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Abstract

S.C. Locke proposed a question: If G is a 3-connected graph with minimum degree d and X is a set of 4 vertices on a cycle in
G, must G have a cycle through X with length at least min{2d, |V (G)|}? In this paper, we answer this question.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

All graphs considered here are finite, undirected, and without loops or multiple edges. Dirac has given two well-
known results about cycles. One [3] says that a k-connected graph has a cycle through any given k vertices in the graph.
The other [4] is that if G is a 2-connected graph with minimum degree d, then G contains a cycle with length at least
min{2d, |V (G)|}. Starting with the two results, many researchers have considered long cycles through a prescribed
vertex set or a prescribed edge set. Egawa et al. [S] proved that if G is a k-connected graph with minimum degree
d and X is a set of k vertices in G, then G has a cycle through X with length at least min{2d, |V (G)|}. Locke and
Zhang [6] proved that if G is a 2-connected graph with minimum degree d and X is a set of 3 vertices on a cycle in
G, then G has a cycle through X with length at least min{2d, |V (G)|}.

We prove Theorem 1 which gives the answer to the following question proposed by S.C. Locke in [7].

Question. If G is a 3-connected graph with minimum degree d and X is a set of 4 vertices on a cycle in G, must G
have a cycle through X with length at least min{2d, |V (G)|}?

Theorem 1. Let G be a 3-connected graph with minimum degree d and X be a set of 4 vertices on a cycle in G, then
G contains a cycle through X with length at least min{2d, |V (G)|}.
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2. Some lemmas and results

Let G be a 3-connected graph with minimum degree d and X be a set of 4 vertices on a cycle in G. For any two
vertices u, v € V(G) and an integer k, a (u, v; k)-path denotes a path connecting u and v with length at least k.
For a path P in G, we denote by | P| the number of vertices that P contains. Suppose C is a longest cycle through
X and R = G — C. When we consider a cycle, we always consider its orientation. Let C* be an orientation of
C and C~ be its reverse orientation. Let Ct = cica- - cpc1. CHei, cjl and C™[c;, ¢j] denote the segments of C
with C*[c;, ¢j] = ciciy1---cj—icj and C™[¢i, ¢j] = cici—1 -+~ cjyicj, respectively. Denote by |CT[c;, ¢;]| the
number of vertices that CT[c;, ¢ ;] contains, and |C ™ [¢;, c¢;]| is similarly defined. Also, let C Tlci, ¢ j) be the segment
C*[ci, ¢j1 — ¢;j. Analogously, C*(ci, ¢j1, CT(ci, ¢j), C[ci, cj), C(ci, cj), C™(ci, cj) are also defined. We also
denote cl.+ =Cit1,C; =Ci1, c;’Jr =cCiy2,¢; =Ci-2.

For a component H of R, let W(H) = N¢(H), and label the vertices of W (H) along C* as u1, us, ..., u,. Let

Wo(H) ={u; € W(H) : INu({uj, uix1})| = 2} and Wi(H) = W(H) — Wa(H).
Also let
Wao(H) ={u; € Wao(H) : C(uj,uip1) N X =¢} and Wy (H) = Wa(H) — Wa o(H).

Denote w(H) = |W(H)| and for an index I, w;(H) = |W;(H)|.
We use [1] for terminology and notation not defined here. Before proving the main result, we first give some
lemmas.

Lemma 1 (/2]). Let B be a 2-connected graph on at least 4 vertices, x, y, z be 3 distinct vertices of B and k > 0 an
integer. Suppose that every vertex of B, except possibly x, y, z, has degree at least k, then there exist an (x, y; k)-path,
an (x, z; k)-path and a (y, z; k)-path in B.

Alternatively, if B is nonseparable on |V (B)| = 3 vertices, then B = K3 and there are an (x, y; 2)-path, an
(x, z; 2)-path and a (y, z; 2)-path in B.

Since C is a longest cycle through X, we can easily get the following lemma.

Lemma 2. Let u, v € W(H), then

() WH)NWH)*' = ¢;
(ii) There exists no path connecting u™ and v with all internal vertices in R — H;
(iii) There exists no path connecting u~— and v~ with all internal vertices in R — H;
(iv) Suppose that [Ny ({u, v})| > 2 and v* ¢ X, then there exists no path connecting u™ and vt with all internal
verticesin R — H;
(v) Suppose that |Ng({u, v})| > 2 and v~ & X, then there exists no path connecting u™ and v~ with all internal
vertices in R — H.

Theorem 2. Let G be a 3-connected graph with minimum degree d and X be a set of 4 vertices on a cycle in G.
Suppose C is a longest cycle through X, if there exists a component H of R = G — C such that 1 < |V(H)| < 3,
then |V (C)| > 2d.

Proof. Suppose C™ = cjc -+ - ¢uc1, we may assume m < 2d. Then by Lemma 2 (i), w(H) < d. Hence |V (H')| > 2
for any component H' of R. So 2 < |V(H)| < 3. Since G is 3-connected, w(H) > 3 and so d > 4. Suppose
W(H) = {uy, uy, ..., u,} that are arranged along C*, and let u, | = uy. Fori # j, denote by Py (u;, u;) alongest
path joining u;, u; with all internal vertices in H. First we prove the following claim.

Claim 1. Suppose that |C (u;i, uit1)| = |CT(uj, ujy)l =1, X NCH(ug, uk+1) = ¢ < j <k <r), H and H>
are components of R such that Ny, (u?‘) # ¢ and Ny, (u;f) #* ¢. Then

D ujrr € WH)) oru; & W(Ha);

@) If |CF (ug, ugs1)| < |Pr(ujgr, ui)l, then ug € W(Hy) or ugy1 & W(Hp);

(iii) If |CT (up, urs )| < |PrQugs1, uiv1)| — 1, then up & W(H); If |CF (u, ugs1)| < |Pr(ug, ui)| — 1, then
up+1 ¢ W(H1).



66 X. Lv, C. Yi/ Discrete Mathematics 309 (2009) 64-76

Proof. (i) Suppose u;1 € W(H) and u; € W(H), then there is a path Pg, (u;r, ujy1) joining u;’, ujy1 with all
internal vertices in H; and a path Pg, (u;, u;’) with all internal vertices in H,. Hence

+ + o=yt ot
w; Pry (s uje)CT ujir, wi) Py i u ))C™ (] u)

is a cycle through X longer than C, a contradiction.
(ii) Suppose uy € W(Hy) and uyy1 € W(H), then there is a path Pp, (uf, ux) joining ui+, uy with all internal
vertices in H; and a path Pp, (u}', ui+1) with all internal vertices in H. Hence

w Pry (] i) C s tej1) Prr (ujr s ui)C (s e 1) Pray (g1, u DC™ (w5

is a cycle through X longer than C since |C T (ug, urs1)| < | Py (#jy1,u;)l], a contradiction.
(iii) If ux € W(Hy), there is a path Pp, (uy, ul.+) joining ug, ul+ with all internal vertices in H;. Hence

R
ke Pry (e, u; )C ™ (uf, uer) Pry (et i) CF (g, ug)

is a cycle through X longer than C since |CT(ug, uxy1)| < |Pu(ugst, uis1)| — 1, a contradiction. Similarly if
|CF [ug, ug 411l < | Py (ug, ui)| — 1, then ug g ¢ W(Hy). B

We divide the proof into two cases.

Casel. H=Kyor H=Kj.

Then there exist u,v € V(H) with |Ng(u)] = |Nyg(@)| = 1. Since 6(G) > d, [INc(u)] = d — 1 and
[Nc(v)| = d — 1. Obviously we must have |[Nc(#)| = |[Nc(v)] = r = d — 1 and Nc(u) = Nc(v) = W(H),
and then Wo(H) = W(H). Since wa(H) = d — 1, and |X| = 4, then wp o(H) > d — 5. And if u; € Wy o(H),
|C*(u;, uiy1)| > 2 since C is a longest cycle through X. We first prove

Claim 2. | < [Ct(uj, uiy1)| < 2for 1 < i < d —1;and if |C*(ui, uir1)| = 2, then |CH(uj,ujp)| = 1 for
JFI1<i, j<d-1).

Proof. If [CT(u;,u;+1)] > 3 for some i, then m > 4 + 2(d — 2) = 2d, a contradiction. And if there exist
1 <i,j<d-1andi# jsuchthat [Ct(u;, ui+1)| =2and |CT(uj, uj41)| =2,thenm >3 x2+2(d —3) = 2d,
also a contradiction. W

Then by Claim 2, w2 o(H) < l andhence 4 <d < 6.Forany 1 <i <r,if |CF(u;i, uiyx1)| = 1, we know that
Ct(ui,uiz1) N X # ¢,say x; € CT(u;, ujy1). By Claim 2 and Lemma 2(ii) and (iii), N¢(x;) € W (H). Then since
Ny (x;) = ¢ and w(H) = d — 1, there should exist a component H; of R such that Ny, (x;) # ¢. And obviously
W(H;) € {x;}UW(H) — {u;, ui+1}.

