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Abstract

ALEPH/OPAL data on theé/—A spectral functions from hadronic decays are used in connection with a set of Laplace
transform sum rules (LSR) for fixing the size of the QCD vacuum condensates up to dimension 18. Our results favor the
ones from large¥. QCD within the minimal hadronic approximation (MHA) and show a violation of about a factor 2-5 of
the vacuum saturation estimate of the dimension-six to -ten condensates. We scrutinize the different determinations of the
QCD vacuum condensates usittglecays data. After revisiting some of the existing results, we present coherent values of the
condensates from different methods.

0 2005 Elsevier B.V. Open access under CC BY license.

1. Introduction by higher-dimensions QCD condensdt@swithin the
SVZ expansior{8].1 For completing our program in
Hadronic tau decays have been demonstrftéd  the vector andv + A channel[10-14] we probe, in
to be an efficient laboratory for testing perturbative this Letter, the structure of the QCD vacuum using the
and non-perturbative QCD. That is due both to the ALEPH/OPAL data on thé’—A spectral functions in
exceptional value of the tau mass situated at a fron- connection with a set of Laplace sum rules (LSR). We
tier regime between perturbative and non-perturbative have already initiated the analysis of thieA channel
QCD and to the excellent quality of the ALEPH/OPAL in previous paper§l5,16] However, our main moti-
[2,3] data. On the other, itis also known before the ad- vation here is due to the recent interests on het
vent of QCD, that the Weinbeifg] and DMOI5] sum hadronic correlator, which can serve as an order pa-
rules are important tools for controlling the chiral and rameter of spontaneous chiral symmetry breaking in
flavor symmetry realizations of QCD, which are bro- the chiral limitm, = 0. This correlator also governs
ken by light quark mass terms to higher orfgjrand the dynamics of the weak matrix elements of the elec-
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troweak penguin-like operatof$7,18] These impor-

tant properties require a detailed structure of the re-
lated QCD vacuum which can be parametrized by the

sum of power correctionf8]. A large number of pa-
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2. TheLaplacesum rules (L SR)

In order to exploit the ALEPH/OPAI[2,3] data on
the spectral functiom — a from hadronic tau decays,

pers on the estimates of these power corrections usingwe shall work with the LSR version of the 1st Wein-

different methods exist in the literature, but with con-
flicting results in[2,3,19-23Jand in[24—26,28,29]In
the following we propose a set of Laplace transform
sum rules (LSR) which can help to clarify such dis-
crepancies. We shall be concerned here withitha
two-point correlator:

mRg)

v

ifd4x eiqx(OITJ,II(x)(JF(O))T|O)

mg—0

_(guqu_‘I/LCIV)HLR(‘IZ)v 1)
built from the left- and right-handed components of
the local weak current:

Iy =iy (l—ys)d,  IR=ay"(1+yd. (2

Following SVZ [8], the correlator can be approxi-
mated by:

1R (Qz) ~ ’

dgz (0?4
where Oy = C24(0y;) is the short-hand notation
of the QCD non-perturbative condensat@?;) of
dimension D = 2d and its associated perturbative
Wilson coefficientCz4; g2 = —(Q? > 0) is the mo-
mentum transfer. In the chiral limi:, 4 = 0, there
is no D = 2 term as unflavored contribution of the
renormalon-type[10,11,30] vanishes. The spectral
function (v — a):

O @3)

has been measured by ALEPH and OPE&,3] us-
ing r-decay data. Within a such normalization, the
original “sacrosante” first and second Weinberg sum
rules[4,5] read, in the chiral limitn, 4 = O:
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where f; = (924 + 0.26) MeV is the experimental
pion decay constant.

(5)

berg sum rule, in the chiral limit,, 4 = O:
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O,

from which on can obtain, by taking successive deriv-
atives int, the set of LSR:
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For our purpose, we shall truncate (in order to have
a much better comparison with the existing results)
the series at2= 18-dimension condensatésssum-
ing that this approximation provides a good descrip-
tion of the exact expression of the two-point correlator
IT'R. Then, from our previous general formula, one
can write the set of sum rules:

Lg~+01s,
L7 —016 — O1gr,

2
L6~ +014+ O167 + 018?7

(8)

Therefore, we can extract iteratively the vacuum
condensates beginning frofig. The value 0015 ob-
tained in this way will be inserted intg; for deter-
mining O16 and so on.

