Valuation of European Currency Options in Financial Engineering

Shuai Wang¹*, Linyi Qian

East China Normal University, Shanghai, 200241, PR China

Abstract

In this paper, we try to solve the valuation of currency option in financial engineering. We use a generalized jump-diffusion system to describe the spot Foreign Exchange (FX) rate and apply regime switching model to describe the domestic and foreign risk-free interest rate and the appreciation rate and the volatility. And the regime switching model is based on a continuous time finite state Markov process. Under the minimal martingale measure, we obtain a system of partial-differential-integral-equations satisfied by the European currency option prices. Our model provides the flexibility to model different kinds of dynamics in FX rate. At last, we present a simulation of option pricing with the special case of compound Poisson jump and we can find the effects of the parameters on the prices.

© 2011 Published by Elsevier B.V. Open access under CC BY-NC-ND license.

Keywords: Jump-diffusion system; Minimal martingale measure; Currency Option pricing; Regime switching; Financial Engineering

1. Introduction

Currency option is an important derivative tool in foreign exchange market and its pricing and hedging have also been a fundamental subject in financial engineering. After the seminal work of Black and Scholes [1] and Merton [2] on European stock option pricing, there were [3] and [4] as the pioneering works in this area. In their models, they applied the Geometric Brownian Motion with constant appreciation rate and the volatility and then evaluated the option under risk-neutral measure.

However, many following empirical studies have defied the assumption of Geometric Brownian Motion of dynamics of the spot exchange rate and they ask for more realistic models. As a result, a lot of papers are devoted to the modification of the basic Geometric Brownian Motion. Firstly, in reality the parameters of the spot FX dynamics may depend on the state of the economy. In this case, many studies have introduced the Markov Regime Switching Model denoted by a finite state Markov chain to capture the realities. The switching of economy states can be caused by the structural breaks of the economy situations and business cycles. The early work on the introduction of regime switching model includes Quandt [5] and Goldfeld and Quandt [6]. Ever since Hamilton [7] introduced the regime switching time series to economics, the regime-switching models have obtained great development in financial research, even in actuarial science. Secondly, some rare events (major political changes, a natural disaster in a major economy, or the release of unexpected economic data) may result in the brusque variations in spot FX rate. Since the variations cannot be described by the usual diffusion models, we need to consider the jump diffusion model to capture the jump in rates. [8] applied the jump diffusion model for spot FX rate.

The improvement of the ability of the model to explain the reality is accompanied with the difficulty to evaluate

* Corresponding author. Tel.: 8613472632223.
E-mail address: wangshuaiecu@gmail.com.

2211-3819 © 2011 Published by Elsevier B.V. Open access under CC BY-NC-ND license.
the derivatives. An important property of regime switching model or jump diffusion model or their combination is the incompleteness of the financial market. It means that the contingent claim cannot be hedged perfectly. Harrison and Kreps [9], Harrison and Pliska [10, 11] found the relationship between the absence of arbitrage opportunity and the existence of the equivalent martingale measure. They showed that there would be infinitely many equivalent martingale measures and the problem was how to select a consistent measure from that set of measures. Föllmer and Sondermann [12], Föllmer and Schweizer [13], Schweizer [14] and Davis [15] provided different methods to choose a pricing measure on basis of different optimization criteria. In this paper, we follow risk minimizing method proposed by Föllmer and Schweizer [13]. In an incomplete market, for non-attainable claims, it's desirable to find the strategies with the minimization of future risk exposure at any time in the future. Föllmer and Sondermann [12] first introduced the risk minimizing hedging to address the pricing of the options in an incomplete market and this was further studied by Föllmer and Schweizer [13] in which they provided the Föllmer and Schweizer decomposition of the discounted asset price.

In this paper, we consider the pricing of the European currency options when the dynamics of spot FX rate are driven by a generalized Markov-modulated jump-diffusion regime switching model using the risk minimizing methods to choose the equivalent martingale measure. Our work is different from the previous existing studies. [16] studied the currency option pricing under two-factor Markov-modulated stochastic volatility model. It used the Esscher Transform to choose the equivalent martingale measure which was different from our minimal martingale measure. And there was no jump part in their model. [17] presented the formula of European currency option price when the spot foreign exchange rate followed the fractional Brownian motion with jumps. [18] studied the European currency option valuation with spot foreign exchange rate described by a diffusion model with compound Poisson jumps and regime switching. They also used the Esscher Transform to select the equivalent martingale measure. Furthermore, since we consider the option pricing under the generalized form of the dynamics of spot FX rate, our work will provide the flexibility to the market participants to choose the special models they need to describe spot FX rate in markets. And under the minimal martingale measure, we derive the system of coupled partial differential integral equations satisfied by the option prices. At last, we do the numerical experiment of option prices when we choose the compound Poisson process as the concrete jump part in our original model and we consider the qualitative behavior of the price with different parameters.

