

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 309 (2009) 64-76

www.elsevier.com/locate/disc

Cycles through 4 vertices in 3-connected graphs

Xuezheng Lv^{a,*}, Chengdong Yi^b

^a Department of Mathematics, Renmin University of China, Beijing 100872, China ^b School of Management Science and Engineering, Central University of Finance and Economics, Beijing, 100081, China

Received 3 November 2004; received in revised form 14 December 2007; accepted 17 December 2007 Available online 5 February 2008

Abstract

S.C. Locke proposed a question: If G is a 3-connected graph with minimum degree d and X is a set of 4 vertices on a cycle in G, must G have a cycle through X with length at least min $\{2d, |V(G)|\}$? In this paper, we answer this question. © 2008 Elsevier B.V. All rights reserved.

Keywords: Cycles; 3-Connected graphs; Prescribed vertex set

1. Introduction

All graphs considered here are finite, undirected, and without loops or multiple edges. Dirac has given two wellknown results about cycles. One [3] says that a k-connected graph has a cycle through any given k vertices in the graph. The other [4] is that if G is a 2-connected graph with minimum degree d, then G contains a cycle with length at least min{2d, |V(G)|}. Starting with the two results, many researchers have considered long cycles through a prescribed vertex set or a prescribed edge set. Egawa et al. [5] proved that if G is a k-connected graph with minimum degree d and X is a set of k vertices in G, then G has a cycle through X with length at least min{2d, |V(G)|}. Locke and Zhang [6] proved that if G is a 2-connected graph with minimum degree d and X is a set of 3 vertices on a cycle in G, then G has a cycle through X with length at least min{2d, |V(G)|}.

We prove Theorem 1 which gives the answer to the following question proposed by S.C. Locke in [7].

Question. If G is a 3-connected graph with minimum degree d and X is a set of 4 vertices on a cycle in G, must G have a cycle through X with length at least $\min\{2d, |V(G)|\}$?

Theorem 1. Let G be a 3-connected graph with minimum degree d and X be a set of 4 vertices on a cycle in G, then G contains a cycle through X with length at least $\min\{2d, |V(G)|\}$.

* Corresponding author.

0012-365X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2007.12.076

E-mail addresses: xzlv@ruc.edu.cn (X. Lv), chdyi@cufe.edu.cn (C. Yi).

2. Some lemmas and results

Let G be a 3-connected graph with minimum degree d and X be a set of 4 vertices on a cycle in G. For any two vertices $u, v \in V(G)$ and an integer k, a (u, v; k)-path denotes a path connecting u and v with length at least k. For a path P in G, we denote by |P| the number of vertices that P contains. Suppose C is a longest cycle through X and R = G - C. When we consider a cycle, we always consider its orientation. Let C^+ be an orientation of C and C^- be its reverse orientation. Let $C^+ = c_1c_2\cdots c_mc_1$. $C^+[c_i, c_j]$ and $C^-[c_i, c_j]$ denote the segments of C with $C^+[c_i, c_j] = c_ic_{i+1}\cdots c_{j-1}c_j$ and $C^-[c_i, c_j] = c_ic_{i-1}\cdots c_{j+1}c_j$, respectively. Denote by $|C^+[c_i, c_j]|$ the number of vertices that $C^+[c_i, c_j]$ contains, and $|C^-[c_i, c_j]|$ is similarly defined. Also, let $C^+[c_i, c_j)$ be the segment $C^+[c_i, c_j] - c_j$. Analogously, $C^+(c_i, c_j)$, $C^-(c_i, c_j)$, $C^-(c_i, c_j)$, $C^-(c_i, c_j)$ are also defined. We also denote $c_i^+ = c_{i+1}, c_i^- = c_{i-1}, c_i^{++} = c_{i+2}, c_i^{--} = c_{i-2}$.

For a component H of R, let $W(H) = N_C(H)$, and label the vertices of W(H) along C^+ as u_1, u_2, \ldots, u_r . Let

$$W_2(H) = \{u_i \in W(H) : |N_H(\{u_i, u_{i+1}\})| \ge 2\}$$
 and $W_1(H) = W(H) - W_2(H)$.

Also let

 $W_{2,0}(H) = \{u_i \in W_2(H) : C(u_i, u_{i+1}) \cap X = \phi\}$ and $W_{2,1}(H) = W_2(H) - W_{2,0}(H)$.

Denote w(H) = |W(H)| and for an index I, $w_I(H) = |W_I(H)|$.

We use [1] for terminology and notation not defined here. Before proving the main result, we first give some lemmas.

Lemma 1 ([2]). Let B be a 2-connected graph on at least 4 vertices, x, y, z be 3 distinct vertices of B and k > 0 an integer. Suppose that every vertex of B, except possibly x, y, z, has degree at least k, then there exist an (x, y; k)-path, an (x, z; k)-path and a (y, z; k)-path in B.

Alternatively, if B is nonseparable on |V(B)| = 3 vertices, then $B = K_3$ and there are an (x, y; 2)-path, an (x, z; 2)-path and a (y, z; 2)-path in B.

Since *C* is a longest cycle through *X*, we can easily get the following lemma.

Lemma 2. Let $u, v \in W(H)$, then

(i) $W(H) \cap W(H)^+ = \phi$;

- (ii) There exists no path connecting u^+ and v^+ with all internal vertices in R H;
- (iii) There exists no path connecting u^- and v^- with all internal vertices in R H;
- (iv) Suppose that $|N_H(\{u, v\})| \ge 2$ and $v^+ \notin X$, then there exists no path connecting u^+ and v^{++} with all internal vertices in R H;
- (v) Suppose that $|N_H(\{u, v\})| \ge 2$ and $v^- \notin X$, then there exists no path connecting u^- and v^{--} with all internal vertices in R H.

Theorem 2. Let G be a 3-connected graph with minimum degree d and X be a set of 4 vertices on a cycle in G. Suppose C is a longest cycle through X, if there exists a component H of R = G - C such that $1 \le |V(H)| \le 3$, then $|V(C)| \ge 2d$.

Proof. Suppose $C^+ = c_1c_2 \cdots c_mc_1$, we may assume m < 2d. Then by Lemma 2 (i), w(H) < d. Hence $|V(H')| \ge 2$ for any component H' of R. So $2 \le |V(H)| \le 3$. Since G is 3-connected, $w(H) \ge 3$ and so $d \ge 4$. Suppose $W(H) = \{u_1, u_2, \ldots, u_r\}$ that are arranged along C^+ , and let $u_{r+1} = u_1$. For $i \ne j$, denote by $P_H(u_i, u_j)$ a longest path joining u_i, u_j with all internal vertices in H. First we prove the following claim.

Claim 1. Suppose that $|C^+(u_i, u_{i+1})| = |C^+(u_j, u_{j+1})| = 1$, $X \cap C^+(u_k, u_{k+1}) = \phi(i < j < k \le r)$, H_1 and H_2 are components of R such that $N_{H_1}(u_i^+) \ne \phi$ and $N_{H_2}(u_i^+) \ne \phi$. Then

(i) $u_{i+1} \notin W(H_1)$ or $u_i \notin W(H_2)$;

(ii) If $|C^+(u_k, u_{k+1})| < |P_H(u_{i+1}, u_i)|$, then $u_k \notin W(H_1)$ or $u_{k+1} \notin W(H_2)$;

(iii) If $|C^+(u_k, u_{k+1})| < |P_H(u_{k+1}, u_{i+1})| - 1$, then $u_k \notin W(H_1)$; If $|C^+(u_k, u_{k+1})| < |P_H(u_k, u_i)| - 1$, then $u_{k+1} \notin W(H_1)$.

Proof. (i) Suppose $u_{j+1} \in W(H_1)$ and $u_i \in W(H_2)$, then there is a path $P_{H_1}(u_i^+, u_{j+1})$ joining u_i^+, u_{j+1} with all internal vertices in H_1 and a path $P_{H_2}(u_i, u_i^+)$ with all internal vertices in H_2 . Hence

 $u_i^+ P_{H_1}(u_i^+, u_{j+1})C^+(u_{j+1}, u_i)P_{H_2}(u_i, u_j^+)C^-(u_j^+, u_i^+)$

is a cycle through X longer than C, a contradiction.

(ii) Suppose $u_k \in W(H_1)$ and $u_{k+1} \in W(H_2)$, then there is a path $P_{H_1}(u_i^+, u_k)$ joining u_i^+, u_k with all internal vertices in H_1 and a path $P_{H_2}(u_i^+, u_{k+1})$ with all internal vertices in H_2 . Hence

$$u_i^+ P_{H_1}(u_i^+, u_k) C^-(u_k, u_{j+1}) P_H(u_{j+1}, u_i) C^-(u_i, u_{k+1}) P_{H_2}(u_{k+1}, u_i^+) C^-(u_i^+, u_i^+)$$

is a cycle through X longer than C since $|C^+(u_k, u_{k+1})| < |P_H(u_{j+1}, u_i)|$, a contradiction.

(iii) If $u_k \in W(H_1)$, there is a path $P_{H_1}(u_k, u_i^+)$ joining u_k, u_i^+ with all internal vertices in H_1 . Hence

$$u_k P_{H_1}(u_k, u_i^+) C^-(u_i^+, u_{k+1}) P_H(u_{k+1}, u_{i+1}) C^+(u_{i+1}, u_k)$$

is a cycle through X longer than C since $|C^+(u_k, u_{k+1})| < |P_H(u_{k+1}, u_{i+1})| - 1$, a contradiction. Similarly if $|C^+[u_k, u_{k+1}]| < |P_H(u_k, u_i)| - 1$, then $u_{k+1} \notin W(H_1)$.

We divide the proof into two cases.

Case 1. $H = K_2$ or $H = K_3^-$.

Then there exist $u, v \in V(H)$ with $|N_H(u)| = |N_H(v)| = 1$. Since $\delta(G) \ge d$, $|N_C(u)| \ge d - 1$ and $|N_C(v)| \ge d - 1$. Obviously we must have $|N_C(u)| = |N_C(v)| = r = d - 1$ and $N_C(u) = N_C(v) = W(H)$, and then $W_2(H) = W(H)$. Since $w_2(H) = d - 1$, and |X| = 4, then $w_{2,0}(H) \ge d - 5$. And if $u_i \in W_{2,0}(H)$, $|C^+(u_i, u_{i+1})| \ge 2$ since C is a longest cycle through X. We first prove

Claim 2. $1 \le |C^+(u_i, u_{i+1})| \le 2$ for $1 \le i \le d-1$; and if $|C^+(u_i, u_{i+1})| = 2$, then $|C^+(u_j, u_{j+1})| = 1$ for $j \ne i(1 \le i, j \le d-1)$.

Proof. If $|C^+(u_i, u_{i+1})| \ge 3$ for some *i*, then $m \ge 4 + 2(d-2) = 2d$, a contradiction. And if there exist $1 \le i, j \le d-1$ and $i \ne j$ such that $|C^+(u_i, u_{i+1})| = 2$ and $|C^+(u_j, u_{j+1})| = 2$, then $m \ge 3 \times 2 + 2(d-3) = 2d$, also a contradiction.

Then by Claim 2, $w_{2,0}(H) \leq 1$ and hence $4 \leq d \leq 6$. For any $1 \leq i \leq r$, if $|C^+(u_i, u_{i+1})| = 1$, we know that $C^+(u_i, u_{i+1}) \cap X \neq \phi$, say $x_i \in C^+(u_i, u_{i+1})$. By Claim 2 and Lemma 2(ii) and (iii), $N_C(x_i) \subseteq W(H)$. Then since $N_H(x_i) = \phi$ and w(H) = d - 1, there should exist a component H_i of R such that $N_{H_i}(x_i) \neq \phi$. And obviously $W(H_i) \subseteq \{x_i\} \cup W(H) - \{u_i, u_{i+1}\}$.