We parametrize the spectral function by using the
ALEPH/OPAL [2,3] data on the spectral function
v — a from hadronic tau decays below Abover,, we

2 The result will not depend crucially on the choice of the trunca-
tion of the series. We shall see that at the region where the conden-
sates are estimated the OPE presents a good convergence.
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use a QCD continuum coming from the discontinuity which follows from the duality relatiof31]:
of the QCD diagrams. In the particular case of/IfR , . 1
studied here, a such contribution vanishes identically, fe ~ 87 f7 [ (1.2+0.2) GeV?, (11)

which is equivalent to cut the integral in E@) atz.. . . .
The appropriate values @f has been studied ifi5, W'tlh gAf— 0.5 igges IGnS%,er?d |E24—?6], thedhlgher
20,24,31]by requiring that the 1st and the 2nd Wein- value olz. around <.> evhas been favored.

In order to avoid results which strongly depend on

berg sum rules vanishes in the chiral limit to leading h hoi | der the ab |
order of the OPE. Two solutions have been found: ese choices O’i.’ we only consider the above values
of 7. as a guideline of our analysis. Indeed, it is un-

t.~ (1.4-15) GeV® and (2.5-26) Ge\2. (9) likely to taker, < 1.4 Ge\? as we will loose part of the

p meson tails, and then most of the lowest ground state
In [15] the lowest value of. has been favored due dynamics. Taking, > 2.6 Ge\2, the kinematic region
to the inaccuracy of the ALEPH/OPAL data which af- 5 small and the data become very inaccurate. Then,
fects the highest value, though intuitively, one tends t0 {hey cannot provide useful information to the spectral
favor this highest value af where pQCD is expected  fynction. Indeed in this region, the spectral function
to work better. Exluding the high- value solution,  goes not have a definite sign, for a given data point,
and requiring simultaneous zeros of the 1st and 2nd § e to the large error bars.
Weinberg sum rules, Refl15] deduces the accurate For an illustration, we show the analysis©@fg 16
number: andOs 4 in Fig. 1for different choices of the.-cut un-

_ til which we use the ALEPH/OPAL data, and beyond
fe = (L475+0.015 GeV’. (10) which the pQCD diagram is expected to describe the
This choice, as emphasized[0] coincides with the  two-point correlator. The analysis of the other conden-
t.-value obtained for the MHA in the largl-limit, sates present similar features.
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Fig.1.7in GeV—2-behaviour of the condensat€®, in units of GeV for different values of, in GeVZ: 1.4 (dot-dashed), 1.5 (dashed bold),
2.5 (continuous bold), 2.6 (continuous): @) g, (b) O16, (€) O and (d)O4.
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Table 1
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Estimated values of thB = 2d < 18-dimensionOp) condensates in units of 18 GeVP. We have ordered the condensates Oy to Oy

according to their chronological estimate

Authors O18 O16 O14 O12 O10 Og Og Oy
Thiswork

LSR

Eq.(8) —-1+0.6 +4.3+1.9 —9.6+31 +147+37 -171+44 +154+4.8 -97+41 -05+0.1
Egs.(14), (15) +158+3.2 —84+16
Eq.(16) -8.0+11
Average +15.6+4.0 —8.7+23
WFESR

Rev2 +30+10 —28+8 +25+5 —22+3 +168+20 -102+04
Orig. [28]b —946+ 147 4390+ 65 —146+7 +435+105 —4.4+38 —4.8+0.9
FESRC

BG Revd +12+15  —6.6+0.2
BG Orig. [24] —124+9.0 —32+20
DS Rev® +10+2 —8.0+£20
DS Orig [25] —2+12 —8.0+£2.0
LR ReV! +53+16 —39+12 +260+84 —-147+438
LR Orig. [26] —260+80 +78+24 —120ﬂl —4+2
Others