Without loss of generality, we may assume |C T(u1,u2)| = 1 and Hj is component of R such that Ny, (x1) # ¢,
W(H;) C {x1} UW(H) — {u1,uz}. Then if d = 4, we get w(H;) < 2, a contradiction to that G is 3-connected.
So we may assume d = 5 or 6. If wao(H) = 0O, then d < 5 and hence d = 5. By symmetry, we may assume
|C*(u2,u3)| = 1. Suppose x2 € Ct(uz,u3) N X and Hy is a component of R such that Np,(x2) # ¢. Then
W(H) € {x2} UW(H) — {uz,u3}. By Claim 1 (i), uz ¢ W(H;) or uy ¢ W(H>), and hence w(H;) < 2 or
w(H,) < 2, a contradiction to that G is 3-connected. If wy o(H) = 1, suppose u; € W o(H)(1 < i < r). Then by
Claim 2, |C*(u;_2, u;_1)| = 1. Suppose x’ € X N C*(u;_», ui_1), H' is a component of R such that Ny (x) # ¢
and then W(H') € {x'} U W(H) — {uj—2, u;—1}. By Claim 1(iii), u;, u;+1 ¢ W(H'). That means w(H') < 2, a
contradiction to that G is 3-connected.

From the proof of Case 1, we may assume that each component of R has at least 3 vertices.

Case 2. H = K3.

Suppose V(H) = {y1, y2, y3}, then it is easy to know that d — 2 < |N¢c(y;)| < d — 1 fori = 1,2, 3. Hence
INc(yi) — Nc({yj, ]| < 1forany 1 <i, j, k < 3. This implies W(H) = W,(H). Since wy(H) =r, and |X| =4,
then wy o(H) > r —4and wy,1(H) < 4. Andif u; € W1 o(H), |CT(u;, uiy1)| > 3 since C is a longest cycle through
X.Thenif woo(H) > 2,m >4 x2+2(0r —2) > 2d. And if r > 6, we have wy o(H) > 2. We only need to prove
the theorem when wy o(H) < 1 and4 < d < 7. We first prove

Claim3. (1) 1 < |CY(uj,u;jq1)| <4forl <i<randifr=d—1,1 <|Ct(u;,ujy1)| <2forl <i <r;
(i) IF |C (s, wi )| = 4, then |CF(uy, uj i) = 1 for j # is
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(i) If |CT (uj, uix1)| = 3, then |CH(uj,ujy1)| < 2 for j # i; moreover, if |CT(uj,uiz1)| = 3 and
|ICT(uj,uji1)| =2 for j #i, then |CT (uk, ugs1)| = 1 fork #1, j.

Proof. (i) If |C*(u;, uj41)| > Sforsome 1 <i <r, thenm > 6+ 2(r — 1) > 2d, a contradiction. If r = d — 1 and
|Ct(u;, uiy1)| > 3 forsome 1 <i <r,thenm >4+ 2(d — 2) = 2d, a contradiction.

(ii) If there exist 1 < i,j < r and i # j such that |C*(u;, ui11)| = 4 and |[CH(uj,ujr1)| > 2, then
m >5+342(r —2) > 2d, a contradiction.
(iii) If there exist 1 < i,j < r and i # j such that |C*(u;, uiy1)] = 3 and |C*(uj,ujt1)| > 3, then

m >4 x2+2(r—2) > 2d, acontradiction. If|C+(u,-,ui+1)| = 3 and |C+(uj,uj+1)| =2forl <i# j <r,then
m>4+3420r —2)>2d—1,sowemust have |CT (ug, upy1)| = 1fork #i,j. N

Then if |CT(u;, ujx1)| = 1(1 <i <r),say x; € C*(u;, u;y+1) N X, by Claim 3 and Lemma 2(ii)—(v), there exists
a component H; of R such that Ny, (x;) # ¢ and obviously W(H;) C {x;} U W(H) — {u;, u;+1}.

Subcase 2.1. w2 o(H) = 1.

Then by Claim 3(1), r = d — 2 and hence 5 < d < 7. By symmetry, we may assume u; € W o(H) and
|CT(uz,u3)] = 1 by Claim 3(ii) or (iii). Suppose x; € CT(us,u3) N X, H; is a component of R such that
Np,(x1) # ¢. Then W(H;) € {x1} U W(H) — {u2, u3}. Since G is 3-connected, 3 < w(H;) < w(H) — 1 and
hence r = w(H) > 4. We may assumed = 6 andr = 4 ord = 7 and r = 5. Again by Claim 3(ii) or (iii), there exists
another u ; (j # 2) such that |C+(uj, ujr1)| =1,say x; € C+(uj, u;jy1). Suppose H; is a component of R such that
N, (x2) # ¢ and then W(Hz) € {x2} U W(H) — {uj, ujy1}.

If |C*(u1,uz)| = 3, then by Claim 1(iii), u1 ¢ W(H,) and uy,ur ¢ W(H,). Soif d = 6 and r = 4, we
immediately get w(H;) < 2, a contradiction to that G is 3-connected. If d = 7 and r = 5, then by Claim
3(iii), at least one of |CV(u3, us4)| = 1 and |C*(ug, us)| = 1 holds. Without loss of generality, let j = 3, then
W(Hy) € {x2}UW(H) —{uy1, un, u3, us}. Thus we can get w(H,) < 2, also a contradiction to that G is 3-connected.

If |C* (u1, uz)| = 4, then by Claim 3(ii), |C T (u;, uj41)| = 1 for Vi # 1.If d = 6 and r = 4, let j = 3, then by
Claim 1(ii), u; ¢ W(Hy) or up ¢ W(H;). Thus we can get w(H;) < 2 or w(Hz) < 2, a contradiction to that G is
3-connected. If d = 7 and r = 5, suppose x;_1 € C*(u;, ujy1) N X fori =2,3,4,5 where usy| = uy, and H;_| is
the component of R such that Ny, , (x;—1) # ¢. By Lemma 2, we know that W (H;_1) C {x; 1 }UW (H) —{u;, u;y1}.
And by Claim 1(ii), if u1 € W(H)), then uy ¢ W(H;) for j = 2,3,4. So if uy € W(H;), we should have
W(H>) = {xp,ui,us} and W(Hz) = {x3,u1,u3} since G is 3-connected. But by Claim 1(i), us ¢ W(H,) or
u3 € W(H3), a contradiction. So we may assume u| ¢ W(H;), which means W(H|) = {x1, u4, us}. And then by
Claim 1(), up ¢ W(H) and up, ¢ W(H3). Similarly we can get W(Hz) = {x2, u1, us} and W(H3) = {x3, u, u3}
and again by Claim 1 (i), us ¢ W(H>) or uz ¢ W(H3), a contradiction.

Subcase 2.2. w2 o(H) = 0.
Then3 <r =w(H) = w1 (H) < 4.

Subcase 2.2.1. r = 3. Thend =4 or 5.
Claim 4. If |CT (u, uiy )| < 2 and C*(u uit1) N X = ¢, thenu; & Nc(u;) for any j # i.

Proof. If u; € Nc (u;") for some j # i, then uju;c—(u;, wi+1) P (uiy1,uj)CT(uj, u) is a cycle through X and
longer than C, a contradiction. H

Ifd =4,ord = 5 and |Ct(u;, u;y1)| > 3 for some i, then by Claim 3(ii) or (iii), there exists u; such that
|C+(uj, uj11)| = 1. Without loss of generality, assume |CT(uy,uz)| =1,say x; € XNCF(uy, uz). Suppose Hj is a
component of R such that Ny, (x1) # ¢ and then W (H1) € {x1}U W(H) — {u1, uz}, which implies w(H;) < 2 since
w(H) = 3, a contradiction. So we may assume d = 5 and |CH(u;, uiy1)| <2 foreach 1 <i < 3. Since w(H) = 3,
there exists u; such that |C T (u;, u;11) N X| = 1. Without loss of generality, suppose |C*(u1, u) N X| = 1 and
Xy = uf € X. Then by Lemma 2 and Claim 4, Nc(x1) € W(H) U {u;r+}. Then there exists a component Hj
of R such that Ny, (x1) # ¢, say y1 € Ny, (x1). By Lemma 2, we know that W(H;) C {u2, u3, x1}. Note that
|V (Hyp)| = 3, therefore V(Hy) — {y1} # ¢. Since x| = uf‘ e W(H), |CT(x1,u2)| <land CH(x1,un) N X = ¢, it
follows immediately that uy & Nc(Hy — {y1}). Thenif Ny, (x1) = y1, we have [Nc (H; — {y1})| < 1, a contradiction.
Otherwise, if [Ny, (x1)| > 2, then up ¢ W (H). Thus we have w(H;) < 2, a contradiction.

Subcase 2.2.2. r = 4. Thend = 5 or 6.
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If |CT(u;, uix1)| = 2for1 <i < 4,thenm > 3r = 12 > 2d, a contradiction. By symmetry, we may assume
|Ct(uy,up)] = 1 and x; € X N C*(uy, us). Suppose Hj is a component of R such that Ny, (x1) # ¢ and hence
W(H;) C {x1} UW(H) — {uy, up}. Since G is 3-connected, W(H;) = {x1, u3, ug}.