Without loss of generality, we may assume $|C^+(u_1, u_2)| = 1$ and H_1 is component of R such that $N_{H_1}(x_1) \neq \phi$, $W(H_1) \subseteq \{x_1\} \cup W(H) - \{u_1, u_2\}$. Then if d = 4, we get $w(H_1) \leq 2$, a contradiction to that G is 3-connected. So we may assume d = 5 or 6. If $w_{2,0}(H) = 0$, then $d \leq 5$ and hence d = 5. By symmetry, we may assume $|C^+(u_2, u_3)| = 1$. Suppose $x_2 \in C^+(u_2, u_3) \cap X$ and H_2 is a component of R such that $N_{H_2}(x_2) \neq \phi$. Then $W(H_2) \subseteq \{x_2\} \cup W(H) - \{u_2, u_3\}$. By Claim 1 (i), $u_3 \notin W(H_1)$ or $u_1 \notin W(H_2)$, and hence $w(H_1) \leq 2$ or $w(H_2) \leq 2$, a contradiction to that G is 3-connected. If $w_{2,0}(H) = 1$, suppose $u_i \in W_{2,0}(H)(1 \leq i \leq r)$. Then by Claim 2, $|C^+(u_{i-2}, u_{i-1})| = 1$. Suppose $x' \in X \cap C^+(u_{i-2}, u_{i-1})$, H' is a component of R such that $N_{H'}(x') \neq \phi$ and then $W(H') \subseteq \{x'\} \cup W(H) - \{u_{i-2}, u_{i-1}\}$. By Claim 1(iii), $u_i, u_{i+1} \notin W(H')$. That means $w(H') \leq 2$, a contradiction to that G is 3-connected.

From the proof of Case 1, we may assume that each component of *R* has at least 3 vertices. Case 2. $H = K_3$.

Suppose $V(H) = \{y_1, y_2, y_3\}$, then it is easy to know that $d - 2 \le |N_C(y_i)| \le d - 1$ for i = 1, 2, 3. Hence $|N_C(y_i) - N_C(\{y_j, y_k\})| \le 1$ for any $1 \le i, j, k \le 3$. This implies $W(H) = W_2(H)$. Since $w_2(H) = r$, and |X| = 4, then $w_{2,0}(H) \ge r - 4$ and $w_{2,1}(H) \le 4$. And if $u_i \in W_{2,0}(H), |C^+(u_i, u_{i+1})| \ge 3$ since *C* is a longest cycle through *X*. Then if $w_{2,0}(H) \ge 2$, $m \ge 4 \times 2 + 2(r - 2) \ge 2d$. And if $r \ge 6$, we have $w_{2,0}(H) \ge 2$. We only need to prove the theorem when $w_{2,0}(H) \le 1$ and $4 \le d \le 7$. We first prove

Claim 3. (i) $1 \le |C^+(u_i, u_{i+1})| \le 4$ for $1 \le i \le r$ and if r = d - 1, $1 \le |C^+(u_i, u_{i+1})| \le 2$ for $1 \le i \le r$; (ii) If $|C^+(u_i, u_{i+1})| = 4$, then $|C^+(u_j, u_{j+1})| = 1$ for $j \ne i$; (iii) If $|C^+(u_i, u_{i+1})| = 3$, then $|C^+(u_j, u_{j+1})| \le 2$ for $j \ne i$; moreover, if $|C^+(u_i, u_{i+1})| = 3$ and $|C^+(u_j, u_{j+1})| = 2$ for $j \ne i$, then $|C^+(u_k, u_{k+1})| = 1$ for $k \ne i, j$.

Proof. (i) If $|C^+(u_i, u_{i+1})| \ge 5$ for some $1 \le i \le r$, then $m \ge 6 + 2(r-1) \ge 2d$, a contradiction. If r = d - 1 and $|C^+(u_i, u_{i+1})| \ge 3$ for some $1 \le i \le r$, then $m \ge 4 + 2(d-2) = 2d$, a contradiction.

(ii) If there exist $1 \le i, j \le r$ and $i \ne j$ such that $|C^+(u_i, u_{i+1})| = 4$ and $|C^+(u_j, u_{j+1})| \ge 2$, then $m \ge 5 + 3 + 2(r-2) \ge 2d$, a contradiction.

(iii) If there exist $1 \le i, j \le r$ and $i \ne j$ such that $|C^+(u_i, u_{i+1})| = 3$ and $|C^+(u_j, u_{j+1})| \ge 3$, then $m \ge 4 \times 2 + 2(r-2) \ge 2d$, a contradiction. If $|C^+(u_i, u_{i+1})| = 3$ and $|C^+(u_j, u_{j+1})| = 2$ for $1 \le i \ne j \le r$, then $m \ge 4 + 3 + 2(r-2) \ge 2d - 1$, so we must have $|C^+(u_k, u_{k+1})| = 1$ for $k \ne i, j$.

Then if $|C^+(u_i, u_{i+1})| = 1$ $(1 \le i \le r)$, say $x_i \in C^+(u_i, u_{i+1}) \cap X$, by Claim 3 and Lemma 2(ii)–(v), there exists a component H_i of R such that $N_{H_i}(x_i) \ne \phi$ and obviously $W(H_i) \subseteq \{x_i\} \cup W(H) - \{u_i, u_{i+1}\}$.

Subcase 2.1. $w_{2,0}(H) = 1$.

Then by Claim 3(i), r = d - 2 and hence $5 \le d \le 7$. By symmetry, we may assume $u_1 \in W_{2,0}(H)$ and $|C^+(u_2, u_3)| = 1$ by Claim 3(ii) or (iii). Suppose $x_1 \in C^+(u_2, u_3) \cap X$, H_1 is a component of R such that $N_{H_1}(x_1) \ne \phi$. Then $W(H_1) \subseteq \{x_1\} \cup W(H) - \{u_2, u_3\}$. Since G is 3-connected, $3 \le w(H_1) \le w(H) - 1$ and hence $r = w(H) \ge 4$. We may assume d = 6 and r = 4 or d = 7 and r = 5. Again by Claim 3(ii) or (iii), there exists another $u_j(j \ne 2)$ such that $|C^+(u_j, u_{j+1})| = 1$, say $x_2 \in C^+(u_j, u_{j+1})$. Suppose H_2 is a component of R such that $N_{H_2}(x_2) \ne \phi$ and then $W(H_2) \subseteq \{x_2\} \cup W(H) - \{u_j, u_{j+1}\}$.

If $|C^+(u_1, u_2)| = 3$, then by Claim 1(iii), $u_1 \notin W(H_1)$ and $u_1, u_2 \notin W(H_2)$. So if d = 6 and r = 4, we immediately get $w(H_1) \leq 2$, a contradiction to that G is 3-connected. If d = 7 and r = 5, then by Claim 3(iii), at least one of $|C^+(u_3, u_4)| = 1$ and $|C^+(u_4, u_5)| = 1$ holds. Without loss of generality, let j = 3, then $W(H_2) \subseteq \{x_2\} \cup W(H) - \{u_1, u_2, u_3, u_4\}$. Thus we can get $w(H_2) \leq 2$, also a contradiction to that G is 3-connected.

If $|C^+(u_1, u_2)| = 4$, then by Claim 3(ii), $|C^+(u_i, u_{i+1})| = 1$ for $\forall i \neq 1$. If d = 6 and r = 4, let j = 3, then by Claim 1(ii), $u_1 \notin W(H_1)$ or $u_2 \notin W(H_2)$. Thus we can get $w(H_1) \leq 2$ or $w(H_2) \leq 2$, a contradiction to that *G* is 3-connected. If d = 7 and r = 5, suppose $x_{i-1} \in C^+(u_i, u_{i+1}) \cap X$ for i = 2, 3, 4, 5 where $u_{5+1} = u_1$, and H_{i-1} is the component of *R* such that $N_{H_{i-1}}(x_{i-1}) \neq \phi$. By Lemma 2, we know that $W(H_{i-1}) \subseteq \{x_{i-1}\} \cup W(H) - \{u_i, u_{i+1}\}$. And by Claim 1(ii), if $u_1 \in W(H_1)$, then $u_2 \notin W(H_j)$ for j = 2, 3, 4. So if $u_1 \in W(H_1)$, we should have $W(H_2) = \{x_2, u_1, u_5\}$ and $W(H_3) = \{x_3, u_1, u_3\}$ since *G* is 3-connected. But by Claim 1(i), $u_5 \notin W(H_2)$ or $u_3 \notin W(H_3)$, a contradiction. So we may assume $u_1 \notin W(H_1)$, which means $W(H_1) = \{x_1, u_4, u_5\}$. And then by Claim 1(i), $u_2 \notin W(H_2)$ and $u_2 \notin W(H_3)$. Similarly we can get $W(H_2) = \{x_2, u_1, u_5\}$ and $W(H_3) = \{x_3, u_1, u_3\}$ and again by Claim 1 (i), $u_5 \notin W(H_2)$ or $u_3 \notin W(H_3)$, a contradiction.

Subcase 2.2. $w_{2,0}(H) = 0$.

Then $3 \le r = w(H) = w_{2,1}(H) \le 4$.

Subcase 2.2.1. r = 3. Then d = 4 or 5.

Claim 4. If $|C^+(u_i^+, u_{i+1})| \le 2$ and $C^+(u_i^+, u_{i+1}) \cap X = \phi$, then $u_i^- \notin N_C(u_i^+)$ for any $j \ne i$.

Proof. If $u_j^- \in N_C(u_i^+)$ for some $j \neq i$, then $u_i^+ u_j^- C^-(u_j^-, u_{i+1}) P_H(u_{i+1}, u_j) C^+(u_j, u_i^+)$ is a cycle through X and longer than C, a contradiction.

If d = 4, or d = 5 and $|C^+(u_i, u_{i+1})| \ge 3$ for some *i*, then by Claim 3(ii) or (iii), there exists u_j such that $|C^+(u_j, u_{j+1})| = 1$. Without loss of generality, assume $|C^+(u_1, u_2)| = 1$, say $x_1 \in X \cap C^+(u_1, u_2)$. Suppose H_1 is a component of *R* such that $N_{H_1}(x_1) \ne \phi$ and then $W(H_1) \subseteq \{x_1\} \cup W(H) - \{u_1, u_2\}$, which implies $w(H_1) \le 2$ since w(H) = 3, a contradiction. So we may assume d = 5 and $|C^+(u_i, u_{i+1})| \le 2$ for each $1 \le i \le 3$. Since w(H) = 3, there exists u_i such that $|C^+(u_i, u_{i+1}) \cap X| = 1$. Without loss of generality, suppose $|C^+(u_1, u_2) \cap X| = 1$ and $x_1 = u_1^+ \in X$. Then by Lemma 2 and Claim 4, $N_C(x_1) \subseteq W(H) \cup \{u_1^{++}\}$. Then there exists a component H_1 of *R* such that $N_{H_1}(x_1) \ne \phi$, say $y_1 \in N_{H_1}(x_1)$. By Lemma 2, we know that $W(H_1) \subseteq \{u_2, u_3, x_1\}$. Note that $|V(H_1)| \ge 3$, therefore $V(H_1) - \{y_1\} \ne \phi$. Since $x_1 = u_1^+ \in W(H_1)$, $|C^+(x_1, u_2)| \le 1$ and $C^+(x_1, u_2) \cap X = \phi$, it follows immediately that $u_2 \notin N_C(H_1 - \{y_1\})$. Then if $N_{H_1}(x_1) = y_1$, we have $|N_C(H_1 - \{y_1\})| \le 1$, a contradiction. Otherwise, if $|N_{H_1}(x_1)| \ge 2$, then $u_2 \notin W(H_1)$. Thus we have $w(H_1) \le 2$, a contradiction.

Subcase 2.2.2. r = 4. Then d = 5 or 6.

If $|C^+(u_i, u_{i+1})| \ge 2$ for $1 \le i \le 4$, then $m \ge 3r = 12 \ge 2d$, a contradiction. By symmetry, we may assume $|C^+(u_1, u_2)| = 1$ and $x_1 \in X \cap C^+(u_1, u_2)$. Suppose H_1 is a component of R such that $N_{H_1}(x_1) \ne \phi$ and hence $W(H_1) \subseteq \{x_1\} \cup W(H) - \{u_1, u_2\}$. Since G is 3-connected, $W(H_1) = \{x_1, u_3, u_4\}$.

If d = 5, or d = 6 and $|C^+(u_i, u_{i+1})| \ge 3$ for some $i(2 \le i \le 4)$, then by Claim 3(ii) or (iii), there exists $u_j(2 \le j \le 4)$ such that $|C^+(u_j, u_{j+1})| = 1$, say $x_2 \in X \cap C^+(u_j, u_{j+1})$. Suppose H_2 is a component of R such that $N_{H_2}(x_2) \ne \phi$ and then $W(H_2) \subseteq \{x_2\} \cup W(H) - \{u_j, u_{j+1}\}$. Since $u_3, u_4 \in W(H_1)$, then by Claim 1(i), $u_1 \notin W(H_2)$ if j = 2, 3 or $u_2 \notin W(H_2)$ if j = 4. In either case we have $w(H_2) \le 2$, a contradiction. Hence we may assume d = 6 and $|C^+(u_i, u_{i+1})| \le 2$ for each $i(2 \le i \le 4)$. Since w(H) = 4 and $w_{2,0}(H) = 0$, $|C^+(u_i, u_{i+1}) \cap X| = 1$ for $2 \le i \le 4$. Without loss of generality, we may assume $x_2 = u_3^+ \in X$. By Lemma 2 and Claim 4, $N_C(x_2) \subseteq W(H) \cup \{u_3^{++}\}$. Then there exists a component H_2 of R such that $N_{H_2}(x_2) \ne \phi$ and then $W(H_2) \subseteq \{x_2, u_1, u_2, u_4\}$. Since $W(H_1) = \{x_1, u_3, u_4\}, |C^+(x_2, u_4)| \le 1$ and $C^+(x_2, u_4) \cap X = \phi$, then by Lemma 2, $u_1, u_2 \notin W(H_2)$. That means $w(H_2) \le 2$, a contradiction.