This paper is structured as follows. Section 2 presents the general formula of spot FX rate and the derivation of minimal martingale measure. Section 3 gives the system of coupled partial differential integral equations. In Section 4, we discuss the simulation results conditioned on the concrete jump process. At last, Section 5 concludes the whole paper.

2. The Model

In this section we introduce two basic elements of the model: the spot FX rate and the minimal martingale measure.

We consider only two currencies in FX market, called the domestic currency and the foreign currency. Let S_t denote the spot FX rate process, representing the domestic price of one unit of foreign currency at time t. Then we let the dynamic of S_t follow the generalized jump-diffusion regime switching model. We also assume that the instantaneous market interest rates in domestic and foreign markets are controlled by a continuous-time finite-state Markov chain. And then we can introduce the dynamics of the spot FX rate.

Fix a complete probability space (Ω, F, P), where P is a real-world probability. $T < \infty$ denotes a fixed, finite time horizon. Let $X := \{X_t\}_{0 \leq t \leq T}$ be a continuous-time Markov chain on (Ω, F, P) taking values in a finite state space $\mathcal{X} := \{1, 2, \cdots, n\}$. We interpret the state of X as the state of the economy. We suppose that the risk-free interest rate, appreciation rate and volatility of the risky asset depend on the state of the economy. The Markov chain X_t is governed by

$$P(X_{t+\Delta t} = j \mid X_t = i) = \lambda_{ij} \Delta t + o(\Delta t), \quad i \neq j,$$

where $\lambda_{ij} \geq 0, i \neq j$; and $\lambda_{ii} = -\sum_{j=1}^{n} \lambda_{ij}$. Let $\Lambda = \{\lambda_{ij}\}$ denote the generating Q-matrix of the chain.

It would be convenient to write (1) in an equivalent way where $\{X_t\}$ is represented as a stochastic integral with
respect to a Poisson random measure (see Ghosh et al. [19]). For \(i, j \in \mathcal{X}, i \neq j \), let \(\Delta_{ij} \) be consecutive (w.r.t. to lexicographic ordering on \(\mathcal{X} \times \mathcal{X} \)) left closed right open intervals of the real line, each having length \(\lambda_{ij} \). Define a function \(h : \mathcal{X} \times \mathbb{R} \to \mathbb{R} \) by

\[
h(i, z) = \begin{cases}
 j - i & \text{if } z \in \Delta_{ij} \\
 0 & \text{otherwise.}
\end{cases}
\]

Then

\[
dX_t = \int_{\mathbb{R}} h(X_{t-}, z) p(dt, dz),
\]

where \(p(dt, dz) \) is a Poisson random measure with intensity \(dt \times m(dz) \), where \(m(dz) \) is the Lebesgue measure on \(\mathbb{R} \). We use \(\tilde{p}(dt, dz) \) to denote the corresponding compensated martingale measure.

Our FX market has three underlying elements: the domestic bond \(B^D = (B^D_t)_{0 \leq t \leq T} \), the foreign bond \(B^F = (B^F_t)_{0 \leq t \leq T} \) and the spot FX rate \(S = (S_t)_{0 \leq t \leq T} \), which are tradable continuously. Let \(r^D : \mathcal{X} \to [0, \infty) \), \(r^F : \mathcal{X} \to [0, \infty) \) denote the domestic and foreign risk-free interest rates; that is, if the regime \(X_t = i \), then the instantaneous interest rates in domestic market and foreign market are \(r^D(i) \) and \(r^F(i) \) separately. Thus the interest rate process \(r(X_t) \) is also an irreducible Markov chain taking values in \{r(1), r(2), \ldots, r(n)\}. In order to simplify the notation, we write \(r_s, \mu_s \) and \(\sigma_s \) for \(r(X_t), \mu(X_t), \sigma(X_t) \). So the price processes of the domestic and foreign bonds are given by the \(P \)-dynamic

\[
\begin{align*}
 dB^D_t &= r^D_t B^D_t dt \\
 dB^F_t &= r^F_t B^F_t dt
\end{align*}
\]