MHA + o’ [19] +115+35 —-125+34 4+132+33 -131+30 +117+26 —79+16
MHA [19] +119+3.9 —128+39 +133+39 132436 +117+3.1 —7.9+20
ZYA [22] —45+34 +7.8+3.0 —-7.1+15
1Z [23] +7.0+£4.0 —6.4+16
ALEPH [2] +110+1.0 —7.7+0.8
OPAL [3] +75+13 —6.0+£0.6
DGHSJ[21] +87+24 —6.0+0.6
CS3[29] —4.0+2.8
Aver aged —14+0.6 +144+46 —157+37 4+238+64 —-182+59 122+29 —7.8+16

@ We have redone the analysis[@B] using.-stability criterion.

b We use the mean value of the results from the ALEPH and OPAL data.

C The revised (Rev.) FESR results have been obtaingdatl.5 GeV?; the original (Orig.) ones at ~ 2.5 Ge\2.

d These results have been obtained4] at 1.5 Ge\?.

€ We have corrected the value 6% (see Sectiod) and rescaled the results [@5].

f The central values come frof27]. Inspired from the results d26] at 2.5 Ge\?, we have roughly estimated the systematic errors to be

about 30%.

9 Numbers in the line©rig. are not considered into the average.

The optimal results given ifiable 1correspond to  for extracting the optimal resulfs.

the one at the minimum or inflexion point af for The error takes into account the one of the data and
differentz.-values inside the range in E(R). Thet- the systematics of the method due to the range-of
stability criterion has been often used in the Laplace values given in Eq(9) and to the propagation of errors
sum rules analysis as it signals tbempromise re- induced by the ones of the input condensates. We do
gionwhere the OPE is reliable (smallervalues) and not include some eventual statistical errors.

where the information from the data still remains op- It is important to notice from our analysis that in
timal (largert-values). It is also unlikely if the result  the range of, given in Eq.(9), the extracted values

is strongly dependent on the choicergivalues as this  of the condensates do not flip sign contrary to the case
signals a strong model dependence of the result on the

form of the QCD continuum. Then, in the following,

we shall use in connection these two stabilities criteria 3 For more complete discussions, see [2j.
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of FESR’s results given in the existing literature. One vidual sum rules:
can attribute this feature to the role of the exponential 2 4 5
weight in LSR which enhances the contribution of the 3Lg+ t£1 = 2041 + (96 —O10=— 01

p—
low-energy region to the sum rule. 24 60

One can also notice that, for high-dimension con- _ 0147_6 _0 6’_7 _ 0187_8
densates, the optimal values are obtained at large 240 1260 8064
values like also in the least square fit analysi§a, (14)
23]. However, we have checked that, during the analy-  Inthe second sum rul€)s disappears and thefig
sis of each sum rule, the high-dimension condensateswill dominate the LSR:
remain corrections to the low-dimension contributions 3 4 5

and do not break the OPE. One can also notice thattheLo + = £1 (94— Os— (910— O12—
12 24 80
position of the minimum shifts to lower values of

for decreasing dimension condensates, as one can see _ @14T_6 — i — O1g i )
in Fig. 1 for the D = 18 to the D = 4 condensates. 360 2016 13440
These features are re-assuring for the reliability of the (15)
result. Therefore, we use the sum rule in E§j4) (respec-

In order to test the accuracy of our estimate, we tively Eq. (15)) for extractingOeg (respectivelyOs).
have extracted fromZo the known tiny value of ~ We use the known tiny value ab = 4 quark con-
the O4 quark condensate contribution using as input densate contribution given in E@L3). The analysis
all higher-dimension condensates. Including radiative is shown inFig. 2and the results are given Trable 1

corrections, this contribution reaf32]: Finally, we analyze ther-like decay sum rule,
which has the advantage to be kinematically sup-
4 59 is:
Ozh=2(mu+md)<ﬁu)|:l+§&+ : < ) ] pressed near the real axis
T 0

