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The properties of a discrete Wiener-Hopf equation are closely related to the 
factorization of the symbol of the equation. We give a necessary and sufticient 
condition for existence of a canonical Wiener-Hopf factorization of a possibly 
nonregular rational matrix function W relative to a contour which is a positively 
oriented boundary of a region in the finite complex plane. The condition involves 
decomposition of the state space in a minimal realization of Wand, if it is satisfied, 
we give explicit formulas for the factors. The results are generalized by means of 
centered realizations to arbitrary rational matrix functions. The proposed approach 
can be used to solve discrete Wiener-Hopf equations whose symbols are rational 
matrix functions which admit canonical factorization relative to the unit circle. 
0 1992 Academic Press, Inc. 

1. INTRODUCTION 

Consider the discrete Wiener-Hopf equation 

,‘$ A,-,t+=c,, (j=O, 1, 2, . ..I. (1.1) 

where Aj (j = 0, f 1, f2, . ..) are complex m x IZ matrices with 
Cj”= _ o. llAi I/ < co, and {c,}~~ E I,“. The function A(z) = x,00= _ o. zjAj is 
called the symbol of the equation. It is well known that if m =IZ and for 
every z on the unit circle det A(z) # 0, then most properties of Eq. (1.1) can 
be deduced from the Wiener-Hopf factorization of the function A relative 
to the unit circle, where the Wiener-Hopf factorization is defined as 
follows. Let r be a rectifiable contour which forms the positively oriented 
boundary of a region on the Riemann sphere C,. A nonsingular matrix 
valued function A defined on r admits a (right) Wiener-Hopf factorization 
relative to r if 

A=A-DA,, (1.2) 
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where A-, A+, and D are matrix valued functions with the following 
properties. The function A- is analytic outside r, continuous outside and 
on r, and det A- does not vanish outside and on K The function A + is 
analytic inside r, continuous inside and on r, and det A+ does not vanish 
inside and on r. The function D is equal to 

(1.3) 

for some points z, inside and z _ outside r, and some integers ICY, 
IC~,...,K,W~~~IC~>IC~> ... > K,. Here, and in the sequel, the continuity of 
an m x n matrix valued function is understood in terms of the topology on 
m x n matrices induced by the (operator) norm of a matrix identified with 
an operator acting between the Euclidean spaces, and analyticity of a 
function at a point J is understood in terms of the Laurent expansion of 
the function at 1. Equivalently, a matrix valued function A is continuous 
(analytic) at a point 1” if each entry of A is continuous (analytic) at 1. 

The integers or, JQ, . . . . K, above are uniquely determined by the function 
A and the contour r. They are called the indices of the factorization (or the 
(right) factorization indices). If all the indices are equal to zero, the 
factorization is said to be canonical. The factors A_ and A+ in (1.2) are 
not unique. The possible nonuniqueness of A- and A+ is characterized in 
Theorem 7.2 in [17] (see also Theorem 1.2 in [lo]). 

We note that if the point at infinity is inside r, then a factorization 
A- DA+ with A_ and A+ as above and 

I 
(Z-z+p 

D(z) = 
(z-z+p 

. . (1.3’) 

L (z-z+)KnJ 
where z+ is a point inside r and K, 2 K* > . . . 2 K, are integers, is also 
called a Wiener-Hopf factorization relative to r. In fact, (1.3’) is a way of 
writing down (1.3) if z_ = co. If the point 0 is inside r, (1.3’) is usually 
simplified by choosing z+ = 0. Also, if A+ is analytic on C and det A+ does 
not vanish in the finite complex plane, a Wiener-Hopf factorization of A 
with the middle factor as in (1.3’) is called a Wiener-Hopf factorization at 
infinity. 

The properties of a factorization (1.2) of a continuous nonsingular 
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matrix valued function relative to the real axis and the unit circle have 
been obtained in [17] in the study of integral and discrete Wiener-Hopf 
equations. Suppose A _ DA + is a factorization of the symbol of Eq. (1.1) 
relative to the unit circle. Then the dimension of the solution set of the 
homogeneous equation 

f Aiekxk=O (j=O, 1,2, . ..) 
k=O 

equals the absolute value of the sum of the negative indices of the factoriza- 
tion. Also, the number of linearly independent elements {c~},?=~ E 1; for 
which the equation is not solvable equals the sum of the positive indices of 
the factorization. Thus, the equation has a unique solution for every 
{~~)100,~~ I,” if D(z) - Z, that is, if the factorization is canonical. A com- 
prehensive treatment of a Wiener-Hopf factorization of nonsingular matrix 
valued functions can be found in [lo]. We note that a Wiener-Hopf 
factorization is also called a standard [ 17, lo] or spectral [3] factorization 
in the literature. 

The definition of a Wiener-Hopf factorization relative to a contour has 
been extended in [ 1 l] to the case of singular matrix valued functions 
as follows. Suppose a continuous matrix valued function A defined on Z 
has constant rank equal to k. A factorization (1.2) is called a (right) 
Wiener-Hopf factorization of A relative to Z if 

(i) A- is analytic outside and continuous outside and on Z, 
and there exists a function A-, analytic outside and 
continuous outside and on Z, such that A-(z) A-(z) = I 
for all z outside and on Z’, 

(ii) 

(iii) 

A+ is analytic inside and continuous inside and on Z, 
and there exists a function A+, analytic inside and 
continuous inside and on Z’, such that A +(z) A”+(z) = Z 
for all z inside and on r, 

z-z, Kk 

( > z-z- 

(1.4) 

for some points z+ inside and z- outside r, and some integers 
u,a,$a ‘.’ au,. 
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If a function A admits a Wiener-Hopf factorization A _ DA + relative to 
Z with D as in (1.4) then the integers rcr, JC~, . . . . Kk are unique (see 
Theorem 2.1 in [ 11)). They are called the indices of the factorization. If all 
the indices are equal to zero, the factorization is said to be canonical. The 
definition of a Wiener-Hopf factorization at infinity of a singular matrix 
valued function is extended in the same way. 

