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Abstract Nectin adhesion molecules are involved in the early
steps of cell junction formation. Later during the polarisation
process, Nectins are components of epithelial adherens junctions
where they are indirectly associated with the E-cadherin/Cate-
nins complex via the adaptator AF-6. To have a better under-
standing of Nectin-based cell junctions, we looked for some
new Nectins� partners. We demonstrate that the scaffold mole-
cule PICK-1, involved in the clustering of junctional receptors
in synaptic junctions, interacts directly with Nectins in a PSD-
95/Dlg/ZO-1 domain-dependent manner and is localised at
adherens junctions in epithelial cells. Finally, we observed that
protein interacting with C-kinase-1 (PICK-1) also interacts di-
rectly with the junctional adhesion molecules, and we suggest
that PICK-1 could be involved in the regulation of both adherens
and tight junctions in epithelial cells.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Nectin adhesion molecules are key players for the establish-

ment of cell junctions in epithelial cells [1]. They are involved

in the building of a protein network required for the formation

of both adherens and tight junctions [1]. Nectins may poten-

tially recruit, regulate and interact with E-cadherin at adherens

junctions via their cytoplasmic associated molecules, i.e., AF-

6/afadin and Catenins, respectively [1]. Nectins share common

cytoplasmic interactors such as AF-6 and ASIP/PAR-3 with

JAM-A, and are involved in JAM-A proper localisation at

tight junctions [1–4]. Thus, E-cadherin, Nectins and JAM-A

constitute a complex of cell adhesion molecules, communicat-

ing with each other�s to maintain cell cohesion, cell polarity

and regulate their physiological properties.

Five Nectins have been described in human: PVR/CD155,

and Nectin-1, -2, -3 and -4 [5–9]. They display both calcium

independent trans-homophilic and trans-heterophilic adhesion

properties following cis-dimerisation at the cell surface, char-
Abbreviations: JAM, junctional adhesion molecule; PDZ, PSD-95/Dlg/
ZO-1; PICK-1, protein interacting with C-kinase-1; PVR, poliovirus
receptor
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acterised by specific combinations of Nectin ectodomains:

Nectin-3 trans-interacts with poliovirus receptor (PVR), Nec-

tin-2 and Nectin-1, the latter is in turn able to trans-interact

with Nectin-4 [1,9]. Some of these interactions have been de-

scribed in vivo at the pre- and post-synaptic junctions of neu-

rons (Nectin-1/Nectin-3), as well as at the junctions between

Sertoli cells and spermatids during spermiogenesis (Nectin-2/

Nectin-3) [1]. Moreover, Nectin-2 and PVR have been de-

scribed to interact with the NK triggering molecule, DNAM-

1 (CD226), to induce the NK-mediated lysis of tumour cells

[10] and we recently described that PVR interacts with

DNAM-1 to regulate the trans-endothelial process of mono-

cytes [11]. CD96 has also been described to trans-interact with

PVR [12].

To characterise the molecular organisation of Nectin-based

adherens junctions, we looked for cytoplasmic proteins inter-

acting with the intracellular region of Nectins. Nectins do

not show any sequence similarity within this region except,

for most of them, a common carboxy-terminal consensus se-

quence that enable them to bind to PSD-95/Dlg/ZO-1 (PDZ)

domains [1,8,9]. We thus tested several PDZ domain-contain-

ing proteins for their ability to interact with Nectins. Among

them, we found that protein interacting with C-kinase-1

(PICK-1) is a new Nectin partner. PICK-1 was initially de-

scribed as a PKCa interacting protein [13,14]. It interacts with

tyrosine kinase receptors including EphA7 and EphB2 as does

AF-6 [15,16]. PICK-1 is required for the control of synaptic

transmission by metabotropic glutamate receptors [17–19].

We found that PICK-1 interacts with Nectins in vivo and, as

Nectins, localises at adherens junctions in epithelial cells.