12
_ ( ) £01=fdl<1——) ImIT R
where (m, + mg)(iiu + dd) = —2f?m2. The size of , Ie (4
the radiative corrections is about 35% at thacale

-1

where the optimal results are extracted. This gives in _ Z On (=D |:1 (n— 1)}’ (16)
units of 103 GeV*: (n—1)! le

@Zh ~ —0.44, (13) from which we deduc&s using as inputDs and the
_ _ _ _ higher-dimension condensates.

in excellent agreement with our fit0.5 £ 0.1 given Our different results are summarizeTlable 1

in Table 1from Fig. 1(d). This test increases the con-
fidence on our other predictionsTable lobtained in

the same way. 4. Comparison with existing estimates

4.1. LargeN,. and minimal hadronic approximation
3. Alternative estimates of Og and Og (MHA)

Using the previous method, we have obtained from  Ourresults agree in signs and in magnitude until the
Eq. (8) the results inTable 1in units of 103 GeV” D = 14-dimension condensates with the one§lio]
(D being the dimension of the condensates). Here, we obtained using larg&/,. and the minimal hadronic ap-
present alternative estimates based on some combinaproximation (MHA) and with its improved version in-
tions of LSR in the chiral limitnz, 4 = 0. cluding the next radial vector mesgn

The first sum rule is chosen in such a way tét Our result for theD = 16 condensate still agrees
disappears to leading order while higher dimensions: in sign with the one irf19] but our absolute value is
D =10, 12 have smaller coefficients than in the indi- lower than the one ifiLl9] by about & .
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Fig. 2. Same as irfrig. 1 but for the improved analysis in Sec-
tion 3: (a) Og from Eq.(15), (b) Og from Eq.(14) and (c)Og from
Eq.(16).

2.5

4.2. ALEPH and OPAL estimates frarrdecay

Our results for the lowD = 6, 8 condensates agree
also quite well with the ALEPH/OPAL estimate of the
separaté/ andA channel$2,3], [21], from which one
can deduce th&-A difference.

4.3. Exponential-like sum rules

The value of theD = 6 condensate also agrees
within the errors with the results [22], but the values
of Og 10 Obtained in the present Letter are about two
times higher. However, our analysis differs fr¢ag]

S. Narison / Physics Letters B 624 (2005) 223232

who use a least square fitting procedure with some
other forms of LSR with a different kernel. Due to
the alternate sign of the condensate contributions to
the OPE, the fitting procedure can be inaccurate as we
shall see explicitly in a forthcoming example.

4.4. Finite energy sum rules (FESR)

In [24-26] FESR:
tc 1
M, = /dl t"; Im TR = (—1)"O242
0

17)

(n=0,1,2,3), and its slight variants have been used
for determiningDs . However, unlike the case of LSR
analyzed in previous sections, the results depend cru-
cially on the choice of,. at which one extracts the
optimal results. The two sets gfvalues correspond-
ing to the zeros of the 1st or/and 2nd Weinberg sum
rules are given in Eq(9). The results from LSR are
consistent with the ones corresponding to valug ef

1.5 Ge\?, while instead if24-26] the higher value

of 1. ~ 2.5 Ge\2 has been favored. As a consequence,
the value ofOg and other higher-dimension conden-
sates obtained in these works are opposite in 8igns
with the ones from LSR and from MHA in larg¥..
Taking the value of, in Eg. (10), we give the version

of the FESR results d24,26] in Table 1 where the
slight difference is due to the different parametriza-
tions of ther-decay data (neural network j&6]) and

to the different weights introduced for improving the
original FESR.

4.5. Weighted finite energy sum rules

This FESR-like sum rule called “pinched-weight
FESR” (hereafter denoted WFESR) by the autlip8}
is an involved variant of the FESR in E(.7):

te
t\1
dtw,| — | — ImI R,
t.)m
0

4 We have corrected the sign 6% in the curve (a), Fig. 5 d25].
Therefore curve (a) and (b) crosstate 1.3 Ge\? giving the value
of Og in Table 1 We have also rescaled the normalization by a factor
2 for consistency in our comparison.