Ifd =5, 0ord = 6 and |CT(u;, uiy1)| > 3 for some i(2 < i < 4), then by Claim 3(ii) or (iii), there exists
uj(2 < j < 4) such that |C+(uj, ujr)| = 1l,say x € X N C+(uj, ujy1). Suppose H; is a component of R
such that Np, (x2) # ¢ and then W(H) € {x2} U W(H) — {u, ujy1}. Since uz, ug € W(Hp), then by Claim 1(i),
uy € W(Hp) if j = 2,3 orup ¢ W(H,) if j = 4. In either case we have w(H>) < 2, a contradiction. Hence
we may assume d = 6 and |C"(u;,u;11)] < 2 foreach i(2 < i < 4). Since w(H) = 4 and wao(H) = 0,
|C (u;, ui+1) N X| = 1 for 2 < i < 4. Without loss of generality, we may assume x, = u; € X. By Lemma 2
and Claim 4, Nc(xp) € W(H) U {u;H'}. Then there exists a component H> of R such that Ny, (x2) # ¢ and
then W(H,) C {x2,u1, uz, uq}. Since W(Hy) = {x1, u3, us}, |C(x2,u4)| < 1 and C*(x2,us) N X = ¢, then by
Lemma 2, uy, up ¢ W(H;). That means w(H;) < 2, a contradiction. M

From the proof of Theorem 2, we know that the condition of H = K5 or K; can be replaced by that there are
two vertices y1, y» € V(H) such that [Ny (y1)| = |[Ng(y2)] = 1. And the condition of H = K3 can be replaced
by that there are three vertices yi, y2, y3 € V(H) such that [Ng(y;)| < 2 and there is a (y;, y;; 2)-path in H for
1<i#j=<3.

3. Proof of Theorem 1

Let C = cyc2 - - - cmcq be a longest cycle through X = {x1, x2, x3, x4} in G and assume m < 2d — 1. If there is
a component H' of R such that [V(H')| < 3 or H' is separable and there are two end blocks of H’ with no more
than 3 vertices, then Theorem 1 follows directly from Theorem 2. Then if a component H' of R is separable, we may
assume at least one end block B of H’ with not less than 4 vertices and b is the unique cut vertex in B. And then we
can get a new graph G’ by contracting H — B to b and adding all the edges in {bu : u € Nc(H — B)}. It is easy to see
that G’ is 3-connected and C is still a longest cycle through X in G': If there exists a component H of R such that
wy,0(H') > 2.Choose y € V(H’) such thatn(y) = |Nc(y)| = max{|Nc(x)| : x € V(H')}. Then for any two vertices
y1, y2 € V(H'), thereis a (y1, y2; d —n(y))-path by Lemma 1. Thus we have m > 2(d —n(y)+2)+2(n(y)—2) = 2d.
From the above, we only need to prove Theorem 1 when every component H' of R has at least 4 vertices, 2-connected
and wy 0(H’) < 1. Suppose H is a component of R such that wy o(H) > wy,0(H’) for any component H' of R and
then X N W(H) is as maximal as possible. Since G is 3-connected and |V (H)| > 4, we can choose three disjoint
edges yjv1, y2vp and y3v3 in E(H, C) where y1, yz, y3 are three distinct vertices in H, vy, vz, v3 are arranged along
C*. Suppose y, y' € V(H) such that n(y) = |Nc(y)| = max{|Nc(x)| : x € V(H) \ {y1, 2, y3}} and n(y') =
max{n(y), n(y1)}. Then by Lemma 1, there exist a (y;, yj;d — n(y))-path (1 <i # j <3)anda (y;, y;d —n(y'))-
path (i =2, 3) in H, denoted by P(y;, y;) and P(y;, y) respectively. Suppose A = Nc(y) N{v1, vz, v3} anda = |A].

We divide the proof of Theorem 1 into two parts according to wa o(H) = 0 or 1.

Part 1. wy o(H) = 0. Then |{vy, vz, v3} N X| < 1.

Suppose {x1, X2, X3, x4} are arranged along C*. If X N W(H) # ¢, we may choose vy, vy, v3 such that
{v1, v2, v3} N X # @, suppose v; = x| by symmetry. And then v, € Ct(x2, x3), v3 € CT(x3, x4). I XNW(H) = ¢,
we may assume vy € CT(x1,x3), v2 € CT(x2,x3) and v3 € C*(x3, x4) by symmetry. In either case, we have
{x2} = CT(v1, 12)NX, {x3} = C*(v2, v3)NX and Nc(y)NC T [x1, x4] € {v1, v2, v3}. Suppose Nc(y)NC T (x4, x1) =
{wi, wa, ..., wy}. We first prove:

Claim 1. |[N¢(x2)| + [ Nc(x3)| < 2d.

Proof. Suppose C; = CHvy, x2), Co = Ct(x2,v12], C3 = Ct[va, x3), C4 = CH(x3,v3], Cs = CH(v3,x4). If
V1 # x1, suppose C¢ = CT[x4, x1], C7 = CT(x1, v1). Otherwise suppose Cs = C T [x4, x1). Denote ¢; = |C;|. Note
thatm = Y/_ ;i + 1ifv; £ xjandm = Y0 ¢; + 1if vy = x1.

(i) x2x3 & E(G).

If xox3 € E(G), we know that xx3C " (x3, v1)y1 P(y1, y2)v2C ™ (v2, x2) and x2x3C~ (x3, v2)y2 P (y2, ¥3)
v3C T (v3, x2) are two cycles through X. Thus we have |Ct(vi,x2)| + |CT(v2,x3)] > d — n(y) + 1 and
|CF(x2, v2)| + |C T (x3, v3)| > d — n(y) + 1. Then we have m > 2d, a contradiction.

(i) If xav; € E(G), then N¢, (x3) = @; if x307 € E(G), then Ne, (x2) = .
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If xov; € E(G) and s € N¢,(x3), then x2v5 C™(v3, v2)y2 P (2, y3)v3C 1 (v3, x2) and x35C~ (s, v3) 3 P(v3, ¥2)
v2C~ (v2, x2)v3 C~ (v, x3) are two cycles through X. Thus we have |C* (x2, v2)| = d —n(y) + 1 and |C* (s, x2)| +
|Ct(va, x3)| = d — n(y) + 1, then we can get m > 2d, a contradiction to m < 2d. By symmetry, we can prove if
x3v] € E(G), then N¢, (x2) = ¢.

(iii) Ifxzvzr € E(G), then N¢,(x3) = ¢; if x3v, € E(G), then Nc,(x2) = ¢.

If x;v5 € E(G)and s € Nc, (x3), then xov5 C* (v, v1)y1 P(y1, y2)v2C~ (v2, x2) and x35C T (s, v2)v2y2 P (y2, ¥3)
v3C T (v3, X2)v5 CT(vS, x3) are two cycles through X. Thus we have |C T (v1, x2)| > d —n(y) + 1 and |CT (x2, 5)| +
|Ct(x3,v3)| > d — n(y) + 1. So we can get m > 2d, a contradiction. By symmetry, we can prove if x3v, € E(G),
then Nc, (x2) = ¢.

(iv) If x2v7 € E(G), N¢5(x3) = ¢; if v1 # x1 and x3v; € E(G), N¢,(x2) = ¢.

If xov] € E(G) and s € Ny (x3), then xov3 CT(v3, v1)y1 P(y1, ¥3)v3C ™ (v3, x2) and x35C (s, v2)y2 P (32, ¥3)
v3C~ (v3, x3) are two cycles through X. Thus we have |C T (v1, x2)| > d —n(y) 4+ 1 and |Ct (v2, x3)| +|Ct (v3, 5)| >
d —n(y) + 1. So we can get m > 2d, a contradiction. If v; # x1, we can prove if X3V, € E(G), then N¢, (x2) = ¢
by symmetry.

(V) INcjue, (x2)] + INcyue, (x3)] < c1 +ca + 2.

If there exist s; € N¢,—qv,}(x2) and s2 € C*(s1, x2) N N (x3), then x251CF (51, 52)x3CF (x3, v1)y1 P(y1, y2)v2C~
(v2, x2) and x251C~ (51, v3)y3P(¥3, y2)v2C T (v2, x3)52C " (52, x2) are two cycles through X. Thus we have
|ICF (v, sDIHICT (52, x2)[+]CT (v2, x3)| = d—n(y)+1and |[CT (s1, $2)|+|CT (x2, v2)|[+|CT (x3, v3)| = d—n(y)+1.
Then m > 2d, a contradiction. That means if s € Nc,_(y)(x2), then Nc(x3) N Ctis,x) = ¢. Suppose
Nc,(x2) = {s1,52, ..., sp} and they are arranged along CT, then if 51 # vy, Nc,(x3) € C*t[vy, s1] and if 51 = vy,
Nc,(x3) € C™[vy, s2]. Then we can get INc,(x2)| + |N¢c,(x3)| < p+c1 — (p —2) = ¢ + 2 and the equality holds
only if x3 v]Jr € E(G) and N¢, (x2) # ¢. By symmetry, we can prove |Nc,(x2)| + Nc,(x3)| < ¢4 + 2 and the equality
holds only if xov;” € E(G) and N¢,(x3) # ¢. Note the results of (ii), we know that [Nc,uc, (x2)| + [Nc,uc, (x3)| <
c1+cq4+2.

(vi) INc,ucs (x2)| + INcucs (x3)] < 2 + cs.