Moreover, we found that PICK-1 also interacts with the junc-

tional adhesion molecules (JAMs). From our results, we show

that PICK-1 is a new component of epithelial cell adherens

junctions and likely plays a role in epithelial physiology

through its interactions with Nectins and JAMs.
2. Materials and methods

2.1. Construction of expression vectors
Mammalian expression vectors encoding the full-length (FL) human

PVRa (pSV2PVRa), Nectin-1d (pCF18), Nectin-1a (pLX1.12), Nec-
tin-2a (LX2Sb1), Nectin-2d (LX2Lc12) and Nectin-3a (pFLR3V.1)
have been already described [5–9]. Mammalian expression vectors
encoding the FL mouse JAM-A (pRC/106) and JAM-C (pDel5 03 0

JAM-2#6) were provided by Dr. M. Aurrand-Lions (Geneva,
Switzerland).
PICK-1 expression constructs were generated by subcloning the FL

mouse PICK-1 cDNA and its mutants into pRK5-myc (Stratagene)
and the FL mouse PICK-1 cDNA into pGFP-C1 (Clontech). Mouse
blished by Elsevier B.V. All rights reserved.
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PICK-1 and its mutants cloned in pRK5-myc were named pRKPICK-
1 (PICK-1 FL), pRKPICK-1-KD (PICK-1 PDZ domain mutant:
K27D28 amino acids mutated in A27A28), pRKPICK-1.1-305 (resi-
dues 1–305) as described in previous studies [14,35]. Mouse PICK-1
was also cloned in pGFP-C1 and named pGFPC-PICK-1 [35].

2.2. Yeast two-hybrid system
Oligonucleotide adaptators encoding the last seven amino acids of

the COOH termini of the various human Nectins, and their mutants,
were cloned into the LexA DNA-binding domain bait expression vec-
tor pBTM116B.Kana. Mouse cDNA encoding the FL PICK-1 was
cloned into the Gal4 DNA-activation domain prey vector pGAD
(pGADPICK-1). PICK-1 mutants were constructed as described previ-
ously [14] and cloned into pGAD: pGADPICK-1-KD (K27D28 amino
acids mutated in A27A28) and into pACT2 Gal4 DNA-activation do-
main prey vector: pACPICK-1.1-305 (residues 1–305). cDNAs encod-
ing the PDZ domain of various proteins were cloned into pACT2:
pACPDZ-AF6g (PDZ domain of AF-6), pACERBIN (PDZ domain
of ERBIN) and pACYE15.126 (PDZ domain of Caenorhabditis ele-
gans LET 413). The integrity of all inserts was confirmed by DNA
sequencing (Genome Express, Grenoble, France).
Yeast assays were performed as described previously using lithium

acetate-based method. Interaction between bait and prey were first
monitored by a LacZ reporter assay: b-galactosidase activity was
tested with X-gal as a substrate using the filter method. Interactions
were also evaluated by HIS3 reporter assay.

2.3. Cells and culture conditions
Madin Darby Canine kidney cells (MDCK cells) and COS cells were

cultivated in Dulbecco�s modified Eagle�s medium (DMEM) supple-
mented with 10% fetal calf serum (FCS), 1% penicillin, 1% streptomy-
cin and 1% glutamine. CaCO2 cells were cultivated in DMEM medium
supplemented with 20% FCS, 1% penicillin, 1% streptomycin, 1% glu-
tamine and 1% non-essential acids (Life Technologies, France). Cells
were cultivated in an air–5% CO2 atmosphere at constant humidity.

2.4. Antibodies
Murine monoclonal anti-myc 9E10 (Oncogene Research Products,

Cambridge, MA) and rabbit polyclonal anti-b-Catenin (Zymed) were
purchased from commercial sources. Murine monoclonal antibodies
anti-Nectin-1 (R1.302), anti-PVR (PV.404) and rabbit immune sera di-
rected against the intracellular domain of Nectin-1, Nectin-2a and
PVR were obtained in the laboratory. Rat monoclonal antibodies
anti-JAM-A (H202.106) and anti-JAM-C (XIXH36) were provided
by Dr. M. Aurrand-Lions (Geneva, Switzerland). Rabbit polyclonal
anti-PICK-1 antibody JPB-9 was raised against a GST-PICK-1 fusion
protein.

