪C7(x2)| + |NC6∪C7(x3)| ≤ c6 + c7 − 1.
Under this case, if x2x1 ∈ E(G), then x2x1C−(x1, v2)y2 P(y2, y1)v1C+(v1, x2) is a cycle through X . Thus

|C+(x1, v1)| + |C+(x2, v2)| ≥ d − n(y) + 1. If x2x4 ∈ E(G), then x2x4C+(x4, v1)y1 P(y1, y3)v3C−(v3, x2) is a
cycle through X . Thus |C+(v1, x2)| + |C+(v3, x4)| ≥ d − n(y)+ 1. So x2x1 6∈ E(G) or x2x4 6∈ E(G). By symmetry,
we can prove x3x1 6∈ E(G) or x3x4 6∈ E(G).

If x2x1 ∈ E(G), then NC (x3) ∩C+[x4, x1) = φ. Otherwise, suppose x2x1 ∈ E(G) and s ∈ NC (x3) ∩C+[x4, x1).
Then if q = 0 or C+(s, x1)∩NC (y) = φ, then x3sC−(s, v3)y3 P(y3, y1)v1C−(v1, x1)x2C+(x2, x3) is a cycle through
X , thus |C+(v1, x2)| + |C+(x3, v3)| + |C+(s, x1)| ≥ d − n(y) + 1; if q ≥ 1 and C+(s, x1) ∩ NC (y) 6= φ, choose
a vertex w j ∈ C+(s, x1) ∩ NC (y) such that C+(s, w j ) ∩ NC (y) = φ. Then x3sC−(s, v3)y3 P(y3, y)w j C+(w j , x3)

is a cycle through X , thus |C+(x3, v3)| + |C+(s, w j )| ≥ d − n(y′)+ 1. In either case, together with |C+(x1, v1)| +

|C+(x2, v2)| ≥ d − n(y) + 1, we can get a contradiction that m ≥ 2d . Similarly we can prove if x3x4 ∈ E(G),
then NC (x2) ∩ C+(x4, x1] = φ; if x2x4 ∈ E(G), then NC (x3) ∩ C+(x4, x1] = φ; if x3x1 ∈ E(G), then
NC (x2) ∩ C+[x4, x1) = φ.

Similarly as in the proof of (viii), if there exist two vertices t, t+ ∈ C+(x4, x1) ∩ NC (x2), then |C+(v1, x2)| +

|C+(x2, v2)| ≥ d − n(y) + 1. If |NC (x3) ∩ C+(x4, x1)| ≥ 2, suppose s, s′ ∈ NC (x3) ∩ C+(x4, x1) and
s′ ∈ C+(s, x1). Then if q = 0 or C+(s, s′) ∩ NC (y) = φ, x3s′C+(s′, v2)y2 P(y2, y3)v3C+(v3, s)x3 is a cycle
through X , thus |C+(v2, x3)|+ |C+(x3, v3)|+ |C+(s, s′)| ≥ d−n(y)+1. If C+(s, s′)∩ NC (y) 6= φ, choose a vertex
w j ∈ C+(s, s′) ∩ NC (y) such that C+(s, w j ) ∩ NC (y) = φ. Then x3sC−(s, v3)y3 P(y3, y)w j C+(w j , x3) is a cycle
through X , thus |C+(x3, v3)| + |C+(s, w j )| ≥ d − n(y′) + 1. So if there exist vertices t, t+ ∈ C+(x4, x1) such that
x2t, x2t+ ∈ E(G), then |NC (x3) ∩ C+(x4, x1)| ≤ 1. Otherwise we can get a contradiction that m ≥ 2d .

Then if NC ({x2, x3}) ∩ {x1, x4} = φ, and there exist two vertices t, t+ ∈ C+(x4, x1) ∩ NC (x2), then
|NC6(x2)|+ |NC6(x3)| ≤ c6−1. By symmetry, if there exist vertices s, s+ ∈ C+(x4, x1) such that x3s, x3s+ ∈ E(G),

then |NC6(x2)| + |NC6(x3)| ≤ c6 − 1. And if there exists no such vertices, |NC+(x4,x1)(x2)| ≤
|C+(x4,x1)|+1

2 and

|NC+(x4,x1)(x3)| ≤
|C+(x4,x1)|+1

2 , and hence |NC6(x2)| + |NC6(x3)| ≤ c6 − 1. Together with the results of (vii), we
know that |NC6∪C7(x2)| + |NC6∪C7(x3)| ≤ c6 + c7 − 1.

If NC ({x2, x3}) ∩ {x1, x4} 6= φ, without loss of generality, suppose x2x1 ∈ E(G), then x2x4 6∈ E(G) and
NC (x3) ∩ C+[x4, x1) = φ. If x3x1 6∈ E(G), then |NC6(x2)| + |NC6(x3)| ≤ c6 − 1. If x3x1 ∈ E(G), we
know that NC (x2) ∩ C+[x4, x1) = φ. Thus we have |NC6(x2)| + |NC6(x3)| = 2. So if c6 ≥ 3, we have
|NC6(x2)| + |NC6(x3)| ≤ c6 − 1. Then we can get |NC6∪C7(x2)| + |NC6∪C7(x3)| ≤ c6 + c7 − 1. So we may
assume c6 = 2 and x2x1, x3x1 ∈ E(G). Then if c7 = 0, we know that |C+(x2, v2)| ≥ d − n(y) + 1 and
|C+(x3, v3)| ≥ d−n(y)+1, thus we can get a contradiction that m ≥ 2d . Thus we know that c7 > 0. If s ∈ NC7(x2),
then x2sC−(s, v2)y2 P(y2, y1)v1C+(v1, x2) and x2sC+(s, v1)y1 P(y1, y3)v3C+(v3, x1)x3C−(x3, x2) are two cycles
through X , then |C+(s, v1)|+|C+(x2, v2)| ≥ d−n(y)+1 and |C+(x1, s)|+C+(v1, x2)|+C+(x3, v3)| ≥ d−n(y)+1,
thus we can get m ≥ 2d , a contradiction. Similarly we can prove if x2x1 ∈ E(G), then NC7(x3) = φ. So if
x2x1, x3x1 ∈ E(G), then |NC7(x2)| + |NC7(x3)| = 0 ≤ c7 − 1 and then |NC6∪C7(x2)| + |NC6∪C7(x3)| ≤ c6 + c7 − 1.

