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Abstract

ALEPH/OPAL data on theV –A spectral functions from hadronicτ decays are used in connection with a set of Lapl
transform sum rules (LSR) for fixing the size of the QCD vacuum condensates up to dimension 18. Our results f
ones from large-Nc QCD within the minimal hadronic approximation (MHA) and show a violation of about a factor 2–
the vacuum saturation estimate of the dimension-six to -ten condensates. We scrutinize the different determinatio
QCD vacuum condensates usingτ -decays data. After revisiting some of the existing results, we present coherent values
condensates from different methods.
 2005 Elsevier B.V. Open access under CC BY license.
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1. Introduction

Hadronic tau decays have been demonstrated[1]
to be an efficient laboratory for testing perturbat
and non-perturbative QCD. That is due both to
exceptional value of the tau mass situated at a fr
tier regime between perturbative and non-perturba
QCD and to the excellent quality of the ALEPH/OPA
[2,3] data. On the other, it is also known before the
vent of QCD, that the Weinberg[4] and DMO[5] sum
rules are important tools for controlling the chiral a
flavor symmetry realizations of QCD, which are br
ken by light quark mass terms to higher order[6] and
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by higher-dimensions QCD condensates[7] within the
SVZ expansion[8].1 For completing our program i
the vector andV + A channel[10–14], we probe, in
this Letter, the structure of the QCD vacuum using
ALEPH/OPAL data on theV –A spectral functions in
connection with a set of Laplace sum rules (LSR).
have already initiated the analysis of theV –A channel
in previous papers[15,16]. However, our main moti
vation here is due to the recent interests on theV –A

hadronic correlator, which can serve as an order
rameter of spontaneous chiral symmetry breaking
the chiral limit mq = 0. This correlator also govern
the dynamics of the weak matrix elements of the e

1 For a review, see e.g.[9].
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troweak penguin-like operators[17,18]. These impor-
tant properties require a detailed structure of the
lated QCD vacuum which can be parametrized by
sum of power corrections[8]. A large number of pa
pers on the estimates of these power corrections u
different methods exist in the literature, but with co
flicting results in[2,3,19–23]and in[24–26,28,29]. In
the following we propose a set of Laplace transfo
sum rules (LSR) which can help to clarify such d
crepancies. We shall be concerned here with theV –A

two-point correlator:

ΠLR
µν (q) ≡ i

∫
d4x eiqx〈0|T J L

µ(x)
(
J R

ν (0)
)†|0〉

(1)
mq→0= −(

gµνq
2 − qµqν

)
ΠLR(

q2),
built from the left- and right-handed components
the local weak current:

(2)J L
µ = ūγµ(1− γ5)d, J R

µ = ūγ µ(1+ γ5)d.

Following SVZ [8], the correlator can be approx
mated by:

(3)ΠLR(
Q2) �

∑
d�2

O2d

(Q2)d
,

where O2d ≡ C2d〈O2d〉 is the short-hand notatio
of the QCD non-perturbative condensates〈O2d〉 of
dimension D ≡ 2d and its associated perturbati
Wilson coefficientC2d ; q2 ≡ −(Q2 > 0) is the mo-
mentum transfer. In the chiral limitmu,d = 0, there
is no D = 2 term as unflavored contribution of th
renormalon-type[10,11,30] vanishes. The spectra
function(v − a):

(4)
1

π
ImΠLR ≡ 1

2π2
(v − a)

has been measured by ALEPH and OPAL[2,3] us-
ing τ -decay data. Within a such normalization, t
original “sacrosante” first and second Weinberg s
rules[4,5] read, in the chiral limitmu,d = 0:

S0 ≡
∞∫

0

dt
1

π
ImΠLR − 2f 2

π = 0,

(5)S1 ≡
∞∫

0

dt t
1

π
ImΠLR = 0,

wherefπ = (92.4 ± 0.26) MeV is the experimenta
pion decay constant.
2. The Laplace sum rules (LSR)