2.5. DNA transfection, cell lysis, immunoprecipitation immunoblot

analysis and immunofluorescence
Cells were grown to 50–80% confluency then were transfected with

plasmids using FuGENE6 reagent method according to manufacturer
recommendations (Boehringer–Mannheim). The cells were cultivated
for 1 day and the medium was replaced. Cells were analysed either
after transient transfection or after selection in the presence of
0.5 mg/ml of G418 in the case of stable transfectants establishment.
Cell lysis, immunoprecipitation and immunoblot were performed as
previously described [20].
MDCK and COS cells were grown on 13-mm-round glass coverslips

as a confluent monolayer. Immunofluorescence was performed as pre-
viously described [9].
3. Results

3.1. Identification of PICK-1 as a new Nectin partner by the

yeast two-hybrid system

Nectins constitute a family of five structurally related cell

adhesion molecules [5–9]. Different isoforms have been de-

scribed for each Nectin, sharing identical extra-cellular do-

mains but different carboxy-terminal regions. Two subgroups
have been determined: a first group carries a carboxy-terminal

PDZ domain-binding sequence, identified in Nectin-1a, Nec-

tin-2 (a and d), Nectin-3 (a and b) and Nectin-4; a second

group (PVRa, PVRd, Nectin-1b and Nectin-3c) does not carry
this PDZ domain-binding sequence.

Looking for new Nectin cytoplasmic partners by the yeast

two-hybrid system, we selected Nectin-3a as a bait representa-

tive of Nectins: we tested its ability to bind to various known

PDZ domain-containing proteins. We found that Nectin-3a
interacts with PICK-1 and AF-6 (taken as a positive control)

but not with Erbin or Let413 (Fig. 1A). We tested the ability

of other Nectins to bind to PICK-1 and we found that AF-6

and PICK-1 have the same specificity for Nectins: we show

that all the AF-6 interacting Nectins (i.e., Nectin-1a, Nectin-

2 and -2d, Nectin-3a, -3b and Nectin-4) also bind to PICK-

1, whereas PVRa, Nectin-1b and Nectin-3c neither interact

with AF-6 nor with PICK-1 (Fig. 1B).

We challenged PICK-1 with Nectin mutants, unable to inter-

act with AF-6, as they are deleted of the last two C-terminal

amino acids [9]. In a similar way, Nectin-3a and Nectin-4 mu-

tants were not able to interact with PICK-1 (Fig. 1C). These

results confirm that the carboxy-terminal sequence of Nectins

is involved in the interaction with PICK-1, and, as for AF-6,

that the last two residues of Nectins are critical in this interac-

tion. The carboxy-terminal tails of Nectins were also chal-

lenged with two PICK-1 mutants described to abolish the

interaction between PKCa and the AMPA receptor GluR2

[14]. PICK-1-KD has two point mutations within its PDZ do-

main and PICK-1-1.305 is deleted from its acidic region but

still possesses its PDZ domain. Interactions with Nectins are

also abrogated with both PICK-1 mutants, suggesting that

the PDZ domain of PICK-1 is involved and that the acidic re-

gion of PICK-1 is also necessary for the interaction probably

by stabilising the conformation of its PDZ domain, as previ-

ously suggested [14]. In conclusion, we describe PICK-1 as a

new partner for Nectins. As described for AF-6, PICK-1 inter-

acts with the carboxy-terminal region of Nectins via its PDZ

domain. Also, the carboxy-terminal sequence of PICK-1 is

necessary to ensure a strong binding affinity.
3.2. PICK-1 and AF-6 differentially interact with Nectins

PICK-1 is described to interact via its PDZ domain with

PKCa, AMPA and Eph receptors [13–15,21,22]. PDZ domains

bind to their ligands with a high selectivity driven by each ami-

no acid of the carboxy-terminal domain of their ligands [23].