From the above, we know that |NC (x2)| + |NC (x3)| ≤ m < 2d . �

Since w2,0(H) = 0, we know that NH (x2) = NH (x3) = φ. By Claim 1, |NC (x2)|+|NC (x3)| < 2d , so there exists
a component H1 of R such that NH1(xi ) 6= φ for i = 2 or 3. Without loss of generality, suppose NH1(x2) 6= φ which
means X ∩W (H1) 6= φ. Then if X ∩W (H) = φ, |X ∩W (H1)| > |X ∩W (H)|. It contradicts to the choice of H . So
we may assume X ∩W (H) 6= φ. Then v1 = x1, NC (y) ⊆ {v1, v2, v3} and thus n(y) = a. For H1, we also can choose
three vertex disjoint edges z1x2, z2s and z3s′ in E(H1,C) where s ∈ C+(x3, x4) and s′ ∈ C+(x4, x1). Suppose
z ∈ V (H1) \ {z1, z2, z3} such that n(z) = |NC (z)| = max{|NC (x)| : x ∈ V (H1) \ {z1, z2, z3}}. Then by Lemma 1,
there exists a (zi , z j ; d − n(z))-path in H1. For simplification, we denote such a path by Q(zi , z j )(1 ≤ i 6= j ≤ 3).
Now x2z1 Q(z1, z3)s′C−(s′, v2)v2 y2 P(y2, y1)v1C+(v1, x2) is a cycle through X . Thus we have |C+(x2, v2)| +

|C+(s′, v1)| ≥ d − a + 1+ d − n(z)+ 1. Then m ≥ (d − a + 1)+ (d − n(z)+ 1)+ 2(max{a, n(z)} − 2)+ 2 ≥ 2d ,
a contradiction.
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Part II. w2,0(H) = 1.
Then we may choose v1, v2, v3 such that C+(v1, v2) ∩ X = φ, |{v1, v2} ∩ X | as large as possible and then

NH (C+(v2, v3)) ⊆ {y1, y2}.

Case 1. |C+(v2, v3) ∩ X | = 1, say x1 ∈ C+(v2, v3) ∩ X .
Since w2,0(H) = 1, NC (y) ∩ C+[v1, v3] ⊆ {v1, v2, v3} and NH (x1) = φ. Suppose NC (y) ∩ C+(v3, v1) =

{w1, w2, . . . , wq} where q = n(y) − a, and they are arranged along C+. Let x ′2, x ′3 denote vertices lying in
C+(v3, v1) ∩ X such that C+(v3, x ′2) ∩ X = φ and C+(x ′3, v1) ∩ X = φ (It is possible that x ′2 = x ′3). Then if
q 6= 0, x ′2 ∈ C+(v3, w1) and x ′3 ∈ C+(wq , v1) since w2,0(H) = 1. We first prove

Claim 2. (1) There exists no path connecting x1 and a vertex in C+(v1, v2)∪C+(v3, x ′2]∪C+[x ′3, v1) with all internal
vertices in R − H ;

(2) If C+(w j , w j+1) ∩ X = φ for 1 ≤ j ≤ q − 1, then there exists no path connecting x1 and a vertex in
C+[w j , w j+1) with all internal vertices in R − H ;

(3) If |C+(w j , w j+1) ∩ X | = 1(1 ≤ j ≤ q − 1), then there exists no path connecting x1 and a vertex in
C+(w j , w j+1) with all internal vertices in R − H ;

(4) If C+(x ′2, w1)∩ X = φ, there exists no path connecting x1 and a vertex in C+[x ′2, w1) with all internal vertices
in R − H ;

(5) If C+(wq , x ′3)∩X = φ, there exists no path connecting x1 and a vertex in C+(wq , x ′3] with all internal vertices
in R − H ;

(6) If C+(s1, s2)∩(X∪NC (y)) = φ where s1, s2 ∈ C+[x ′2, x ′3], then there do not exist two disjoint paths connecting
x1 and two vertices in C+[s1, s2] with all internal vertices in R − H .

Proof. (1) Otherwise suppose Q is a path connecting x1 and a vertex z ∈ C+(v1, v2) ∪ C+(v3, x ′2] ∪ C+[x ′3, v1)

with all internal vertices in R − H . Then if z ∈ C+(v1, v2), x1 QzC−(z, v3)y3 P(y3, y2)v2C+(v2, x1) and
x1 QzC+(z, v2)y2 P(y2, y1)v1C−(v1, x1) are two cycles through X . Then we know that |C+(z, v2)|+ |C+(x1, v3)| ≥

d − n(y)+ 1 and |C+(v1, z)| + |C+(v2, x1)| ≥ d − n(y)+ 1. Thus m ≥ (d − n(y)+ 1)× 2+ 4+ 2(n(y)− 3) =
2d , a contradiction. If z ∈ C+(v3, x ′2], then x1 QzC+(z, v2)y2 P(y2, y3)v3C−(v3, x1) is a cycle through X . So
|C+(v2, x1)| + |C+(v3, z)| ≥ d − n(y) + 1. Together with |C+(v1, v2)| ≥ d − n(y) + 1, we have m ≥ 2d , a
contradiction. If z ∈ C+[x ′3, v1), then x1 QzC−(z, v3)y3 PH (y3, y1)v1C+(v1, x1) is a cycle through X . Similarly we
have |C+(z, v1)| + |C+(x1, v3)| ≥ d − n(y)+ 1, and then m ≥ 2d , a contradiction.