We note that the above definition of a Wiener-Hopf factorization of a 
singular matrix valued function differs from the definition in [ 143 in the 
size of factors. An m x n matrix valued function A is factored in [ 141 as 
A_ DA + where the sizes of A _ and A + are m x m and n x n, respectively, 
and 

D(z) = 
diag(z”l, zIcz, . . . . zXk) 0 

0 1 0 . 

While this difference does not affect factorization indices, the factorization 
according to our definition is “full-rank” (cf. [ 12, 181). The idea of a 
factorization of a singular matrix valued function A which involves the 
rank of A has been used in [26]. 

The characterization of the possible nonuniqueness of factors in a 
Wiener-Hopf factorization relative to a contour extends to the singular 
case (see Theorem 2.3 in [ 11 I). 

THEOREM 1.1. Zf a continuous matrix valued function A admits a 
Wiener-Hopf factorization A ~ DA + relative to a contour r with D as in 
(1.4), then B- DB, is a Wiener-Hopf factorization of A relative to r if and 
only if there exists a nonsingular k x k matrix valued function Q = [qii] 
analytic on Cm\{z-} such that det Q does not vanish in C,\(z-}, 

B+(z)=Q(z,A+(z), 

B-(z) = A -(z) D(z) [Q(z)1 -’ CD(z)1 -l, 

and 

(i) qii=O iftc;>tc,, 

(ii) qii is a constant zftci= K~, 

(iii) qu is a polynomial in (z - z + )/(z - z _ ) of degree at most tcj - ~~ 

ifKi<Kj. 

We will consider a Wiener-Hopf factorization of rational matrix func- 
tions, that is, meromorphic matrix valued functions on the Riemann sphere 
C,. A rational matrix function is said to be regular if it takes nonsingular 
matrix values at all but a finite number of points. There is an extensive 
literature of Wiener-Hopf factorization of regular rational matrix functions 
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(see, e.g., [ 151). The necessary and sufficient condition for existence of a 
canonical Wiener-Hopf factorization of a regular rational matrix function, 
together with the formulas for the factors, can be found in [3] (Theorems 
4.9 and 1.5). The construction of a (not necessarily canonical) 
Wiener-Hopf factorization of a regular rational matrix function W, based 
on the realization of W, is presented in [4]. The formulas for factorization 
indices at infinity of matrix polynomials are given in [ 193. A method to 
compute the factorization indices of a regular rational matrix function is 
presented in [ 11. 

If a rational matrix function W admits a canonical Wiener-Hopf 
factorization relative to a contour, the factorization can be found by means 
of elementary column and row operations on the function W viewed as a 
matrix over the field of scalar rational functions. Below, assuming the 
system theoretic approach of [3] to Wiener-Hopf factorization, we prove 
a necessary and sufficient condition for existence of a canonical 
Wiener-Hopf factorization of an arbitrary rational matrix function W in 
terms of decomposition of the state space in a minimal realization of W. 
We also give formulas for the factors if the condition is satisfied. In 
Section 5, these results are applied to discrete Wiener-Hopf equations with 
rational symbols. 

2. PRELIMINARIES ON RATIONAL MATRIX FUNCTIONS 

We will denote by W the field of scalar rational functions, and by W” x ’ 
the a-linear space of m x n rational matrix functions. One of the basic tools 
in studying the properties of a function WE 9’” x n is a Smith-McMillan 
factorization of W (see [22,25]), that is, a factorization W = EMF where 
E and F are unimodular matrix polynomials and 

M(z) = 
diag 

(2.1) 

with the pi’s and qj’s manic polynomials such that pi I pi+ 1 
(i’ 1, 2, . ..) k-l), qj+11qi (j=1,2 )...) k - l), and pi, qi are relatively 
prime (i = 1, 2, . . . . k). We note that the function (2.1) is unique. It is called 
the Smith-McMillan form of W. The existence of a Smith-McMillan 
factorization of a function WE .4?“’ Xn follows immediately from the 
existence and uniqueness of a Smith normal form of a matrix over a 
principal ideal (or, more generally, Bezout) domain. Note that the number 
of nonzero elements in D determines the rank of W(A) at all but a finite 
number of points 1. This rank is called the normal rank of W. 

If the function W has a pole at a point IE C then, clearly, some of 



SPECTRAL FACTORIZATION 415 

41, q2, . ..Y qk vanish at J,. The orders of zeros of ql, q2, . . . . qk at I are called 
the partial multiplicities of the pole of W at il. The sum of partial multi- 
plicities of the pole of W at il is called the (total) multiplicity of the pole 
of W at 1. The sum of multiplicities of all poles of W is called the McMillan 
degree of W (see, e.g., [S]). We say that W has a zero at’2 if some of 
pi, p2, . . . . pk vanish at i. The orders of the zeros of pi, p2, . . . . pk at I are 
called the partial multiplicities of the zero of W at 1. The sum of partial 
multiplicities of the zero of W at 1 is called the (total) multiplicity of the 
zero of W at 2. The multiplicities of the pole of W at infinity, and the zero 
and the multiplicities of the zero of W at infinity, are defined to be the 
multiplicites of the pole at z = 0, and the zero and the multiplicities of the 
zero at z = 0, of the function H(z) = W(z-‘). 

The preceding definitions are standard in systems theory. We emphasize 
that while the definition of a pole of W at a point z = I coincides with the 
definition of a pole based on the Laurent expansion of W at 2, the above 
definition of the zero of W at 2 does not coincide with the definition based 
on the Laurent expansion. In particular, W may have a zero at k without 
vanishing there. Also, W may have a zero and a pole at the same point. 
The zeros of a function W defined above are sometimes called the direc- 
tional zeros. 

If a function WE 9P xn admits a Wiener-Hopf factorization relative to a 
contour r then, plainly, W has neither poles nor zeros on I7 The converse 
statement is also true -(see Theorem 2.1 in [I lo] for the regular case 
and Theorem 3.1 in [ 1 l] for the adaptation of the proof in [lo] to the 
nonregular case). 

THEOREM 2.1. A nonzero function WE .!T’ x n admits a Wiener-Hopf 
factorization relative to a contour r if and only if no point of r is a pole or 
a zero of W. 