From the proof of Theorem 2, we know that the condition of $H = K_2$ or K_3^- can be replaced by that there are two vertices $y_1, y_2 \in V(H)$ such that $|N_H(y_1)| = |N_H(y_2)| = 1$. And the condition of $H = K_3$ can be replaced by that there are three vertices $y_1, y_2, y_3 \in V(H)$ such that $|N_H(y_i)| \le 2$ and there is a $(y_i, y_j; 2)$ -path in H for $1 \le i \ne j \le 3$.

3. Proof of Theorem 1

Let $C = c_1c_2 \cdots c_mc_1$ be a longest cycle through $X = \{x_1, x_2, x_3, x_4\}$ in G and assume $m \le 2d - 1$. If there is a component H' of R such that $|V(H')| \le 3$ or H' is separable and there are two end blocks of H' with no more than 3 vertices, then Theorem 1 follows directly from Theorem 2. Then if a component H' of R is separable, we may assume at least one end block B of H' with not less than 4 vertices and b is the unique cut vertex in B. And then we can get a new graph G' by contracting H - B to b and adding all the edges in $\{bu : u \in N_C(H - B)\}$. It is easy to see that G' is 3-connected and C is still a longest cycle through X in G': If there exists a component H' of R such that $w_{2,0}(H') \ge 2$. Choose $y \in V(H')$ such that $n(y) = |N_C(y)| = \max\{|N_C(x)| : x \in V(H')\}$. Then for any two vertices $y_1, y_2 \in V(H')$, there is a $(y_1, y_2; d - n(y))$ -path by Lemma 1. Thus we have $m \ge 2(d - n(y) + 2) + 2(n(y) - 2) = 2d$. From the above, we only need to prove Theorem 1 when every component H' of R has at least 4 vertices, 2-connected and $w_{2,0}(H') \le 1$. Suppose H is a component of R such that $w_{2,0}(H) \ge w_{2,0}(H')$ for any component H' of R and then $X \cap W(H)$ is as maximal as possible. Since G is 3-connected and $|V(H)| \ge 4$, we can choose three disjoint edges y_1v_1, y_2v_2 and y_3v_3 in E(H, C) where y_1, y_2, y_3 are three distinct vertices in H, v_1, v_2, v_3 are arranged along C^+ . Suppose $y, y' \in V(H)$ such that $n(y) = |N_C(y)| = \max\{|N_C(x)| : x \in V(H) \setminus \{y_1, y_2, y_3\}\}$ and n(y') =max $\{n(y), n(y_1)\}$. Then by Lemma 1, there exist a $(y_i, y_j; d - n(y))$ -path $(1 \le i \ne j \le 3)$ and a $(y_i, y; d - n(y'))$ path (i = 2, 3) in H, denoted by $P(y_i, y_j)$ and $P(y_i, y)$ respectively. Suppose $A = N_C(y) \cap \{v_1, v_2, v_3\}$ and a = |A|.

We divide the proof of Theorem 1 into two parts according to $w_{2,0}(H) = 0$ or 1.

Part I. $w_{2,0}(H) = 0$. Then $|\{v_1, v_2, v_3\} \cap X| \le 1$.

Suppose $\{x_1, x_2, x_3, x_4\}$ are arranged along C^+ . If $X \cap W(H) \neq \phi$, we may choose v_1, v_2, v_3 such that $\{v_1, v_2, v_3\} \cap X \neq \phi$, suppose $v_1 = x_1$ by symmetry. And then $v_2 \in C^+(x_2, x_3)$, $v_3 \in C^+(x_3, x_4)$. If $X \cap W(H) = \phi$, we may assume $v_1 \in C^+(x_1, x_2)$, $v_2 \in C^+(x_2, x_3)$ and $v_3 \in C^+(x_3, x_4)$ by symmetry. In either case, we have $\{x_2\} = C^+(v_1, v_2) \cap X, \{x_3\} = C^+(v_2, v_3) \cap X$ and $N_C(y) \cap C^+[x_1, x_4] \subseteq \{v_1, v_2, v_3\}$. Suppose $N_C(y) \cap C^+(x_4, x_1) = \{w_1, w_2, \dots, w_q\}$. We first prove:

Claim 1.
$$|N_C(x_2)| + |N_C(x_3)| < 2d$$
.

Proof. Suppose $C_1 = C^+(v_1, x_2)$, $C_2 = C^+(x_2, v_2)$, $C_3 = C^+(v_2, x_3)$, $C_4 = C^+(x_3, v_3)$, $C_5 = C^+(v_3, x_4)$. If $v_1 \neq x_1$, suppose $C_6 = C^+(x_4, x_1)$, $C_7 = C^+(x_1, v_1)$. Otherwise suppose $C_6 = C^+(x_4, x_1)$. Denote $c_i = |C_i|$. Note that $m = \sum_{i=1}^{7} c_i + 1$ if $v_1 \neq x_1$ and $m = \sum_{i=1}^{6} c_i + 1$ if $v_1 = x_1$.

(i) $x_2x_3 \notin E(G)$.

If $x_2x_3 \in E(G)$, we know that $x_2x_3C^+(x_3, v_1)y_1P(y_1, y_2)v_2C^-(v_2, x_2)$ and $x_2x_3C^-(x_3, v_2)y_2P(y_2, y_3)$ $v_3C^+(v_3, x_2)$ are two cycles through X. Thus we have $|C^+(v_1, x_2)| + |C^+(v_2, x_3)| \ge d - n(y) + 1$ and $|C^+(x_2, v_2)| + |C^+(x_3, v_3)| \ge d - n(y) + 1$. Then we have $m \ge 2d$, a contradiction.

(ii) If $x_2v_3^- \in E(G)$, then $N_{C_1}(x_3) = \phi$; if $x_3v_1^+ \in E(G)$, then $N_{C_4}(x_2) = \phi$.

If $x_2v_3^- \in E(G)$ and $s \in N_{C_1}(x_3)$, then $x_2v_3^-C^-(v_3^-, v_2)y_2P(y_2, y_3)v_3C^+(v_3, x_2)$ and $x_3sC^-(s, v_3)y_3P(y_3, y_2)v_2C^-(v_2, x_2)v_3^-C^-(v_3^-, x_3)$ are two cycles through X. Thus we have $|C^+(x_2, v_2)| \ge d - n(y) + 1$ and $|C^+(s, x_2)| + |C^+(v_2, x_3)| \ge d - n(y) + 1$, then we can get $m \ge 2d$, a contradiction to m < 2d. By symmetry, we can prove if $x_3v_1^+ \in E(G)$, then $N_{C_4}(x_2) = \phi$.

(iii) If $x_2v_2^+ \in E(G)$, then $N_{C_2}(x_3) = \phi$; if $x_3v_2^- \in E(G)$, then $N_{C_3}(x_2) = \phi$.

If $x_2v_2^+ \in E(G)$ and $s \in N_{C_2}(x_3)$, then $x_2v_2^+C^+(v_2^+, v_1)y_1P(y_1, y_2)v_2C^-(v_2, x_2)$ and $x_3sC^+(s, v_2)v_2y_2P(y_2, y_3)$ $v_3C^+(v_3, x_2)v_2^+C^+(v_2^+, x_3)$ are two cycles through X. Thus we have $|C^+(v_1, x_2)| \ge d - n(y) + 1$ and $|C^+(x_2, s)| + |C^+(x_3, v_3)| \ge d - n(y) + 1$. So we can get $m \ge 2d$, a contradiction. By symmetry, we can prove if $x_3v_2^- \in E(G)$, then $N_{C_3}(x_2) = \phi$.

(iv) If $x_2v_3^+ \in E(G)$, $N_{C_5}(x_3) = \phi$; if $v_1 \neq x_1$ and $x_3v_1^- \in E(G)$, $N_{C_7}(x_2) = \phi$.

If $x_2v_3^+ \in E(G)$ and $s \in N_{C_5}(x_3)$, then $x_2v_3^+C^+(v_3^+, v_1)y_1P(y_1, y_3)v_3C^-(v_3, x_2)$ and $x_3sC^+(s, v_2)y_2P(y_2, y_3)v_3C^-(v_3, x_3)$ are two cycles through X. Thus we have $|C^+(v_1, x_2)| \ge d - n(y) + 1$ and $|C^+(v_2, x_3)| + |C^+(v_3, s)| \ge d - n(y) + 1$. So we can get $m \ge 2d$, a contradiction. If $v_1 \ne x_1$, we can prove if $x_3v_1^- \in E(G)$, then $N_{C_7}(x_2) = \phi$ by symmetry.

(v) $|N_{C_1 \cup C_4}(x_2)| + |N_{C_1 \cup C_4}(x_3)| \le c_1 + c_4 + 2.$

If there exist $s_1 \in N_{C_1-\{v_1\}}(x_2)$ and $s_2 \in C^+(s_1, x_2) \cap N_C(x_3)$, then $x_2s_1C^+(s_1, s_2)x_3C^+(x_3, v_1)y_1P(y_1, y_2)v_2C^-(v_2, x_2)$ and $x_2s_1C^-(s_1, v_3)y_3P(y_3, y_2)v_2C^+(v_2, x_3)s_2C^+(s_2, x_2)$ are two cycles through X. Thus we have $|C^+(v_1, s_1)|+|C^+(s_2, x_2)|+|C^+(v_2, x_3)| \ge d-n(y)+1$ and $|C^+(s_1, s_2)|+|C^+(x_2, v_2)|+|C^+(x_3, v_3)| \ge d-n(y)+1$. Then $m \ge 2d$, a contradiction. That means if $s \in N_{C_1-\{v_1\}}(x_2)$, then $N_C(x_3) \cap C^+(s, x_2) = \phi$. Suppose $N_{C_1}(x_2) = \{s_1, s_2, \dots, s_p\}$ and they are arranged along C^+ , then if $s_1 \ne v_1$, $N_{C_1}(x_3) \subseteq C^+[v_1, s_1]$ and if $s_1 = v_1$, $N_{C_1}(x_3) \subseteq C^+[v_1, s_2]$. Then we can get $|N_{C_1}(x_2)| + |N_{C_1}(x_3)| \le p + c_1 - (p-2) = c_1 + 2$ and the equality holds only if $x_3v_1^+ \in E(G)$ and $N_{C_4}(x_3) \ne \phi$. Note the results of (ii), we know that $|N_{C_1\cup C_4}(x_2)| + |N_{C_1\cup C_4}(x_3)| \le c_1 + c_4 + 2$.

(vi) $|N_{C_2 \cup C_3}(x_2)| + |N_{C_2 \cup C_3}(x_3)| \le c_2 + c_3$.

If there exist $s_1 \in N_{C_2}(x_3)$ and $s_2 \in C^+(s_1, v_2) \cap N_C(x_2)$, then $x_3s_1C^+(s_1, s_2)x_2C^-(x_2, v_3)y_3P(y_3, y_2)v_2C^+(v_2, x_3)$ and $x_3s_1C^-(s_1, x_2)s_2C^+(s_2, v_2)y_2P(y_2, y_1)v_1C^-(v_1, x_3)$ are two cycles through X. Thus we have $|C^+(x_2, s_1)|+|C^+(s_2, v_2)|+|C^+(x_3, v_3)| \ge d-n(y)+1$ and $|C^+(v_1, x_2)|+|C^+(s_1, s_2)|+|C^+(v_2, x_3)| \ge d-n(y)+1$. Then $m \ge 2d$, a contradiction. That means if $s \in N_{C_2}(x_3)$, then $N_C(x_2) \cap C^+(s, v_2) = \phi$. Then we can get $|N_{C_2-\{v_2\}}(x_2)| + |N_{C_2-\{v_2\}}(x_3)| \le c_2$ and the equality holds only if $x_3v_2^- \in E(G)$. By symmetry, we can prove $|N_{C_3-\{v_2\}}(x_2)| + |N_{C_3-\{v_2\}}(x_3)| \le c_3$ and the equality holds only if $x_2v_2^+ \in E(G)$. Note the results of (iii), we can get $|N_{C_2\cup C_3}(x_2)| + |N_{C_2\cup C_3}(x_3)| \le c_2 + c_3$.