Jo, (18)
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Fig. 3.1.-behaviour in Ge¥ of different observables used [88]: (a) (t2/7)Juy, (b) (12/2)Ju,, (c) O, (d) Og in units of Ge\?, 24 being
the dimensions of the condensates. The two curves delimit the region induced by the errors of the data. They coincide in almost all regions
except the ones above 2.4 GeWhere the data are inaccurate.

where the weight factayp, is: Jog = (9(%) =0+ ;@ ~ —6.6,
c
n 1
— 10
c

forn=2,3,4,5,6, and corresponds to the so-called \ye insert into this expression the values in units of
maximally safe analysis. The QCD expressions of 10-3 of g ¢ fitted by[28] (mean value from ALEPH
these sum rules are given in Eq. (24) of RE8] and OPAL fit):

which we have checked the LO terms.

In order to test the results, we study thedepend- O~ —4.9, Og~ —3.8, (22)
ence ofJ,, andJ,, as shown inFig. 3(a) and (b).
We include into the analysis, the known effectf,
which we have also recovered in the previous section. (1) - @ -

We obtain az.-stability point (a compromise region Opg (219 =—57 and Ogg(215=-58. (22)
between the convergence of the OPE (smglland This test shows the consistency between the results ob-
minimal dependence on the form of the QCD contin- tained using, stability in Eq.(20)and the least square
uum (larger.)) around 2.0 Ge¥, at which we can  fitin Eq. (21).

extract the optimal value of the condensates. How-  Alternatively, we can also solve the two equations
ever, one can notice froffig. 3that contrary to FESR, J,, and J,, for extracting the two solution®g and

the estimates are not very sensitive (change in the lastOg. We study thez.-dependence of the results in
digit) to the values of. corresponding to the range in  Fig. 3(c) and (d). Here, the stability is obtained at
Eq. (9). Neglecting the small radiative corrections for 7. ~ 1.7 GeV? which differs from the one obtained
illustration, one obtains in units of 18 Ge\f: previously. We may interpret this difference as due to

which gives:
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the fact that we do not consider here the same observ-around 1.8 Ge¥. The values obtained at the second
ables as irFig. 3(a@) and (b). However, in order to have point are very sensitive to the input value @§ and
conservative results, we shall considemn the range flip sign compared to the one at the flat plateau for
(1.7-20) Ge\2 where the two stabilities are obtained. D > 14, a feature similar t@g from FESR analy-
One can inspect that, in this range, the estimate is only sis[24,26] This may indicate that the weight factor is
slightly affected by the.-values. The results are given less efficient for high-dimension condensates. We have
in Table 1with a good accuracy. We check again the excluded the high; solution similarly to the FESR

consistency of the results by inserting these values into case, and we deduce the valueJable 1

Eq. (20), which gives:
(23)

Our test does not support the results giveri2ig]

0% (215 ~-67 and OF ~-6.1.

4.6. Test of the factorization assumption

The D = 6 condensate contributions f@-R have

obtained from numerical fits. This may due to the fact been first derived iffi7] using the leading order result
that the terms in the series have alternate signs, and/orof [8] for the vector and axial-vector correlators. The
where the 2nd term is a small correction of the 1st one, radiative corrections have been obtained[38,34]

and may be difficult to extract from the fitting proce-

Using an anti-commutings matrix and the choice of

dure. Instead, we expect that the new results from this operator basis ifi34], it reads by assuming a factor-

method which we give iTable 1obtained using sta-
bility criteria, from solving the two equationk,, and
Ju, for extracting the two unknowi®s and Og are
more reliable.

Notice that in a large range af, the two estimates
of Og andOg do not flip sign, which, like in the case

ization of the four-quark condensates:

64 -2 Uy 89 1 Q2
062—37'[0(3(““) |:1+ ;(4—8—1"1? .