We assume that the spot FX rate is given by

\[
dS_t = \frac{\mu_s - \frac{1}{2} \sigma_s^2}{S_t} dt + \sigma_s dW_t + \int_{\mathbb{R}} f(y) N(dy, dt),
\]

where \(\mu : \mathcal{X} \to \mathbb{R} \) describes the drift coefficient and \(\sigma : \mathcal{X} \to (0, \infty) \) is the volatility, \(N(\ldots) \) is a Poisson random measure with intensity measure \(\nu(dy) dt \) and \(f(\cdot) \) is any suitable function \(f : \mathbb{R} \to \mathbb{R} \).

By a direct application of Itô’s formula, we can obtain

\[
S_t = S_0 \exp\left\{ \int_0^t \left(\mu_s - \frac{1}{2} \sigma_s^2 \right) ds + \int_0^t \sigma_s dW(s) + \int_0^t \int_{\mathbb{R}} \ln(f(y) + 1) N(dy, ds) \right\}.
\]

Let \(S^*_t \) denote the spot FX rate at time \(t \) discounted by the current value of domestic bond. Namely,

\[
S^*_t = \frac{B^F_t S_t}{B^D_t} = \exp\left[\int_0^t (r^F_u - r^D_u) du \right] S_t
\]

The dynamic of the discounted spot FX rate \(S^* \) satisfies

\[
dS^*_t = (\mu_s - (r^D_s - r^F_s))S^*_t dt + \sigma_s S^*_t dW_t + \int_{\mathbb{R}} S^*_t f(y) N(dy, dt).
\]

\(S^* \) has the following decomposition
\(S^* = S^*_0 + M + A, \)

(9)

where

\[
M_t = \int_0^t \sigma_u S^*_u dW_u + \int_0^t S^*_u f(y) \tilde{N}(dy, du),
\]

\[
A_t = \int_0^t \left(\mu_u - (r_u^D - r_u^F) + \int_R f(y) v(dy) \right) S^*_u du,
\]

and

\[
\tilde{N}(dy, du) = N(dy, du) - v(dy) du.
\]

Then \(M = (M_t)_{0 \leq t \leq T} \) is a square-integrable martingale for which \(M_0 = 0 \), and \(A = (A_t)_{0 \leq t \leq T} \) is a predictable process of finite variation for which \(A_0 = 0 \).

Due to Lemma 3.1 of Schweizer [20], we have the following Lemma.

Lemma 2.1 The minimal martingale measure \(Q \) is given by

\[
\frac{dQ}{dP} = \exp\left(-\int_0^T \alpha_u S^*_u \sigma_u dW_u - \frac{1}{2} \int_0^T \alpha^2_u S^*_u \sigma^2_u du + \int_0^T \ln(1 - \alpha_u S^*_u f(y)) N(dy, du) \right.
\]

\[
+ \int_0^T \int_R \alpha_u S^*_u f(y) v(dy) du \}
\]

(10)

where

\[
\alpha_u = \frac{\mu_u - (r_u^D - r_u^F) + \int_R f(y) v(dy)}{S^*_u \left[\sigma^2_u + \int_R f^2(y) v(dy) \right]}
\]

Then \(\tilde{W}(t) = W(t) + \int_0^t \alpha_u S^*_u \sigma_u du \) is a \(Q \)-Wiener process, and the Le'vy measure under the measure \(Q \) is

\[
\tilde{v}(dy, du) = (1 - \alpha_u S^*_u f(y)) v(dy).
\]

3. European Option Pricing

In this section, we will present the valuation of European currency option under the minimal martingale measure and get the system of partial differential integral equations.

The payoff is \(g(S_T) \) at maturity \(T \). Then the conditional price and the discounted conditional price given \(S_t = S \) and \(X_t = X \) are given by

\[
V(t, T, S, X) = E_Q \left[e^{-\int_t^T (u^D - r_u^F) du} g(S_T) | \mathcal{F}_t} \right],
\]

and

\[
\tilde{V}(t, T, S, X) = e^{-\int_0^t (u^D - r_u^F) du} V(t, T, S, X).
\]
By Itô’s differentiation rule,

