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Summary

Objective: To examine the radial variations in engineered cartilage that may result due to radial fluid flow during dynamic compressive loading.
This was done by evaluating the annuli and the central cores of the constructs separately.

Method: Chondrocyte-seeded agarose hydrogels were grown in free-swelling and dynamic, unconfined loading cultures for 42 days. After
mechanical testing, constructs were allowed to recover for 1e2 h, the central 3 mm cores removed, and the cores and annuli were retested
separately. Histological and/or biochemical analyses for DNA, glycosaminoglycan (GAG), collagen, type I collagen, type II collagen, and elas-
tin were performed. Multiple regression analysis was used to determine the correlation between the biochemical and material properties of the
constructs.

Results: The cores and annuli of chondrocyte-seeded constructs did not exhibit significant differences in material properties and GAG content.
Annuli possessed greater DNA and collagen content over time in culture than cores. Dynamic loading enhanced the material properties and
GAG content of cores, annuli, and whole constructs relative to free-swelling controls, but it did not alter the radial variations compared to free-
swelling culture.

Conclusion: Surprisingly, the benefits of dynamic loading on tissue properties extended through the entire construct and did not result in radial
variations as measured via the coring technique in this study. Nutrient transport limitations and the formation of a fibrous capsule on the pe-
riphery may explain the differences in DNA and collagen between cores and annuli. No differences in GAG distribution may be due to sufficient
chemical signals and building blocks for GAG synthesis throughout the constructs.
ª 2008 Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International.
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Introduction

Functional tissue engineering of articular cartilage aims to
engineer samples whose mechanical properties mimic
those of the native tissue. Since the primary mode of load-
ing of articular joints under physiological conditions is dy-
namic compression, we adopted a dynamic deformational
loading bioreactor system1,2. In unconfined compression,
samples are loaded between impermeable, smooth platens
and are free to expand laterally (radially/circumferentially),
thereby produces both compressive (axially) and tensile
(radially/circumferentially) strains, which better represents
the physiologic loading environment as suggested by anal-
yses of contacting cartilage layers3,4. This loading configu-
ration produces more uniform mechanical signals
throughout the cylindrical samples than confined compres-
sion with a porous platen, which produces compaction at
the tissueeplaten interface. Additionally, the uniformity of
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the compression-induced interstitial fluid pressure through
the sample depth is also more physiologic4.

In this study, we follow-up on our previous analysis of
construct inhomogeneity through the thickness2, by investi-
gating the material development in the radial direction. In
addition to subjecting constructs to radial tensile strains, un-
confined compression loading generates a pressure gradi-
ent where the fluid pressurization is highest in the central
region and lowest at the radial edge, resulting in maximal
fluid flow at the radial edge5e8. Several investigators have
reported that dynamic loading of cartilage explants in un-
confined compression preferentially stimulates chondrocyte
biosynthetic activity at the periphery of cylindrical samples
and have attributed this spatially dependent biosynthesis
to the higher fluid flow levels at the construct edge9e11.
The influence of these radially dependent stimuli, estab-
lished by the unconfined compression loading configura-
tion, on development of engineered cartilage constructs
has not been investigated.

Here, we sought to determine if applied dynamic loading
(3 h/day, free-swelling 21 h/day) can alter the radial inhomo-
geneity of constructs vs free-swelling controls (24 h/day).
We hypothesized that the radial inhomogeneity will be
enhanced in loaded samples vs free-swelling controls,
due to the loading-enhanced fluid flow stimulation at the
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periphery. Our microscopy-based technique, previously
used for investigating the inhomogeneity through the con-
struct thickness, is limited to samples of thickness much
less than that of the radius of our constructs; consequently,
an alternative testing methodology was developed for the
current study2. Constructs cultured for 6 weeks under
free-swelling or dynamic loading were mechanically tested
whole as well as after concentric coring, to permit study of
both the outer annulus and the 3-mm central core region
on days 0, 14, 28, and 42. Complementary biochemical
and histological analyses were conducted for the cores
and annuli to permit study of the radial inhomogeneity of
these parameters.
Bulk mechanical testing
Biochemical content