If there exist 51 € Nc,(x3) and 52 € C™(s1,v2) N Nc(x), then x351C T (s1, 52)x2C ™ (x2, v3)y3 P (y3, y2)v12C™T
(va, x3) and x351C~(s1, x2)s2C T (52, v2)y2 P(y2, y1)v1C~ (v, x3) are two cycles through X. Thus we have
|CF (x2, sDI+ICT (52, v2)|[4|CT (x3, v3)| = d—n(y)+1and |CT (v, x2)[4+|CT (51, 52)[+]|CH (v2, x3)| = d—n(y)+1.
Then m > 2d, a contradiction. That means if s € Nc,(x3), then Nc(x2) N Ct(s,v2) = ¢. Then we can get
INC,— (v} (¥2)| + [Nc,—(1,}(x3)| < ¢z and the equality holds only if x3v, € E(G). By symmetry, we can prove
INC3—{v,} (¥2)| + Ncy—{v,}(x3)| < c3 and the equality holds only if xzvgL € E(G). Note the results of (iii), we can get
INcy,ucs (x2)| + [INcues (x3)] < 2 + ¢3.

(vii) [Ncs(x2)| + [Nes (x3)| < ¢53 [N, (x2)| + [N, (x3)| < ¢7if vy # x1.

If there exist s1 € Ncs(x3) and s, € CT(s1,x4] N Nc(xp), then x351C T (s1, v2)y2P(y2, ¥3)v3C~ (03, X3)
and x351C~(s1, v3)¥3 P (33, y)v1 C~ (v, $2)x2C T (x2, x3) are two cycles through X. Thus we have |C* (v, x3)| +
|Ct(v3,51)] = d—n()+1and |CT(v1, x2)| + |CT(x3, v3)| + |CT(s51,5) > d —n(y) +1. Thenm > 2d, a
contradiction. That means if s € N¢,(x3), then Nc(x2) N C™T (s, x4] = ¢. Then we can get [Ncs(x2)| + [Nes(x3)] <
p+cs—(p—1) =cs5+ 1 and the equality holds only if xzvgr € E(G) and N¢4(x3) # ¢. Note the results of (iv), we
have [Ncs(x2)| + |Ncs (x3)| < ¢s. If v; # x1, we can prove |Nc¢, (x2)| + N¢, (x3)| < ¢7 by symmetry.

(viii) If v = x1, then |N¢g(x2)| + [N¢g(X3)| < c6 — 1.

If v; = x1, then ¢ = 0, which means n(y) = a. If x2x4 € E(G), then x2x4C~ (x4, v2)y2 P (32, y)v1C T (v1, x2)
and x2x4C " (x4, v1)y1 P (y1, ¥3)v3C~ (v3, X2) are two cycles through X, thus |CF (x2, v2)|+|C T (x4, x1)| > d—a+1
and |CT(x1,x2)| + |CT(v3,x4)| > d — a + 1. Then we can get m > 2d, a contradiction. Similarly we can prove
x3x4 € E(G).

If s € N¢,(x3), then x35C~ (s, v3)y3 P (3, y1)viC T (v1, x3) is a cycle through X, thus [C T (x3, v3)[+|C (s, x1)| >
d —a + 1. Similarly if 1 € N¢,(x2), then |Ct(x2,v2)| + |CH(t,x1)| > d — a + 1. If there exist vertices
s,sT € C* (x4, x1) such that x35, x357 € E(G), then x35C (s, v3)y3 P (y3, y2)v2C " (v2, sT)x3 is a cycle through
X, thus |[CT(v2, x3)| + |CT(x3,v3)] > d — a + 1. Similarly if there exist vertices ¢, € C¥ (x4, x1) such that
xot, xotT € E(G), then |CH (v, x2)| + |CT (x2, v2)| = d — a + 1. Hence if there exist vertices s, st € CT (x4, x1)
such that x3s, x351 € E(G), then N¢,(x2) = ¢, thus | N¢, (x2)| + | Ncg (x3)| < c6 — 1. Similarly if there exist vertices
t,tT € CT (x4, x1) such that xo7, x2t™ € E(G), then N¢, (x3) = ¢, which also means |[N¢, (x2)|+|N¢g (x3)| < c6—1.
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So we may assume there exist no such vertices. We know if x2x; € E(G), |Ct(xp, v12)| = d —a + 1. And then
Ncg(x3) = ¢, thus [Neg (x2)| + [ Neg (x3)| < c6 — 2. Similarly if x3x;” € E(G), then [N¢, (x2)| + [ Neg (x3)] < c6 —2.

If xox;, 2337 & E(G), then [N, (x2)] < 2650 and | N (x3)] < 558201 and hence [N (x2)] + [Ney (x3)] <
|CT (x4, x1)| = c6 — 1.

(ix) If v1 # x1, then |[Ncguc; (x2)| + [Ncguc; (3)| < c6 +c¢7 — 1.

Under this case, if xx; € E(G), then x2x1C ™ (x1, v2)y2 P(y2, y1)viCt(vy, x2) is a cycle through X. Thus
|ICT(x1, v1)| 4+ |CT(x2, v2)| = d — n(y) + 1. If xox4 € E(G), then xpx4C (x4, v1)y1 P(y1, y3)v3C~ (3, x2) is a
cycle through X. Thus |CT (vy, x2)| + |CT (v3, x4)| > d —n(y) + 1. So x2x1 & E(G) or x2x4 ¢ E(G). By symmetry,
we can prove x3x1 € E(G) or x3x4 &€ E(G).

If xpx1 € E(G), then N¢(x3) N CV[x4, x1) = ¢. Otherwise, suppose x2x; € E(G) and s € Nc(x3) N C T [xg, x1).
Thenif g = 0or C*(s, x]))NN¢c(y) = ¢, then x35C (s, v3)y3 P (y3, y1)v1C~(v1, x1)x2C T (x2, x3) is a cycle through
X, thus |CT(vy, x2)| + |CT(x3, v3)| + |CT (s, x1)| = d —n(y) + 1;if g = 1 and CF(s, x;) N Nc(y) # ¢, choose
avertex w; € Ct(s,x1) N Ne(y) such that Ct (s, wj) N Ne(y) = ¢. Then x35C~ (s, v3)y3 P (y3, y)w;CH(wj, x3)
is a cycle through X, thus |C T (x3, v3)| + |[CT (s, w;)| > d — n(y’) + 1. In either case, together with |CT (x1, v)| +
|Ct(x2,v2)] > d — n(y) + 1, we can get a contradiction that m > 2d. Similarly we can prove if x3x4 € E(G),
then Nc(x2) N Ct(x4, x1] = ¢; if xox4 € E(G), then Nc(x3) N CT (x4, x1] = ¢; if x3x1 € E(G), then
Nc(x2) N CH[xa, x1) = .

Similarly as in the proof of (viii), if there exist two vertices t,tT € Ct (x4, x1) N N¢(x2), then |CF(vy, x2)| +
[Ct(x2, 1) = d — n(y) + 1. If |[Nc(x3) N CT(x4,x1)] > 2, suppose 5,5 € Nc(x3) N Ct(x4,x1) and
s’ € Ct(s,x1). Then if ¢ = 0 or CT(s,5") N Nc(y) = ¢, x35'CT(s', v2)y2 P(y2, y3)v3C T (v3, 5)x3 is a cycle
through X, thus |C*(va, x3)| + |CF (x3, v3)| + |CT (s, 8)| = d —n(y) + 1. If CH (s, s') N Nc(y) # ¢, choose a vertex
wj € CT(s,s") N Ne(y) such that CT (s, wj) N Ne(y) = ¢. Then x35C~ (s, v3)y3 P(y3, y)w;Ct(wj, x3) is a cycle
through X, thus |C*(x3, v3)| + [CT (s, wj)| > d — n(y’) + 1. So if there exist vertices 7, 1T € CT (x4, x) such that
x2t, xot+ € E(G), then [N¢(x3) N CT (x4, x1)| < 1. Otherwise we can get a contradiction that m > 2d.

Then if Nc({x2,x3}) N {x1,x4} = ¢, and there exist two vertices ¢,tT € CTV(x4,x1) N Nc(xp), then
INcs (x2)| + [N (x3)| < c6 — 1. By symmetry, if there exist vertices s, sT € C*(xa, x1) such that x3s5, x357 € E(G),

|CF (xg.x0)|+1
2

then [N¢g(x2)| + [Ncg(x3)| < c6 — 1. And if there exists no such vertices, |Nc+(y, x)(¥2)| < and

INc+(eg ) (03] < w, and hence |N¢,(x2)| + [Ny (x3)| < c¢g — 1. Together with the results of (vii), we

know that [Ncuc, (x2)| + [Ncsuc; (x3)| < c6 +¢7 — 1.