(vii) $|N_{C_5}(x_2)| + |N_{C_5}(x_3)| \le c_5; |N_{C_7}(x_2)| + |N_{C_7}(x_3)| \le c_7$ if $v_1 \ne x_1$.

If there exist $s_1 \in N_{C_5}(x_3)$ and $s_2 \in C^+(s_1, x_4] \cap N_C(x_2)$, then $x_3s_1C^+(s_1, v_2)y_2P(y_2, y_3)v_3C^-(v_3, x_3)$ and $x_3s_1C^-(s_1, v_3)y_3P(y_3, y_1)v_1C^-(v_1, s_2)x_2C^+(x_2, x_3)$ are two cycles through X. Thus we have $|C^+(v_2, x_3)| + |C^+(v_3, s_1)| \ge d - n(y) + 1$ and $|C^+(v_1, x_2)| + |C^+(x_3, v_3)| + |C^+(s_1, s_2)| \ge d - n(y) + 1$. Then $m \ge 2d$, a contradiction. That means if $s \in N_{C_5}(x_3)$, then $N_C(x_2) \cap C^+(s, x_4] = \phi$. Then we can get $|N_{C_5}(x_2)| + |N_{C_5}(x_3)| \le p + c_5 - (p - 1) = c_5 + 1$ and the equality holds only if $x_2v_3^+ \in E(G)$ and $N_{C_5}(x_3) \ne \phi$. Note the results of (iv), we have $|N_{C_5}(x_2)| + |N_{C_5}(x_3)| \le c_5$. If $v_1 \ne x_1$, we can prove $|N_{C_7}(x_2)| + N_{C_7}(x_3)| \le c_7$ by symmetry.

(viii) If $v_1 = x_1$, then $|N_{C_6}(x_2)| + |N_{C_6}(X_3)| \le c_6 - 1$.

If $v_1 = x_1$, then q = 0, which means n(y) = a. If $x_2x_4 \in E(G)$, then $x_2x_4C^-(x_4, v_2)y_2P(y_2, y_1)v_1C^+(v_1, x_2)$ and $x_2x_4C^+(x_4, v_1)y_1P(y_1, y_3)v_3C^-(v_3, x_2)$ are two cycles through X, thus $|C^+(x_2, v_2)| + |C^+(x_4, x_1)| \ge d - a + 1$ and $|C^+(x_1, x_2)| + |C^+(v_3, x_4)| \ge d - a + 1$. Then we can get $m \ge 2d$, a contradiction. Similarly we can prove $x_3x_4 \notin E(G)$.

If $s \in N_{C_6}(x_3)$, then $x_3sC^-(s, v_3)y_3P(y_3, y_1)v_1C^+(v_1, x_3)$ is a cycle through X, thus $|C^+(x_3, v_3)|+|C^+(s, x_1)| \ge d - a + 1$. Similarly if $t \in N_{C_6}(x_2)$, then $|C^+(x_2, v_2)| + |C^+(t, x_1)| \ge d - a + 1$. If there exist vertices $s, s^+ \in C^+(x_4, x_1)$ such that $x_3s, x_3s^+ \in E(G)$, then $x_3sC^-(s, v_3)y_3P(y_3, y_2)v_2C^-(v_2, s^+)x_3$ is a cycle through X, thus $|C^+(v_2, x_3)| + |C^+(x_3, v_3)| \ge d - a + 1$. Similarly if there exist vertices $t, t^+ \in C^+(x_4, x_1)$ such that $x_2t, x_2t^+ \in E(G)$, then $|C^+(v_1, x_2)| + |C^+(x_2, v_2)| \ge d - a + 1$. Hence if there exist vertices $s, s^+ \in C^+(x_4, x_1)$ such that $x_3s, x_3s^+ \in E(G)$, then $N_{C_6}(x_2) = \phi$, thus $|N_{C_6}(x_2)| + |N_{C_6}(x_2)| + |N_{C_6}(x_3)| \le c_6 - 1$.

So we may assume there exist no such vertices. We know if $x_2x_1^- \in E(G), |C^+(x_2, v_2)| \ge d - a + 1$. And then $N_{C_6}(x_3) = \phi$, thus $|N_{C_6}(x_2)| + |N_{C_6}(x_3)| \le c_6 - 2$. Similarly if $x_3x_1^- \in E(G)$, then $|N_{C_6}(x_2)| + |N_{C_6}(x_3)| \le c_6 - 2$. If $x_2x_1^-$, $x_3x_1^- \notin E(G)$, then $|N_{C_6}(x_2)| \le \frac{|C^+(x_4,x_1)|}{2}$ and $|N_{C_6}(x_3)| \le \frac{|C^+(x_4,x_1)|}{2}$, and hence $|N_{C_6}(x_2)| + |N_{C_6}(x_3)| \le \frac{|C^+(x_4,x_1)|}{2}$ $|C^+(x_4, x_1)| = c_6 - 1.$

(ix) If $v_1 \neq x_1$, then $|N_{C_6 \cup C_7}(x_2)| + |N_{C_6 \cup C_7}(x_3)| \le c_6 + c_7 - 1$.

Under this case, if $x_2x_1 \in E(G)$, then $x_2x_1C^-(x_1, v_2)y_2P(y_2, y_1)v_1C^+(v_1, x_2)$ is a cycle through X. Thus $|C^+(x_1, v_1)| + |C^+(x_2, v_2)| \ge d - n(y) + 1$. If $x_2x_4 \in E(G)$, then $x_2x_4C^+(x_4, v_1)y_1P(y_1, y_3)v_3C^-(v_3, x_2)$ is a cycle through X. Thus $|C^+(v_1, x_2)| + |C^+(v_3, x_4)| \ge d - n(y) + 1$. So $x_2x_1 \notin E(G)$ or $x_2x_4 \notin E(G)$. By symmetry, we can prove $x_3x_1 \notin E(G)$ or $x_3x_4 \notin E(G)$.

If $x_2x_1 \in E(G)$, then $N_C(x_3) \cap C^+[x_4, x_1] = \phi$. Otherwise, suppose $x_2x_1 \in E(G)$ and $s \in N_C(x_3) \cap C^+[x_4, x_1]$. Then if q = 0 or $C^+(s, x_1) \cap N_C(y) = \phi$, then $x_3sC^-(s, y_3)y_3P(y_3, y_1)v_1C^-(v_1, x_1)x_2C^+(x_2, x_3)$ is a cycle through X, thus $|C^+(v_1, x_2)| + |C^+(x_3, v_3)| + |C^+(s, x_1)| \ge d - n(y) + 1$; if $q \ge 1$ and $C^+(s, x_1) \cap N_C(y) \ne \phi$, choose a vertex $w_i \in C^+(s, x_1) \cap N_C(y)$ such that $C^+(s, w_i) \cap N_C(y) = \phi$. Then $x_3 s C^-(s, v_3) y_3 P(y_3, y) w_i C^+(w_i, x_3)$ is a cycle through X, thus $|C^+(x_3, v_3)| + |C^+(s, w_i)| \ge d - n(y') + 1$. In either case, together with $|C^+(x_1, v_1)| + d$ $|C^+(x_2, v_2)| \ge d - n(y) + 1$, we can get a contradiction that $m \ge 2d$. Similarly we can prove if $x_3x_4 \in E(G)$, then $N_C(x_2) \cap C^+(x_4, x_1] = \phi$; if $x_2x_4 \in E(G)$, then $N_C(x_3) \cap C^+(x_4, x_1] = \phi$; if $x_3x_1 \in E(G)$, then $N_C(x_2) \cap C^+[x_4, x_1) = \phi.$

Similarly as in the proof of (viii), if there exist two vertices $t, t^+ \in C^+(x_4, x_1) \cap N_C(x_2)$, then $|C^+(v_1, x_2)| + |C^+(v_1, x_2)| + |C^+(v_1, x_2)| + |C^+(v_1, x_2)|$ $|C^+(x_2, v_2)| \ge d - n(y) + 1$. If $|N_C(x_3) \cap C^+(x_4, x_1)| \ge 2$, suppose $s, s' \in N_C(x_3) \cap C^+(x_4, x_1)$ and $s' \in C^+(s, x_1)$. Then if q = 0 or $C^+(s, s') \cap N_C(y) = \phi$, $x_3s'C^+(s', v_2)y_2P(y_2, y_3)v_3C^+(v_3, s)x_3$ is a cycle through X, thus $|C^+(v_2, x_3)| + |C^+(x_3, v_3)| + |C^+(s, s')| \ge d - n(y) + 1$. If $C^+(s, s') \cap N_C(y) \ne \phi$, choose a vertex $w_i \in C^+(s, s') \cap N_C(y)$ such that $C^+(s, w_i) \cap N_C(y) = \phi$. Then $x_3sC^-(s, v_3)y_3P(y_3, y)w_iC^+(w_i, x_3)$ is a cycle through X, thus $|C^+(x_3, v_3)| + |C^+(s, w_i)| \ge d - n(y') + 1$. So if there exist vertices $t, t^+ \in C^+(x_4, x_1)$ such that $x_2t, x_2t^+ \in E(G)$, then $|N_C(x_3) \cap C^+(x_4, x_1)| \le 1$. Otherwise we can get a contradiction that $m \ge 2d$.

Then if $N_C(\{x_2, x_3\}) \cap \{x_1, x_4\} = \phi$, and there exist two vertices $t, t^+ \in C^+(x_4, x_1) \cap N_C(x_2)$, then $|N_{C_6}(x_2)| + |N_{C_6}(x_3)| \le c_6 - 1$. By symmetry, if there exist vertices $s, s^+ \in C^+(x_4, x_1)$ such that $x_3s, x_3s^+ \in E(G)$, then $|N_{C_6}(x_2)| + |N_{C_6}(x_3)| \le c_6 - 1$. And if there exists no such vertices, $|N_{C^+(x_4,x_1)}(x_2)| \le \frac{|C^+(x_4,x_1)|+1}{2}$ and $|N_{C^+(x_4,x_1)}(x_3)| \le \frac{|C^+(x_4,x_1)|+1}{2}$, and hence $|N_{C_6}(x_2)| + |N_{C_6}(x_3)| \le c_6 - 1$. Together with the results of (vii), we know that $|N_{C_6 \cup C_7}(x_2)| + |N_{C_6 \cup C_7}(x_3)| \le c_6 + c_7 - 1$.

If $N_C(\{x_2, x_3\}) \cap \{x_1, x_4\} \neq \phi$, without loss of generality, suppose $x_2x_1 \in E(G)$, then $x_2x_4 \notin E(G)$ and $N_{C}(x_{3}) \cap C^{+}[x_{4}, x_{1}) = \phi$. If $x_{3}x_{1} \notin E(G)$, then $|N_{C_{6}}(x_{2})| + |N_{C_{6}}(x_{3})| \leq c_{6} - 1$. If $x_{3}x_{1} \in E(G)$, we know that $N_C(x_2) \cap C^+[x_4, x_1) = \phi$. Thus we have $|N_{C_6}(x_2)| + |N_{C_6}(x_3)| = 2$. So if $c_6 \ge 3$, we have $|N_{C_6}(x_2)| + |N_{C_6}(x_3)| \le c_6 - 1$. Then we can get $|N_{C_6 \cup C_7}(x_2)| + |N_{C_6 \cup C_7}(x_3)| \le c_6 + c_7 - 1$. So we may assume $c_6 = 2$ and $x_2 x_1, x_3 x_1 \in E(G)$. Then if $c_7 = 0$, we know that $|C^+(x_2, v_2)| \ge d - n(y) + 1$ and $|C^+(x_3, v_3)| \ge d - n(y) + 1$, thus we can get a contradiction that $m \ge 2d$. Thus we know that $c_7 > 0$. If $s \in N_{C_7}(x_2)$, then $x_2sC^-(s, v_2)y_2P(y_2, y_1)v_1C^+(v_1, x_2)$ and $x_2sC^+(s, v_1)y_1P(y_1, y_3)v_3C^+(v_3, x_1)x_3C^-(x_3, x_2)$ are two cycles through X, then $|C^+(s, v_1)| + |C^+(x_2, v_2)| \ge d - n(y) + 1$ and $|C^+(x_1, s)| + C^+(v_1, x_2)| + C^+(x_3, v_3)| \ge d - n(y) + 1$, thus we can get $m \ge 2d$, a contradiction. Similarly we can prove if $x_2x_1 \in E(G)$, then $N_{C_1}(x_3) = \phi$. So if $x_2x_1, x_3x_1 \in E(G)$, then $|N_{C_7}(x_2)| + |N_{C_7}(x_3)| = 0 \le c_7 - 1$ and then $|N_{C_6 \cup C_7}(x_2)| + |N_{C_6 \cup C_7}(x_3)| \le c_6 + c_7 - 1$.