In order to exploit the ALEPH/OPAL[2,3] data on
the spectral functionv − a from hadronic tau decays
we shall work with the LSR version of the 1st Wei
berg sum rule, in the chiral limitmu,d = 0:

L0(τ ) =
∞∫

0

dt e−tτ 1

π
ImΠLR − 2f 2

π

(6)�
∑
d�2

τ (d−1)

(d − 1)!O2d,

from which on can obtain, by taking successive de
atives inτ , the set of LSR:

Ln ≡ (−1)n
dnL0

dτn
�

∞∫
0

dt tne−tτ 1

π
ImΠLR

(7)� (−1)n
∑

d�(n+1)

τ (d−n−1)

(d − n − 1)!O2d .

For our purpose, we shall truncate (in order to h
a much better comparison with the existing resu
the series at 2d = 18-dimension condensates,2 assum-
ing that this approximation provides a good desc
tion of the exact expression of the two-point correla
ΠLR. Then, from our previous general formula, o
can write the set of sum rules:

L8 � +O18,

L7 � −O16 −O18τ,

L6 � +O14 +O16τ +O18
τ2

2
,

(8)
...

Therefore, we can extract iteratively the vacu
condensates beginning fromL8. The value ofO18 ob-
tained in this way will be inserted intoL7 for deter-
miningO16 and so on.

We parametrize the spectral function by using
ALEPH/OPAL [2,3] data on the spectral functio
v − a from hadronic tau decays belowtc. Abovetc, we

2 The result will not depend crucially on the choice of the trun
tion of the series. We shall see that at the region where the con
sates are estimated the OPE presents a good convergence.
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use a QCD continuum coming from the discontinu
of the QCD diagrams. In the particular case of ImΠLR

studied here, a such contribution vanishes identica
which is equivalent to cut the integral in Eq.(8) at tc.
The appropriate values oftc has been studied in[15,
20,24,31]by requiring that the 1st and the 2nd We
berg sum rules vanishes in the chiral limit to lead
order of the OPE. Two solutions have been found:

(9)tc � (1.4–1.5) GeV2 and (2.5–2.6) GeV2.

In [15] the lowest value oftc has been favored du
to the inaccuracy of the ALEPH/OPAL data which a
fects the highest value, though intuitively, one tend
favor this highest value oftc where pQCD is expecte
to work better. Exluding the high-tc value solution,
and requiring simultaneous zeros of the 1st and
Weinberg sum rules, Ref.[15] deduces the accura
number:

(10)tc = (1.475± 0.015) GeV2.

This choice, as emphasized in[20] coïncides with the
tc-value obtained for the MHA in the largeNc-limit,
which follows from the duality relation[31]:

(11)tc � 8π2f 2
π

1

1− gA

� (1.2± 0.2) GeV2,

with gA � 0.5 ± 0.06. Instead in[24–26], the higher
value oftc around 2.5 GeV2 has been favored.

In order to avoid results which strongly depend
these choices oftc, we only consider the above valu
of tc as a guideline of our analysis. Indeed, it is u
likely to taketc � 1.4 GeV2 as we will loose part of the
ρ meson tails, and then most of the lowest ground s
dynamics. Takingtc � 2.6 GeV2, the kinematic region
is small and the data become very inaccurate. Th
they cannot provide useful information to the spec
function. Indeed in this region, the spectral functi
does not have a definite sign, for a given data po
due to the large error bars.