\[
\begin{align*}
\text{d}\tilde{V}(t,T,S,X) &= -\frac{B_t^F}{B_t^D}(r^D_t - r^-_t)V(t,T,S,X)\text{d}t + \frac{B_t^F}{B_t^D}\frac{\partial V}{\partial t} \text{d}t \\
&+ \frac{B_t^F}{B_t^D}\frac{\partial V}{\partial S} \text{d}S_t + \frac{1}{2}\frac{B_t^F}{B_t^D}\frac{\partial^2 V}{\partial S^2} \text{d}\langle S \rangle_t + \frac{B_t^F}{B_t^D} \int_{\mathbb{R}} [V(t,T,S_t + S_t f(y),X_t)]\text{d}y
\end{align*}
\]

\[-V(t,T,S_t,X_t)][N(\text{d}t,\text{d}y)] + \int_{\mathbb{R}} \frac{B_t^F}{B_t^D}[V(t,T,S_t,X_t + h(X_t, z))] \text{d}y
\]

\[-V(t,T,S_t,X_t)]p(\text{d}t,\text{d}z).
\]

(11)

Since \(\tilde{V} , S^*_t , N(\text{d}t,\text{d}y) - \hat{\nu}(\text{d}y)\text{d}t, \hat{p}(\text{d}t,\text{d}z) \) are martingales under \(Q \), all bounded variation term in (11) must be identical to zero. Then the price \(V \) satisfies the following P.D.I.E.:

\[
-(r^D_t - r^-_t)V + \frac{\partial V}{\partial t} + \frac{\partial V}{\partial S} (\mu^*_t S_t - \sigma^2_t S_t^2 \alpha_t) \\
+ \frac{1}{2} \frac{\partial^2 V}{\partial S^2} \sigma^2_t S_t^2 + \int_{\mathbb{R}} [V(t,T,S_t + S_t f(y),X_t) - V(t,T,S_t,X_t)]\hat{\nu}(\text{d}t,\text{d}y)
\]

\[+ \int_{\mathbb{R}} [V(t,T,S_t,X_t + h(X_t, z)) - V(t,T,S_t,X_t)]m(\text{d}t,\text{d}z) = 0.
\]

(12)

with terminal condition \(V(T,T,S_i) = V(S_T), i = 1,2,\ldots,n \).

Let \(V_i = V(t,T,S,i) \), for each \(i = 1,2,\ldots,n \) and \(V = (V_1,V_2,\ldots,V_N) \). Then the \(n \)-coupled P.D.I.E.s satisfied by \(V \) are

\[
-(r^D_t - r^-_t)V_i + \frac{\partial V_i}{\partial t} + \frac{\partial V_i}{\partial S} (\mu^*_t S_t - \sigma^2_t S_t^2 \alpha_t) \\
+ \frac{1}{2} \frac{\partial^2 V_i}{\partial S^2} \sigma^2_t S_t^2 + \int_{\mathbb{R}} [V(t,T,S_t + S_t f(y),i) - V(t,T,S_t,i)]\hat{\nu}(\text{d}t,\text{d}y)
\]

\[+ \int_{\mathbb{R}} [V(t,T,S_t,i + h(i, z)) - V(t,T,S_t,i)]m(\text{d}t,\text{d}z) = 0.
\]

(13)

with terminal condition \(V(T,T,S,i) = V(S_T), i = 1,2,\ldots,n \).

4. Simulation

In this section, we perform the numerical experiment to study the European call option prices with different parameters in the general model with the special jump type.

Let \(f(y) = \exp(y) - 1 \) and \(v(\text{d}y) = \lambda G_y(\text{d}y) \) where \(\lambda \) is the intensity parameter of \(N(t) \) and \(G_y(y) \) is any fixed distribution function. Then from (7) we have

\[
S_t = S_0 \exp\left\{ \int_0^t (\mu_- - \frac{1}{2} \sigma_-^2) \text{d}s + \int_0^t \sigma_- \text{d}W(s) + \sum_{i=0}^{N(t)} \int_{\mathbb{R}} Y_i \text{d}N(\text{d}y, \text{d}s) \right\}
\]

\[= S_0 \exp\left\{ \int_0^t (\mu_- - \frac{1}{2} \sigma_-^2) \text{d}s + \int_0^t \sigma_- \text{d}W(s) + \sum_{i=0}^{N(t)} Y_i \right\}
\]

(14)
where

\[Y_i \sim I.I.D.G(\cdot) \]

Then (7) becomes the usual compound Poisson jump diffusion process with the jump size \(Y_i \) following any given distribution. In this section, we select normal distribution to simulate the jump size.