If Nc({x2, x3}) N {x1, x4} # ¢, without loss of generality, suppose xox; € E(G), then xox4 ¢ E(G) and
Ne(x3) N CHlxa, x1) = ¢. If x3x; ¢ E(G), then |[N¢ (x2)| + |[Ne,(x3)] < ¢ — 1. If x3x1 € E(G), we
know that Nc(x2) N CT[x4,x1) = ¢. Thus we have [Ncs(x2)| + [Ncg(x3)] = 2. So if ¢¢ > 3, we have
[Ncg(x2)| + [Ncg(x3)| < c6 — 1. Then we can get |Ncsuc, (x2)] + |Ncguc, (x3)| < ¢ + ¢7 — 1. So we may
assume cg = 2 and xoxy,x3x; € E(G). Then if ¢; = 0, we know that |C*(x2,v2)| > d — n(y) + 1 and
|C*(x3,v3)| > d—n(y)+ 1, thus we can get a contradiction that m > 2d. Thus we know that ¢; > 0.If s € N¢, (x2),
then x25C (s, v2)y2 P(y2, y1)v1CF (v1, x2) and x2sC T (s, v1)y1 P(y1, y3)v3C T (v3, x1)x3C ~(x3, X2) are two cycles
through X, then |C™ (s, v1)|+|C T (x2, v2)| = d—n(y)+1and |CT (x1, )| +CT (vi, x2)|[+CT (x3,v3)| = d—n(y)+1,
thus we can get m > 2d, a contradiction. Similarly we can prove if x,x; € E(G), then N¢,(x3) = ¢. So if
X2x1, x3x1 € E(G), then |N¢, (x2)| + |N¢, (x3)| = 0 < ¢7 — 1 and then | N¢uc; (x2)| + [ Negue; (x3)] < c6 +c7 — 1.

From the above, we know that [Nc(x3)| + [Nc(x3)| <m <2d. N

Since wy o(H) = 0, we know that Ny (x2) = Ny (x3) = ¢. By Claim 1, |[Nc(x2)|+ [Nc(x3)| < 2d, so there exists
a component H; of R such that Ny, (x;) # ¢ fori = 2 or 3. Without loss of generality, suppose Ny, (x2) # ¢ which
means X N W(H) # ¢. Thenif X N W(H) = ¢, | X N W(H)| > |X N W(H)|. It contradicts to the choice of H. So
we may assume X N W(H) # ¢. Then vi = x1, Nc(y) € {v1, v2, v3} and thus n(y) = a. For Hy, we also can choose
three vertex disjoint edges zix;, zos and z3s” in E(Hj, C) where s € CT(x3,x4) and s’ € Ct (x4, x1). Suppose
z € V(H)) \ {z1, 22, z3} such that n(z) = |N¢(z)| = max{|Nc(x)| : x € V(H}) \ {z1, 22, z3}}- Then by Lemma 1,
there exists a (z;, zj; d — n(z))-path in Hj. For simplification, we denote such a path by Q(z;, z;)(1 <i # j < 3).
Now x2210(z1,23)s'C™(s", v2)vay2 P(y2, y1)viCH(v1, x2) is a cycle through X. Thus we have |CT(xp, v2)| +
ICt(s’,v)|>d—a+1+d—n()+1.Thenm > (d —a+ 1)+ (d —n(z) + 1) + 2(max{a, n(z)} —2) + 2 > 2d,
a contradiction.
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Part 1. wao(H) = 1.

Then we may choose vy, vz, v3 such that CT(vy, v2) N X = ¢, |{v1, v2} N X| as large as possible and then
Ny (C* (v, v3)) € {y1. y2}-

Case 1. |CT(v2,v3) N X| = 1,say x; € CT(v2, v3) N X.

Since wy o(H) = 1, Nc(y) N CT vy, v3] € {v1, v2,v3} and Ny (x1) = ¢. Suppose Nc(y) N CT(v3,v1) =
{wi, wy,...,wy} where ¢ = n(y) — a, and they are arranged along C*. Let x5, x; denote vertices lying in
C*(v3,v1) N X such that C*(v3,x5) N X = ¢ and CT(x},v)) N X = ¢ (It is possible that x;, = x}). Then if
g #0,x} € CT(v3, wy) and x} € CT(wy, vy) since wy,0(H) = 1. We first prove

Claim 2. (1) There exists no path connecting x| and a vertex in C* (v, v2) UC™ (v, xé] uct [xé, v1) with all internal
vertices in R — H;

2) If C+(wj, wir) N X = ¢ for 1 < j < q — 1, then there exists no path connecting x1 and a vertex in
C+[wj, wj11) with all internal vertices in R — H;

3 If |C+(w/~, wit1) N X| = 1(1 < j < g — 1), then there exists no path connecting x| and a vertex in
C+(wj, wjy1) with all internal vertices in R — H;

@@ If C+(x£, w1) N X = ¢, there exists no path connecting x| and a vertex in C*[xé, w1) with all internal vertices
inR— H,;

oIfCct (wy, xé) NX = ¢, there exists no path connecting x| and a vertex in C* (wy, xé] with all internal vertices
inR—H,;

6)If Ct(s1, 52)N(XUNc(y)) = ¢ where sy, s0 € CT [xé, xé], then there do not exist two disjoint paths connecting
x1 and two vertices in Ct[s1, s2] with all internal vertices in R — H.

Proof. (1) Otherwise suppose Q is a path connecting x; and a vertex z € C*(vy, v2) U CT(vs, x5 U C*[xé, V1)
with all internal vertices in R — H. Then if z € C*(vy,v), x10zC~ (2, v3)y3P (3, y2)voC T (v2, x1) and
x10zCT (2, v2)y2 P(y2, y1)v1C~ (v, x1) are two cycles through X. Then we know that |C (z, v2)| + |C T (x1, v3)| >
d—n(y)+land |CT(v,2)| +|CT (v, x1)| =d —n(y) + 1. Thusm > (d —n(y) + 1) x 2+ 4+ 2(n(y) —3) =
2d, a contradiction. If z € C+(v3,xé], then x1 QzCT(z, v2)y2 P (y2, ¥y3)v3C~(v3, x1) is a cycle through X. So
|CT(v2, x| + [CT(v3,2)| = d — n(y) + 1. Together with |CT(v1,v2)] > d — n(y) + 1, we have m > 2d, a
contradiction. If z € CT[x}, v1), then x; QzC~ (z, v3)y3 P (y3, y1)v1C T (vy, x1) is a cycle through X. Similarly we
have |CT(z, v)| + |C T (x1,v3)| > d — n(y) + 1, and then m > 2d, a contradiction.

Q) If C+(wj, wit1)NX =¢( < j <g—1),suppose Q is a path connecting x; and a vertex z € C+[wj, Wjt1)
with all internal vertices in R — H, then x; QzC ™ (z, v3)y3 P(y3, y)wj+1C+(wj+1,x1) is a cycle through X and
we get [CT(x1, v3)| + [CH(z, wj1)| = d — n(y') + 1. Together with |Ct(vi, v2)| > d — n(y) + 1, we have
m>(d—n(y)+1)x2+5+2n(y’) —3) > 2d since Nc(y1) N CT(wj, wjt1) = ¢, a contradiction.

(3)Say x) € Ct(wj, wjy1) for 1 < j < g — 1, if there exists a path Q connecting x| and a vertex z € CT(w}, x}]
with all internal vertices in R — H, then x1 QzC " (z, v2)y2 P(y2, yw;C~ (wj, x1) is a cycle through X. Thus we
have |Ct(v2, x1)| + |CT(wj,2)| > d — n(y") + 1. Together with |[C*(vi,v2)| > d — n(y) + 1, we can get
m>(d-n()+1)x2+4+2n(H") —3) = 2d since Nc(y;) N C+(wj, x"t) = ¢, a contradiction. Similarly
we can prove there exists no path connecting x; and a vertex z € C +(x"1, w+1) with all internal vertices in R — H.

@ If C+(xé, wi) N X = ¢ and there exists a path Q connecting x; and a vertex z € C*[xé, wi), then
x10zC~ (2, v3)y3P(y3, y)w1C T (wy, x1) is a cycle through X. Thus we have |CT(x, v3)| + |CT(z, wy)| = d —
n(y’) + 1. Then together with |C* (v1, v2)| > d — n(y) + 1, we have m > 2d, a contradiction.

o) If C+(wq,x§) N X = ¢ and there exists a path Q connecting x; and a vertex z € C+(wq,x§], then
x10zCT(z, v2)y2 P (y2, y)wi C~(wy, x1) is a cycle through X. Thus we have |CT(vy, x1)| + |C+(wq, )| = d—
n(y’) + 1. Then together with |CT (v, v2)| > d — n(y) + 1, we have m > 2d, a contradiction.

(6) If C*(s1,52) N (X U Nc(y)) = ¢ and there are two disjoint paths Q1, Q> connecting x; and two vertices
7,7/ € C™T[s1, 5] with all internal vertices in R — H. Without loss of generality, assume z© € C*(z, s), then
x201z2C~ (2, v3)y3 P (y3, y2)v2C ™ (v2, 2') Q21 is a cycle through X. Thus we have |C T (va, x1)| + |C T (x1, v3)| +
|CT(z,7)] = d — n(y) + 1. Then together with |C*(vi,v3)] = d — n(y) + 1, we have m > 2d since

CT(s1,5) N Nc(y) = ¢, a contradiction. W

Claim 3. If wyo(H) =1 and Ct(v2, v3) N X = {x1}, then |[Nc(x1)| < d.
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Proof. Suppose z € Nc(x1), then by Claim 2(1), z & CT(vy,v2) U Ct(v3, x5] U CT[x}, v1). If x) = xj,
Nc(x1) € CT[vz,v3] U {v1} which means [Nc(x1)| < |C*H[va, v3]| since x; € CT[va, v3]. If x5 # xj, then
ICT (x5, x5) N X| < 1.If |CT(x), x5) N X| = 1, say x; € CT(x},x}), then [Nc(x) N CT (x5, x}]| < 1 and
INe(x1) N CFx}. x4)] < 1 by Claim 2(2)~(6). If C*(x}, x3) N X = ¢, [Ne(x1) N C* (x}. x4)| < 1 by Claim 2(6). In
either case, |[Nc(x1)| < |CT[va, v3]| + 2.