A function WE %?’ x ’ can be represented as an m x n matrix with entries 
in 9. Another representation, commonly used in systems theory, is in terms 
of realizations. Suppose the poles of W in the finite plane are located at 
A, 22, . . . . 2,. The principal part in the Laurent expansion of W at z = ;li 
can be represented (see [6]) as Ci(z- Aj)-lBi with Ai, Bi, Ci matrices. 
Hence 

W(z) = D(z) + C(z - A)-‘B, (2.2) 

where A, B, C are matrices and D(z) is a matrix polynomial. The represen- 
tation (2.2) has been used in [25]. After finding a realization 
D, + C,(z- A,)-‘B, for D(z-‘), with the matrix A, nilpotent, we 
obtain (see [9]) 

W(z)=D,+C(z-A)-‘B+C,(z-‘-A,)-‘B,. (2.3) 
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The representation (2.3) of W is called a realization (see [7]). We note that 
if W is proper, that is, analytic at infinity, then the last term on the right- 
hand side of (2.3) does not occur and 

W(z)=D+C(z-A)-‘B, (2.4) 

where D=D,. Also, the function (2.4) does not have a zero at infinity if 
and only if the rank of D is equal to the normal rank of W. 

The representation (2.4) of a proper function WE 9Vxn is denoted by 
(A, B, C, D). It is called a state-space realization of W. The matrices A, B, 
C, D are sometimes identified with linear operators acting between finite 
dimensional spaces. The domain A is called the state space of the realiza- 
tion. A realization 0 = (A, B, C, D) of W is called minimal if the dimension 
of its state space is minimal. It can be shown that the dimension of the 
state space in a minimal realization of W is equal to the McMillan degree 
of w. 

If WE 9T x ‘, let 

wO’= {qkGJP-: f$W=O}, 

and let 

W”‘= {l,kcPX1: Wl)=O}. 

Then W”’ and W”’ are W-linear subspaces of 9’ xm and gnx ‘, respectively. 
If AEC, and n is a subspace of @“/ we will denote by n(L) the C-linear 
subspace of C’“j formed by the values at d of those functions in ,4 which 
are analytic at 1. 

Choose a point 1 E C, . If r E 9! is a nonzero function, let 1 r 1 1 = e y where 
y is an integer such that (z - I1)Yr(z) (or zeyr(z) if A = co) is analytic, and 
does not vanish, at ;1. Then ( . II determines a real non-Archimedean 
valuation of 9. If x= (xi, .-x2, . . . . x,)EF, let 

ll.411=max{lxIli~ IxzIL, . . . . l.4~). 

Then (gn, 11. /iA) is a non-Archimedean normed space. Subspaces X and Y 
of (LF, 11 ./Ii) are said to be orthogonal (see [21]) if 

Il~+~llA=max~l141n~ IIYII~~ 

for all XEX and YE Y. By Proposition 2.3 in [S], X and Y are orthogonal 
in (Wn, 11. Ii J if and only if 

x(n) f-l Y(A) = CO), 

where X(n) and Y(n) are as defined in the preceding paragraph. 
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More generally, if cr is a subset of Coo, we will say that subspaces X and 
Y of W” are orthogonal on cr if X and Y are orthogonal in (9”, (1. (1 1) for 
each 1 E 0. We will denote the orthogonality of X and Y on Q by X@, Y. 
Also, a subspace of 9” generated by constant functions will be called a 
constant subspace of %!“. The map 0 which sends constant subspaces of 9” 
to subspaces of C” via the formula O(X) = X(n), where I E C, is arbitrary, 
is bijective. Thus, we can identify subspaces of C” with constant subspaces 
of 9”. Consequently, the definition of orthogonality of subspaces of .G$?’ on 
c extends to subspaces of 9” and C”. 

Let V be a subspace of 9%‘“. One can choose a basis for V consisting of 
vectors polynomials ul, vq, . . . . uk so that C, G i G k deg ui is minimal. In any 
such basis, the degrees of vi, u2, . . . . uk are unique up to a permutation 
(see [13]). If WE~?~” and I/= W”’ (resp. V= War), 

deg vi, deg v2, . . . . deg vk 

are called the left (resp. right) Forney indices of W. The sum of left 
(resp. right) Forney indices of W measures how much the column (resp. 
row) span of W (over 9) differs from a constant subspace of 9Vx ’ 
(resp. R1 x “). 

One of the basic results on rational matrix functions (see [27] or [28]) 
is that the McMillan degree of a function WE ,G%?“‘~” differs from the sum 
of multiplicities of all the zeros of W by the sum of its left and right Forney 
indices. The sum of left and right Forney indices of W is also called the 
defect of W in the literature (see [20]). 

3. FACTORIZATION OF FUNCTIONS WITHOUT A POLE OR ZERO AT INFINITY 

In this section we will consider functions in Pxn which have neither a 
pole nor a zero at infinity. In Theorem 3.7 we will in addition assume that 
the contour r is a positively oriented boundary of a region in the finite 
plane C. The results will be generalized to an arbitrary case in the next 
section. By a generalized inverse of a matrix D we will understand a (1,2)- 
inverse of D, that is, any matrix Dt such that DDfD = D and DfDDt = Df. 

LEMMA 3.1. Let (A, B, C, D) be a realization of a function WEW”‘~” 
without a zero at infinity, and let Dt be a generalized inverse of D. Then 
a(A - BD IC) contains all the zeros of W. 

Proof. Let k be the normal rank of W. Since W does not have a zero 
at infinity, rank D = k. Choose D, EC”” k and D, E Ck”” such that 
D = DI D,. By Lemma 3.8 in [23], there exist a left inverse DIL of D, and 
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a right inverse D;R of D, such that D’= DF~D;~. Let H(z)= 
DrLW(z)D; R. The function H is square and takes the value Z at infinity. 
Since (A, BD; R, D; LC, Z) is a realization of H, the function G E Bk xk 
with a realization (A - BD; RD 1 LC, BD; R, -D 1 LC, I) satisfies the identity 
G(z) H(z) = Z. Hence the zeros of H are the poles of G, of the same 
multiplicities. It remains to show that the zeros of W are the zeros of H. 