(2) If C+(w j , w j+1)∩ X = φ(1 ≤ j ≤ q− 1), suppose Q is a path connecting x1 and a vertex z ∈ C+[w j , w j+1)

with all internal vertices in R − H , then x1 QzC−(z, v3)y3 P(y3, y)w j+1C+(w j+1, x1) is a cycle through X and
we get |C+(x1, v3)| + |C+(z, w j+1)| ≥ d − n(y′) + 1. Together with |C+(v1, v2)| ≥ d − n(y) + 1, we have
m ≥ (d − n(y′)+ 1)× 2+ 5+ 2(n(y′)− 3) > 2d since NC (y1) ∩ C+(w j , w j+1) = φ, a contradiction.

(3) Say x ′4 ∈ C+(w j , w j+1) for 1 ≤ j ≤ q−1, if there exists a path Q connecting x1 and a vertex z ∈ C+(w j , x ′4]
with all internal vertices in R − H , then x1 QzC+(z, v2)y2 P(y2, y)w j C−(w j , x1) is a cycle through X . Thus we
have |C+(v2, x1)| + |C+(w j , z)| ≥ d − n(y′) + 1. Together with |C+(v1, v2)| ≥ d − n(y) + 1, we can get
m ≥ (d − n(y′) + 1) × 2 + 4 + 2(n(y′) − 3) = 2d since NC (y1) ∩ C+(w j , x ′4) = φ, a contradiction. Similarly
we can prove there exists no path connecting x1 and a vertex z ∈ C+(x ′4, w j+1) with all internal vertices in R − H .

(4) If C+(x ′2, w1) ∩ X = φ and there exists a path Q connecting x1 and a vertex z ∈ C+[x ′2, w1), then
x1 QzC−(z, v3)y3 P(y3, y)w1C+(w1, x1) is a cycle through X . Thus we have |C+(x1, v3)| + |C+(z, w1)| ≥ d −
n(y′)+ 1. Then together with |C+(v1, v2)| ≥ d − n(y)+ 1, we have m ≥ 2d , a contradiction.

(5) If C+(wq , x ′3) ∩ X = φ and there exists a path Q connecting x1 and a vertex z ∈ C+(wq , x ′3], then
x1 QzC+(z, v2)y2 P(y2, y)w1C−(w1, x1) is a cycle through X . Thus we have |C+(v2, x1)| + |C+(wq , z)| ≥ d −
n(y′)+ 1. Then together with |C+(v1, v2)| ≥ d − n(y)+ 1, we have m ≥ 2d , a contradiction.

(6) If C+(s1, s2) ∩ (X ∪ NC (y)) = φ and there are two disjoint paths Q1, Q2 connecting x1 and two vertices
z, z′ ∈ C+[s1, s2] with all internal vertices in R − H . Without loss of generality, assume z′ ∈ C+(z, s2), then
x2 Q1zC−(z, v3)y3 P(y3, y2)v2C−(v2, z′)Q2x1 is a cycle through X . Thus we have |C+(v2, x1)| + |C+(x1, v3)| +

|C+(z, z′)| ≥ d − n(y) + 1. Then together with |C+(v1, v2)| ≥ d − n(y) + 1, we have m ≥ 2d since
C+(s1, s2) ∩ NC (y) = φ, a contradiction. �

Claim 3. If w2,0(H) = 1 and C+(v2, v3) ∩ X = {x1}, then |NC (x1)| < d.
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Proof. Suppose z ∈ NC (x1), then by Claim 2(1), z 6∈ C+(v1, v2) ∪ C+(v3, x ′2] ∪ C+[x ′3, v1). If x ′2 = x ′3,
NC (x1) ⊆ C+[v2, v3] ∪ {v1} which means |NC (x1)| ≤ |C+[v2, v3]| since x1 ∈ C+[v2, v3]. If x ′2 6= x ′3, then
|C+(x ′2, x ′3) ∩ X | ≤ 1. If |C+(x ′2, x ′3) ∩ X | = 1, say x ′4 ∈ C+(x ′2, x ′3), then |NC (x1) ∩ C+(x ′2, x ′4]| ≤ 1 and
|NC (x1)∩C+[x ′4, x ′3)| ≤ 1 by Claim 2(2)–(6). If C+(x ′2, x ′3)∩ X = φ, |NC (x1)∩C+(x ′2, x ′3)| ≤ 1 by Claim 2(6). In
either case, |NC (x1)| ≤ |C+[v2, v3]| + 2.

Then if |NC (x1)| ≥ d , we have |C+[v2, v3]|+2 ≥ d . Together with C+(v1, v2)| ≥ d−n(y)−1 = d−(a+q)+1,
we have m ≥ (d − a − q + 2)+ (d − 2)+ 3+ 2q = 2d, a contradiction. �

Since NH (x1) = φ and |NC (x1)| < d, there should exist a component H1 of R such that NH1(x1) 6= φ and
then W (H1) ⊆ {x1} ∪ NC (x1) by Claim 2. For H1, we can choose three disjoint edges z1x1, z2s, z3s′ in E(H1,C)
where z1, z2, z3 are three disjoint vertices in V (H1). Suppose z ∈ V (H1) \ {z1, z2, z3} such that n(z) = |NC (z)| =
max{|NC (x)| : x ∈ V (H1) \ {z1, z2}}. Then by Lemma 2, we know that there exists a (zi , z j ; d − n(z))-path for
1 ≤ i 6= j ≤ 3 in H1, denote it by Q(zi , z j ). If s ∈ C+[v2, v3] or s′ ∈ C+[v2, v3], without loss of generality,
suppose s ∈ C+(x1, v3], then |C+(x1, s)| ≥ d − n(z) + 1. Together with |C+(v1, v2)| ≥ d − n(y) + 1, we can get
m ≥ (d−n(y)+1)+(d−n(z)+1)+2(max{n(y), n(z)}−2) ≥ 2d, a contradiction. So we assume s, s′ 6∈ C+[v2, v3]. If
W (H1) ⊆ C+[v2, v3]∪{v1}, then s ∈ C+[v2, v3] or s′ ∈ C+(v2, v3]. So we may assume W (H1) 6⊆ C+[v2, v3]∪{v1}.