From the above, we know that $|N_C(x_2)| + |N_C(x_3)| \le m < 2d$.

Since $w_{2,0}(H) = 0$, we know that $N_H(x_2) = N_H(x_3) = \phi$. By Claim 1, $|N_C(x_2)| + |N_C(x_3)| < 2d$, so there exists a component H_1 of R such that $N_{H_1}(x_i) \neq \phi$ for i = 2 or 3. Without loss of generality, suppose $N_{H_1}(x_2) \neq \phi$ which means $X \cap W(H_1) \neq \phi$. Then if $X \cap W(H) = \phi$, $|X \cap W(H_1)| > |X \cap W(H)|$. It contradicts to the choice of H. So we may assume $X \cap W(H) \neq \phi$. Then $v_1 = x_1, N_C(y) \subseteq \{v_1, v_2, v_3\}$ and thus n(y) = a. For H_1 , we also can choose three vertex disjoint edges z_1x_2 , z_2s and z_3s' in $E(H_1, C)$ where $s \in C^+(x_3, x_4)$ and $s' \in C^+(x_4, x_1)$. Suppose $z \in V(H_1) \setminus \{z_1, z_2, z_3\}$ such that $n(z) = |N_C(z)| = \max\{|N_C(x)| : x \in V(H_1) \setminus \{z_1, z_2, z_3\}\}$. Then by Lemma 1, there exists a $(z_i, z_j; d - n(z))$ -path in H_1 . For simplification, we denote such a path by $Q(z_i, z_j)(1 \le i \ne j \le 3)$. Now $x_2z_1Q(z_1, z_3)s'C^{-}(s', v_2)v_2y_2P(y_2, y_1)v_1C^{+}(v_1, x_2)$ is a cycle through X. Thus we have $|C^{+}(x_2, v_2)| + |C^{+}(v_1, x_2)| = |C^{+}(x_1, x_2)| + |C^{+}(v_1, x_2)| = |C^{+}(x_1, x_2)| + |C^{+}(v_1, x_2)| = |C^{+}(v_1, |C^{+}(v_1, x_$ $|C^+(s', v_1)| \ge d - a + 1 + d - n(z) + 1$. Then $m \ge (d - a + 1) + (d - n(z) + 1) + 2(\max\{a, n(z)\} - 2) + 2 \ge 2d$, a contradiction.

Part II. $w_{2,0}(H) = 1$.

Then we may choose v_1, v_2, v_3 such that $C^+(v_1, v_2) \cap X = \phi$, $|\{v_1, v_2\} \cap X|$ as large as possible and then $N_H(C^+(v_2, v_3)) \subseteq \{y_1, y_2\}$.

Case 1. $|C^+(v_2, v_3) \cap X| = 1$, say $x_1 \in C^+(v_2, v_3) \cap X$.

Since $w_{2,0}(H) = 1$, $N_C(y) \cap C^+[v_1, v_3] \subseteq \{v_1, v_2, v_3\}$ and $N_H(x_1) = \phi$. Suppose $N_C(y) \cap C^+(v_3, v_1) = \{w_1, w_2, \dots, w_q\}$ where q = n(y) - a, and they are arranged along C^+ . Let x'_2, x'_3 denote vertices lying in $C^+(v_3, v_1) \cap X$ such that $C^+(v_3, x'_2) \cap X = \phi$ and $C^+(x'_3, v_1) \cap X = \phi$ (It is possible that $x'_2 = x'_3$). Then if $q \neq 0, x'_2 \in C^+(v_3, w_1)$ and $x'_3 \in C^+(w_q, v_1)$ since $w_{2,0}(H) = 1$. We first prove

Claim 2. (1) There exists no path connecting x_1 and a vertex in $C^+(v_1, v_2) \cup C^+(v_3, x'_2] \cup C^+[x'_3, v_1)$ with all internal vertices in R - H;

(2) If $C^+(w_j, w_{j+1}) \cap X = \phi$ for $1 \le j \le q - 1$, then there exists no path connecting x_1 and a vertex in $C^+(w_j, w_{j+1})$ with all internal vertices in R - H;

(3) If $|C^+(w_j, w_{j+1}) \cap X| = 1$ $(1 \le j \le q - 1)$, then there exists no path connecting x_1 and a vertex in $C^+(w_j, w_{j+1})$ with all internal vertices in R - H;

(4) If $C^+(x'_2, w_1) \cap X = \phi$, there exists no path connecting x_1 and a vertex in $C^+(x'_2, w_1)$ with all internal vertices in R - H;

(5) If $C^+(w_q, x'_3) \cap X = \phi$, there exists no path connecting x_1 and a vertex in $C^+(w_q, x'_3]$ with all internal vertices in R - H;

(6) If $C^+(s_1, s_2) \cap (X \cup N_C(y)) = \phi$ where $s_1, s_2 \in C^+[x'_2, x'_3]$, then there do not exist two disjoint paths connecting x_1 and two vertices in $C^+[s_1, s_2]$ with all internal vertices in R - H.

Proof. (1) Otherwise suppose Q is a path connecting x_1 and a vertex $z \in C^+(v_1, v_2) \cup C^+(v_3, x'_2] \cup C^+[x'_3, v_1)$ with all internal vertices in R - H. Then if $z \in C^+(v_1, v_2)$, $x_1QzC^-(z, v_3)y_3P(y_3, y_2)v_2C^+(v_2, x_1)$ and $x_1QzC^+(z, v_2)y_2P(y_2, y_1)v_1C^-(v_1, x_1)$ are two cycles through X. Then we know that $|C^+(z, v_2)| + |C^+(x_1, v_3)| \ge d - n(y) + 1$ and $|C^+(v_1, z)| + |C^+(v_2, x_1)| \ge d - n(y) + 1$. Thus $m \ge (d - n(y) + 1) \times 2 + 4 + 2(n(y) - 3) = 2d$, a contradiction. If $z \in C^+(v_3, x'_2]$, then $x_1QzC^+(z, v_2)y_2P(y_2, y_3)v_3C^-(v_3, x_1)$ is a cycle through X. So $|C^+(v_2, x_1)| + |C^+(v_3, z)| \ge d - n(y) + 1$. Together with $|C^+(v_1, v_2)| \ge d - n(y) + 1$, we have $m \ge 2d$, a contradiction. If $z \in C^+[x'_3, v_1)$, then $x_1QzC^-(z, v_3)y_3P_H(y_3, y_1)v_1C^+(v_1, x_1)$ is a cycle through X. Similarly we have $|C^+(z, v_1)| + |C^+(x_1, v_3)| \ge d - n(y) + 1$, and then $m \ge 2d$, a contradiction.

(2) If $C^+(w_j, w_{j+1}) \cap X = \phi(1 \le j \le q-1)$, suppose Q is a path connecting x_1 and a vertex $z \in C^+(w_j, w_{j+1})$ with all internal vertices in R - H, then $x_1QzC^-(z, v_3)y_3P(y_3, y)w_{j+1}C^+(w_{j+1}, x_1)$ is a cycle through X and we get $|C^+(x_1, v_3)| + |C^+(z, w_{j+1})| \ge d - n(y') + 1$. Together with $|C^+(v_1, v_2)| \ge d - n(y) + 1$, we have $m \ge (d - n(y') + 1) \times 2 + 5 + 2(n(y') - 3) > 2d$ since $N_C(y_1) \cap C^+(w_j, w_{j+1}) = \phi$, a contradiction.

(3) Say $x'_4 \in C^+(w_j, w_{j+1})$ for $1 \le j \le q-1$, if there exists a path Q connecting x_1 and a vertex $z \in C^+(w_j, x'_4]$ with all internal vertices in R - H, then $x_1 Q z C^+(z, v_2) y_2 P(y_2, y) w_j C^-(w_j, x_1)$ is a cycle through X. Thus we have $|C^+(v_2, x_1)| + |C^+(w_j, z)| \ge d - n(y') + 1$. Together with $|C^+(v_1, v_2)| \ge d - n(y) + 1$, we can get $m \ge (d - n(y') + 1) \times 2 + 4 + 2(n(y') - 3) = 2d$ since $N_C(y_1) \cap C^+(w_j, x'_4) = \phi$, a contradiction. Similarly we can prove there exists no path connecting x_1 and a vertex $z \in C^+(x'_4, w_{j+1})$ with all internal vertices in R - H.

(4) If $C^+(x'_2, w_1) \cap X = \phi$ and there exists a path Q connecting x_1 and a vertex $z \in C^+[x'_2, w_1)$, then $x_1QzC^-(z, v_3)y_3P(y_3, y)w_1C^+(w_1, x_1)$ is a cycle through X. Thus we have $|C^+(x_1, v_3)| + |C^+(z, w_1)| \ge d - n(y') + 1$. Then together with $|C^+(v_1, v_2)| \ge d - n(y) + 1$, we have $m \ge 2d$, a contradiction.

(5) If $C^+(w_q, x'_3) \cap X = \phi$ and there exists a path Q connecting x_1 and a vertex $z \in C^+(w_q, x'_3]$, then $x_1QzC^+(z, v_2)y_2P(y_2, y)w_1C^-(w_1, x_1)$ is a cycle through X. Thus we have $|C^+(v_2, x_1)| + |C^+(w_q, z)| \ge d - n(y') + 1$. Then together with $|C^+(v_1, v_2)| \ge d - n(y) + 1$, we have $m \ge 2d$, a contradiction.

(6) If $C^+(s_1, s_2) \cap (X \cup N_C(y)) = \phi$ and there are two disjoint paths Q_1, Q_2 connecting x_1 and two vertices $z, z' \in C^+(s_1, s_2)$ with all internal vertices in R - H. Without loss of generality, assume $z' \in C^+(z, s_2)$, then $x_2Q_1zC^-(z, v_3)y_3P(y_3, y_2)v_2C^-(v_2, z')Q_2x_1$ is a cycle through X. Thus we have $|C^+(v_2, x_1)| + |C^+(x_1, v_3)| + |C^+(z, z')| \ge d - n(y) + 1$. Then together with $|C^+(v_1, v_2)| \ge d - n(y) + 1$, we have $m \ge 2d$ since $C^+(s_1, s_2) \cap N_C(y) = \phi$, a contradiction.

Claim 3. If $w_{2,0}(H) = 1$ and $C^+(v_2, v_3) \cap X = \{x_1\}$, then $|N_C(x_1)| < d$.

Proof. Suppose $z \in N_C(x_1)$, then by Claim 2(1), $z \notin C^+(v_1, v_2) \cup C^+(v_3, x'_2] \cup C^+[x'_3, v_1)$. If $x'_2 = x'_3$, $N_C(x_1) \subseteq C^+[v_2, v_3] \cup \{v_1\}$ which means $|N_C(x_1)| \leq |C^+[v_2, v_3]|$ since $x_1 \in C^+[v_2, v_3]$. If $x'_2 \neq x'_3$, then $|C^+(x'_2, x'_3) \cap X| \leq 1$. If $|C^+(x'_2, x'_3) \cap X| = 1$, say $x'_4 \in C^+(x'_2, x'_3)$, then $|N_C(x_1) \cap C^+(x'_2, x'_4)| \leq 1$ and $|N_C(x_1) \cap C^+[x'_4, x'_3)| \leq 1$ by Claim 2(2)–(6). If $C^+(x'_2, x'_3) \cap X = \phi$, $|N_C(x_1) \cap C^+(x'_2, x'_3)| \leq 1$ by Claim 2(6). In either case, $|N_C(x_1)| \leq |C^+[v_2, v_3]| + 2$.

Then if $|N_C(x_1)| \ge d$, we have $|C^+[v_2, v_3]| + 2 \ge d$. Together with $C^+(v_1, v_2)| \ge d - n(y) - 1 = d - (a+q) + 1$, we have $m \ge (d - a - q + 2) + (d - 2) + 3 + 2q = 2d$, a contradiction.