We performed a comparative analysis to identify critical

residues important for Nectin/PICK-1 and Nectin/AF-6 inter-

actions. As shown in Fig. 1A, the seven last residues of Nectin-

3a are sufficient to interact with both proteins. Each amino

acid within the Nectin-3a peptide was mutated to alanine

(A) from position 0 (the carboxy-terminal valine) to position

�6 and challenged with either PICK-1 or the PDZ domain

of AF-6 in the yeast system (Fig. 1D). Nectin-3a/AF-6 interac-

tion is abolished when the V in position 0 is mutated, while

Nectin-3a/PICK-1 interaction is diminished but not com-

pletely disrupted. Nectin-3a/AF-6 but not Nectin-3a/PICK-1

interaction is altered when the Y in position �1 is mutated.

Concerning the mutation in position �3, the Nectin-3a/
PICK-1 but not Nectin-3a/AF-6 interaction is altered when

E in position �3 is mutated in G, whereas no change was ob-

served when the E in position �3 is mutated in A. The latter



Fig. 1. PICK-1 interaction with Nectins in the yeast two-hybrid system. (A) The carboxy-terminal region of Nectin-3a was tested for interaction with
different PDZ domain-containing proteins using the yeast two-hybrid system. The carboxy-terminal residues of Nectin-3a interact strongly with AF-
6 (positive control) and with PICK-1, whereas no interaction was detected with Erbin and Let413. (B) The carboxy-terminal region of Nectins was
tested for interaction with AF-6 and PICK-1. All the AF-6 interacting Nectins interact with PICK-1. (C) The carboxy-terminal regions of Nectins-3a
and -4 were deleted of their last two residues and the resulting mutants were tested for their abilities to interact with AF-6 and PICK-1. Neither of the
mutants was able to interact with the wild-type AF-6 or PICK-1. No interaction was detected with wild-type Nectin-3a or -4 and the carboxylate-
binding loop mutant (PICK-1-KD) or the acidic region deleted mutant (PICK-1-1.305). (D) Alanine scan of Nectin-3a carboxy-terminal region.
Each residue of Nectin-3a carboxy-terminal region was mutated into alanine. Nectin-3 point mutants were tested for interaction with AF-6 or PICK-
1. Different Nectin-3a residues seem to be important for these two interactions.
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observation could be explained by the fact that the E/A substi-

tution preserves the consensus motif of Nectins (A/E)XYV.

None or only a slight change in both interactions was noted

when the W in �2, the R in �4, the R in �5, the S in �6 posi-

tions were replaced by A. Our results demonstrate that amino

acids important for the interactions between Nectin-3a/AF-6

and Nectin-3a/PICK-1 are in part different. Amino acids that

form bB strand and aB helix of the PICK-1 and AF-6 PDZ do-

mains probably bind with different C-terminal amino acids of

Nectins.

3.3. PICK-1 and Nectins interact in vivo and co-localise at cell

junctions in COS cells

We analysed the interaction of PVRa, Nectin-1b, Nectin-2a
and -2d, Nectin-3a and Nectin-4 with PICK-1 within COS
cells. Cells were transiently transfected with each Nectin

cDNA and myc-tagged PICK-1. Nectin-1a (Fig. 2A), Nec-

tin-2a and -2d, Nectin-3a and Nectin-4 (data not shown) were

co-immunoprecipitated with PICK-1 within COS cells in con-

trast to PVRa (Fig. 2B) and Nectin-1b (data not shown) that

were not. These data confirm our two-hybrid analyses and

demonstrate that PICK-1 shares the same Nectin partners as

AF-6 in vivo within COS cells.