Note X = {x1, x2, x3, x4}, we suppose x1, x2, x3, x4 to be arranged along C+ in the following proof. According to
the different positions of {v1, v2, v3} on C , we prove the theorem in seven subcases by symmetry.

Subcase 1.1. v1 = x3, v2 = x4 and v3 ∈ C+(x1, x2).

Subcase 1.2. v1 = x4, v2 ∈ C+(x4, x1) and v3 = x2.

Subcase 1.3. v1 ∈ C+(x3, x4), v2 = x4, and v3 = x2.
Under the above three subcases, we know that NC (x1) ⊆ C+[v2, v3] ∪ {v1} and then W (H1) ⊆ C+[v2, v3] ∪ {v1}

by Claim 2, a contradiction.

Subcase 1.4. v1 = x4, v2 ∈ C+(v1, x1) and v3 ∈ C+(x1, x2).
Then NC (y) ⊆ C+(x2, x3)∪ {v1, v2, v3} since w2,0(H) = 1. If q ≥ 2, by Claim 2, W (H1) ⊆ C+[v2, v3] ∪ {v1}, a

contradiction. If q ≤ 1, by Claim 2, W (H1) ⊆ C+[v2, v3]∪{v1, w}wherew ∈ C+(x2, x3). Without loss of generality,
we may assume s = w and s′ = v1 = x4. Then w2,0(H1) = 1 and |X ∩W (H1)| = 2 > |X ∩W (H)|, which contradict
the choice of H .

Subcase 1.5. v1 ∈ C+(x4, x1), v2 ∈ C+(v1, x1) and v3 = x2.
Then NC (y) ⊆ C+(x3, x4)∪ {v1, v2, v3} since w2,0(H) = 1. If q ≥ 2, then W (H1) ⊆ C+[v2, v3] ∪ {v1} by Claim

2, a contradiction. If q ≤ 1, W (H1) ⊆ C+[v2, v3] ∪ {v1, w} where w ∈ C+(x3, x4) by Claim 2. Without loss of
generality, we may assume s = w and s′ = v1. Then we can choose H1 instead of H and reverse the orientation of C ,
thus we can prove the theorem similarly as in Subcase 1.4.

Subcase 1.6. v1 ∈ C+(x3, x4), v2 = x4, and v3 ∈ C+(x1, x2).
Then NC (y) ⊆ C+(x2, x3) ∪ {v1, v2, v3} since w2,0(H) = 1. If q ≥ 2, then W (H1) ⊆ C+[v2, v3] ∪ {v1}

by Claim 2, a contradiction. If q ≤ 1, W (H1) ⊆ C+[v2, v3] ∪ {v1, w} where w ∈ C+(x2, x3) by Claim 2.
Without loss of generality, we may assume s = w and s′ = v1. Note that z ∈ V (H1) − {z1, z2, z3} with
n(z) = |NC (z)| = max{|NC (v)| : v ∈ V (H1) − {z1, z2, z3}. It is easy to see that NC (z) ⊆ {v1, w}. Then
x1z1 Q(z1, z3)v1C−(v1, v3)y3 P(y3, y2)v2C+(v2, x1) is a cycle through X . Thus we know that |C+(v1, x4)| +

|C+(x1, v3)| ≥ d−n(y)+1+d−n(z)+1. Thus we can get m ≥ (d−n(y)+2)+(d−n(z)+2)+2(max{n(y), n(z)}−
2) ≥ 2d, a contradiction.

Subcase 1.7. v1 ∈ C+(x4, x1), v2 ∈ C+(v1, x1), and v3 ∈ C+(x1, x2).
Then NC (y) ⊆ C+(x2, x4)∪ {v1, v2, v3} and NH (x2) ⊆ {y3} since w2,0(H) = 1. Suppose NC (y)∩C+(x2, x3] =

{w1, w2, . . . , wq1}, NC (y) ∩ C+(x3, x4) = {wq1+1, . . . , wq}. If q1 ≥ 2 and q − q1 ≥ 2, then by Claim 2,
W (H1) ⊆ C+[v2, v3] ∪ {v1}, a contradiction. If q1 ≥ 2 and q − q1 ≤ 1, then W (H1) ⊆ C+[v2, v3] ∪ {v1, w}

where w ∈ C+(x3, x4). Without loss of generality, suppose s = w and s′ = v1. Then choose H1 instead of H and
reverse the orientation of C , we can prove the theorem similarly as in Subcase 1.4. If q1 ≤ 1 and q − q1 ≥ 2, then
W (H1) ⊆ C+[v2, v3] ∪ {v1, w} where w ∈ C+(x2, x3). Without loss of generality, suppose s = w and s′ = v1.
Then choose H1 instead of H , we can prove the theorem similarly as in Subcase 1.6. If q1 ≤ 1 and q − q1 ≤ 1,
then W (H1) ⊆ C+[v2, v3] ∪ {v1, w,w

′
} where w ∈ C+(x2, x3), w′ ∈ C+(x3, x4). If s = v1 or s′ = v1, we can

prove the theorem similarly as in Subcase 1.4 or Subcase 1.6. So we may assume s = w and s′ = w′. Note that
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z ∈ V (H1) − {z1, z2, z3} with n(z) = |NC (z)| = max{|NC (v)| : v ∈ V (H1) − {z1, z2, z3}. It is easy to see that
NC (z) ⊆ {x1, w,w

′
}. We can prove the following claim.

Claim 4. There exists no path connecting x2 and a vertex in C+(s, x1)−{s′} with all internal vertices in R−{H, H1}.