Since $N_H(x_1) = \phi$ and $|N_C(x_1)| < d$, there should exist a component H_1 of R such that $N_{H_1}(x_1) \neq \phi$ and then $W(H_1) \subseteq \{x_1\} \cup N_C(x_1)$ by Claim 2. For H_1 , we can choose three disjoint edges z_1x_1, z_2s, z_3s' in $E(H_1, C)$ where z_1, z_2, z_3 are three disjoint vertices in $V(H_1)$. Suppose $z \in V(H_1) \setminus \{z_1, z_2, z_3\}$ such that $n(z) = |N_C(z)| =$ $\max\{|N_C(x)| : x \in V(H_1) \setminus \{z_1, z_2\}\}$. Then by Lemma 2, we know that there exists a $(z_i, z_j; d - n(z))$ -path for $1 \le i \ne j \le 3$ in H_1 , denote it by $Q(z_i, z_j)$. If $s \in C^+[v_2, v_3]$ or $s' \in C^+[v_2, v_3]$, without loss of generality, suppose $s \in C^+(x_1, v_3]$, then $|C^+(x_1, s)| \ge d - n(z) + 1$. Together with $|C^+(v_1, v_2)| \ge d - n(y) + 1$, we can get $m \ge (d - n(y) + 1) + (d - n(z) + 1) + 2(\max\{n(y), n(z)\} - 2) \ge 2d$, a contradiction. So we assume $s, s' \notin C^+[v_2, v_3]$. If $W(H_1) \subseteq C^+[v_2, v_3] \cup \{v_1\}$, then $s \in C^+[v_2, v_3]$ or $s' \in C^+(v_2, v_3]$. So we may assume $W(H_1) \nsubseteq C^+[v_2, v_3] \cup \{v_1\}$.

Note $X = \{x_1, x_2, x_3, x_4\}$, we suppose x_1, x_2, x_3, x_4 to be arranged along C^+ in the following proof. According to the different positions of $\{v_1, v_2, v_3\}$ on C, we prove the theorem in seven subcases by symmetry.

Subcase 1.1. $v_1 = x_3$, $v_2 = x_4$ and $v_3 \in C^+(x_1, x_2)$.

Subcase 1.2. $v_1 = x_4, v_2 \in C^+(x_4, x_1)$ and $v_3 = x_2$.

Subcase 1.3. $v_1 \in C^+(x_3, x_4)$, $v_2 = x_4$, and $v_3 = x_2$.

Under the above three subcases, we know that $N_C(x_1) \subseteq C^+[v_2, v_3] \cup \{v_1\}$ and then $W(H_1) \subseteq C^+[v_2, v_3] \cup \{v_1\}$ by Claim 2, a contradiction.

Subcase 1.4. $v_1 = x_4, v_2 \in C^+(v_1, x_1)$ and $v_3 \in C^+(x_1, x_2)$.

Then $N_C(y) \subseteq C^+(x_2, x_3) \cup \{v_1, v_2, v_3\}$ since $w_{2,0}(H) = 1$. If $q \ge 2$, by Claim 2, $W(H_1) \subseteq C^+[v_2, v_3] \cup \{v_1\}$, a contradiction. If $q \le 1$, by Claim 2, $W(H_1) \subseteq C^+[v_2, v_3] \cup \{v_1, w\}$ where $w \in C^+(x_2, x_3)$. Without loss of generality, we may assume s = w and $s' = v_1 = x_4$. Then $w_{2,0}(H_1) = 1$ and $|X \cap W(H_1)| = 2 > |X \cap W(H)|$, which contradict the choice of H.

Subcase 1.5. $v_1 \in C^+(x_4, x_1), v_2 \in C^+(v_1, x_1)$ and $v_3 = x_2$.

Then $N_C(y) \subseteq C^+(x_3, x_4) \cup \{v_1, v_2, v_3\}$ since $w_{2,0}(H) = 1$. If $q \ge 2$, then $W(H_1) \subseteq C^+[v_2, v_3] \cup \{v_1\}$ by Claim 2, a contradiction. If $q \le 1$, $W(H_1) \subseteq C^+[v_2, v_3] \cup \{v_1, w\}$ where $w \in C^+(x_3, x_4)$ by Claim 2. Without loss of generality, we may assume s = w and $s' = v_1$. Then we can choose H_1 instead of H and reverse the orientation of C, thus we can prove the theorem similarly as in Subcase 1.4.

Subcase 1.6. $v_1 \in C^+(x_3, x_4)$, $v_2 = x_4$, and $v_3 \in C^+(x_1, x_2)$.

Then $N_C(y) \subseteq C^+(x_2, x_3) \cup \{v_1, v_2, v_3\}$ since $w_{2,0}(H) = 1$. If $q \ge 2$, then $W(H_1) \subseteq C^+[v_2, v_3] \cup \{v_1\}$ by Claim 2, a contradiction. If $q \le 1$, $W(H_1) \subseteq C^+[v_2, v_3] \cup \{v_1, w\}$ where $w \in C^+(x_2, x_3)$ by Claim 2. Without loss of generality, we may assume s = w and $s' = v_1$. Note that $z \in V(H_1) - \{z_1, z_2, z_3\}$ with $n(z) = |N_C(z)| = \max\{|N_C(v)| : v \in V(H_1) - \{z_1, z_2, z_3\}$. It is easy to see that $N_C(z) \subseteq \{v_1, w\}$. Then $x_1z_1Q(z_1, z_3)v_1C^-(v_1, v_3)y_3P(y_3, y_2)v_2C^+(v_2, x_1)$ is a cycle through X. Thus we know that $|C^+(v_1, x_4)| + |C^+(x_1, v_3)| \ge d - n(y) + 1 + d - n(z) + 1$. Thus we can get $m \ge (d - n(y) + 2) + (d - n(z) + 2) + 2(\max\{n(y), n(z)\} - 2) \ge 2d$, a contradiction.

Subcase 1.7. $v_1 \in C^+(x_4, x_1)$, $v_2 \in C^+(v_1, x_1)$, and $v_3 \in C^+(x_1, x_2)$.

Then $N_C(y) \subseteq C^+(x_2, x_4) \cup \{v_1, v_2, v_3\}$ and $N_H(x_2) \subseteq \{y_3\}$ since $w_{2,0}(H) = 1$. Suppose $N_C(y) \cap C^+(x_2, x_3] = \{w_1, w_2, \ldots, w_{q_1}\}, N_C(y) \cap C^+(x_3, x_4) = \{w_{q_1+1}, \ldots, w_q\}$. If $q_1 \ge 2$ and $q - q_1 \ge 2$, then by Claim 2, $W(H_1) \subseteq C^+[v_2, v_3] \cup \{v_1\}$, a contradiction. If $q_1 \ge 2$ and $q - q_1 \le 1$, then $W(H_1) \subseteq C^+[v_2, v_3] \cup \{v_1, w\}$ where $w \in C^+(x_3, x_4)$. Without loss of generality, suppose s = w and $s' = v_1$. Then choose H_1 instead of H and reverse the orientation of C, we can prove the theorem similarly as in Subcase 1.4. If $q_1 \le 1$ and $q - q_1 \ge 2$, then $W(H_1) \subseteq C^+[v_2, v_3] \cup \{v_1, w\}$ where $w \in C^+(x_2, x_3)$. Without loss of generality, suppose s = w and $s' = v_1$. Then choose H_1 instead of H, we can prove the theorem similarly as in Subcase 1.6. If $q_1 \le 1$ and $q - q_1 \le 1$, then $W(H_1) \subseteq C^+[v_2, v_3] \cup \{v_1, w, w'\}$ where $w \in C^+(x_2, x_3)$, $w' \in C^+(x_3, x_4)$. If $s = v_1$ or $s' = v_1$, we can prove the theorem similarly as in Subcase 1.6. If $s = v_1$ or $s' = v_1$, we can prove the theorem similarly as in Subcase 1.6. So we may assume s = w and s' = w'. Note that

 $z \in V(H_1) - \{z_1, z_2, z_3\}$ with $n(z) = |N_C(z)| = \max\{|N_C(v)| : v \in V(H_1) - \{z_1, z_2, z_3\}$. It is easy to see that $N_C(z) \subseteq \{x_1, w, w'\}$. We can prove the following claim.

Claim 4. There exists no path connecting x_2 and a vertex in $C^+(s, x_1) - \{s'\}$ with all internal vertices in $R - \{H, H_1\}$.

Proof. Otherwise suppose K is a path connecting x_2 and a vertex $t \in C^+(s, x_1) - \{s'\}$ with all internal vertices in $R - \{H, H_1\}$. Then if $t \in C^+(s, x_3]$, then $x_2KtC^+(t, x_1)z_1Q(z_1, z_2)sC^-(s, x_2)$ is a cycle through X. So we have $|C^+(x_1, x_2)| + |C^+(s, t)| \ge d - n(z) + 1$. If $t \in C^+(x_3, s')$, then $x_2KtC^-(t, s)z_2Q(z_2, z_3)s'C^+(s', x_2)$ is a cycle through X. So we have $|C^+(x_2, s)| + |C^+(t, s')| \ge d - n(z) + 1$. If $t \in C^+(s', x_4)$, $x_2KtC^+(t, x_1)z_1Q(z_1, z_3)s'C^-(s', x_2)$ is a cycle through X. Then we know that $|C^+(x_1, x_2)| + |C^+(s', t)| \ge d - n(z) + 1$. If $t \in C^+[v_2, x_1)$, $x_2KtC^-(t, s)z_2Q(z_2, z_1)x_1C^+(x_1, x_2)$ is a cycle through X. Then we know that $|C^+(x_2, s)| + |C^+(t, x_1)| \ge d - n(z) + 1$. In any of the above four cases, together with $|C^+(v_1, v_2)| \ge d - n(y) + 1$, we can get $m \ge 2d$, a contradiction. If $t \in C^+[x_4, v_2)$, $x_2KtC^-(t, s)z_2Q(z_2, z_1)x_1C^-(x_1, v_2)y_2P(y_2, y_3)v_3C^+(v_3, x_2)$ is a cycle through X. Then we know that $|C^+(t, v_2)| + |C^+(x_1, v_3)| + |C^+(x_2, s)| \ge d - n(y) + 1 + d - n(z) + 1$. Thus we have $m \ge 2d$, a contradiction.

Then $N_C(x_2) \subseteq C^+[x_1, s] \cup \{s'\}$. So if $|N_C(x_2)| \ge d - 1$, then $m \ge 2d$, a contradiction. Since $|N_H(x_2)| \le 1$ and $N_{H_1}(x_2) = \phi$ and $|N_C(x_2)| < d - 1$, there should exist a component H_2 of R such that $N_{H_2}(x_2) \ne \phi$ and then $W(H_2) \subseteq C^+[x_1, s] \cup \{s'\}$ by Claim 4. Thus we know that $w_{2,0}(H_2) \ge 1$, and if suppose $t \in W_{2,0}(H_2)$ and t' is the next vertex after t along C^+ in $W(H_2)$, then $C^+(t, t') \cap C^+(v_1, v_2) = \phi$. Then it is easy to get $m \ge 2d$, a contradiction.

Case 2. $|C^+(v_3, v_1) \cap X| = 1$, say $x_1 \in C^+(v_3, v_1) \cap X$.

Then we have $|N_C(y)| = a$. And in fact for any vertex $y' \in V(H) - \{y_1, y_2, y_3\}$, we have $N_C(y') \subseteq \{v_1, v_2, v_3\}$ by the choice of v_1, v_2, v_3 . Thus we can reverse the orientation of *C* and then we can prove the theorem similarly as in Case 1.

Case 3. $|C^+(v_2, v_3) \cap X| \ge 2$ and $|C^+(v_3, v_1) \cap X| \ge 2$.

Then we may suppose $\{x_1, x_2\} = C^+(v_2, v_3) \cap X$ and $\{x_3, x_4\} = C^+(v_3, v_1) \cap X$ since |X| = 4. It is easy to see that $m \ge 9$ and hence $d \ge 5$. Since $w_{2,0}(H) = 1$ and by the choice of v_1, v_2, v_3 , we know that $N_C(y) \subseteq C^+(x_3, x_4) \cup \{v_1, v_2, v_3\}, N_H(x_i) = \phi$ for i = 1, 2, 4 and $N_H(x_3) \subseteq \{y_3\}$. But if $N_C(y) \cap C^+(x_3, x_4) \neq \phi$, we can reverse the orientation of C and prove the theorem just as in Subcase 1.7. And if $y_3x_3 \in E(H, C)$, we can also reverse the orientation of C and prove the theorem similarly as in Subcase 1.5 or 1.6. So we may assume $N_C(y) \cap C^+(x_3, x_4) = \phi$, which means n(y) = a, and $N_H(x_i) = \phi$ for $1 \le i \le 4$.