Histology

E

Fig. 1. Images of free-swelling (A, B) and dynamically loaded (C, D)
constructs were acquired at day 42, before (A, C) and after (B, D)
coring of the constructs. Scale bars equal 5 mm. For this study,
samples were tested whole, allowed to recover and then the annuli

and cores were tested separately (E).
Materials and methods

Primary chondrocytes were harvested from the carpometacarpal joints of
3e4 months old calves via digestion in Dulbecco’s Modified Eagle’s Medium
(DMEM, Mediatech, Herndon, VA) containing 5% fetal bovine serum (FBS,
Atlanta Biochemical, Atlanta, GA) and 390 U/ml collagenase (Sigma, St.
Louis, MO). Cells were encapsulated in 2% type VII agarose (Sigma) at
60� 106 cells/ml and equilibrated for 3 days in DMEM containing 5%FBS.
After this 3-day period (study day 0), disks (B5.0� 2.3 mm) were cored
and cultured in 100 mm Petri dishes (20e25 disks/plate) with 30 ml of
DMEM supplemented with buffers, antibiotics, antimycotics, amino acids,
20%FBS and 50 mg/ml ascorbic acid (Sigma), with daily media change.

The constructs were either dynamically loaded, as described previously2,
or maintained under free-swelling conditions through a 6-week culture pe-
riod. Briefly, a custom loading device was utilized to impose a continuous
sinusoidal deformation (2% tare strain, 10% peak-to-peak strain, 1 Hz) for
3 h/day, 5 days/week. Agarose templates with 8 mm diameter wells were uti-
lized to ensure that the constructs were properly seated and prevent shifting
during dynamic unconfined compression loading or transport. Prior to load-
ing, the disks were transferred to the molds and loaded in 5 ml of media.
Free-swelling controls were transferred and maintained adjacent to the
device during the loading. After loading, the disks were returned to the
100 mm dishes, randomly flipped to reduce any orientation bias, and main-
tained as described above.

At days 0, 14, 28, and 42, a custom unconfined compression device, with
rigideimpermeable glass loading platens, was used to measure the equilib-
rium and dynamic compressive moduli of the constructs12. Before each test,
the disk thickness and diameter were measured, and the specimens were
equilibrated in creep, under a tare load of 0.01 N. A stresserelaxation test
was then performed, with a ramp speed of 1 mm/s until the displacement
reached 10% of the post-tare load thickness. Constructs were allowed to
equilibrate for 20 min. The equilibrium modulus was calculated from the equi-
librium reaction force, the sample’s cross-sectional area, and the applied
strain. Following stresserelaxation test, a sinusoidal displacement of 2%
strain was applied at 0.5 Hz and the dynamic modulus was calculated
from the load and displacement profiles, and the construct geometry. Each
construct was tested whole, as described above, and then allowed to recover
for 1–2 h prior to coring with a 3 mm dermal punch mounted on a custom cut-
ting rig, which was used to align and stabilize the constructs during coring.
The annuli and central 3 mm cores were then tested separately. For half
the samples, the annuli were tested first and for the other half the cores
were tested first. Images of typical constructs, before and after coring, are
presented in Fig. 1. After mechanically testing, the disks were fixed in
3.7% formaldehyde, 5% acetic acid, 70% ethanol18 for histology or stored
at �30�C for biochemistry.

The samples for biochemical analyses were thawed, weighed wet, lyoph-
ilized, weighed dry, and digested for 16 h at 60�C in proteinase K in 50 mM
tris buffered saline containing 1 mM ethylenediaminetetraacetic acid, 1 mM
iodoacetamide and 10 mg/ml pepstatin A13. The DNA content was quantified
using the PicoGreen assay (Invitrogen, Carlsbad, CA)14, using lambda
phage DNA (0e1 mg/ml) as a standard. The glycosaminoglycan (GAG) con-
tent was measured using the 1,9 dimethylmethylene blue (Sigma) dye-bind-
ing assay15, using shark chondroitin sulfate (0e50 mg/ml) as a standard. The
collagen content was measured using the orthohydroxyproline (OHP) color-
imetric assay16, using bovine OHP (0e10 mg/ml) as a standard. Here, the di-
gests were hydrolyzed in equal volume of 12 M HCl at 110�C for 18 h, dried
in the presence of sodium hydroxide, and resuspended in 1 ml of solution
prior to analysis. Collagen content was calculated using a 1:10 OHP-to-col-
lagen mass ratio17.