(25)
Using the NDLR or/and the HV regularization scheme,

of LSR, can be due to the weight factor in the spectral the same contribution reads, to leading ordeNjnat

integral. This is not the case of the basic FESR.
In principle, once one know&g and Og, one can

extract the other high-dimension condensates fromthe o, _ _g. [<W>2<1

set of equations given in Eq. (24) (#8]. O10t0 O16
can be, e.g., extracted from,, to J,,,. However,

0% =12 [24]:

o, 61 1,
7 12) 1622 R

(26)

more we go to higher moments, less the accuracy onhereA, g ~ (4.4 + 0.5) x 102 is of ordera?.

the estimate is reached as the high-dimension terms

The D = 8 four-quark condensate contributions

which one wishes to extract are tiny corrections to the haye been obtained if85] where a ¥N? ambigu-
leading order terms, while the method is not accurate ity has been noticed. Th® = 10 condensates have
enough to pick up these tiny corrections. For instance peen obtained if22]. Assuming factorization, one can

atz. ~ 2 Ge\?, the QCD parts of the sum rules nor-
malized to the leadin@g contributions read:

2 Ge\?\*
Jw5~#[1+0.005< te )(914],

c

2 Ge\®\°
Jw6~#[1—o.ooz< te ) 016].

c

(24)

The corrections are a factor 2 smaller foy, andJ,,,.
This fact may explain why relatively large central val-

write:
64
Og = 57O (iu)> M2,
8 50
O10= —§nas(ﬁu)2|:§M§ + 3271(%(;2)}. (27)

Mg is the scale governing the mixed condensate
and is equal ta(0.8 + 0.2) GeV? from the baryon
sum ruleg36,37], B—B* mass-splitting38] and string

ues of the high-dimension condensates emerge frommodel[39]. We shall use the value of the gluon con-

this method. A tentative extraction 6f,9to Q16 from
Juws 10 J,e shows that the.-dependence present a
flat stability around 1.25 Ge¥/and another extremum

densatéo,; G2) = (0.07+£0.01) GeV* fromete™ data
[12,40] Within the factorization assumption, we shall
include the log-dependence of the quark condensate
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and ofay, which give: Instead, our strategy is to look for sum rules which
2 . A disentangle, from the beginning, the relevant high-
o (itut) 2| fac =~ —71/9@1)2, (28) dimension condensates, and then makes the analysis
9 (logQ/4) cleaner and more transparent.
which is 16 x 104 Ge\® if one uses the invariant We have given a first estimate of the size of the-
quark condensat(éz;) ~ —(248 MeVW)3 [41] and eval- 18 condensates, which will be interesting to check us-

uatea,(t) at r = 1.5 GeV 2 at which Og has been ing alternative methods. The LSR estimate, which we

extracted from the sum rule. Using these numerical in- €xpect to be more appropriate for extracting higher-
puts, we deduce in units of 18 GeV” (D being the dimension condensates than wWFESR and FESR, shows

dimension of the condensate): that the size of the very high = 16 andD = 18 con-
densates are relatively small which may indicate the

Oeélfac ~ —3.6, good convergence of the OPE even at largealues.

Oglfac = +2.9, During the analysis, as one can see in previous

Oroltac = —4.7. (29) figures, the absolute vaIue; of the (':ondensayes are
slightly affected byr and¢. in the optimum region
Comparing these values with the onesTable 1 (minimum or inflexion point). However, it is impor-
and Sectior3, we conclude that the factorization as- tant to notice that the results from LSR in large range
sumption agrees in sign with these results but under- of t- andz.-values do not flip sign, which is a great ad-
estimate the absolute value of the condensates by avantage compared to the ones from some finite energy
factor 2-5. This feature is similar to the case of the like sum rules discussed in the literature.
vector [12,14,42] axial-vector[11,43], baryon[37] The extension of the present analysis to some other
sum rules and from the analysis of tieand V + A channels are feasible though not straightforward. This
r-decay datg2,3,11] From the theoretical point of is due to the relative importance of the continuum
view, the factorization assumption is only consistent pQCD contribution for higher moments in some other
with the renormalization of operators to leading order channels, which is not the case BfA, where this
in 1/N. due to mixing of different operators having effect exactly cancels at higher energies. We plan to
the same dimensiorj44]. come back to these different channels in a future pub-
lication.
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