Claim 5.
$$\sum_{i=1}^{4} |N_C(x_i)| < 4d$$
.

Proof. Denote $C_1 = C^+(v_1, v_2)$, $C_2 = C^+(v_2, x_1)$, $C_3 = C^+(x_1, x_2)$, $C_4 = C^+(x_2, x_3)$, $C_5 = C^+(x_3, x_4)$ and $C_6 = C^+(x_4, v_1)$. For $1 \le i \le 6$, let $c_i = |C_i|$.

(i) $x_1v_1^+ \notin E(G), x_4v_2^- \notin E(G), x_1v_1^+ \notin E(G)$ and $x_2v_2^- \notin E(G); x_3v_2 \notin E(G)$ or $x_1x_4 \notin E(G); x_2v_1 \notin E(G)$ or $x_1x_4 \notin E(G);$ if $x_1x_4 \in E(G)$, then $N_{C_3-\{x_1\}}(x_3) = \phi$ and $N_{C_5-\{x_4\}}(x_2) = \phi; N_C(x_2) \cap C^+[x_4, v_1) = \phi$ and $N_C(x_3) \cap C^+(v_2, x_1] = \phi$.

If $x_1v_1^+ \in E(G)$, then $x_1v_1^+C^+(v_1^+, v_2)y_2P(y_2, y_1)v_1C^-(v_1, x_1)$ is a cycle through X. Then we have $|C^+(v_2, x_1)| \ge d-a+1$, together with $|C^+(v_1, v_2)| \ge d-a+1$, we can get $m \ge 2d$, a contradiction. So $x_1v_1^+ \notin E(G)$. By symmetry, we can prove $x_4v_2^- \notin E(G)$. If $x_3v_1^+ \in E(G)$, then $x_3v_1^+C^+(v_1^+, v_3)y_3P(y_3, y_1)v_1C^-(v_1, x_3)$ is a cycle through X. Then we have $|C^+(v_3, x_3)| \ge d-a+1$, together with $|C^+(v_1, v_2)| \ge d-a+1$, we can get $m \ge 2d$, a contradiction. So $x_3v_1^+ \notin E(G)$. By symmetry, we can prove $x_2v_2^- \notin E(G)$.

If $x_3v_2, x_1x_4 \in E(G)$, then $x_4x_1C^+(x_1, v_3)y_3P(y_3, y_1)v_1C^+(v_1, v_2)x_3C^+(x_3, x_4)$ is a cycle through X. Thus we have $|C^+(v_2, x_1)| + |C^+(v_3, x_3)| + |C^+(x_4, v_1)| \ge d - a + 1$, together with $|C^+(v_1, v_2)| \ge d - a + 1$, we can get $m \ge 2d$, a contradiction. By symmetry, we can prove $x_2v_1 \notin E(G)$ or $x_1x_4 \notin E(G)$.

If $x_1x_4 \in E(G)$ and $s \in N_{C_3-\{x_1\}}(x_3)$, then $x_4x_1C^-(x_1, v_1)y_1P(y_1, y_3)v_3C^-(v_3, s)x_3C^+(x_3, x_4)$ is a cycle through X. Thus we have $|C^+(x_1, s)| + |C^+(v_3, x_3)| + |C^+(x_4, v_1)| \ge d - a + 1$, then $m \ge 2d$, a contradiction. By symmetry, we can prove if $x_1x_4 \in E(G)$, then $N_{C_5-\{x_4\}}(x_2) = \phi$.

If there is a vertex $s \in N(x_2) \cap C^+[x_4, v_1)$, then $x_2sC^-(s, v_3)y_3P(y_3, y_1)v_1C^+(v_1, x_2)$ is a cycle through X. Thus we have $|C^+(x_2, v_3)| + |C^+(s, v_1)| \ge d - a + 1$, then $m \ge 2d$, a contradiction. By symmetry, we can prove $N_C(x_3) \cap C^+(v_2, x_1] = \phi$. (ii) $\sum_{i=1}^{4} |N_{C_1}(x_i)| \le 2c_1 - 2;$

Note that $c_1 \ge d - a + 1 \ge 3$. If $s_1 \in N_{C_1}(x_1)$ and $s_2 \in N_C(x_2) \cap C^+(s_1, v_2)$, then $x_1s_1C^{-}(s_1, v_3)y_3P(y_3, y_2)v_2C^{-}(v_2, s_2)x_2C^{-}(x_2, x_1)$ and $x_1s_1C^{+}(s_1, s_2)x_2C^{+}(x_2, v_1)y_1P(y_1, y_2)v_2C^{+}(v_2, x_1)$ are two cycles through X. Thus we have $|C^+(x_2, v_3)| + |C^+(s_1, s_2)| + |C^+(v_2, x_1)| \ge d - a + 1$ and $|C^+(x_1, x_2)| + |C^+(v_1, x_2)| + |C^+(v_1, x_2)| \le d - a + 1$ $|C^+(v_1, s_1)| + |C^+(s_2, v_2)| \ge d - a + 1$, then $m \ge (d - a + 1) \times 2 + 4 \ge 2d$, a contradiction. If $t_1 \in N_{C_1}(x_2)$ and $t_2 \in N_C(x_1) \cap C^+(t_1, v_2)$, then $x_2 t_1 C^-(t_1, v_3) y_3 P(y_3, y_2) v_2 C^-(v_2, t_2) x_1 C^+(x_1, x_2)$ and $x_2t_1C^+(t_1, t_2)x_1C^-(x_1, v_2)y_2P(y_2, y_1)v_1C^-(v_1, x_2)$ are two cycles through X. Thus we have $|C^+(x_2, v_3)| + |C^+(x_2, v_3)| + |C^+(x_3, v$ $|C^{+}(t_1, t_2)| + |C^{+}(v_2, x_1)| \ge d - a + 1$ and $|C^{+}(x_1, x_2)| + |C^{+}(v_1, t_1)| + |C^{+}(t_2, v_2)| \ge d - a + 1$, then $m \ge (d - a + 1) \times 2 + 4 \ge 2d$, a contradiction. Suppose $N_{C_1}(x_1) = \{s_1, s_2, \dots, s_p\}$. Then if $p \ge 2$, $N_{C_1}(x_2) = \phi$ and thus $|N_{C_1}(x_1)| + |N_{C_1}(x_2)| \le p \le c_1 - 1$ since $x_1v_1^+ \notin E(G)$. If p = 1, then $N_{C_1}(x_2) \subseteq \{s_1\}$, thus $|N_{C_1}(x_1)| + |N_{C_1}(x_2)| \le 2 \le c_1 - 1$. If p = 0, then $|N_{C_1}(x_1)| + |N_{C_1}(x_2)| \le c_1 - 1$ since $x_2 v_2^- \notin E(G)$. Thus we have $|N_{C_1}(x_1)| + |N_{C_1}(x_2)| \le c_1 - 1$. Similarly we can prove $|N_{C_1}(x_3)| + |N_{C_1}(x_4)| \le c_1 - 1$.

(iii) $\sum_{i=1}^{4} |N_{C_2}(x_i)| \le 2c_2 + 2$ and the equality holds only if $x_1x_4 \notin E(G)$; $\sum_{i=1}^{4} |N_{C_6}(x_i)| \le 2c_6 + 2$ and the equality holds only if $x_1x_4 \notin E(G)$;

By (i), $N_{C}(x_{3}) \cap C^{+}(v_{2}, x_{1}] = \phi$, so obviously $|N_{C_{2}}(x_{1})| + |N_{C_{2}}(x_{3})| \le c_{2} + 1$, and the equality holds only if $x_3v_2 \in E(G)$. If $s_1 \in N_{C_2}(x_2), s_2 \in N_C(x_4) \cap C^+(s_1, x_1)$, then $x_2s_1C^-(s_1, v_1)y_1P(y_1, y_3)v_3C^+(v_3, x_4)s_2C^+(s_2, x_2)$ is a cycle through X. Thus we have $|C^+(x_2, v_3)| + |C^+(x_4, v_1)| + |C^+(s_1, s_2)| \ge d - a + 1$, together with $|C^+(v_1, v_2)| \ge d - a + 1$, we can get $m \ge 2d$, a contradiction. So we know that $|N_{C_2}(x_2)| + |N_{C_2}(x_4)| \le c_2 + 1$. So $\sum_{i=1}^{4} |N_{C_2}(x_i)| \le 2c_2 + 2$ and the equality holds only if $x_3v_2 \in E(G)$, which means $x_1x_4 \notin E(G)$ by (i).

By symmetry, we can prove $\sum_{i=1}^{4} |N_{C_6}(x_i)| \le 2c_6 + 2$ and the equality holds only if $x_1 x_4 \notin E(G)$.

(iv) $\sum_{i=1}^{4} |N_{C_3}(x_i)| \le 2c_3$ and the equality holds only if $x_1x_4 \in E(G)$ or $x_3x_2^- \in E(G)$; $\sum_{i=1}^{4} |N_{C_5}(x_i)| \le 2c_5$ and the equality holds only if $x_1x_4 \in E(G)$ or $x_2x_3^+ \in E(G)$;

If $s_1 \in N_{C^+(x_1,x_2)}(x_3)$ and $s_2 \in C^+(s_1,x_2) \cap N_C(x_1)$, then $x_3s_1C^-(s_1,x_1)s_2C^+(s_2,v_3)y_3P(y_3,y_2)v_2C^-(v_2,x_3)$ is a cycle through X. Thus we have $|C^+(s_1, s_2)| + |C^+(v_3, x_3)| + |C^+(v_2, x_1)| \ge d - a + 1$, together with $|C^+(v_1, v_2)| \ge d - a + 1$, we can get $m \ge 2d$, a contradiction. Since $x_1x_3 \notin E(G)$, so $|N_{C_3}(x_1)| + C_{C_3}(x_1)| + C_{C_3}(x_1)$ $|N_{C_3}(x_3)| \leq c_3$ and the equality holds only if $x_3x_2^- \in E(G)$. If $t_1 \in N_{C_2}(x_2), t_2 \in C^+(t_1, x_2) \cap N_C(x_4)$, then $x_2t_1C^{-}(t_1, v_1)y_1P(y_1, y_3)v_3C^{+}(v_3, x_4)t_2C^{+}(t_2, x_2)$ is a cycle through X. Thus we have $|C^{+}(t_1, t_2)| + |C^{+}(x_2, v_3)| + |C^{+}(x_3, v_3$ $|C^+(x_4, v_1)| \ge d - a + 1$, together with $|C^+(v_1, v_2)| \ge d - a + 1$, we can get $m \ge 2d$, a contradiction. So $|N_{C_3}(x_2)| + |N_{C_3}(x_4)| \le c_3 + 1$ and the equality holds only if $x_1x_4 \in E(G)$. But by (i), if $x_1x_4 \in E(G)$, then $x_3x_2^- \notin E(G)$. Thus $\sum_{i=1}^4 |N_{C_3}(x_i)| \le 2c_3$ and the equality holds only if $x_1x_4 \in E(G)$ or $x_3x_2^- \in E(G)$. By symmetry, we can prove $\sum_{i=1}^4 |N_{C_5}(x_i)| \le 2c_5$ and the equality holds only if $x_1x_4 \in E(G)$ or $x_2x_3^+ \in E(G)$.

(v) $N_C(x_1) \cap C^+(v_3, x_3] = \phi$ and $N_C(x_4) \cap C^+(x_2, v_3) = \phi$; if $x_2v_3^+ \in E(G)$, then $N_C(x_1) \cap C^+(x_2, v_3) = \phi$ and $N_C(x_4) \cap C^+(x_2, v_3] = \phi$; if $x_3v_3^- \in E(G)$, then $N_C(x_1) \cap C^+(v_3, x_3) = \phi$ and $N_C(x_4) \cap C^+(v_3, x_3) = \phi$; $x_2x_3^+ \notin E(G) \text{ or } x_3x_4 \notin E(G); x_3x_2^- \notin E(G) \text{ or } x_1x_2 \notin E(G).$

If $s \in N_C(x_1) \cap C^+(v_3, x_3]$, then $x_1sC^+(s, v_2)y_2P(y_2, y_3)v_3C^-(v_3, x_1)$ is a cycle through X. Thus we have $|C^+(v_3, s)| + |C^+(v_2, x_1)| \ge d - a + 1$. Together with $|C^+(v_1, v_2)| \ge d - a + 1$, we can get $m \ge 2d$, a contradiction. By symmetry, we can prove $N_C(x_4) \cap C^+(x_2, v_3) = \phi$.