For an illustration, we show the analysis ofO18,16
andO6,4 in Fig. 1for different choices of thetc-cut un-
til which we use the ALEPH/OPAL data, and beyo
which the pQCD diagram is expected to describe
two-point correlator. The analysis of the other cond
sates present similar features.
d),
Fig. 1.τ in GeV−2-behaviour of the condensatesO2d in units of GeV2d for different values oftc in GeV2: 1.4 (dot-dashed), 1.5 (dashed bol
2.5 (continuous bold), 2.6 (continuous): (a)O18, (b)O16, (c)O6 and (d)O4.
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be
Table 1
Estimated values of theD ≡ 2d � 18-dimension〈OD〉 condensates in units of 10−3 GeVD . We have ordered the condensates fromO18 toO4
according to their chronological estimate

Authors O18 O16 O14 O12 O10 O8 O6 O4

This work
LSR
Eq.(8) −1±0.6 +4.3±1.9 −9.6±3.1 +14.7±3.7 −17.1±4.4 +15.4±4.8 −9.7±4.1 −0.5±0.1
Eqs.(14), (15) +15.8±3.2 −8.4±1.6
Eq.(16) −8.0±1.1
Average +15.6±4.0 −8.7±2.3

wFESR
Rev.a +30±10 −28±8 +25±5 −22±3 +16.8±2.0 −10.2±0.4
Orig. [28]b −946±147 +390±65 −146±7 +43.5±10.5 −4.4±3.8 −4.8±0.9

FESRc

BG Rev.d +12±1.5 −6.6±0.2
BG Orig. [24] −12.4±9.0 −3.2±2.0
DS Rev.e +10±2 −8.0±2.0
DS Orig. [25] −2±12 −8.0±2.0

LR Rev.f +53±16 −39±12 +26.0±8.4 −14.7±4.8
LR Orig. [26] −260±80 +78±24 −120+7

−11 −4±2

Others
MHA + ρ′ [19] +11.5±3.5 −12.5±3.4 +13.2±3.3 −13.1±3.0 +11.7±2.6 −7.9±1.6
MHA [19] +11.9±3.9 −12.8±3.9 +13.3±3.9 −13.2±3.6 +11.7±3.1 −7.9±2.0
ZYA [22] −4.5±3.4 +7.8±3.0 −7.1±1.5
IZ [23] +7.0±4.0 −6.4±1.6
ALEPH [2] +11.0±1.0 −7.7±0.8
OPAL [3] +7.5±1.3 −6.0±0.6
DGHS[21] +8.7±2.4 −6.0±0.6
CS3[29] −4.0±2.8

Averageg −1±0.6 +14.4±4.6 −15.7±3.7 +23.8±6.4 −18.2±5.9 12.2±2.9 −7.8±1.6

a We have redone the analysis of[28] usingtc-stability criterion.
b We use the mean value of the results from the ALEPH and OPAL data.
c The revised (Rev.) FESR results have been obtained attc ≈ 1.5 GeV2; the original (Orig.) ones attc ≈ 2.5 GeV2.
d These results have been obtained by[24] at 1.5 GeV2.
e We have corrected the value ofO8 (see Section4) and rescaled the results of[25].
f The central values come from[27]. Inspired from the results of[26] at 2.5 GeV2, we have roughly estimated the systematic errors to

about 30%.
g Numbers in the linesOrig. are not considered into the average.
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The optimal results given inTable 1correspond to
the one at the minimum or inflexion point ofτ for
different tc-values inside the range in Eq.(9). Theτ -
stability criterion has been often used in the Lapla
sum rules analysis as it signals thecompromise re-
gion where the OPE is reliable (smallerτ -values) and
where the information from the data still remains o
timal (largerτ -values). It is also unlikely if the resu
is strongly dependent on the choice oftc-values as this
signals a strong model dependence of the result on
form of the QCD continuum. Then, in the following
we shall use in connection these two stabilities crite
for extracting the optimal results.3

The error takes into account the one of the data
the systematics of the method due to the range otc-
values given in Eq.(9) and to the propagation of erro
induced by the ones of the input condensates. We
not include some eventual statistical errors.

It is important to notice from our analysis that
the range oftc given in Eq.(9), the extracted value
of the condensates do not flip sign contrary to the c

3 For more complete discussions, see e.g.[9].
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of FESR’s results given in the existing literature. O
can attribute this feature to the role of the exponen
weight in LSR which enhances the contribution of t
low-energy region to the sum rule.