Let EMF be a Smith-McMillan factorization of W. Partition E, it4, and 
F so that 

= E, i@F, 

with fi regular, and let g(z)=D~~E,(z), &z)=F~(z)D;~. Then H= 
.&i# and the functions B,, P, E Bk x k are regular. Suppose the ith diagonal 
entry of & vanishes at z = 2, and let 4 E ak x ’ be such that F(z) i(z) = ei 
(cf. [6]), where ei is the standard vector with 1 in the ith position and 
zeros elsewhere. Since P is analytic at z = 2, either 4 has a pole at z = ;1 or 
d(J) # 0. Let $(z) = (z - ~)V(Z) where q is a nonnegative integer such that 
II/ is analytic and does not vanish at 1. Then (H@)(J) = 0, so H has a zero 
at z=1. 1 

In fact, if we choose a generalized inverse D$ of D appropriately, then 
the spectrum of A x = A - BDfC can give us a more complete information 
about the zeros of W. 

LEMMA 3.2. Let (A, B, C, D) be a minimal realization of a function 
WESSmxn without a zero at infinity, let 2 EC, and suppose D’ is a 
generalized inverse of D such that 

(i) the row span of D1: intersects trivially with W”‘(l), 
(ii) the column span of Df intersects trivially with War(n). 

Then the function W has a zero at 1 if and only if 1 E a(A - BDfC). 
Moreover, the partial multiplicities of the zero of W at 1 coincide with the 
multiplicities of ,I as an eigenvalue of A - BDfC. 

Proof We use the notation introduced in the proof of Lemma 3.1. 
Since conditions (i) and (ii) hold, the matrix polynomials E and P have 
nonsingular values at 1. Hence the function H has a zero (resp. a pole) at 
2 if and only if W has a zero (resp. a pole) at 1. Also, the partial multi- 
plicities of the zero (resp. a pole) of the function H at 1 are equal to the 
partial multiplicities of the zero (resp. a pole) of the function W at 1. 
Choose a nonsingular matrix S such that 
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(3.1) 

and (A,, B,, Co, D) is a minimal realization of H (cf. Theorem 3.2 in [3]). 
Since the total multiplicity of the pole of H at A is equal to the total multi- 
plicity of the pole of W at A., and (A, B, C, D) is a minimal realization of 
W, A $ o(A r) u a(A,). Hence the Jordan blocks with the eigenvalue A in the 
Jordan forms of A - BDIC and A, - B,Co coincide. Since the partial 
multiplicities of the zero of H at ;1 are equal to the multiplicities of A as an 
eigenvalue of A, - B,C, (see, e.g., [7]), the assertion follows. 1 

Lemma 3.2 has the following corollary. 

PROPOSITION 3.3. Let (A, B, C, D) be a minimal realization of a 
function WE .GP x ’ without a zero at infinity, let o c C, and suppose Df is 
a generalized inverse of D such that 

(i) the row span of D’ is orthogonal to W”’ on o, 

(ii) the column span of Dt is orthogonal to W”’ on o. 

Then the function W has a zero at a point A E a if and only if 
,I E a(A - BDfC). Moreover, the partial multiplicities of the zero of W at 2 
coincide with the multiplicities of I. as an eigenvalue of A - BD’C. 

we can find a generalized inverse of D which satisfies the hypotheses of 
Proposition 3.3 whenever the set 0 is finite. 

LEMMA 3.4. Let X be a k-dimensional subspace of 9” and let 
fJ= {&EC m : 1 < i < r}. Then there exists an (n - k)-dimensional subspace A 
of C” such that A@, X. 

Lemma 3.4 (cf. Corollary 3.4 in [2]) follows immediately from the Baire 
Category Theorem. One can find A by picking n - k linearly independent 
vectors in C” whose span intersects trivially with U I= I X(&). Lemma 3.4 
has the following corollary. 

LEMMA 3.5. Let WE.%?“‘~* be a function without a pole or a zero at 
infinity, let D = W( CO), and let o = {ni E C : 1 < i < r} be a finite set. Then 
there exists a generalized inverse DZ of D such that 

(i) the row span of Dt and W”’ are orthogonal on o, 

(ii) the column span of Df and W”’ are orthogonal on a. 
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ProoJ: Let k be the normal rank of W. By Lemma 3.4, we can find an 
(m - k)-dimensional subspace A,.,, of C’ XM and an (n - k)-dimensional 
subspace AcOl of Cnx’ such that A..,@.,(,, W”’ and AcO~@~v~oci~ W”‘. 
Then the generalized inverse Df of D with the column and row spans equal 
to ho, and A,,,, respectively, satisfies conditions (i) and (ii). 1 

Remark. If Ds is any generalized inverse of D, then the row span of Ds 
is orthogonal to Wo’, and the column span of Ds is orthogonal to W”‘, on 
the whole Riemann sphere C, except for a finite number of points. This 
follows from the fact that the row and column spans of Ds are orthogonal 
to W”’ and W”’ at infinity, and hence the rational matrix functions 

P,,(z) 
[ 1 Df 

and [P,,(z) ofI 7 

where P,, and P, are such that the rows of P,, form a basis for W”’ and 
the columns of P,, form a basis for W”‘, are regular. In Lemma 3.5, a finite 
set c is given a priori, and we can actually compute a generalized inverse 
Df of D which satisfies conditions (i) and (ii). 

If (A, B, C, D) is a minimal realization of a function WE a”““, the zeros 
of W are precisely (see Theorem 4.1 in [25, Chap. 33) the points of the 
complex plane where the singular pencil 

loses rank. If W does not have a zero at infinity, Lemmas 3.1, 3.4, and 3.5 
imply the following equivalent characterization of the set of zeros of W. 

PROPOSITION. 3.6. Let (A, B, C, D) be a minimal realization of a function 
WE SY’ x ’ without a zero at infinity. Then 

f-j cr(A - BD*C), (3.2) 

with the intersection taken over all generalized inverses DZ of D, is the set of 
zeros of W. 