Histology samples were dehydrated, paraffin-embedded, sectioned
(8 mm), and mounted onto microscope slides. Prior to labeling, samples
were dewaxed and rehydrated. GAG and collagen were stained with Safra-
nin O (Sigma) and Picrosirius Red (Sigma), respectively. Immunohistochem-
istry samples were digested in 0.5 mg/ml testicular hyaluronidase (Sigma),
swollen in 0.5 M acetic acid, blocked in 10% normal goat serum (NGS),
and immuno-labeled in 10%NGS containing monoclonal antibody against
collagen I (MAB3391, Chemicon, Temecula, CA), collagen II (II-II6B3, Devel-
opmental Studies Hybridoma Bank, Iowa City, IA), and elastin (BA-4,
Sigma). Non-immune controls were incubated in 10%NGS. Samples were
then incubated in Alexa Fluor 488 goat anti-mouse secondary antibody (In-
vitrogen) and propidium iodide (Invitrogen), then analyzed with an Olympus
Fluoview confocal system (NY/NJ Scientific, Middlebush, NJ) via dual wave-
length excitation at 488 and 568 nm (20�).

Statistica (Statsoft, Tulsa, OK) was used to perform statistical analysis us-
ing multivariate analysis of variables ANOVA, with sample geometry, time,
and loading condition as the independent variables. If significant trends
were observed with ANOVA, Tukey post hoc test was used to determine sig-
nificant inter-group differences. P< 0.05 was considered significant. Four
samples were tested per group and are presented as mean� standard de-
viation. Statistica was also used to determine the Pearson product moment
correlation coefficient and significant differences (P< 0.05) between the bio-
chemical composition and the material properties of the constructs.
Results

Changes in wet and dry weights, water content, and bio-
chemical composition of the intact chondrocyte-seeded
constructs are presented in Fig. 2. The values and trends
observed for these samples were similar to those previously
reported by our group1,2. Here, significant effects of time
was observed for all measures except for the DNA content
when normalized to the wet weight (P< 0.005), however,
there were no significant effects of loading. The wet weight
and overall DNA content doubled over the 6-week culture
period, whereas the dry weight exhibited a four-fold in-
crease. When normalized to the wet weight, the DNA
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Fig. 2. Wet and dry weights (A), water content (B), DNA content (C, D), and GAG and collagen contents (E, F) of intact, free-swelling and
dynamically loaded chondrocyte-seeded constructs. *Represents significant differences vs day 0 constructs (ANOVA P< 0.005; post hoc

P< 0.005).
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content of the free-swelling constructs remained constant
through the 6-week culture period, however, dynamically
loaded constructs exhibited a 33% increase that was not
statistically significant.

The wet and dry weights [Fig. 3(A and B), respectively] of
the annuli and cores were similar at day 0. Over time, these
variables remained constant for 3 mm cores, however, there
was a significant temporal increase in the weights of the an-
nuli by day 28 (P< 0.0005) that parallel the trends observed
for the whole constructs [compare Fig. 2(A) to Fig. 3(A and
B)]. Additionally, the wet and dry weights of the annuli were
significantly greater than the cores by day 14 for the wet
weight (P< 0.005) and day 28 for the dry weight
(P< 0.0005). There was a significantly effect of load in the
annuli at day 42 (P< 0.05). There was a resultant significant
temporal decrease in the water content [Fig. 3(C)] of the both
the annuli and cores of the constructs (P< 0.005), however,
there were no significant inter-group differences.