One can also notice that, for high-dimension co
densates, the optimal values are obtained at largτ -
values like also in the least square fit analysis of[22,
23]. However, we have checked that, during the an
sis of each sum rule, the high-dimension condens
remain corrections to the low-dimension contributio
and do not break the OPE. One can also notice tha
position of the minimum shifts to lower values ofτ

for decreasing dimension condensates, as one ca
in Fig. 1 for the D = 18 to theD = 4 condensates
These features are re-assuring for the reliability of
result.

In order to test the accuracy of our estimate,
have extracted fromL0 the known tiny value of
the O4 quark condensate contribution using as in
all higher-dimension condensates. Including radia
corrections, this contribution reads[8,32]:

(12)

Oth
4 = 2(mu + md)〈ūu〉

[
1+ 4

3

αs

π
+ 59

6

(
αs

π

)2]
,

where(mu + md)〈ūu + d̄d〉 = −2f 2
πm2

π . The size of
the radiative corrections is about 35% at theτ -scale
where the optimal results are extracted. This give
units of 10−3 GeV4:

(13)Oth
4 � −0.44,

in excellent agreement with our fit−0.5 ± 0.1 given
in Table 1from Fig. 1(d). This test increases the co
fidence on our other predictions inTable 1obtained in
the same way.

3. Alternative estimates of O6 and O8

Using the previous method, we have obtained fr
Eq. (8) the results inTable 1in units of 10−3 GeVD

(D being the dimension of the condensates). Here
present alternative estimates based on some com
tions of LSR in the chiral limitmu,d = 0.

The first sum rule is chosen in such a way thatO8
disappears to leading order while higher dimensio
D = 10,12 have smaller coefficients than in the in
e

-

vidual sum rules:

3L0 + τL1 = 2O4τ +O6
τ2

2
−O10

τ4

24
−O12

τ5

60

(14)

−O14
τ6

240
−O16

τ7

1260
−O18

τ8

8064
.

In the second sum rule,O6 disappears and thenO8
will dominate the LSR:

L0 + τ

2
L1 = O4

τ

2
−O8

τ3

12
−O10

τ4

24
−O12

τ5

80

(15)

−O14
τ6

360
−O16

τ7

2016
−O18

τ8

13440
.

Therefore, we use the sum rule in Eq.(14) (respec-
tively Eq. (15)) for extractingO6 (respectivelyO8).
We use the known tiny value ofD = 4 quark con-
densate contribution given in Eq.(13). The analysis
is shown inFig. 2and the results are given inTable 1.

Finally, we analyze theτ -like decay sum rule
which has the advantage to be kinematically s
pressed near the real axis:

L01 ≡
tc∫

0

dt

(
1− t

tc

)
e−tτ 1

π
ImΠLR

(16)=
∑
n�2

O2n

τ (n−1)

(n − 1)!
[
1+ (n − 1)

tcτ

]
,

from which we deduceO6 using as inputO4 and the
higher-dimension condensates.

Our different results are summarize inTable 1.

4. Comparison with existing estimates

4.1. Large-Nc and minimal hadronic approximation
(MHA)

Our results agree in signs and in magnitude until
D = 14-dimension condensates with the ones in[19]
obtained using largeNc and the minimal hadronic ap
proximation (MHA) and with its improved version in
cluding the next radial vector mesonρ′.

Our result for theD = 16 condensate still agree
in sign with the one in[19] but our absolute value i
lower than the one in[19] by about 2σ .
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Fig. 2. Same as inFig. 1 but for the improved analysis in Sec
tion 3: (a)O8 from Eq.(15), (b)O6 from Eq.(14)and (c)O6 from
Eq.(16).

4.2. ALEPH and OPAL estimates fromτ -decay

Our results for the lowD = 6,8 condensates agre
also quite well with the ALEPH/OPAL estimate of th
separateV andA channels[2,3], [21], from which one
can deduce theV –A difference.