If $x_2v_3^+ \in E(G)$ and $s \in N_C(x_1) \cap C^+(x_2, v_3]$, then $x_2v_3^+C^+(v_3^+, v_2)y_2P(y_2, y_3)v_3C^-(v_3, s)x_1C^+(x_1, x_2)$ is a cycle through X. Thus we have $|C^+(x_2,s)| + |C^+(v_2,x_1)| \ge d - a + 1$, together with $|C^+(v_1,v_2)| \ge d - a + 1$ d-a+1, we can get $m \geq 2d$, a contradiction. If $x_2v_3^+ \in E(G)$ and $t \in N_C(x_4) \cap C^+(x_2, v_3]$, then $x_2v_3^+C^+(v_3^+, x_4)tC^+(t, v_3)y_3P(y_3, y_1)v_1C^+(v_1, x_2)$ is a cycle through X. Thus we have $|C^+(x_2, t)| + |C^+(x_4, v_1)| \ge 1$ d-a+1, and then $m \ge 2d$, a contradiction. By symmetry, we can prove if $x_3v_3 \in E(G)$, then $N_C(x_1) \cap C^+(v_3, x_3) =$ ϕ and $N_C(x_4) \cap C^+[v_3, x_3) = \phi$.

If $x_2x_3^+, x_3x_4 \in E(G)$, then $x_2x_3^+C^+(x_3^+, x_4)x_3C^-(x_3, v_3)y_3P(y_3, y_1)v_1C^+(v_1, x_2)$ is a cycle through X. Thus we have $|C^+(x_2, v_3)| + |C^+(x_4, v_1)| \ge d - a + 1$, together with $|C^+(v_1, v_2)| \ge d - a + 1$, we have $m \ge 2d$, a contradiction. By symmetry, we can prove $x_3x_2^- \notin E(G)$ or $x_1x_2 \notin E(G)$.

(vi) $\sum_{i=1}^{4} |N_{C_4}(x_i)| \le 2c_4$; if $x_2 x_3^+ \in E(G)$ or $x_3 x_2^- \in E(G)$, $\sum_{i=1}^{4} |N_{C_4}(x_i)| \le 2c_4 - 1$; if $x_2 x_3^+$, $x_3 x_2^- \in E(G)$, $\sum_{i=1}^{4} |N_{C_4}(x_i)| \le 2c_4 - 2;$

Suppose $C_{41} = C^+[x_2, v_3)$, $C_{42} = C^+(v_3, x_4]$ and $c_{41} = |C_{41}|$, $c_{42} = |C_{42}|$.

By (v), $N_{C_{41}}(x_4) = \phi$ and $N_{C_{42}}(x_1) = \phi$. So we have $|N_{C_{41}}(x_2)| + |N_{C_{41}}(x_4)| \le c_{41} - 1$ and $|N_{C_{42}}(x_1)| + |N_{C_{42}}(x_3)| \leq c_{42} - 1$. If $s_1 \in N_{C_{41}}(x_3)$ and $s_2 \in C^+(s_1, v_3) \cap N_C(x_1)$, then

75

 $x_{3}s_{1}C^{-}(s_{1}, x_{1})s_{2}C^{+}(s_{2}, v_{3})y_{3}P(y_{3}, y_{2})v_{2}C^{-}(v_{2}, x_{3})$ is a cycle through X, thus $|C^{+}(s_{1}, s_{2})| + |C^{+}(v_{3}, x_{3})| + |C^{+}(v_{3}, x_{3})|$ $|C^+(v_2, x_1)| \ge d - a + 1$. Together with $|C^+(v_1, v_2)| \ge d - a + 1$, we can get $m \ge 2d$, a contradiction. So $|N_{C_{41}}(x_1)| + |N_{C_{41}}(x_3)| \le c_{41} + 1$ and the equality holds only if $x_1x_2 \in E(G)$ and $x_3v_3 \in E(G)$. By symmetry, we can prove $|N_{C_{42}}(x_2)| + |N_{C_{42}}(x_4)| \le c_{42} + 1$ and the equality holds only if $x_3x_4 \in E(G)$ and $x_2v_3^+ \in E(G)$. So $\sum_{i=1}^{4} |N_{C_{41}}(x_i)| \le 2c_{41}$ and the equality holds only if $x_1x_2, x_3v_3^- \in E(G)$. $\sum_{i=1}^{4} |N_{C_{42}}(x_i)| \le 2c_{42}$ and the equality holds only if $x_3x_4, x_2v_3^+ \in E(G)$.

By (v), if $x_2v_3^+ \in E(G)$ or $x_3v_3^- \in E(G)$, then $x_1v_3, x_4v_3 \notin E(G)$. Then if one and only one of $x_3v_3^- \in E(G)$ and $x_2v_3^+ \in E(G)$ holds, we have $\sum_{i=1}^4 |N_{C_4}(x_i)| \le 2c_4 - 1$. If both of $x_3v_3^- \in E(G)$ and $x_2v_3^+ \in E(G)$ hold or both of $x_3v_3^- \notin E(G)$ and $x_2v_3^+ \notin E(G)$ hold, we have $\sum_{i=1}^4 |N_{C_4}(x_i)| \le 2c_4$ and the equality holds only if $x_1x_2 \in E(G)$ and $x_3x_4 \in E(G)$. By (v), $x_2x_3^+ \notin E(G)$ or $x_3x_4 \notin E(G)$, $x_3x_2^- \notin E(G)$ or $x_1x_2 \notin E(G)$, so if $x_2x_3^+ \in E(G)$ or $x_3x_2^- \in E(G)$, then $\sum_{i=1}^4 |N_{C_4}(x_i)| \le 2c_4 - 1$; if $x_2x_3^+, x_3x_2^- \in E(G)$, then $\sum_{i=1}^4 |N_{C_4}(x_i)| \le 2c_4 - 2$. From the above, we can get $\sum_{i=1}^4 |N_C(x_i)| \le 2m < 4d$ easily.

Then there should exist a component H_1 of R such that $N_{H_1}(x_i) \neq \phi$ for some $i \in \{1, 2, 3, 4\}$ which means $X \cap W(H_1) \neq \phi$. Then if $w_{2,0}(H_1) = 1$, we can choose H_1 instead of H and prove the theorem similarly as in Case 1. So we may assume $w_{2,0}(H_1) = 0$. We can choose three disjoint edges $z_1 x_i$, $z_2 s$ and $z_3 s'$ in $E(H_1, C)$ where z_1, z_2, z_3 are three different vertices in $V(H_1)$. Suppose $z \in V(H_1) \setminus \{z_1, z_2, z_3\}$ such that $n(z) = |N_C(z)| = \max\{|N_C(v)| :$ $v \in V(H_1) \setminus \{z_1, z_2, z_3\}$. Then by Lemma 1, there exists a $(z_i, z_j; d - n(z))$ -path in H_1 , denoted by $Q(z_i, z_j)$ for $1 \le i \ne j \le 3$. By symmetry, we only need to prove the theorem for i = 1 or 2.

For i = 1, we may assume $N_{H_1}(x_3) = \phi$, $s \in C^+(x_2, x_3)$ and $s' \in C^+(x_3, x_4)$ since $w_{2,0}(H_1) = 0$. And it is easy to see $N_C(z) \subseteq \{x_1, s, s'\}$.

Claim 6. There exists no path connecting x_3 and a vertex in $C^+(v_1, x_2)$ with all internal vertices in $R - \{H, H_1\}$.

Proof. Otherwise suppose K is a path connecting x_3 and a vertex $t \in C^+(v_1, x_2)$ with all internal vertices in $R - \{H, H_1\}$. Then if $t \in C^+(v_1, v_2], x_3KtC^+(t, v_3)y_3P(y_3, y_1)v_1C^-(v_1, x_3)$ and $x_3KtC^{-}(t, s')z_3Q(z_3, z_1)x_1C^{+}(x_1, x_3)$ are two cycles through X. Then we know that $|C^{+}(v_1, t)| + |C^{+}(v_3, x_3)| \ge |C^{+}(v_3, x_3)|$ d - a + 1 and $|C^{+}(t, x_{1})| + |C^{+}(x_{3}, s')| \ge d - n(z) + 1$. Thus we can get $m \ge 2d$, a contradiction. And by Claim 5, $N_C(x_3) \cap C^+(v_2, x_1] = \phi$ which means $t \notin C^+(v_2, x_1]$. If $t \in C^+(x_1, x_2)$, then $x_3KtC^+(t,s)z_2Q(z_2,z_1)x_1C^-(x_1,x_3)$ is a cycle through X. So we have $|C^+(x_1,t)| + |C^+(s,x_3)| \ge d - n(z) + 1$. Together with $|C^+(v_1, v_2)| > d - a + 1$, we have m > 2d, a contradiction.

Then $N_C(x_3) \subseteq C^+[x_2, v_1]$. So if $|N_C(x_3)| \ge d$, $|C^+[x_2, v_1]| \ge d+1$, together with $|C^+(v_1, v_2)| \ge d-a+1$, we can get $m \ge 2d$, a contradiction. So we may assume $|N_C(x_3)| < d$. Since $N_H(x_3) = N_{H_1}(x_3) = \phi$, there should exist a component H_2 of R such that $N_{H_2}(x_3) \neq \phi$. Then $W(H_2) \subseteq C^+[x_2, v_1]$, thus $w_{2,0}(H_2) = 1$ and $W(H_2) \cap X \neq \phi$, we can choose H_2 instead of H and prove the theorem similarly as in Subcase 1.4, 1.5 or 1.6.

For i = 2, we may assume $N_{H_1}(x_3) = \phi$, $s \in C^+(x_3, x_4)$ and $s' \in C^+(x_4, x_1)$.

Claim 7. There exists no path connecting x_3 and a vertex in $C^+(x_4, x_2) - \{v_2\}$ with all internal vertices in $R - \{H, H_1\}$.

Proof. Otherwise suppose K is a path connecting x_3 and a vertex $t \in C^+(x_4, x_2) - \{v_2\}$ with all internal vertices in $R - \{H, H_1\}$. If $t \in C^+(x_4, v_2)$, $x_3KtC^-(t, s)z_2Q(z_2, z_1)x_2C^-(x_2, v_2)y_2P(y_2, y_3)v_3C^+(v_3, x_3)$ is a cycle through X. Then we know that $|C^+(t, v_2)| + |C^+(x_2, v_3)| + |C^+(x_3, s)| \ge d - a + 1 + d - n(z) + 1$. Thus we can get $m \ge 2d$, a contradiction. By Claim 5, $N_C(x_3) \cap C^+(v_2, x_1] = \phi$ which means $t \notin C^+(v_2, x_1]$. If $t \in C^+(x_1, x_2)$, then $x_3KtC^{-}(t,s)z_2Q(z_2,z_1)x_2C^{+}(x_2,x_3)$ is a cycle through X. So we have $|C^{+}(t,x_2)| + |C^{+}(x_3,s)| \ge d - n(z) + 1$. Together with $|C^+(v_1, v_2)| \ge d - a + 1$, we can get $m \ge 2d$, a contradiction.

Then $N_C(x_3) \subseteq C^+[x_2, x_4] \cup \{v_2\}$. So if $|N_C(x_3)| \ge d$, $|C^+[x_2, x_4]| \ge d$, together with $|C^+(v_1, v_2)| \ge d - a + 1$, we can get $m \ge 2d$, a contradiction. So we may assume $|N_C(x_3)| < d$. Since $N_H(x_3) = N_{H_1}(x_3) = \phi$, there should exist a component H_2 of R such that $N_{H_2}(x_3) \neq \phi$. Then $W(H_2) \subseteq C^+[x_2, x_4] \cup \{v_2\}$, thus $w_{2,0}(H_2) = 1$ and $W(H_2) \cap X \neq \phi$, we can choose H_2 instead of H and prove the theorem similarly as in Subcase 1.4 or 1.6.

Acknowledgements

We are very grateful to the referees for their helpful suggestions.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, The Macmillan Press LTD, 1976.
- [2] J.A. Bondy, B. Jackson, Long paths between specified vertices of a block, Ann. Discrete Math. 27 (1985) 195-200.
- [3] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
- [4] G.A. Dirac, In abstrakten Graphen vorhandene vollstandige 4-Graphen und ihre Unterteilungen, Math. Nachr. 22 (1960) 61-85.
- [5] Y. Egawa, R. Glas, S.C. Locke, Cycles and paths through specified vertices in k-connected graphs, J. Combin. Theory Ser. B 52 (1991) 20–29.
- [6] S.C. Locke, C.-Q. Zhang, Cycles through three vertices in 2-connected graphs, Graphs Combin. 7 (1991) 265–269.
- [7] Research problems, Discrete Math. 257 (2002) 599-624.