The temporal changes in the DNA content [Fig. 3(D)] was
similar to those observed for the wet and dry weights. Here,
the absolute DNA content of the cores was 36% lower than
the annuli on day 0 [Fig. 3(D)], though no difference was
found in the wet weight-normalized DNA content
[Fig. 3(E)]. There was a three-fold increase in the absolute
DNA content of the annuli, and 37% and 21% decrease in
the absolute DNA content of the cores of the free-swelling
and dynamic loading constructs, respectively, over time in
culture. This decrease in the cores, however, was not statis-
tically significant. There was a significant effect of time in the
annuli of the constructs by day 28 (P< 0.05). Additionally,
the DNA content of the annuli was significantly greater than
the cores by day 28 for the dynamically loaded constructs
and by day 14 for the free-swelling controls (P< 0.01).
When normalized to the wet weight, the DNA content
[Fig. 3(E)] of the free-swelling annuli and dynamically loaded
cores showed a 10% reduction over the 6-week culture pe-
riod, however, there were no significant temporal changes.
Here, the DNA content of the annuli was significantly greater
than the cores by day 28 in the free-swelling constructs and
by day 42 in the dynamically loaded constructs (P< 0.05).
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Fig. 3. Wet weight (A), dry weight (B), water content (C), and DNA content (D, E), of the annuli (open) and cores (closed) of free-swelling
(boxes) and dynamically loaded (triangles) constructs over the 6-week culture period (n¼ 4e9). Significant effect of time was observed for
these samples (ANOVA P< 0.05). *Represents significant differences vs day 0 constructs (ANOVA P< 0.05; post hoc P< 0.05); yrepresents
significant differences vs free-swelling controls (ANOVA P< 0.01; post hoc P< 0.05); xrepresents significant differences vs the respective

cores (ANOVA P< 0.001; post hoc P< 0.05).
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The GAG and collagen contents of these constructs in-
creased over time for all groups (Fig. 4), with significant
changes occurring by day 14 (P< 0.05). Significant differ-
ences in the GAG content with loading were observed at
day 42 in the annuli and cores when the data was normal-
ized to the wet weight (P< 0.05), but only in the cores when
data was normalized to the DNA content (P< 0.05). Addi-
tionally, the annuli and cores were significantly different
for the day 42 free-swelling constructs when the GAG con-
tent was normalized to the wet weight (P< 0.05). By day
28, the GAG/DNA value was significantly greater in the
cores than in the annuli (P< 0.05). By day 14, the collagen
content of the annuli of both free-swelling and dynamically
loaded constructs was significantly greater than the corre-
sponding cores (P< 0.05). Additionally, the collagen/DNA
value of the day 42 dynamically loaded cores was signifi-
cantly greater than the correspondent annuli and free-swell-
ing samples (P< 0.01).

The mechanical properties of all groups increased signif-
icantly over time in culture (Fig. 5; P< 0.008). There was
a significant effect of loading on the equilibrium modulus
by day 42 [Fig. 5(A); P< 0.005]. A significant decrease in
equilibrium modulus [Fig. 5(A)] was observed for the dy-
namically loaded cores at day 14 (P< 0.004). Additionally,
there was a significant effect of loading on the dynamic
modulus by day 28 for the whole constructs and the annuli
and by day 42 for the cores [Fig. 5(BeD); P< 0.005]. Sim-
ilar results were obtained at other loading frequencies (data
not shown). As the dynamic modulus is a structural property
with fluid flow dependence12,19, this parameter would be af-
fected by the differences in the geometry and boundary
conditions between the cores, annuli, and whole disks.
Therefore, comparisons between the three geometric con-
figurations were not performed.

Correlation analysis of the relationship between GAG and
collagen content and the moduli of chondrocyte-seeded
constructs are presented in Table I. For the free-swelling
constructs, there were no observed correlation between
the material properties and the biochemical content. For
the intact dynamically loaded constructs, significant positive
correlation was observed between the GAG content and the
equilibrium modulus and dynamic modulus, and between
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the collagen content and the dynamic modulus. These cor-
relations were lost in the annuli, but were maintained in the
cores. Additionally, a significant positive correlation was ob-
served between the collagen content and the equilibrium
modulus for the dynamically loaded cores.

Safranin O and Picrosirius Red staining (Fig. 6) were in-
tense in the center of both free-swelling [Fig. 6(B and H)]
and dynamically loaded [Fig. 6(E and K)] constructs at
day 42. Along the circumferential [Fig. 6(A,D,G,J)] and axial
[Fig. 6(C,F,I,L)] surfaces, all constructs possessed a dense
GAG and collagen-rich layer. Along the axial surface, this
layer was thinner, more intensely stained, and smoother
in the dynamically loaded construct [Fig. 6(F and L)] than
in the free-swelling control [Fig. 6(C and I)].