Then if |[Nc(x1)| > d, we have |C 1 [vy, v3]| +2 > d. Together with CT(vy, v2)| > d—n(y)—1=d—(a+q)+1,
wehavem > (d—a —q +2)+ (d—2)+ 3+ 2qg = 2d, acontradiction. W

Since Ny (x1) = ¢ and |[Nc(x1)| < d, there should exist a component H; of R such that Ny, (x;) # ¢ and
then W(H;) C {x1} U N¢(x1) by Claim 2. For Hj, we can choose three disjoint edges z1x1, z2s, z3s8' in E(Hj, C)
where z1, 22, z3 are three disjoint vertices in V (H}). Suppose z € V(H)) \ {z1, 22, z3} such that n(z) = |N¢(2)| =
max{|[Nc(x)| : x € V(H) \ {z1,z2}}. Then by Lemma 2, we know that there exists a (z;, z; d — n(z))-path for
1 <i # j <3in Hj, denote it by Q(z;,zj). If s € CT[vp, v3] or s € C*[vz, v3], without loss of generality,
suppose s € CT(xp, v3], then |CT(x1, s)| > d — n(z) + 1. Together with |C T (vy, v2)| > d — n(y) + 1, we can get
m > (d—n(y)+1D)+(d—n(z)+1)+2(@max{n(y), n(z)}—2) > 2d, a contradiction. So we assume s, s’ & C T [vy, v3]. If
W (H;) € CT[va, v3]U{v;},thens € CT[vy, v3]ors’ € CT(va, v3]. So we may assume W (H;) € CT[vz, v3]U{v}.

Note X = {x1, X2, X3, X4}, We Suppose X1, X2, X3, X4 to be arranged along C™ in the following proof. According to
the different positions of {vy, vz, v3} on C, we prove the theorem in seven subcases by symmetry.

Subcase 1.1. v; = x3, v2 = x4 and v3 € Ct(x1, x2).
Subcase 1.2. v = x4, v2 € CT (x4, x1) and v3 = x».
Subcase 1.3. v; € C1(x3, x4), v2 = x4, and v3 = x3.

Under the above three subcases, we know that Nc(x1) € C1[va, v3] U {v1} and then W(H;) € CT[va, v3] U {v;}
by Claim 2, a contradiction.

Subcase 1.4. V] = X4, V2 € C+(v1, x1) and V3 € C+(x1, xz).

Then Nc(y) € CH(xz, x3) U {v1, v2, v3} since wa o(H) = 1.If ¢ > 2, by Claim 2, W(H;) € CT[vz, v3]U{v1}, a
contradiction. If ¢ < 1, by Claim 2, W(H;) € C*[va, v3]U{v1, w} where w € C*(x3, x3). Without loss of generality,
we may assume s = w and s = v; = x4. Then wy,0(H;) = 1 and | XNW(H;)| =2 > |X N W (H)|, which contradict
the choice of H.

Subcase 1.5. v; € CT (x4, x1), v2 € CT(v1, x1) and v3 = x2.

Then N¢(y) € CH(x3, x4) U {v1, v2, v3} since wy o(H) = 1.If ¢ > 2, then W(H;) € C*[va, v3]U {v;} by Claim
2, a contradiction. If ¢ < 1, W(H;) € C™[vz, v3] U {v1, w} where w € C7T(x3, x4) by Claim 2. Without loss of
generality, we may assume s = w and s’ = v;. Then we can choose H| instead of H and reverse the orientation of C,
thus we can prove the theorem similarly as in Subcase 1.4.

Subcase 1.6. v| € Ct(x3, x4), v2 = x4, and vz € CT(x1, x2).

Then Nc(y) € CT(xz, x3) U {v1, v2, v3} since wyo(H) = 1. If ¢ > 2, then W(H;) € CT[va, v3] U {v1}
by Claim 2, a contradiction. If ¢ < 1, W(H;) € C'[vz,v3] U {v;, w} where w € C7¥(x2,x3) by Claim 2.
Without loss of generality, we may assume s = w and s’ = v;. Note that z € V(H1) — {z1, 22, z3} with
n(z) = |Nc(@)| = max{|[Nc()| : v € V(H) — {z1,22,23}. It is easy to see that Nc(z) < f{v;, w}. Then
x1210(z1, 23)v1C~ (v1, v3) 3 P(¥3, y2)v2C T (v2, x1) is a cycle through X. Thus we know that |Ct(vy, x4)| +
|CT(x1,v3)| > d—n(y)+14+d—n(z)+1. Thus we can get m > (d —n(y)+2)+(d —n(z) +2)+2(max{n(y), n(z)} —
2) > 2d, a contradiction.

Subcase 1.7. v € C+(X4, X1), 02 € C+(v1, x1),and v3 € C+(X1, X2).

Then Nc(y) € Ct(x2, x4) U {v1, v2, v3} and Ny (x2) C {y3} since wa o(H) = 1. Suppose Nc(y) N C(x2, x3] =
{wi, wz, ..., wg }, Ne(y) N Ct(xs,x4) = {wg 41, ..., wg}. f g1 > 2 and g — q; > 2, then by Claim 2,
W(H;) € C'[vz, v3] U {v1}, a contradiction. If g; > 2 and ¢ — g1 < 1, then W(H;) € C'[vz, v3] U {v1, w}
where w € Ct(x3, x4). Without loss of generality, suppose s = w and s’ = v;. Then choose H| instead of H and
reverse the orientation of C, we can prove the theorem similarly as in Subcase 1.4. If ¢ < 1 and ¢ — g1 > 2, then
W(H;) € C*t[va, v3] U {v1, w} where w € C*(x2, x3). Without loss of generality, suppose s = w and s’ = vj.
Then choose H; instead of H, we can prove the theorem similarly as in Subcase 1.6. If g < landg —¢q; < 1,
then W(H;) € CT[vp, v3] U {v1, w, w'} where w € CV(x2,x3), w' € Ct(x3,x4). If s = v; or s’ = vy, we can
prove the theorem similarly as in Subcase 1.4 or Subcase 1.6. So we may assume s = w and s’ = w’. Note that
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z € V(Hy) — {z1, 22, 23} with n(z) = |Nc(z)| = max{|Nc(v)| : v € V(H;) — {z1, 22, z3}. It is easy to see that
Nc(z) C {x1, w, w'}. We can prove the following claim.

Claim 4. There exists no path connecting x; and a vertex in C* (s, x1) — {s’} with all internal vertices in R — (H, Hy}.

Proof. Otherwise suppose K is a path connecting x; and a vertex ¢t € C™ (s, x;) — {s’} with all internal vertices
in R — {H, Hy}. Then if t € C7T(s, x3], then xoKtC* (¢, x1)z1 Q(z1, 22)sC~ (s, x2) is a cycle through X. So we
have |CT(x1, x2)| + |Ct(s,2)] = d —n(@) + 1. If t € CT(x3,s), then xoKtC~(¢t, 5)2200(z2, 23)s'CT(s', x2)
is a cycle through X. So we have |CT(x2,5)] + |CT(t,s") = d — n@@ + 1. If t € CT(s',xqg),
xKtCH(t, x1)z10(z1, 23)s'C(s', x2) is a cycle through X. Then we know that |CT(x1, x2)| + |CT(s', )] >
d—n()+ 1.Ift € CT[va, x1), x2KtC~ (¢, 5)220(z2, 21)x1CT (x1, x2) is a cycle through X. Then we know that
|CT (x2, 8)|+|CT (¢, x1)| = d —n(z)+1. In any of the above four cases, together with |C* (v, v2)| > d—n(y)+1, we
can get m > 2d, a contradiction. If t € C*[x4, v2), x2KtC™ (¢, 5)22 0 (22, 21)x1C ™ (x1, v2) 2 P (y2, y3)v3C T (03, X2)
is a cycle through X. Then we know that |CT (¢, v2)| + |C T (x1, v3)| + |CT(x2,8)| >d —n(y) +1+d —n(z) + 1.
Thus we have m > 2d, a contradiction.

Then Nc(x2) € CT[xy,s]U {s'}. Soif [Nc(x2)| > d — 1, then m > 2d, a contradiction. Since |[Ng(x2)| < 1
and Ny, (x2) = ¢ and [Nc(x2)| < d — 1, there should exist a component Hy of R such that Ny, (x2) # ¢ and
then W(H;) € C™T[xy,s] U {s'} by Claim 4. Thus we know that wy o(Hz) > 1, and if suppose t € W, o(H>) and
t’ is the next vertex after t along C* in W(H>), then C*(¢,¢) N C*(v1, v2) = ¢. Then it is easy to get m > 2d, a
contradiction.

Case 2. |CT(v3,v1) N X| =1,say x; € C*(vs3, v)) N X.