Proof. Otherwise suppose K is a path connecting x2 and a vertex t ∈ C+(s, x1) − {s′} with all internal vertices
in R − {H, H1}. Then if t ∈ C+(s, x3], then x2 K tC+(t, x1)z1 Q(z1, z2)sC−(s, x2) is a cycle through X . So we
have |C+(x1, x2)| + |C+(s, t)| ≥ d − n(z) + 1. If t ∈ C+(x3, s′), then x2 K tC−(t, s)z2 Q(z2, z3)s′C+(s′, x2)

is a cycle through X . So we have |C+(x2, s)| + |C+(t, s′)| ≥ d − n(z) + 1. If t ∈ C+(s′, x4),
x2 K tC+(t, x1)z1 Q(z1, z3)s′C−(s′, x2) is a cycle through X . Then we know that |C+(x1, x2)| + |C+(s′, t)| ≥
d − n(z) + 1. If t ∈ C+[v2, x1), x2 K tC−(t, s)z2 Q(z2, z1)x1C+(x1, x2) is a cycle through X . Then we know that
|C+(x2, s)|+|C+(t, x1)| ≥ d−n(z)+1. In any of the above four cases, together with |C+(v1, v2)| ≥ d−n(y)+1, we
can get m ≥ 2d, a contradiction. If t ∈ C+[x4, v2), x2 K tC−(t, s)z2 Q(z2, z1)x1C−(x1, v2)y2 P(y2, y3)v3C+(v3, x2)

is a cycle through X . Then we know that |C+(t, v2)| + |C+(x1, v3)| + |C+(x2, s)| ≥ d − n(y)+ 1+ d − n(z)+ 1.
Thus we have m ≥ 2d, a contradiction.

Then NC (x2) ⊆ C+[x1, s] ∪ {s′}. So if |NC (x2)| ≥ d − 1, then m ≥ 2d , a contradiction. Since |NH (x2)| ≤ 1
and NH1(x2) = φ and |NC (x2)| < d − 1, there should exist a component H2 of R such that NH2(x2) 6= φ and
then W (H2) ⊆ C+[x1, s] ∪ {s′} by Claim 4. Thus we know that w2,0(H2) ≥ 1, and if suppose t ∈ W2,0(H2) and
t ′ is the next vertex after t along C+ in W (H2), then C+(t, t ′) ∩ C+(v1, v2) = φ. Then it is easy to get m ≥ 2d , a
contradiction.

Case 2. |C+(v3, v1) ∩ X | = 1, say x1 ∈ C+(v3, v1) ∩ X .
Then we have |NC (y)| = a. And in fact for any vertex y′ ∈ V (H) − {y1, y2, y3}, we have NC (y′) ⊆ {v1, v2, v3}

by the choice of v1, v2, v3. Thus we can reverse the orientation of C and then we can prove the theorem similarly as
in Case 1.

Case 3. |C+(v2, v3) ∩ X | ≥ 2 and |C+(v3, v1) ∩ X | ≥ 2.
Then we may suppose {x1, x2} = C+(v2, v3) ∩ X and {x3, x4} = C+(v3, v1) ∩ X since |X | = 4. It is

easy to see that m ≥ 9 and hence d ≥ 5. Since w2,0(H) = 1 and by the choice of v1, v2, v3, we know that
NC (y) ⊆ C+(x3, x4)∪ {v1, v2, v3}, NH (xi ) = φ for i = 1, 2, 4 and NH (x3) ⊆ {y3}. But if NC (y)∩C+(x3, x4) 6= φ,
we can reverse the orientation of C and prove the theorem just as in Subcase 1.7. And if y3x3 ∈ E(H,C), we
can also reverse the orientation of C and prove the theorem similarly as in Subcase 1.5 or 1.6. So we may assume
NC (y) ∩ C+(x3, x4) = φ, which means n(y) = a, and NH (xi ) = φ for 1 ≤ i ≤ 4.

Claim 5.
∑4

i=1 |NC (xi )| < 4d .

Proof. Denote C1 = C+(v1, v2), C2 = C+[v2, x1), C3 = C+[x1, x2), C4 = C+[x2, x3], C5 = C+(x3, x4] and
C6 = C+(x4, v1]. For 1 ≤ i ≤ 6, let ci = |Ci |.

(i) x1v
+

1 6∈ E(G), x4v
−

2 6∈ E(G), x1v
+

1 6∈ E(G) and x2v
−

2 6∈ E(G); x3v2 6∈ E(G) or x1x4 6∈ E(G); x2v1 6∈ E(G)
or x1x4 6∈ E(G); if x1x4 ∈ E(G), then NC3−{x1}(x3) = φ and NC5−{x4}(x2) = φ; NC (x2) ∩ C+[x4, v1) = φ and
NC (x3) ∩ C+(v2, x1] = φ.

If x1v
+

1 ∈ E(G), then x1v
+

1 C+(v+1 , v2)y2 P(y2, y1)v1C−(v1, x1) is a cycle through X . Then we have
|C+(v2, x1)| ≥ d−a+1, together with |C+(v1, v2)| ≥ d−a+1, we can get m ≥ 2d , a contradiction. So x1v

+

1 6∈ E(G).
By symmetry, we can prove x4v

−

2 6∈ E(G). If x3v
+

1 ∈ E(G), then x3v
+

1 C+(v+1 , v3)y3 P(y3, y1)v1C−(v1, x3) is a cycle
through X . Then we have |C+(v3, x3)| ≥ d − a + 1, together with |C+(v1, v2)| ≥ d − a + 1, we can get m ≥ 2d , a
contradiction. So x3v

+

1 6∈ E(G). By symmetry, we can prove x2v
−

2 6∈ E(G).
If x3v2, x1x4 ∈ E(G), then x4x1C+(x1, v3)y3 P(y3, y1)v1C+(v1, v2)x3C+(x3, x4) is a cycle through X . Thus we

have |C+(v2, x1)| + |C+(v3, x3)| + |C+(x4, v1)| ≥ d − a + 1, together with |C+(v1, v2)| ≥ d − a + 1, we can get
m ≥ 2d, a contradiction. By symmetry, we can prove x2v1 6∈ E(G) or x1x4 6∈ E(G).