Proposition 3.6 generalizes the well known fact that if (A, B, C, D) is a 
minimal realization of a function WE 9” x ” and the matrix D is invertible, 
then the zeros of W are precisely the points of spectrum of A - BD-‘C. 

The foliowing theorem gives a necessary and sufficient condition for 
existence of a canonical Wiener-Hopf factorization relative to a contour of 
a function WE 9” x n without a pole or zero at infinity. If r is a positively 
oriented boundary of a region in the finite plane C and A is a linear 
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operator whose spectrum does not meet r, P(A; r) will denote the projec- 
tion induced by the part of the spectrum of A inside r according to the 
formula 

P(A;I&S,(z-a)‘dz. 

THEOREM. 3.7. Let 0 = (A, B, C, D) be a minimal realization of a 
function WE 9’” x n and suppose all the zeros of W are contained in a set 
u = (Lie C: 1 d id r}. Let r be a contour which is a positively oriented 
boundary of a region in the finite plane and which does not meet o v o(A), 
and put Xi = Im P(A; r). Choose a generalized inverse D’ of D such that the 
row span of Df is orthogonal on o to W”’ and the column span of Ds is 
orthogonal on o to W”‘. Let A” = A - BDsC, let 

Q,, = Im C .l$n+ J’” (Ai + 
0 

and let 

Then the function W admits a canonical Wiener-Hopf factorization relative 
to r tf and only tf the state space X of 0 contains a subspace X2 complemen- 
tary to X, such that 

(i) X2 is invariant under A” and Q,,,int X2cQ,,,, 

(ii) the matrix representations of A, B, C with respect to the decom- 
position X, i X2 

are such that the row span of B, is contained in the row span of D and the 
column span of C, is contained in the column span of D. 

Moreover, suppose conditions (i) and (ii) hold for an appropiate X2, and 
let k be the normal rank of W. Then W, W, is a canonical Wiener-Hopf 
factorization of W relative to T and only tf 

W,(z)=D,+C,(z-A,,))‘B,D;R (3.3) 

W,(Z)=D,+D,~C,(Z-A~~)-.’ B,, (3.4) 
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where Dl~Cmxk and D2ECkxn are such that D=D,D,, and DIL~Ckx” 
and D;R~Cnxk are one-sided inverses of D, and D, such that 
Ds = DT~D;=. 

Proof: Let X, with Q,, c X, c Q,,,,, be such that X = X, i X, and (i) 
and (ii) hold. Choose D, E C” x k and D, E Ck x ’ such that D = D, D,. By 
Lemma 3.8 in [23], there exist one-sided inverses DIL and D;R of D, and 
D, such that Df=DIRD;=. It follows from the definition of X, that 
A(X,) c X,. Hence, by Theorem 3.1 in [23], W= W, W, where W, and 
W, are as in (3.3) and (3.4). By Lemma 1.4 in [3], a(A,,) is the part of 
the spectrum of A inside r and a(A,,) is the part of the spectrum of A 
outside IY Thus, both W, and W, are analytic on r, W, is analytic outside 
r, and W, is analytic inside r. 

Suppose A E u is a point of spectrum of A,, - B, DsC, inside r. Then for 
some x E X2 

2rcix = lim s 2K (A+ 
c-o+ 0 

&e’P’-AAX)p’xdq#O 

and X2 @ Q,,,, a contradiction. Similarly, if i E 0 is a point of spectrum 
of A r1 -BID%, outside r, then Q,, $ X2, a contradiction. Since W, W, 
is a minimal factorization of W (see [26]), d contains all the zeros of W, 
and W,. Consequently, by Lemma 3.2, all the zeros of W, are inside r and 
all the zeros of W, are outside r. Assume without loss of generality that 
0 is inside r and cc is outside r. Let EMF be a Smith-McMillan factoriza- 
tion of W,, let ,!? and F be multiplicative inverses of E and F, and, if 
M= Cdiagh/ql,p2/q27 -.dklqk)“l~ let 

fi= 
diag(g, &, . . . . g) 1 0 

Then m2=Fi@E~WnXk is analytic inside, and on, r and W,(z) p*(z) = I 
for all z inside and on r. Similarly, after considering a Smith-McMqlan 
factorization of a function W,(z- ’ ), one can see that there is a func$ion 
@r E gkxm which is analytic outside, and on, r such that m,(z) W,(zj= I 
for all z outside and on r. Thus, W, W2 is a canonical Wiener-Hopf 
factorization of W relative to r. 

If @, m2 is another canonical Wiener-Hopf factorization of W relative 
to r then, by Theorem 1.1, m,(z)= W,(z)S and m,(z)= S-‘W,(z) for 
some nonsingular matrix SE Ck x k. So 

and 
w’,(z)=D,S+C,(z-A,,)-’ B,DyRS 

ti2(z)=S-‘D,+Sp1D,LC2(z-A2z)-1 B,. 



SPECTRAL FACTORIZATION 423 

Clearly, D = (D,S)(S-‘0,) and Ds = (D;RS)(S-‘D;L). Thus, the second 
assertion in the theorem is valid. It remains to show that if W admits a 
canonical Wiener-Hopf factorization relative to the contour r then there 
exists a subspace X, of the state space 0 which has the required properties. 