Firstly, we use the Euler forward scheme to discretize the log return process in (4). We divide the interval \([0, T]\) into \(JT \) subintervals of equal length \(\Delta = 1/J \), where \([((j-1)\Delta, j\Delta])\) is the \(j \)th interval. Then we can get the Euler forward discretization of log return of asset price.

In this case, we suppose that the Markov chain \(X \) has two states,"Good" state and "Bad" state, denoted by number 1 and 2 separately, and the transition probabilities of the two state are

\[\pi_{11} = 0.7, \pi_{12} = 0.3, \pi_{21} = 0.2, \pi_{22} = 0.8 \]

Then we consider some special values for other parameters. Let the length of subinterval is \(\Delta = 1/252 \). Suppose \(r_1^D = 0.06, r_1^F = 0.02 \) when domestic economy is "Good" and \(r_2^D = 0.02, r_2^F = 0.06 \) when domestic economy is "Bad"; \(\mu_1 = 0.05 \) and \(\mu_2 = 0.02 \); \(\sigma_1 = 0.1 \) and \(\sigma_2 = 0.3 \). The mean and variance of the normal distribution of jump size are \(\mu_Y = 0.05, \sigma_Y = 0.1 \). The initial price \(S_0 \) is 1 and the initial economy state is \(X_0 = 1 \). For each of the fixed maturities \(T = 1, 3, 5 \) we consider different strike prices \(K = 0.8, 1.0, 1.2 \). With each pair of \((T, K)\), we consider different jump intensity parameter \(\lambda = 0.1 \) and then, we can study the effects of the jump on the option prices.

![Figure 1: Option prices vs Strike Price with T=1 year](image1.png)

![Figure 2: Option prices vs Strike Price with T=3 years](image2.png)
Figure 1, Figure 2 and Figure 3 depict the plots of the European call currency option prices against strike prices for different fixed maturities $T = 1, 3, 5$. From the three different figures, we can find that the option prices decrease with strike prices regardless of the jump parts. This is consistent with the common sense since the higher strike price makes it harder to execute the call options for the policy holder with no respect to the dynamics of spot FX rate. We can also find that the call option prices with jump are always higher than the counterparts. The reason is that the mean of the distribution of jump size in the simulation assumption is positive and the spot FX rate is more likely to have the positive jump. Consequently, it will have higher terminal rate than corresponding part of the dynamics without jump, which results in the higher option price at the initial time. And we can also find that the difference between option price with jump and one without jump becomes larger as maturities become longer. This can also be explained by the more positive jumps in the case with jump.

Figure 4, Figure 5 and Figure 6 depict the plots of the European call currency option prices against maturities for different fixed strike prices $K = 0.8, 1, 1.2$. From the three different figures, we can find that the option prices increase with the maturities regardless of the jump parts. This is consistent with the common sense. We can still find that the call option prices with jump are always higher than the counterparts. The reason is the same as the previous case. And we can still find that for different fixed strike prices, the difference between option price with jump and one without jump becomes larger as maturities increase. This is consistent with the findings in Figure 1, Figure 2 and Figure 3.
5. Conclusion

In this paper, we study the pricing of European currency options in financial engineering when the dynamics of the spot FX rate are driven by the generalized Markov-modulated jump-diffusion system, with the jump part described by the random measure. We use the continuous time Markov chain to drive the regime switching of the interest rate and appreciation rate and volatility of the asset. Then we find the minimal martingale measure and derive the system of partial differential integral equations satisfied by the option price we are searching for. This article provides market participants with flexibility to construct different and concrete regime-switching jump-diffusion models in practice. And from the simulation results, we can also get the behavior of the price with different parameters consistent with the theory.

6. Copyright

All authors must sign the Transfer of Copyright agreement before the article can be published. This transfer agreement enables Elsevier to protect the copyrighted material for the authors, but does not relinquish the authors' proprietary rights. The copyright transfer covers the exclusive rights to reproduce and distribute the article, including reprints, photographic reproductions, microfilm or any other reproductions of similar nature and translations. Authors are responsible for obtaining from the copyright holder permission to reproduce any figures for which copyright exists.

Acknowledgements

We would like to thank Professor Weian Zheng for his support and comments to this paper. We are also grateful to the participants of Financial Engineering Seminar at East China Normal University and the International Conference on Actuarial Science and Related Fields.

References