If x1x4 ∈ E(G) and s ∈ NC3−{x1}(x3), then x4x1C−(x1, v1)y1 P(y1, y3)v3C−(v3, s)x3C+(x3, x4) is a cycle
through X . Thus we have |C+(x1, s)| + |C+(v3, x3)| + |C+(x4, v1)| ≥ d − a + 1, then m ≥ 2d , a contradiction. By
symmetry, we can prove if x1x4 ∈ E(G), then NC5−{x4}(x2) = φ.

If there is a vertex s ∈ N (x2) ∩ C+[x4, v1), then x2sC−(s, v3)y3 P(y3, y1)v1C+(v1, x2) is a cycle through X .
Thus we have |C+(x2, v3)| + |C+(s, v1)| ≥ d − a + 1, then m ≥ 2d, a contradiction. By symmetry, we can prove
NC (x3) ∩ C+(v2, x1] = φ.
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(ii)
∑4

i=1 |NC1(xi )| ≤ 2c1 − 2;
Note that c1 ≥ d − a + 1 ≥ 3. If s1 ∈ NC1(x1) and s2 ∈ NC (x2) ∩ C+(s1, v2), then

x1s1C−(s1, v3)y3 P(y3, y2)v2C−(v2, s2)x2C−(x2, x1) and x1s1C+(s1, s2)x2C+(x2, v1)y1 P(y1, y2)v2C+(v2, x1) are
two cycles through X . Thus we have |C+(x2, v3)| + |C+(s1, s2)| + |C+(v2, x1)| ≥ d − a + 1 and |C+(x1, x2)| +

|C+(v1, s1)| + |C+(s2, v2)| ≥ d − a + 1, then m ≥ (d − a + 1) × 2 + 4 ≥ 2d, a contradiction. If
t1 ∈ NC1(x2) and t2 ∈ NC (x1) ∩ C+(t1, v2), then x2t1C−(t1, v3)y3 P(y3, y2)v2C−(v2, t2)x1C+(x1, x2) and
x2t1C+(t1, t2)x1C−(x1, v2)y2 P(y2, y1)v1C−(v1, x2) are two cycles through X . Thus we have |C+(x2, v3)| +

|C+(t1, t2)| + |C+(v2, x1)| ≥ d − a + 1 and |C+(x1, x2)| + |C+(v1, t1)| + |C+(t2, v2)| ≥ d − a + 1, then
m ≥ (d − a + 1) × 2 + 4 ≥ 2d, a contradiction. Suppose NC1(x1) = {s1, s2, . . . , sp}. Then if p ≥ 2, NC1(x2) = φ

and thus |NC1(x1)| + |NC1(x2)| ≤ p ≤ c1 − 1 since x1v
+

1 6∈ E(G). If p = 1, then NC1(x2) ⊆ {s1}, thus
|NC1(x1)| + |NC1(x2)| ≤ 2 ≤ c1 − 1. If p = 0, then |NC1(x1)| + |NC1(x2)| ≤ c1 − 1 since x2v

−

2 6∈ E(G).
Thus we have |NC1(x1)| + |NC1(x2)| ≤ c1 − 1. Similarly we can prove |NC1(x3)| + |NC1(x4)| ≤ c1 − 1.

(iii)
∑4

i=1 |NC2(xi )| ≤ 2c2 + 2 and the equality holds only if x1x4 6∈ E(G);
∑4

i=1 |NC6(xi )| ≤ 2c6 + 2 and the
equality holds only if x1x4 6∈ E(G);

By (i), NC (x3) ∩ C+(v2, x1] = φ, so obviously |NC2(x1)| + |NC2(x3)| ≤ c2 + 1, and the equality holds only if
x3v2 ∈ E(G). If s1 ∈ NC2(x2), s2 ∈ NC (x4)∩C+(s1, x1), then x2s1C−(s1, v1)y1 P(y1, y3)v3C+(v3, x4)s2C+(s2, x2)

is a cycle through X . Thus we have |C+(x2, v3)| + |C+(x4, v1)| + |C+(s1, s2)| ≥ d − a + 1, together with
|C+(v1, v2)| ≥ d − a + 1, we can get m ≥ 2d, a contradiction. So we know that |NC2(x2)| + |NC2(x4)| ≤ c2 + 1. So∑4

i=1 |NC2(xi )| ≤ 2c2 + 2 and the equality holds only if x3v2 ∈ E(G), which means x1x4 6∈ E(G) by (i).
By symmetry, we can prove

∑4
i=1 |NC6(xi )| ≤ 2c6 + 2 and the equality holds only if x1x4 6∈ E(G).

(iv)
∑4

i=1 |NC3(xi )| ≤ 2c3 and the equality holds only if x1x4 ∈ E(G) or x3x−2 ∈ E(G);
∑4

i=1 |NC5(xi )| ≤ 2c5

and the equality holds only if x1x4 ∈ E(G) or x2x+3 ∈ E(G);
If s1 ∈ NC+(x1,x2)(x3) and s2 ∈ C+(s1, x2) ∩ NC (x1), then x3s1C−(s1, x1)s2C+(s2, v3)y3 P(y3, y2)v2C−(v2, x3)

is a cycle through X . Thus we have |C+(s1, s2)| + |C+(v3, x3)| + |C+(v2, x1)| ≥ d − a + 1, together with
|C+(v1, v2)| ≥ d − a + 1, we can get m ≥ 2d , a contradiction. Since x1x3 6∈ E(G), so |NC3(x1)| +

|NC3(x3)| ≤ c3 and the equality holds only if x3x−2 ∈ E(G). If t1 ∈ NC2(x2), t2 ∈ C+(t1, x2) ∩ NC (x4), then
x2t1C−(t1, v1)y1 P(y1, y3)v3C+(v3, x4)t2C+(t2, x2) is a cycle through X . Thus we have |C+(t1, t2)|+|C+(x2, v3)|+

|C+(x4, v1)| ≥ d − a + 1, together with |C+(v1, v2)| ≥ d − a + 1, we can get m ≥ 2d , a contradiction. So
|NC3(x2)| + |NC3(x4)| ≤ c3 + 1 and the equality holds only if x1x4 ∈ E(G). But by (i), if x1x4 ∈ E(G), then
x3x−2 6∈ E(G). Thus