4.3. Exponential-like sum rules

The value of theD = 6 condensate also agre
within the errors with the results in[22], but the values
of O8,10 obtained in the present Letter are about t
times higher. However, our analysis differs from[22]
who use a least square fitting procedure with so
other forms of LSR with a different kernel. Due
the alternate sign of the condensate contribution
the OPE, the fitting procedure can be inaccurate as
shall see explicitly in a forthcoming example.

4.4. Finite energy sum rules (FESR)

In [24–26], FESR:

(17)Mn ≡
tc∫

0

dt tn
1

π
ImΠLR = (−1)nO2n+2

(n = 0,1,2,3), and its slight variants have been us
for determiningO6,8. However, unlike the case of LS
analyzed in previous sections, the results depend
cially on the choice oftc at which one extracts th
optimal results. The two sets oftc-values correspond
ing to the zeros of the 1st or/and 2nd Weinberg s
rules are given in Eq.(9). The results from LSR ar
consistent with the ones corresponding to value oftc ≈
1.5 GeV2, while instead in[24–26], the higher value
of tc ≈ 2.5 GeV2 has been favored. As a consequen
the value ofO8 and other higher-dimension conde
sates obtained in these works are opposite in sig4

with the ones from LSR and from MHA in largeNc.
Taking the value oftc in Eq. (10), we give the version
of the FESR results of[24,26] in Table 1, where the
slight difference is due to the different parametriz
tions of theτ -decay data (neural network in[26]) and
to the different weights introduced for improving th
original FESR.

4.5. Weighted finite energy sum rules

This FESR-like sum rule called “pinched-weig
FESR” (hereafter denoted wFESR) by the authors[28]
is an involved variant of the FESR in Eq.(17):

(18)Jωn ≡
tc∫

0

dt ωn

(
t

tc

)
1

π
ImΠLR,

4 We have corrected the sign ofO8 in the curve (a), Fig. 5 of[25].

Therefore curve (a) and (b) cross attc ≈ 1.3 GeV2 giving the value
of O8 in Table 1. We have also rescaled the normalization by a fac
2 for consistency in our comparison.
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all regions

Fig. 3. tc-behaviour in GeV2 of different observables used in[28]: (a) (t2c /7)Jw1, (b) (t2c /2)Jw2, (c) O6, (d) O8 in units of GeV2d , 2d being
the dimensions of the condensates. The two curves delimit the region induced by the errors of the data. They coïncide in almost
except the ones above 2.4 GeV2 where the data are inaccurate.
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where the weight factorωn is:

(19)ωn(x) = x

[
1−

(
n

n − 1

)
x +

(
1

n − 1

)
xn

]
,

for n = 2,3,4,5,6, and corresponds to the so-call
maximally safe analysis. The QCD expressions
these sum rules are given in Eq. (24) of Ref.[28]
which we have checked the LO terms.

In order to test the results, we study thetc-depend-
ence ofJω1 and Jω2 as shown inFig. 3(a) and (b).
We include into the analysis, the known effect ofO4,
which we have also recovered in the previous sect
We obtain atc-stability point (a compromise regio
between the convergence of the OPE (smalltc) and
minimal dependence on the form of the QCD cont
uum (largetc)) around 2.0 GeV2, at which we can
extract the optimal value of the condensates. H
ever, one can notice fromFig. 3that contrary to FESR
the estimates are not very sensitive (change in the
digit) to the values oftc corresponding to the range
Eq. (9). Neglecting the small radiative corrections f
illustration, one obtains in units of 10−3 GeV6:
Jω1 ⇒O(1)
68 ≡ O6 + 3

7

O8

tc
≈ −6.6,

(20)Jω2 ⇒O(2)
68 ≡ O6 + 1

2

O8

tc
≈ −5.8.