On the basis of previous experiments, we next examined the

localisation of Nectins and PICK-1 within COS cells. Subcon-

fluent cells were transiently transfected with EGFP-PICK-1

and Nectin-1a. As seen in Fig. 2C, PICK-1 is present in the

cytoplasm and the perinuclear regions, as already described

[13,14,24]. PICK-1 also co-localised with Nectin-1a at cell con-

tacts (see arrow) but neither PICK-1 nor Nectin-1a are present



Fig. 2. Detection of PICK-1 interactions with Nectins in COS cells. COS cells were transfected with expression vectors encoding tagged myc-PICK-1
and Nectin-1a (A) or PVRa (B). Extracts were prepared from transfected cells and were immunoprecipitated with anti-myc antibody. Following
separation of immunoprecipitates by SDS–PAGE, Western-blotting was performed using an anti-Nectin-1a (A) or an anti-PVRa (B) polyclonal
antibody. The Nectin-1a protein is co-immunoprecipitated with PICK-1 (A) whereas PVRa is not (B). Controls were obtained using the anti-myc
antibody. (C) Immunolocalisation of PICK-1 in Nectin-1a transfected COS cells. COS cells were transiently transfected with EGFP tagged PICK-1
and pLX1.12 (encoding Nectin-1a) expression vectors. Two days after transfection, COS cells were stained with the anti-Nectin-1 monoclonal
antibody (R1.302). EGFP-PICK-1 is mostly localised to the perinuclear region as described [13] and slightly observed at cell junctions where it co-
localises with Nectin-1a.
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at the plasma membrane not engaged in a cell-to-cell contact.

Our results suggest that Nectins could recruit PICK-1 at cell

junctions.

3.4. PICK-1 is expressed at adherens junctions in epithelial cells

PICK-1 is expressed in many tissues but it has been mainly

studied in the neuronal system where it binds and clusters sev-

eral junctional synaptic components including AMPA and

Eph receptors [15,21,22]. Nectins are expressed in many tissues

and, among them, in epithelial derived tissues. We thus inves-

tigated the expression of PICK-1 in epithelial cells: we detected

the 52 kDa specific band of PICK-1 in CaCO2 and MDCK

epithelial cells as well as in mouse brain (Fig. 3A, left). No

band was detected with the corresponding pre-immune serum

(Fig. 3A, right).

Nectins are specifically localised at E-cadherin-based adher-

ens junctions in polarised epithelial cells. In fully polarised

MDCK cells, we observed that PICK-1 is present in the cyto-

plasm and the perinuclear regions, but also co-localises with

b-catenin and AF-6 at the basolateral membranes (Fig. 3B

and C). This co-localisation with b-catenin could be attribut-

able to the presence of endogenous Nectins expressed in

MDCK cells as previously described [1]. We failed to detect

an endogenous interaction between PICK-1 and Nectins in

CaCO2 human epithelial cells, but this could be due to a
weak or a transient interaction as described for the interac-

tion between Nectins and ASIP/PAR-3 or JAM-A and

ASIP/PAR3 and a low expression level of PICK-1 at cell

junctions [1,3,4].

3.5. PICK-1 interacts with the JAM family members

Investigating PICK-1 distribution at epithelial cell basolat-

eral membranes with polarised epithelial cells, we found that

PICK-1 also co-localises with AF-6 at cell junctions (Fig.

3B) [25,26]. PICK-1 and AF-6 share some common transmem-

brane partners (Nectins and Eph) and we thus hypothesise that

some other AF-6 transmembrane partners like JAM-A could

also interact with PICK-1. To test this hypothesis, JAM-A

was challenged with PICK-1 in a two-hybrid assay in yeast,

and we found that PICK-1 interacts with JAM-A in a way sim-

ilar to Nectins. This interaction is abrogated with both KD27/

28 and 1–305 PICK-1 mutants, suggesting that the carboxy-

terminal region of JAM-A interacts directly with the PDZ

domain of PICK-1 (Fig. 4A). We tested PICK-1 ability to

interact with the other members of the JAM family (JAM-B

and JAM-C) and found that PICK-1 is also able to interact

with them (Fig. 4A). No interaction was detected between

PICK-1 with Claudins (-2, -10 and -15) that also have PDZ

domain-binding motifs and localise at tight junctions in epithe-

lial cells (data not shown).