At day 42, the type II collagen staining [Fig. 7(AeF)] was
intense for both free-swelling and dynamically loaded con-
structs along the axial and radial edges [Fig. 7(A,C,D,F)]
than in the central region [Fig. 7(B and E)]. There was
a cell-dense type II collagen-free region around the periph-
ery of both groups [Fig. 7(A,C,D,F)]. Along the axial edge
[Fig. 7(C and F)], this region was more extensive in the
free-swelling construct [Fig. 7(C)] than for the dynamically
loaded construct [Fig. 7(F)]. Additionally, staining in the cen-
ter was more intense for the dynamically loaded construct
[Fig. 7(E)] than the free-swelling construct [Fig. 7(B)].

At day 42, type I collagen [Fig. 7(GeL) and elastin
[Fig. 7(MeR)] immunofluorescence showed that the fibrous
outer layer is composed primarily of type I collagen in the
free-swelling constructs and elastin in the in the dynami-
cally loaded constructs [compare Fig. 7(G,I,J,L) to
Fig. 7(M,O,P,R)]. Interestingly, for the dynamically loaded
constructs, type I collagen staining was more intense on
the radial (unloaded) edge than on the axial (loaded)
edge [Fig. 7(J and L)]. In the central region of the con-
structs, a small amount of type I collagen [Fig. 7(H and
K)] and elastin [Fig. 7(N and Q)] staining were observed
for both free-swelling and dynamically loaded constructs.
Type I collagen labeling was more intense in the central
region of the dynamically loaded constructs [Fig. 7(K)]
compared to free-swelling controls [Fig. 7(H)], however,
similar levels of elastin staining was observed in the central
region of both groups of constructs [Fig. 7(N and Q)].
Discussion

The results of this study represent the first published at-
tempt known to the authors that seeks to characterize the
development of engineered cartilage tissue in the radial di-
rection. Consistent with our previous findings2,20e22, the
moduli of the dynamically loaded constructs in the pre-
sented study were generally greater than free-swelling
counterparts (for whole constructs as well as respective
central core and annuli regions). Interestingly, the relative
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radial variation in material properties was unaffected by
loading, with inner and peripheral regions derived from the
constructs having similar equilibrium modulus and GAG
content, with both cores and annuli possessing an improved
equilibrium modulus under dynamic loading. This is a sur-
prising result given that it was expected that the radial fluid
flow arising during unconfined cyclical compression would
preferentially affect the region of the construct encom-
passed by the annulus9e11 and not be transmitted through
Table
Pearson’s product moment correlation coefficient (R) of the biochemica
structs. Pearson’s correlation results relating biochemical constituents (GA
erties compressive and dynamic moduli of annuli and cores free-swelling

are bolded (n

Loading

FS GAG vs equilibrium modulus �
Collagen vs equilibrium modulus
GAG vs dynamic modulus
Collagen vs dynamic modulus

DL GAG vs equilibrium modulus
Collagen vs equilibrium modulus
GAG vs dynamic modulus
Collagen vs dynamic modulus
to the center of the construct. We, therefore, must reject
our hypothesis that dynamically loaded constructs exhibit
different radial inhomogeneity than free-swelling constructs.
In this regard, our findings for radial distribution in properties
are reminiscent of those previously reported for axial distri-
bution in properties, where the profile of the relative depth-
varying modulus is similar for free-swelling and loaded
constructs2.

Coring of the constructs appeared to significantly reduce
the dynamic modulus of both the cores and annuli com-
pared to the respective intact samples [Fig. 5 (BeD)].
However, given that the dynamic modulus depends on the
fluid pressurization within the sample12,19, this apparent re-
duction may be due to changes in the fluid flow boundary
conditions resulting from the coring technique. Therefore,
inter-group comparisons between the dynamic moduli of
cores, annuli, and whole constructs were avoided. The
lack of significant differences in the equilibrium modulus be-
tween the cores and annuli, however, remains valid given
that this measurement is a material property that is normal-
ized to geometry and determined at equilibrium, thereby be-
ing fluid flow independent. The effects of dynamic loading
also appear to be genuine as dynamic loading increased
the measured mechanical properties regardless of sample
geometry.