We insert into this expression the values in units
10−3 of O6,8 fitted by[28] (mean value from ALEPH
and OPAL fit):

(21)O6 � −4.9, O8 � −3.8,

which gives:

(22)O(1)
68 (2.15) � −5.7 and O(2)

68 (2.15) � −5.8.

This test shows the consistency between the result
tained usingtc stability in Eq.(20)and the least squar
fit in Eq. (21).

Alternatively, we can also solve the two equatio
Jω1 andJω2 for extracting the two solutionsO6 and
O8. We study thetc-dependence of the results
Fig. 3(c) and (d). Here, the stability is obtained
tc � 1.7 GeV2 which differs from the one obtaine
previously. We may interpret this difference as due
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the fact that we do not consider here the same obs
ables as inFig. 3(a) and (b). However, in order to hav
conservative results, we shall considertc in the range
(1.7–2.0) GeV2 where the two stabilities are obtaine
One can inspect that, in this range, the estimate is
slightly affected by thetc-values. The results are give
in Table 1with a good accuracy. We check again t
consistency of the results by inserting these values
Eq.(20), which gives:

(23)O(1)
68 (2.15) � −6.7 and O(2)

68 � −6.1.

Our test does not support the results given in[28]
obtained from numerical fits. This may due to the f
that the terms in the series have alternate signs, an
where the 2nd term is a small correction of the 1st o
and may be difficult to extract from the fitting proc
dure. Instead, we expect that the new results from
method which we give inTable 1obtained using sta
bility criteria, from solving the two equationsJω1 and
Jω2 for extracting the two unknownO6 andO8 are
more reliable.

Notice that in a large range oftc, the two estimates
of O6 andO8 do not flip sign, which, like in the cas
of LSR, can be due to the weight factor in the spec
integral. This is not the case of the basic FESR.

In principle, once one knowsO6 andO8, one can
extract the other high-dimension condensates from
set of equations given in Eq. (24) of[28]. O10 to O16
can be, e.g., extracted fromJω3 to Jω10. However,
more we go to higher moments, less the accuracy
the estimate is reached as the high-dimension te
which one wishes to extract are tiny corrections to
leading order terms, while the method is not accur
enough to pick up these tiny corrections. For insta
at tc ≈ 2 GeV2, the QCD parts of the sum rules no
malized to the leadingO6 contributions read:

Jω5 ∼ #

[
1+ 0.005

(
2 GeV2

tc

)4

O14

]
,

(24)Jω6 ∼ #

[
1− 0.002

(
2 GeV2

tc

)5

O16

]
.

The corrections are a factor 2 smaller forJω9 andJω10.
This fact may explain why relatively large central va
ues of the high-dimension condensates emerge f
this method. A tentative extraction ofO10 toO16 from
Jω3 to Jω6 shows that thetc-dependence present
flat stability around 1.25 GeV2 and another extremum
r

around 1.8 GeV2. The values obtained at the seco
point are very sensitive to the input value ofO6 and
flip sign compared to the one at the flat plateau
D � 14, a feature similar toO8 from FESR analy-
sis[24,26]. This may indicate that the weight factor
less efficient for high-dimension condensates. We h
excluded the high-tc solution similarly to the FESR
case, and we deduce the values inTable 1.

4.6. Test of the factorization assumption

The D = 6 condensate contributions toΠLR have
been first derived in[7] using the leading order resu
of [8] for the vector and axial-vector correlators. T
radiative corrections have been obtained in[33,34].
Using an anti-commutingγ5 matrix and the choice o
operator basis in[34], it reads by assuming a facto
ization of the four-quark condensates:

(25)

O6 = −64

9
παs〈ūu〉2

[
1+ αs

π

(
89

48
− 1

4
ln

Q2

ν2

)]
.

Using the NDLR or/and the HV regularization schem
the same contribution reads, to leading order inNc at
Q2 = ν2 [24]:

(26)

O6 = −8παs

[
〈ūu〉2

(
1+ αs

π

61

12

)
− 1

16π2
ALR

]
,

whereALR � (4.4± 0.5) × 10−3 is of orderα2
s .