Suppose WI W, is a canonical Wiener-Hopf factorization of W relative 
to the contour l? Let Oi= (A;, Bi, C;, Di) be a minimal realization of Wi 
(i= 1, 2). Then (see e.g., [S]) 0 is similar to 

([“o’ B;;2], [B;y2], CC, WzlJ). (3.5) 

In fact, the first three matrices in (3.5) represent A, B, C with respect to 
the decomposition X= X, i X2, where X, = Im P(A; r) and X2 can be 
expressed in terms of some similarity matrix S. Clearly, condition (ii) holds 
and, by Theorem 3.1 in [23], the subspace X, is invariant under A”. Let 
0;’ be a left inverse of D, and let D; R be a right inverse of D, such that 
Ds = DT~D; L. Since W, has no zeros inside r and W and W, have the 
same column span (over 9) by Proposition 3.3, g does not meet 
rr(A,- B2D;RC2) inside r. Hence XZ~Omux. Since W, has no zeros out- 
side r, by Proposition 3.3, o does not meet a(A, - B, 0; LC1) outside r. 
Hence 

&‘i-Ax)p’dq: l<i<r,&isoutsider (3.6) 

maps X, into X,. Since A” (X2) c X,, the projection (3.6) maps X, into A’,. 
Thus Q,,cX,. 1 

Note that the dimension of the space X2 in Theorem 3.7 is uniquely 
determined by the function W and the contour r. Indeed, W and r deter- 
mine uniquely the dimensions of Qmin and Sz,,,, and dim X2 is related to 
dim Q,, (and dim Q,,,) as follows. Let N, be the sum of the left Forney 
indices of W and let N, be the sum of right Forney indices of W. Suppose 
WI W, with W, and W, as in (3.3) and (3.4) is a canonical Wiener-Hopf 
factorization of W relative to r. Then WY’ = W”’ and WY = W”‘, and so 
N, is the sum of all (left and right) Forney indices of W, and N, is the 
sum of all Forney indices of W,. Hence N, is the difference between the 
McMillan degree of W, and the sum of multiplicities of all zeros of W,, 
and N, is the difference between the McMillan degree of W, and the sum 
of multiplicities of all zeros of W,. Now, by Proposition 3.3, dim SZmin 
is equal to the sum of multiplicities of the zeros of W outside r and 
(dim X-dim Q,,,) is equal to the sum of multiplicities of the zeros of W 
inside r. Consequently, 

dim X2 - dim a,,,, = N, 

580/110/2-13 
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and 
dim a,,,,, - dim X2 = dim X, - (dim X- dim Sz,,,) = N,. 

The result of this argument is summarized in the following proposition. 

PROPOSITION. 3.8. Suppose a function WE grnxrn without a pole or a 
zero at infinity admits a Wiener-Hopf factorization relative to a countour r. 
Then, in the notation of Theorem 3.7, 

dim X2 - dim sZ,i,, = N, 
and 

dim Q,,, - dim X2 = N,, 

where N, and N, are the sums of left and right Forney indices of W, 
respectively. 

Consequently, Theorem 3.7 can be specialized as follows. 

THEOREM 3.9. Let 0 = (A, B, C, D) be a minimal realization of a 
function WE .G%!‘” x * and suppose all the zeros of W are contained in a set 
a = { ,Ii E C : 1 < i < r}. Let N, and N, be the sums of left and right Forney 
indices of W, and suppose N, NR = 0. Let r be a contour which is a positively 
oriented boundary of a region in the finite plane and which does not meet 
a v a(A), and put X1 = Im P(A; IJ. Choose a generalized inverse Ds of D 
such that the row span of Ds is orthogonal on ct to W”’ and the column span 
of Ds is orthogonal on a to W”‘. Let A” = A - BDsC, let 

,liJl+ j’” (Ai+%” -A”)-‘dq: l<i<r,Aiisoutsider 
0 

tf N, = 0, and let 

X2 = Ker 1 ,li+y+ 1’” (Ai + Ee+“-A”)-‘dq: l<iir,&isinsider 
0 

otherwise. Then the function W admits a canonical Wiener-Hopf factoriza- 
tion relative to r if and only tf X, complements X,, in the state space X of 
0 and the matrix representations of A, B, C with respect to the decomposi- 
tion X, i X2 

are such that the row span of B1 is contained in the row span of D and the 
column span of C, is contained in the column span of D. 
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Moreover, suppose W admits a canonical Wiener-Hopf factorization 
relative to r, and let k be the normal rank of W. Then W, W, is a canonical 
Wiener-Hopf factorization of W relative to r if and only if 

and 

W,(z)=D, + C,(z-A,,)-’ B,DT~ (3.7) 

W,(z) = D, + D,%,(z - A,,)-’ B,, (3.8) 

where DI~Cmxk and D2ECkxn are such that D=D,D,, and DIL~Ckxm 
and DF~EC”~~ are one-sided inverses of D, and D, such that 
D$=DY~D;~. 

4. FACTORIZATION OF FUNCTIONS WITH POLES OR ZEROS AT INFINITY 

Suppose that a function WE @” xn with a realization (2.3) has a pole or 
a zero at infinity. Choose a point c1 E C such that the matrices (a -A) and 
(I- ctA ,) are invertible. Then (see [24]; cf. [ 163) 

W(z) = D, + C, (-$-A-‘B,, (4.1) 

where 

A,= 
-(u--A)-’ 

0 ’ , (I- @A,)- A, 12 B,= [ (II(;;m;):;m], 

c,= cc cm17 D, = W(u). 

The representation (4.1) of W is called a centered realization and is 
denoted by (A,, B,, C,, D,, CI). A realization 0 = (A, B, C, D, u) of a 
function WE 9Vxn is said to be minimal if the size of the matrix A is 
6(W) x 6(W), where 6(W) is the McMillan degree of W. We will call the 
domain of the operator corresponding to the matrix A in the realization 8 
the state space of the realization. 

Since (A, B, C, D, U) is a minimal centered realization of a function 
WE 9” x n if and only if (A, B, C, D) is a minimal realization of a function 
H(z) = W( (az + 1)/z), all the results of Section 3 can be immediately 
extended to an arbitrary rational matrix function W and a contour which 
is a positively oriented boundary of a region on the Riemann sphere. We 
state the generalization of Theorem 3.7. Below, the symbol Tl,+aj will 
denote the Mobius transformation which sends z to l/(z - LX). 
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THEOREM 4.1. Let 0 = (A, B, C, D, ~1) be a minimal realization of a 
function WE 92’” x n, and let r be a contour such that c( is outside r. Suppose 
allthezerosof Warecontainedinaseta={;li~C,\{~}:l<i<r}and~ 
does not meet a v { 2 E C o. : l/(A - c() E a(A)}. Let p= T,,+.,(r), and put 
X, = Im P(A; p). Choose a generalized inverse Ds of D such that the row 
span of Ds is orthogonal on a to W”’ and the column span of Df is 
orthogonal on a to W”‘. Let A” = A - BD?, let 

Q,, = Im C {,l,+ /in (&+Eeqi-Ax)-’ 6cp: lim 

1 <i<rr,Iiisoutsider , 

and let 

1 didr,&isoutsideI , 

Then the function W admits a canonical Wiener-Hopf factorization relative 
to r tf and only tf the the state space X of 0 contains a subspace X2 
complementary to X, such that 

(i) X2 is invariant under A” and Q,, c X2 c Sz,,,, 

(ii) the matrix representations of A, B, C with respect to the decom- 
position Xl i X2 

are such that the row span of B, is contained in the row span of D and the 
column span of C, is contained in the column span of D. 