Histological analysis reveals the presence of a thick cell-
rich fibrous layer that encompasses the entire construct in
either culture condition, though dynamic loading lessened
the presence of this layer along the loaded surfaces, as pre-
viously reported22e24. The formation of this fibrous layer has
been linked to fetal bovine serum24 and may be due to the
proliferation of cells that have crawled out (or been pushed
out) onto their outer surfaces of the constructs. Immunos-
taining for type I and II collagen and elastin showed that
the cell-rich fibrous layer is devoid of type II collagen25.
However, the free-swelling and dynamically loaded con-
structs showed disparate type I collagen and elastin stain-
ing, with free-swelling constructs primarily expressing type
I collagen and dynamically loaded constructs primarily
expressing elastin at their peripheries. Dynamic loading ap-
peared to downregulate the production of type I collagen
while upregulating the production of elastin on the loaded
surface, thereby reducing the differentiation of cells along
the surface of the tissue. This downregulation of type I col-
lagen production with loading has been reported in the liter-
ature25. These results are encouraging because elastin has
been shown to be expressed in the superficial zone of car-
tilage26,27 and may represent an adaptation of the articular
surface in vivo due to mechanical stresses. This fibrous
I
l and material properties of the chondrocyte-seeded agarose con-
G and collagen; normalized to the wet weight) to mechanical prop-
(FS) and dynamically loaded (DL) constructs. Significant P values
¼ 4e5)

Pearson’s R (P)

Whole Annulus Core

0.11 (0.737) 0.42 (0.139) 0.25 (0.438)
0.12 (0.731) 0.16 (0.667) 0.07 (0.833)
0.42 (0.228) 0.40 (0.157) 0.25 (0.429)
0.47 (0.175) 0.59 (0.072) 0.18 (0.566)

0.71 (0.007) 0.42 (0.139) 0.56 (0.048)
0.38 (0.353) 0.12 (0.695) 0.62 (0.023)
0.70 (0.007) 0.40 (0.157) 0.69 (0.009)
0.69 (0.009) 0.05 (0.852) 0.65 (0.016)



Fig. 6. Safranin O (GAG; AeF) and Picrosirius Red staining (collagen; GeL) of free-swelling (AeC, GeI) and dynamically loaded (DeF, JeL)
constructs on day 42. Images were acquired along the radial edge (first column), in the center (second column), and along the axial edge (third

column) of the constructs. Scale bars equal 250 mm.
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layer has been found to affect the mechanical properties of
cartilage explants28 and, therefore, may also have had an
unmeasured effect on the mechanical properties of the en-
gineered cartilage in this study, particularly the annuli. The
compromising of this layer due to coring may also have
some effect on the measured decrease in mechanical prop-
erties of cores and annuli when compared to intact
samples.
Positive correlations were found between the GAG con-
tent and the moduli of constructs, and between the collagen
content and the dynamic moduli of the intact constructs,
consistent with previous publications from our laboratory21.
However, these correlations were not strong or consistent
among all groups, nor did they necessarily persist after cor-
ing of the constructs. Thus, when constructs cultured under
free-swelling and dynamic loading were analyzed



Fig. 7. Immunofluorescent labeling (green) for type II collagen (AeF), type I collagen (GeL), and elastin (MeR) of free-swelling (AeC, GeI,
MeO) and dynamically loaded (DeF, JeL, PeR) chondrocyte-seeded constructs at day 42. Images were acquired along the radial edge (first
column), in the center (second column), and along the axial edge (third column) of the constructs. Propidium iodide counter staining (red) was