Then we have |[N¢(y)| = a. And in fact for any vertex y' € V(H) — {y1, y2, ¥3}, we have N¢(y') C {v1, v2, v3}
by the choice of vy, va, v3. Thus we can reverse the orientation of C and then we can prove the theorem similarly as
in Case 1.

Case 3. |CT(v2, v3) N X| > 2and |CT (v3, v1) N X| > 2.

Then we may suppose {xi,x2} = Ct(va,v3) N X and {x3,x4}) = Ct(v3,v;) N X since |X| = 4. It is
easy to see that m > 9 and hence d > 5. Since wy o(H) = 1 and by the choice of vy, v2, v3, we know that
Nc(y) € CT(x3, x4) U{vr, v2, 03}, N (x;) = ¢ fori = 1,2, 4 and Ny (x3)  {y3}. Butif Nc(y) N CT(x3, x4) # &,
we can reverse the orientation of C and prove the theorem just as in Subcase 1.7. And if y3x3 € E(H,C), we
can also reverse the orientation of C and prove the theorem similarly as in Subcase 1.5 or 1.6. So we may assume
Nc(y) N CT(x3, x4) = ¢, which means n(y) = a, and Ny (x;) = ¢ for 1 <i < 4.

Claim 5. Y}_, [Nc(x;)| < 4d.

Proof. Denote C; = CT (v, v2), C2 = CH[va, x1), C3 = CH[x1, x2), C4 = Ct[x2, x3], Cs = CT(x3, x4] and
Ce =Ct(x4,v1].Forl <i <6,letc; =|C;l.

(@) x1vy ¢ E(G). xqvy & E(G). xivf & E(G) and xpvy ¢ E(G): x3v2 ¢ E(G) or x1x4 & E(G): xqu1 ¢ E(G)
or x1x4 € E(G); if x1x4 € E(G), then Noy—(x)(x3) = ¢ and Ncs—ix)(x2) = ¢; Ne(x2) N CT x4, v1) = ¢ and
Nc(x3) N CT (v, x1] = ¢.

If x1v1+ € E(G), then x1v1+C+(v1+, v2)y2P(y2, y1)v1C~ (v1,x1) is a cycle through X. Then we have
|CT (v2, x1)| > d—a+1, together with |CT (v, v2)| > d—a+1, we can getm > 2d, a contradiction. Soxlvf' g E(G).
By symmetry, we can prove x4v, & E(G). Ifxgvfr € E(G), then x3v;rC+(v;L, v3)3 P (3, y1)v1C~ (v1, x3) isacycle
through X. Then we have |C T (v3, x3)| > d — a + 1, together with |CT(vy, v2)| > d —a + 1, we can get m > 2d, a
contradiction. So x3 v?‘ ¢ E(G). By symmetry, we can prove x2v, ¢ E(G).

If x3v2, x1x4 € E(G), then x4x1C T (x1, v3)y3 P(y3, y1)v1CT (v, v2)x3C T (x3, x4) is a cycle through X. Thus we
have |CT (v, x1)| + |C T (v3, x3)| + [CT (x4, v1)| > d — a + 1, together with |CT (v, v2)| > d — a + 1, we can get
m > 2d, a contradiction. By symmetry, we can prove xv; € E(G) or x1x4 € E(G).

If xix4 € E(G) and s € Ncy_{x}(x3), then x4x1C~ (x1, v)y1 P(y1, y3)v3C 7 (v3, §)x3C T (x3, x4) is a cycle
through X. Thus we have |C T (x1, s)| + |CT (v, x3)| + |Ct (x4, v1)| > d —a + 1, then m > 2d, a contradiction. By
symmetry, we can prove if xjx4 € E(G), then Ncs_(y,) (x2) = ¢.

If there is a vertex s € N(xp) N CT[x4, v1), then xo5C~ (s, v3)y3P(y3, y1)viCT(v1, x2) is a cycle through X.
Thus we have |Ct(x2, v3)| + |Ct(s,v1)] > d —a + 1, then m > 2d, a contradiction. By symmetry, we can prove
Nc(x3) N CT (v, x1] = ¢.
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(i) Y5y [N, ()] < 2¢1 —2;

Note that ¢y > d —a + 1 > 3. If 51 € Nc/(x1) and s € Nc(x2) N Ct(sy,v2), then
x151C7 (51, v3)y3 P (y3, y2)v2C~ (v2, 52)x2C ™ (x2, x1) and x151CF (51, 52)x2C T (x2, v1)y1 P(y1, y2)v2C ™t (v2, x1) are
two cycles through X. Thus we have |Ct(x2, v3)| + |CT(s1, 2)| + |CT(v2, x1)| = d —a + 1 and |CT(x1, x2)| +
[CT(vy,s)| + |CT(s2,v0)] = d —a+ 1, thenm > (d —a+ 1) x 2+ 4 > 2d, a contradiction. If
fi € Ng(x2) and 1 € Nc(x1) N CH (11, v2), then x261C~ (11, v3)y3 P (y3, y2)v2C~ (v2, 12)x1C T (x1, x2) and
Xt1CT(t1, 1)x1C~ (x1, v2)y2 P (y2, y)viC~(vy, x2) are two cycles through X. Thus we have |Ct(xz,v3)| +
|ICT(t1, )| + |CH(v2,x1)| = d —a+ 1 and [CH(x1, x2)| + |CT(v1, 1) + [CT (12, 2)] > d —a + 1, then
m > (d—a+1) x2+4 > 2d, a contradiction. Suppose Nc, (x1) = {s1,52,...,5p}. Thenif p > 2, Nc,(x2) = ¢
and thus |[Nc,(x1)| + [Nc,(x2)] < p < ¢1 — 1 since )clvfL ¢ E(G). If p = 1, then Nc¢,(x2) € ({s1}, thus
INc,(xD| + INc,(x2)| <2 < ¢ — L. If p = 0, then |[N¢,(x1)| + |[Nc,(x2)] < ¢1 — 1 since xov, ¢ E(G).
Thus we have |[N¢, (x1)| + |N¢, (x2)| < c¢1 — 1. Similarly we can prove |N¢, (x3)| + [Nc, (x4)| < c1 — 1.

(iii) Z?:l INc,(xi)| < 2¢2 + 2 and the equality holds only if x1x4 ¢ E(G); Z?:l INce(xi)| < 2c6 + 2 and the
equality holds only if x1x4 € E(G);

By (i), Nc(x3) N C*(v2, x1] = ¢, so obviously INc,(x1)| + |Nc,(x3)| < c2 + 1, and the equality holds only if
x3v2 € E(G).If 51 € N¢,(x2), 52 € Nc(x4) NCT(s1, x1), then x251C~ (s1, v1)y1 P(y1, ¥3)v3CT (03, x4)52C T (52, Xx2)
is a cycle through X. Thus we have |CT(x2, v3)| + |CT (x4, v1)| + |CT(s1,52)] = d — a + 1, together with
|C*(vi, v2)] > d —a+ 1, we can get m > 2d, a contradiction. So we know that [N¢, (x2)| + [N¢, (xa)| < c2+ 1. So
Z?:l INc,(xi)| < 2c2 + 2 and the equality holds only if x3v, € E(G), which means x1x4 & E(G) by (i).

By symmetry, we can prove Z?: 1 INce (xi)| < 2c6 + 2 and the equality holds only if x;x4 & E(G).

@iv) Z?:l INcy (xi)| < 2c¢3 and the equality holds only if x1x4 € E(G) or x3x, € E(G); Z?:l [Ncs (x)] < 2cs5
and the equality holds only if x1x4 € E(G) or xzx; € E(G);

If 51 € Ne+(xy.xp)(x3) and s2 € CT(s1, x2) N N (x1), then x351C ™ (s1, x1)s2C T (52, v3)y3 P (¥3, ¥2)v2C ™ (v2, x3)
is a cycle through X. Thus we have |CT (s, s2)| + |CT(v3, x3)| + |[CT(v2,x1)] > d — a + 1, together with
[Ct(v, 1) > d —a + 1, we can get m > 2d, a contradiction. Since x;x3 ¢ E(G), so INcy(x1)| +
|Nc,y(x3)] < c3 and the equality holds only if x3x, € E(G).If f; € N¢,(x2), 1 € Ct(t1, x2) N Nc(xy), then
x2t1C~(t1, v) Y1 P (¥1, ¥3)v3C T (v3, x4)12C T (12, x2) is a cycle through X. Thus we have |C T (1, )| +|C T (x2, v3)|+
[CT(x4,v))| > d —a+1, together with [CT(vy,v10)| = d —a + 1, we can get m > 2d, a contradiction. So
[Nc;(x2)| + [Ncy(x4)| < c3 + 1 and the equality holds only if x1x4 € E(G). But by (1), if x;x4 € E(G), then
x3x, & E(G). Thus Z?:] [Ncy(xi)| < 2c3 and the equality holds only if x1x4 € E(G) or x3x, € E(G).

By symmetry, we can prove Z?:l [Ncs(xi)| < 2cs and the equality holds only if x1x4 € E(G) or x2x3+ € E(G).