Fig. 3. Expression and localisation of PICK-1 in epithelial cells. (A) Cell extracts from MDCK and CaCO2 epithelial cells were tested for the
expression of PICK-1. The PICK-1 protein (52 kDa) is detected from both epithelial cell line lysates as well as in rat brain lysate with a polyclonal
anti-PICK-1 antibody. Other bands were detected but not identified. No protein was detected in the same lysates using the pre-immune serum of this
antibody. (B) Immunolocalisation of PICK-1 in MDCK cells. MDCK cells were stably transfected with EGFP tagged PICK-1 expression vector.
Cells were cultivated at confluency during several days for an optimal polarisation. PICK-1 localisation mostly overlaps with b-catenin and AF-6,
suggesting that PICK-1 is localised at adherens junctions of epithelial cells. (C) Gallery of PICK-1 and b-catenin localisation in MDCK cells. PICK-1
and b-catenin co-localise at the basolateral domain of epithelial cells within adherens junctions.
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We then analysed the interaction between PICK-1 and the

JAMs within COS cells. We thus performed transfection

experiments with JAM-A, JAM-C and PICK-1 cDNAs.

JAM-A and JAM-C are co-immunoprecipitated with myc-

PICK-1 (Fig. 4B and C, lane 4). JAM-B/PICK-1 interaction

was not evaluated as no specific reagent was available.

JAM-A, JAM-C and Nectin-2 are endogenously expressed

within COS cells and we evaluated the possible simultaneous

association of PICK1 with endogenous JAMs and Nectins.

As shown in Fig. 4B–D (lane 2), PICK-1 may simultaneously

interact with endogenous JAM-A, JAM-C and Nectin-2a ex-

pressed by COS cells. Whether these simultaneous interactions

are conserved in polarised epithelial cells will need further

investigations.

Previous studies reported that JAM-A shares some cytoplas-

mic partners with Nectins including AF-6 and ASIP/PAR-3,

both of them via PDZ domains interactions [2–4]. Using two

different approaches, we show for the first time that PICK-1

interacts specifically with Nectins and JAMs. The specificity
of these interactions is strengthened by a positive interaction

between PICK-1 and the different members of two distinct

families of cell adhesion molecules and the lack of interaction

with Claudins.
4. Discussion

We describe PICK-1 as a scaffold protein that may poten-

tially link two components of the apical junctional complex

in epithelial cells. PICK-1, previously described in neuronal

cells, is indeed expressed in epithelial cells, localised mostly

at adherens junctions and interacts with transmembrane com-

ponents of both adherens and tight junctions (Fig. 4). Indeed,

PICK-1 interacts directly with Nectins (Figs. 1 and 2), local-

ised at adherens junctions [1,9], and with JAMs (Fig. 4), de-

scribed to be localised at tight junctions [27]. We showed

that these interactions are ensured by the carboxy-terminal tail

of Nectins or JAMs and the PDZ domain of PICK-1 (Figs. 1



Fig. 4. PICK-1 interaction with JAMs. (A) The carboxy-terminal
region of JAM-A, -B and -C were tested for interaction with PICK-1
or point mutants of PICK-1 using the yeast two-hybrid system. The
carboxy-terminal regions of JAM-A, -B and -C strongly interact with
PICK-1 probably via its PDZ domain. (B–D) (top) COS cells were
transfected with expression vectors encoding tagged myc-PICK-1 and/
or JAM-A, JAM-C, Nectin-2a. Extracts were prepared from trans-
fected cells and were immunoprecipitated with anti-JAM-A (B), anti-
JAM-C (C) and anti-myc (D) antibodies. Western-blotting was
performed using an anti-myc (B, C) or an anti-Nectin-2 (D) antibodies
(black arrow: PICK-1, white arrow: Nectin-2a). (bottom) For each
conditions, total lysates were analysed using the anti-c-myc antibody.
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and 4). Interestingly, a recent report showed that PICK-1 also