Moreover, suppose conditions (i) and (ii) hold for an appropiate X2, and let 
k be the normal rank of W. Then W, W2 is a canonical Wiener-Hopf 
factorization of W relative to r tf and only tf 

W,(z) = D, + C, (&-he’ B,D;R 

and 

W,(z) = D2 + D,LC2 (&&-’ B,, 
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where D1~CMXk and D2ECkxn are such that D=D,D,, and DILECkxm 
and DIR~Cnxk are one-sided inverses of D, and D, such that 
DS=DIRDIL. 

Proof: A point I. is a pole of a rational matrix function w(z) inside 
(resp.. outside) and on the contour r if and only if the point I= l/(1 - CY) 
is a pole of the function 

h(z)=w q 
( > 

inside (resp. outside) and on the contour 7. So the theorem follows from 
Theorem 3.7. 1 

We note that Theorem 3.9 can be restated in the setting of Theorem 4.1. 

5. DISCRETE WIENER-H• PF EQUATIONS 

We consider now the equation 

kzoAj-kXk=Cj (j=O, 1, 2, ...), 

where Aj (j= 0, f 1, f2, . ..) are complex m x n matrices such that 
a3 
C II Aj II < ~0, 

(5.1) 

(5.2) 

and {c,},~~ ~1;. Here 1: is the product of m copies of 1, (pa l), with the 
norm of (x,, x2, . . . . x,) equal to the sum of the norms of the components. 
Suppose {tj}i”,OEZz is a solution of (5.1). Putting tj=O (j= -1, -2, .,.), 
we obtain 

k=~mAj-k~/cECj (j=O, Ifrl, fZ ...), (5.3) 

where c-r, CC~, . . . are defined by (5.3). Multiplying both sides of (5.3) by 
zi and summing over j, we obtain 

Am+-c-(z)=c+(z), (5.4) 
where 

A(z)= f z’Aj, c+(z)= f Z’Cj, 
,= --oo j=O 

5+(z)= f z’5j, c-(z)= s Z’Cj . 
j=O j= -cm 

(5.5) 
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We will identify an element { c~}~OO=~ E lb, i a positive integer, with the series 
cJYO zicj. The image of 1: under this identification will be denoted by l;+. 
The space of series x,~‘-~ zjcj such that {cj},y , E 1; will be denoted by 
Ii-. The projection 

f m zjq + c z’c, 
j= -cc j=O 

will be denoted by rc + . 
The case when the symbol A of Eq.(5.1) is square, and its determinant 

does not vanish at any point of the unit circle F-, has been considered in 
[ 171 (see also [3]). Here we assume that the symbol A is a rational matrix 
function with a constant rank on 9’. We characterize first elements { cj},F’= o 
for which Eq. (5.1) is consistent. Let T, denote the Toeplitz operator 
defined by (5.1), that is, 

PROPOSITION 5.1. Suppose the symbol A of Eq. (5.1) is a rational matrix 
function with a constant rank on the unit circle. Then the range of TA is 
closed. 

Proof: It follows from (5.4) that 

T,=~,MA, (5.6) 

where M, is the multiplication operator with symbol A. Plainly, TA is con- 
tinuous. Let A ~ DA+ with D(z) = diag(z”‘, zKZ, . . . . zKk) be a Wiener-Hopf 
factorization of A relative to the unit circle F. Then M,+ maps 1:’ onto 
Ii+, and we may assume that k = m and A = A- D. Suppose that all the 
indices of the factorization are nonnegative, and let AIM be a rational 
matrix function analytic outside the unit disc such that AIM A_(z) = Z. 
Then, by (5.4), 

for every c+ in the range of TA and TA is an open map from 1; onto its 
range R in 1;. So R is a closed subspace of 1;. If some indices of the 
factorization are negative, the range of TA differs from R by at most a 
finite dimensional space, and so it is closed. 1 

The characterization of the range of T, in [17] carries over to our set- 
ting. If x, y E C”, let (x, y) denote the sum of the products of the corre- 
sponding coordinates of x and y. Also, let q 2 1 be such that l/p + l/q = 1. 
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PROPOSITION 5.2. Suppose the symbol of Eq. (5.1) is a rational matrix 
function with a constant rank on the unit circle. Then Eq. (5.1) has a solution 
in 1; if and only tf 

f (Cj, Uj) = 0 
j=O 

for every { u.~},?? o E I y such that 

f A,TpjUk=O (j=O, 1,2, . ..). (5.8) 
.j= 0 

Proof Plainly, the elements in the range of T, satisfy the condition. 
Suppose { cj>JYo E 1; is not in the range of T,. Then, since the range of T, 
is closed, there exists a solution { u,},:~ E 17 of (5.8) such that 
Cjm=O tcjT uj) Z O. I 

If the symbol of Eq. (5.1) is square and its determinant does not vanish 
at any point of the unit circle, then Eq. (5.8) has a finite number of linearly 
independent solutions. This number determines the defect of TA in 1,“. In 
the general case, when Eq. (5.8) has infinitely many linearly independent 
solutions, the characterization of { cj},Eo E I; for which Eq. (5.1) is solvable 
provided by Proposition 5.2 is practically less significant. We give now 
a different characterization. It follows from (5.6) that the elements 
{ cj},E o E IT for which Eq. (5.1) is solvable are contained in 

7c+MA(l;+ i 1;-). (5.9) 

We will call members of the set (5.9) admissible elements. The space of 
admissible elements is a closed subspace of 1:. 