The D = 8 four-quark condensate contributio
have been obtained in[35] where a 1/N2

c ambigu-
ity has been noticed. TheD = 10 condensates hav
been obtained in[22]. Assuming factorization, one ca
write:

O8 = 64

9
παs〈ūu〉2M2

0,

(27)O10 = −8

9
παs〈ūu〉2

[
50

9
M2

0 + 32π
〈
αsG

2〉].

M2
0 is the scale governing the mixed condens

and is equal to(0.8 ± 0.2) GeV2 from the baryon
sum rules[36,37], B–B∗ mass-splitting[38] and string
model[39]. We shall use the value of the gluon co
densate〈αsG

2〉 = (0.07±0.01) GeV4 from e+e− data
[12,40]. Within the factorization assumption, we sh
include the log-dependence of the quark conden
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59;

55
and ofαs , which give:

(28)αs〈ūu〉2|fac � 2

9

π

(logQ/Λ)1/9
〈̂̄uu〉2,

which is 1.6 × 10−4 GeV6 if one uses the invarian
quark condensate〈̂̄uu〉 � −(248 MeV)3 [41] and eval-
uateαs(τ ) at τ = 1.5 GeV−2 at whichO8 has been
extracted from the sum rule. Using these numerica
puts, we deduce in units of 10−3 GeVD (D being the
dimension of the condensate):

O6|fac ≈ −3.6,

O8|fac = +2.9,

(29)O10|fac = −4.7.

Comparing these values with the ones inTable 1
and Section3, we conclude that the factorization a
sumption agrees in sign with these results but un
estimate the absolute value of the condensates
factor 2–5. This feature is similar to the case of
vector [12,14,42], axial-vector[11,43], baryon [37]
sum rules and from the analysis of theV andV + A

τ -decay data[2,3,11]. From the theoretical point o
view, the factorization assumption is only consist
with the renormalization of operators to leading ord
in 1/Nc due to mixing of different operators havin
the same dimensions[44].

5. Conclusions

We have used theV –A component of the hadroni
tau decays data for exploring the vacuum structur
the ΠLR QCD correlator using a set of Laplace su
rules (LSR). We have also revisited different estima
based on FESR and its variant in Section4. Our results
are summarized inTable 1.

Contrary to most papers in the literature, we do
perform a least square fitting procedure for extract
simultaneously different condensates, but instead
the stability criteria (existence of minima or inflexio
points) for our estimate of the condensates. Due to
alternate signs of the condensate contributions in
OPE and to the fact that in most methods, the hi
dimension condensate contributions are correction
the lowest-dimension condensates in the analysis
approaches for extracting these high-dimension c
densates can become inaccurate.
Instead, our strategy is to look for sum rules wh
disentangle, from the beginning, the relevant hi
dimension condensates, and then makes the ana
cleaner and more transparent.

We have given a first estimate of the size of theD =
18 condensates, which will be interesting to check
ing alternative methods. The LSR estimate, which
expect to be more appropriate for extracting high
dimension condensates than wFESR and FESR, sh
that the size of the very highD = 16 andD = 18 con-
densates are relatively small which may indicate
good convergence of the OPE even at largeτ -values.

During the analysis, as one can see in previ
figures, the absolute values of the condensates
slightly affected byτ and tc in the optimum region
(minimum or inflexion point). However, it is impor
tant to notice that the results from LSR in large ran
of τ - andtc-values do not flip sign, which is a great a
vantage compared to the ones from some finite en
like sum rules discussed in the literature.

The extension of the present analysis to some o
channels are feasible though not straightforward. T
is due to the relative importance of the continuu
pQCD contribution for higher moments in some oth
channels, which is not the case ofV –A, where this
effect exactly cancels at higher energies. We plan
come back to these different channels in a future p
lication.
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