(V) Ne(x1) N CH(v3, x3]1 = ¢ and Ne(xa) N CFxa, v3) = @; if X005 € E(G), then Nc(x1) N CT (x2, v3] = ¢
and N¢(x4) N CH(xz,v3] = ¢ if x3v; € E(G), then Nc(x1) N Ct[v3, x3) = ¢ and Nc(xg) N CT[v3, x3) = ¢;
xzx;' & E(G) or x3x4 € E(G); x3x, € E(G) or x1x2 € E(G).

If s € Nc(x1) N CT(v3, x3], then x15CT (s, v2)y2 P(y2, y3)v3C ™ (v3, x1) is a cycle through X. Thus we have
|CT(v3, $)|+ |CT(v2, x1)| = d —a+ 1. Together with |CT (v, v2)| = d —a+ 1, we can get m > 2d, a contradiction.
By symmetry, we can prove N¢(x4) N Ct[xz, v3) = ¢.

If xuf € E(G) and s € Ne(xp) N CH(xz, v3], then x20f CT (v, v2)y2 P (32, ¥3)v3C ™ (v3, $)x1CT (x1, X2)
is a cycle through X. Thus we have |CT(x2,s)| + |CT(v2,x1)| = d — a + 1, together with |CT (v, vp)| >
d —a+ 1, we can get m > 2d, a contradiction. If xzv; € E(G) and t € Nc(x4) N CT(x2, v3], then
x2v5 CT (v, x4)1CT (2, v3)y3 P(y3, y1)v1CT (1, x2) is acycle through X. Thus we have [C T (x2, £)[+]CT (x4, v1)| =
d—a+1, and then m > 2d, a contradiction. By symmetry, we can prove ifx3v3_ € E(G),then Nc(x))NCT[v3, x3) =
¢ and N¢ (x4) N Ct w3, x3) = ¢.

If xox], x3x4 € E(G), then xox3 CT (x5, x4)x3C ™ (x3, v3)y3 P (y3, y))v1C T (v1, x2) is a cycle through X. Thus
we have |CT (x2, v3)| + |CT (x4, v1)| > d — a + 1, together with |CT(vy,v2)] > d —a + 1, we have m > 2d, a
contradiction. By symmetry, we can prove x3x, ¢ E(G) or x1x; € E(G).

(vi) Z?:l INc,(xi)| < 2cq; ifxzx; € E(G) or x3x, € E(G), Z?:l INc,(xi)| <2c4—1; ifxzx;, x3x, € E(G),
Yy NG, (x)] < 2¢4 — 2;

Suppose C41 = CT[x2, v3), Cap = CH (3, x4] and c41 = [Ca1l, car = |Caal.

By (V)a NC41 (x4) = ¢ and NC42(~X1) = d) So we have |NC41(x2)| + |NC41(X4—)| = 41 — 1

and |Nc,(x1)| + [Ncy,(x3)] < c4p — 1. If 5y € Nc¢,(x3) and 5o € C+(s1,v3) N Nc(x1), then
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x351C 7 (s1, x1)52C T (52, v3)y3 P(y3, y2)vaC (2, x3) is a cycle through X, thus |CT(sy,s2)| + |CF(v3, x3)| +
|Ct(va, x1)| = d — a + 1. Together with [C*(vy, v2)] > d —a + 1, we can get m > 2d, a contradiction. So
INcy (x1)] + [Ny, (x3)] < ca1 + 1 and the equality holds only if x;x € E(G) and x3v; € E(G). By symmetry,
we can prove |Nc,, (x2)| + [Ncy, (x4)| < c4p + 1 and the equality holds only if x3x4 € E(G) and xzv; € E(G). So
Z?:l [Ncy, (xi)| < 2c41 and the equality holds only if x1x2, x3v5 € E(G). Z?:l INc,,(x;)| < 2c4 and the equality
holds only if x3x4, X205 € E(G).

By (v), if)czvgr € E(G) or x3v5 € E(G), then x1v3, x4v3 ¢ E(G). Then if one and only one of x3v; € E(G) and
xov5 € E(G) holds, we have Y"/_, [N, (xi)| < 2c4 — 1. If both of x305 € E(G) and x2v5 € E(G) hold or both of
x3v; ¢ E(G) and xzv; ¢ E(G) hold, we have Z?:l INc,(xi)| < 2c4 and the equality holds only if x;x2 € E(G)
and x3x4 € E(G). By (v), xox7 & E(G) or x3x4 € E(G), x3x; & E(G) or x1x2 & E(G), so if xox; € E(G) or
x3x; € E(G), then Y_/_, [Nc, (xi)| < 2¢q — 15if xox7, x3%; € E(G), then Y7_; [Nc, (xi)] < 2¢4 — 2.

From the above, we can get Z?:] INc(xi)| <2m < 4d easily. N

Then there should exist a component H; of R such that Ny, (x;) # ¢ for some i € {1, 2, 3,4} which means
XNW(H) # ¢. Then if wy o(H;) = 1, we can choose H; instead of H and prove the theorem similarly as in Case 1.
So we may assume wy o(H;) = 0. We can choose three disjoint edges z;x;, z2s and z3s” in E(H;, C) where z1, 22, 23
are three different vertices in V (H{). Suppose z € V(H)) \ {z1, 22, z3} such that n(z) = |N¢(z)| = max{|N¢c(v)| :
v € V(H) \ {z1, 22, z3}}. Then by Lemma 1, there exists a (z;, zj; d — n(z))-path in Hj, denoted by Q(z;, z;) for
1 <i # j < 3. By symmetry, we only need to prove the theorem fori = 1 or 2.

Fori = 1, we may assume N, (x3) = ¢, s € CT(x2, x3) and 5" € CT(x3, x4) since wy o(H;) = 0. And it is easy
to see Nc(z) € {x1,s,s'}.

Claim 6. There exists no path connecting x3 and a vertex in CT(vy, x2) with all internal vertices in R — {H, Hy}.

Proof. Otherwise suppose K is a path connecting x3 and a vertex ¢t € Ct(vy,x2) with all in-
ternal vertices in R — {H, Hy}. Then if t € CT(vi,v2], x3KtCH(t,v3)y3P(y3, y)viC~ (v, x3) and
x3KtC™(t,5")230(z3, 21)x1 Ct(x1, x3) are two cycles through X. Then we know that |C" (vy, )| + |C T (v3, x3)| >
d —a+ 1 and |CT(,x1)| + |CT(x3,5) > d — n(z) + 1. Thus we can get m > 2d, a contradic-
tion. And by Claim 5, N¢c(x3) N CT(vy,x;] = ¢ which means t & CT(vp,x1]. If t € C*(x1,x2), then
x3KtCH(t,$)z20(z2, z1)x1C~ (x1, x3) is a cycle through X. So we have |CT(xy, 1)| + [CT (s, x3)| = d — n(z) + 1.
Together with [Ct(vi,v2)| > d —a+1, we have m > 2d, a contradiction. M

Then N (x3) € CH[xz, v1]. Soif [Ne(x3)| > d, |C T [x2, v1]| > d + 1, together with |CT(vy, v2)| > d—a+1, we
can get m > 2d, a contradiction. So we may assume |N¢ (x3)| < d. Since Ny (x3) = Ny, (x3) = ¢, there should exist
a component Hy of R such that Ny, (x3) # ¢. Then W(H,) C C*t[xy, v1], thus wo,0(Hy) =1land W(H2) N X # ¢,
we can choose Hj instead of H and prove the theorem similarly as in Subcase 1.4, 1.5 or 1.6.

Fori = 2, we may assume Ny, (x3) = ¢, s € CT(x3,x4) and s’ € C* (xa, x1).

Claim 7. There exists no path connecting x3 and a vertex in C (x4, x2) —{v2} with all internal vertices in R—{H, Hy}.

Proof. Otherwise suppose K is a path connecting x3 and a vertex t € CT (x4, x2) — {v2} with all internal vertices in
R—{H,H}.Ift € CT (x4, v2), x3KtC™(t, 5)220(z2, 21)x2C ™ (x2, v2) 2 P (y2, ¥3)v3C T (v3, x3) is a cycle through
X. Then we know that [Ct (¢, vp)| + |CT(x2,v3)| + |CT(x3,5)| > d —a+1+d — n(z) + 1. Thus we can get
m > 2d, a contradiction. By Claim 5, N¢(x3) NC T (v, x1] = ¢ which means ¢ ¢ Ct(vy, x1].If t € Ct(xy, x2), then
x3KtC™(t,$)z20(z2, 21)x2CF (x2, x3) is a cycle through X. So we have |CT (¢, x2)| + |C T (x3,5)| = d — n(z) + 1.
Together with [Ct (v, v2)| >d —a+1, wecan getm > 2d, a contradiction. W

Then Nc(x3) € Ctxz, x4]U{va}. Soif [Nc(x3)| > d, |CT[x2, x4]| > d, together with |CT(vy, v2)| > d —a + 1,
we can get m > 2d, a contradiction. So we may assume |N¢(x3)| < d. Since Ny (x3) = Np, (x3) = ¢, there should
exist a component H of R such that N, (x3) # ¢. Then W(Hz) € CT[x2,x4] U {v2}, thus wp o(Hz) = 1 and
W(Hy) N X # ¢, we can choose Hj instead of H and prove the theorem similarly as in Subcase 1.4 or 1.6.
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