interacts with CAR, another cell-to-cell junction protein de-

scribed to be localised at tight junctions in epithelial cells

[28,29]. Altogether, these studies suggest that PICK-1 is an

important scaffold molecule in epithelial cells. They also raise

the question of an eventual competition between all these pro-

teins to bind Nectins, JAMs and CAR or a potential spatio-

temporal regulation of these interactions. Interestingly, we

found that the residues involved in AF-6 and PICK-1 binding

to Nectins are probably different. Moreover, Nectins, JAMs or

CAR interactions with PICK-1 could be simultaneous which
could be linked to the fact that PICK-1 can form homo-dimers

[14].

The characterisation of new adaptator proteins that interact

with Nectins, JAMs or CAR within their carboxy-terminal re-

gion provides new insights into the molecular composition of

epithelial cell-to-cell contacts. PICK-1 associated interactions

may indeed be important for cell junction formation. PICK-

1 has been first characterised to interact with the carboxy-

terminal domain of PKCa [13,14]. Interestingly, PKC

signalling has been reported to be crucial to organise adherens

junctions. The engagement of E-cadherin seems to induce

intracellular signalling pathways that lead to the activation

of PKC [30]. However, less is known concerning the isotype

of the PKC involved and its recruitment to cell junctions. Nec-

tins and E-cadherin seem to be physically and functionally

linked at adherens junctions [1]. They are indeed associated

by their cytoskeletal partners, i.e., AF-6 and a-catenin [1]

and are both needed to recruit the Sec6/Sec8 complex of exo-

cyst at cell junctions [31]. Nectins are recruited early during cell

contact formation and could thus recruit PKCa to cell junc-

tions to participate in the recruitment of additional E-cadherin

and Nectin molecules. Alternatively, it seems that E-cadherin

can activate but also responds to PKC signalling. Interestingly,

we observed a consensus sequence for PKCa phosphorylation

within Nectin-1a intracellular domain (TKK: amino acids

391–394 and SSK: amino acids 511–513), suggesting that

Nectins could be phosphorylated by PKCa.
Beyond its interaction with Nectins, an association between

PICK-1 andCARhas been described [28] andwe also found that

PICK-1 interacts with the JAMs (Fig. 4). PICK-1 could thus

also take part in the regulation of tight junctions as they are

regulated by PKC signalling: inhibition of PKCs blocks tight

junctions assembly and disassembly, implying PKC transient

activation. Several PKC isoforms have been localised to tight

junctions, but little is known about the molecular mechanisms

by which they regulate junctional dynamics [32]. Interestingly,

JAM-A has been described to be phosphorylated by a classical

PKC (PKCa, b or c) upon platelet activation [33]. JAM-A and

other JAMs or CAR could recruit PKCa at tight junctions

and could potentially be targets of PKCa. Interestingly, Nectins

are involved in the correct targeting of JAM-A to tight junctions.

It would be important to study the role of PICK-1 in JAM-Aand

CAR localisation and stability at tight junctions.

E-cadherin has been shown to mediate the coordinate organi-

sation of adherens junctions [34]. The implication of Nectins

during this step remains to be elucidated. Signalling downstream

of Nectins and JAMs is unclear. Nectin engagement seems to

activate Rho GTPases such as Cdc42 and Rac in a PI3K inde-

pendent manner [1]. Investigating the potential connection be-

tween Nectins, JAMs and the PKC pathways could open new

ways to understand the regulation of cell junction formation.
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