used to visualize the cell nuclei. Scale bars equal 200 mm.
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separately, these correlations for whole constructs were
maintained for the dynamically loaded group only. With cor-
ing the correlation between the GAG content and the moduli
was maintained in the cores, but was lost in the annuli of the
loaded constructs. Coring also reduced the correlation be-
tween the collagen content and the dynamic modulus of
the annuli, however, a strong correlation between the colla-
gen content and both moduli was still observed in the cen-
tral core of dynamically loaded constructs. The disruption of
the collagen network and of the fibrous capsule may explain
the loss of correlation in collagen content and dynamic
modulus in the annuli, which contained more of the fibrous
tissue than the cores. Nevertheless, taken together, these
results confirm our expectation that the changes in the equi-
librium stiffness of the constructs over time may be due pri-
marily to the elaborated GAG molecules. Additionally, these
results indicate that the collagen content plays a more sig-
nificant role in the dynamic stiffness of the dynamically
loaded constructs than free-swelling controls, possibly indi-
cating structural adaptation to mechanical stimuli. A more
highly organized collagen fiber network, which we believe
is generated by the radial tensile strain associated with dy-
namic unconfined compression loading2,29, may contribute
to the significantly stiffer dynamic modulus observed for
the loaded constructs at day 42. This explanation is sup-
ported by polarized light images of radial fiber alignment
in dynamically loaded constructs reported previously2.

While mechanical properties and GAG content generally
did not exhibit differences between the core and annular
regions, other measures did show significant differences.
The absolute DNA content of cores was lower than annuli
on day 0, but this is likely due to differences in size as wet
weight-normalized data shows no significant differences.
The annuli, however, did increase in DNA content, in
both absolute and wet weight-normalized data, compared
to cores over time in culture. This increase in annuli
DNA content may also be partially due to the heavily cel-
lular outgrowth formed on the construct over time in cul-
ture. Less collagen per wet weight was produced in
central core regions compared to their respective annular
regions, which is consistent with our finding that the central
region of constructs exhibited less intense staining for col-
lagen compared to the outer edges (Figs. 6 and 7)2. The
most likely explanation for these observations is transport
limitation for nutrients and waste products; whereas solute
transport between the central core and the culture medium
occurs primarily through the axial surfaces of the construct
(top surface), the annular region also benefits from trans-
port through the circumferential surface (radial edge).
Transport limitations may be exacerbated by the formation
of the dedifferentiated cell layer on the construct in terms
of nutrient consumption and diffusion length. Dynamic
loading, which is expected to enhance nutrient transport5,
had an influence on GAG content in the cores and annuli,
but not on collagen content, indicating a preferential me-
chanotransduction mechanism that warrants further
investigation.

The findings of this study may be specific to our chondro-
cyte-seeded agarose hydrogel system and may not neces-
sarily extend to more porous and permeable scaffolds.
Seidel and co-workers reported that the material properties
of chondrocyte-seeded polyglycolic acid (PGA) constructs
did not benefit from culturing in a perfusionemechanical
stimulation bioreactor after a 30-day free-swelling culture
period25. In contrast to the current study, GAG levels with
loading were observed to drop with culture time. In addition,
GAG normalized by wet weight was generally similar for
central core regions and annular ring regions of constructs
in our study, but was significantly decreased in the annular
region for the PGA constructs. These results likely indicate
that the effects of applied deformational loading are scaf-
fold-dependent; indeed it is possible that the greater perme-
ability of the PGA constructs would lead to greater amounts
of GAG loss during loading.

In summary, this study shows that chondrocyte-seeded
agarose disks do not exhibit significant inhomogeneity in
material properties and GAG content along the radial direc-
tion, and collagen synthesis progresses at a slower rate in
the core relative to the annular regions. The mechanical
properties are governed predominantly by the GAG content,
at least up to the stage of maturation achieved here. Dy-
namic loading enhanced the material properties and GAG
content relative to free-swelling controls, but did not alter
the spatial homogeneity. While nutrient transport limitations
might explain the radial variation in DNA and collagen con-
tent, this does not appear to affect GAG distribution, most
likely because chemical signals and building blocks for
GAG synthesis remain available at sufficient levels in the
center of the constructs. As this study represents the first
attempts to characterize the radial development of engi-
neered cartilage constructs, it is important to acknowledge
the pitfalls of the adopted experimental design: it is possible
that any effects of the fluid flow gradient produced during
loading were masked by the coarseness of the coring tech-
nique used in the presented study. Future experiments may
utilize smaller cores from various locations to better charac-
terize the development of de novo matrix in the radial direc-
tion. In addition, the fibrous tissue formation and known
variability of serum30 motivate the adoption of serum-free
media for future research.
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