∑4
i=1 |NC3(xi )| ≤ 2c3 and the equality holds only if x1x4 ∈ E(G) or x3x−2 ∈ E(G).

By symmetry, we can prove
∑4

i=1 |NC5(xi )| ≤ 2c5 and the equality holds only if x1x4 ∈ E(G) or x2x+3 ∈ E(G).
(v) NC (x1) ∩ C+(v3, x3] = φ and NC (x4) ∩ C+[x2, v3) = φ; if x2v

+

3 ∈ E(G), then NC (x1) ∩ C+(x2, v3] = φ

and NC (x4) ∩ C+(x2, v3] = φ; if x3v
−

3 ∈ E(G), then NC (x1) ∩ C+[v3, x3) = φ and NC (x4) ∩ C+[v3, x3) = φ;
x2x+3 6∈ E(G) or x3x4 6∈ E(G); x3x−2 6∈ E(G) or x1x2 6∈ E(G).

If s ∈ NC (x1) ∩ C+(v3, x3], then x1sC+(s, v2)y2 P(y2, y3)v3C−(v3, x1) is a cycle through X . Thus we have
|C+(v3, s)|+ |C+(v2, x1)| ≥ d−a+1. Together with |C+(v1, v2)| ≥ d−a+1, we can get m ≥ 2d , a contradiction.
By symmetry, we can prove NC (x4) ∩ C+[x2, v3) = φ.

If x2v
+

3 ∈ E(G) and s ∈ NC (x1) ∩ C+(x2, v3], then x2v
+

3 C+(v+3 , v2)y2 P(y2, y3)v3C−(v3, s)x1C+(x1, x2)

is a cycle through X . Thus we have |C+(x2, s)| + |C+(v2, x1)| ≥ d − a + 1, together with |C+(v1, v2)| ≥

d − a + 1, we can get m ≥ 2d, a contradiction. If x2v
+

3 ∈ E(G) and t ∈ NC (x4) ∩ C+(x2, v3], then
x2v
+

3 C+(v+3 , x4)tC+(t, v3)y3 P(y3, y1)v1C+(v1, x2) is a cycle through X . Thus we have |C+(x2, t)|+|C+(x4, v1)| ≥

d−a+1, and then m ≥ 2d, a contradiction. By symmetry, we can prove if x3v
−

3 ∈ E(G), then NC (x1)∩C+[v3, x3) =

φ and NC (x4) ∩ C+[v3, x3) = φ.
If x2x+3 , x3x4 ∈ E(G), then x2x+3 C+(x+3 , x4)x3C−(x3, v3)y3 P(y3, y1)v1C+(v1, x2) is a cycle through X . Thus

we have |C+(x2, v3)| + |C+(x4, v1)| ≥ d − a + 1, together with |C+(v1, v2)| ≥ d − a + 1, we have m ≥ 2d, a
contradiction. By symmetry, we can prove x3x−2 6∈ E(G) or x1x2 6∈ E(G).

(vi)
∑4

i=1 |NC4(xi )| ≤ 2c4; if x2x+3 ∈ E(G) or x3x−2 ∈ E(G),
∑4

i=1 |NC4(xi )| ≤ 2c4− 1; if x2x+3 , x3x−2 ∈ E(G),∑4
i=1 |NC4(xi )| ≤ 2c4 − 2;
Suppose C41 = C+[x2, v3), C42 = C+(v3, x4] and c41 = |C41|, c42 = |C42|.
By (v), NC41(x4) = φ and NC42(x1) = φ. So we have |NC41(x2)| + |NC41(x4)| ≤ c41 − 1

and |NC42(x1)| + |NC42(x3)| ≤ c42 − 1. If s1 ∈ NC41(x3) and s2 ∈ C+(s1, v3) ∩ NC (x1), then
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x3s1C−(s1, x1)s2C+(s2, v3)y3 P(y3, y2)v2C−(v2, x3) is a cycle through X , thus |C+(s1, s2)| + |C+(v3, x3)| +

|C+(v2, x1)| ≥ d − a + 1. Together with |C+(v1, v2)| ≥ d − a + 1, we can get m ≥ 2d , a contradiction. So
|NC41(x1)| + |NC41(x3)| ≤ c41 + 1 and the equality holds only if x1x2 ∈ E(G) and x3v

−

3 ∈ E(G). By symmetry,
we can prove |NC42(x2)| + |NC42(x4)| ≤ c42 + 1 and the equality holds only if x3x4 ∈ E(G) and x2v

+

3 ∈ E(G). So∑4
i=1 |NC41(xi )| ≤ 2c41 and the equality holds only if x1x2, x3v

−

3 ∈ E(G).
∑4

i=1 |NC42(xi )| ≤ 2c42 and the equality
holds only if x3x4, x2v

+

3 ∈ E(G).
By (v), if x2v

+

3 ∈ E(G) or x3v
−

3 ∈ E(G), then x1v3, x4v3 6∈ E(G). Then if one and only one of x3v
−

3 ∈ E(G) and

x2v
+

3 ∈ E(G) holds, we have
∑4

i=1 |NC4(xi )| ≤ 2c4 − 1. If both of x3v
−

3 ∈ E(G) and x2v
+

3 ∈ E(G) hold or both of

x3v
−

3 6∈ E(G) and x2v
+

3 6∈ E(G) hold, we have
∑4

i=1 |NC4(xi )| ≤ 2c4 and the equality holds only if x1x2 ∈ E(G)
and x3x4 ∈ E(G). By (v), x2x+3 6∈ E(G) or x3x4 6∈ E(G), x3x−2 6∈ E(G) or x1x2 6∈ E(G), so if x2x+3 ∈ E(G) or

x3x−2 ∈ E(G), then
∑4

i=1 |NC4(xi )| ≤ 2c4 − 1; if x2x+3 , x3x−2 ∈ E(G), then
∑4

i=1 |NC4(xi )| ≤ 2c4 − 2.
From the above, we can get

∑4
i=1 |NC (xi )| ≤ 2m < 4d easily. �

Then there should exist a component H1 of R such that NH1(xi ) 6= φ for some i ∈ {1, 2, 3, 4} which means
X ∩W (H1) 6= φ. Then if w2,0(H1) = 1, we can choose H1 instead of H and prove the theorem similarly as in Case 1.
So we may assume w2,0(H1) = 0. We can choose three disjoint edges z1xi , z2s and z3s′ in E(H1,C) where z1, z2, z3
are three different vertices in V (H1). Suppose z ∈ V (H1) \ {z1, z2, z3} such that n(z) = |NC (z)| = max{|NC (v)| :

v ∈ V (H1) \ {z1, z2, z3}}. Then by Lemma 1, there exists a (zi , z j ; d − n(z))-path in H1, denoted by Q(zi , z j ) for
1 ≤ i 6= j ≤ 3. By symmetry, we only need to prove the theorem for i = 1 or 2.

For i = 1, we may assume NH1(x3) = φ, s ∈ C+(x2, x3) and s′ ∈ C+(x3, x4) since w2,0(H1) = 0. And it is easy
to see NC (z) ⊆ {x1, s, s′}.

Claim 6. There exists no path connecting x3 and a vertex in C+(v1, x2) with all internal vertices in R − {H, H1}.

Proof. Otherwise suppose K is a path connecting x3 and a vertex t ∈ C+(v1, x2) with all in-
ternal vertices in R − {H, H1}. Then if t ∈ C+(v1, v2], x3 K tC+(t, v3)y3 P(y3, y1)v1C−(v1, x3) and
x3 K tC−(t, s′)z3 Q(z3, z1)x1C+(x1, x3) are two cycles through X . Then we know that |C+(v1, t)| + |C+(v3, x3)| ≥

d − a + 1 and |C+(t, x1)| + |C+(x3, s′)| ≥ d − n(z) + 1. Thus we can get m ≥ 2d, a contradic-
tion. And by Claim 5, NC (x3) ∩ C+(v2, x1] = φ which means t 6∈ C+(v2, x1]. If t ∈ C+(x1, x2), then
x3 K tC+(t, s)z2 Q(z2, z1)x1C−(x1, x3) is a cycle through X . So we have |C+(x1, t)| + |C+(s, x3)| ≥ d − n(z)+ 1.
Together with |C+(v1, v2)| ≥ d − a + 1, we have m ≥ 2d , a contradiction. �

Then NC (x3) ⊆ C+[x2, v1]. So if |NC (x3)| ≥ d , |C+[x2, v1]| ≥ d+1, together with |C+(v1, v2)| ≥ d−a+1, we
can get m ≥ 2d, a contradiction. So we may assume |NC (x3)| < d . Since NH (x3) = NH1(x3) = φ, there should exist
a component H2 of R such that NH2(x3) 6= φ. Then W (H2) ⊆ C+[x2, v1], thus w2,0(H2) = 1 and W (H2) ∩ X 6= φ,
we can choose H2 instead of H and prove the theorem similarly as in Subcase 1.4, 1.5 or 1.6.

For i = 2, we may assume NH1(x3) = φ, s ∈ C+(x3, x4) and s′ ∈ C+(x4, x1).

Claim 7. There exists no path connecting x3 and a vertex in C+(x4, x2)−{v2} with all internal vertices in R−{H, H1}.

Proof. Otherwise suppose K is a path connecting x3 and a vertex t ∈ C+(x4, x2) − {v2} with all internal vertices in
R − {H, H1}. If t ∈ C+(x4, v2), x3 K tC−(t, s)z2 Q(z2, z1)x2C−(x2, v2)y2 P(y2, y3)v3C+(v3, x3) is a cycle through
X . Then we know that |C+(t, v2)| + |C+(x2, v3)| + |C+(x3, s)| ≥ d − a + 1 + d − n(z) + 1. Thus we can get
m ≥ 2d, a contradiction. By Claim 5, NC (x3)∩C+(v2, x1] = φ which means t 6∈ C+(v2, x1]. If t ∈ C+(x1, x2), then
x3 K tC−(t, s)z2 Q(z2, z1)x2C+(x2, x3) is a cycle through X . So we have |C+(t, x2)| + |C+(x3, s)| ≥ d − n(z)+ 1.
Together with |C+(v1, v2)| ≥ d − a + 1, we can get m ≥ 2d , a contradiction. �

Then NC (x3) ⊆ C+[x2, x4] ∪ {v2}. So if |NC (x3)| ≥ d, |C+[x2, x4]| ≥ d, together with |C+(v1, v2)| ≥ d− a+ 1,
we can get m ≥ 2d , a contradiction. So we may assume |NC (x3)| < d . Since NH (x3) = NH1(x3) = φ, there should
exist a component H2 of R such that NH2(x3) 6= φ. Then W (H2) ⊆ C+[x2, x4] ∪ {v2}, thus w2,0(H2) = 1 and
W (H2) ∩ X 6= φ, we can choose H2 instead of H and prove the theorem similarly as in Subcase 1.4 or 1.6.
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