PROPOSITION 5.3. Suppose the symbol A of Eq. (5.1) is a rational matrix 
function with a constant rank on the unit circle F. Then the defect of the 
operator T, in the space of admissible elements equals the sum of positive 
indices in a Wiener-Hopf factorization of A relative to F. 

Proof We construct the complement of the range of T, in the space of 
admissible elements. Let A _ DA + with D(z) = diag(z”‘, zK2, . . . . zKk) and A _ 
and A+ rational matrix functions be a Wiener-Hopf factorization of 
the symbol A relative to the unit circle, and suppose K~> 0 > rci+ I. It 
follows from the definition of a Wiener-Hopf factorization that 
A -(z) = c/“= loo zjAj, where cJ”= m JIAj 11 < cc and A, has linearly inde- 
pendent columns. Hence the members of the set 

%7={7c+MA_(zYea):y=0,1 ,..., rcg-l,/?=l,2 ,..., i>, 
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where eg is a standard vector with 1 in the Bth position, are linearly 
independent admissible elements. Also Span %, the linear span of the 
members of %‘, intersects trivially with rc+ MA(Zj:+). Hence, by (5.4), 
Span %’ intersects trivially with the range of T,. Let t- be an element of 
la-. Then 

M,,+(r_)~l,k-+Span{zYes:y=O, l,..., IC,--1,/?=1,2 ,..., i) 

Thus, rc+M,t- ESpan%?+Ran TA. 1 

Suppose the symbol A of Eq. (5.1) admits a Wiener-Hopf factorization 
A _ DA + relative to the unit circle. An argument similar to the one in the 
proof of Proposition 5.3 shows that the dimension of the kernel of T, 
equals the sum of absolute values of negative indices of the factorization 
whenever the factor A + is square. If the factor A + is not square, TA has 
an infinite dimensional kernel. However, the space 

(Ker T,) A T, -R(Z,“‘) + (5.10) 

is finite dimensional, where ArR is a function analytic on the closed unit 
disc such that A+(z) A i”(z) = I. Clearly, 

W;‘) = L(TA+-4$+ )I 

and, for a fixed AiR, we may call members of T, -~(r,k’) admissible solu- 
tions. The dimension of Ker TA in the space of admissible solutions is equal 
to the absolute value of the sum of negative indices of the factorization. 

The factorization results from the previous sections can be used to 
characterize the existence and uniqueness of solutions of Eq. (5.1). For 
simplicity, we formulate this characterization in the case when the values 
A(z) of the symbol A have linearly independent columns for all z on the 
unit circle. 

THEOREM 5.4. Suppose the symbol A of Eq. (5.1) is a rational matrix 
function and A(z) has linearly independent columns for all z on the unit 
circle. Choose a point a E C such that [al > 1 and a is neither a pole nor zero 
of A, and find a minimal realization 0 = (E, B, C, D, a) of A. Suppose all the 
zeros of A are contained in a set o c C, and 
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Let r(t) = l/(eif - a), 0 < t < 271, and put X1 = Im P(E; r). Choose a 
generalized inverse Ds of D such that the row span of Ds is orthogonal on 
o to A”‘. Let E” = E - BDtC, and let 

Then Eq. (5.1) has a unique solution for each admissible { cj},cO if and only 
if X, + X2 is a direct sum decomposition of the state space of 0 and C(X,) 
is contained in the column span of D. 

We note that the formulas for the factors in a Wiener-Hopf factorization 
relative to the unit circle of the symbol of Eq. (5.1) can be used to solve the 
equation. Indeed, suppose the equation is consistent and the functions 
A I”(Z) = c;= --oo z’Aj- and A T”(Z) = c,YZO ziAj+ in the definition of a 
canonical factorization of the symbol are such that CT= --03 IjAj- 11 < co and 
C,To IlAj+II < ~0. Then, by (5.4h 

~+(z)=A;~~~+A:‘c+(z) (5.11) 

is a solution of the equation. Thus, the equation can be solved if we find 
the functions A ; R and A 1’. Now Theorem 4.1 provides the formulas for 
A + and A-, and they can be used to find A yR and A zL as follows. 
Suppose (E, B, C, D, 01) is a realization of A+ and the matrix D has linearly 
independent rows. Let G, c C, be a set which contains 

is a pole or zero of A + , 

and let 0: be a generalized inverse of D whose column span is orthogonal 
on g1 to A”‘. Let o2 c C, be a set which contains 

and let 0; be a generalized inverse of D whose column span is orthogonal 
on (TV to A”‘. Then 

-1 
W,(z) = D’- DfB --&E+BD;c 

> 
CD; (i= 1,2) 

are functions such that A +(z) W,(z) = 1 and a point A with 111 < 1 is a pole 
of the corresponding rows of W, and W, if and only if I is a zero of A+. 
Without loss of generality, assume A+ consists of a single row. Let pi be 
a scalar polynomial of least degree such that pi Wi is analytic on the closed 
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unit disc (i= 1, 2). By Proposition 3.3, p1 and p2 are relatively prime, and 
we can find scalar polynomials q1 and q2 such that pI q1 -kp2q2 = 1. Conse- 
quently, the function 

is analytic on the closed unit disc and A(z) A ~~(2) = I. Similarly, we can 
find the function A Lo. In fact, we can compute realizations 

AT~(z)=D+ -tC+(zr’-E+)-‘B, 

and 

AI~(z)=D_ +C-(z-E-)-‘BP (5.12) 

(cf. Proposition 2.3 in [24]). Formulas (5.11) and (5.12) provide a solution 
{5;),“=o~l; of Eq. (5.1) such that li = C,y, yiic, with 

min {i,j) 

ycy= c Y:--kY,Tk> 

k=O 

where 

and 

y+ = 
D 
C:;E+)‘-‘B,, 

if i= 0, 
if i>O 

‘I’ = 
D-2 if j= 0, 
C(E-)‘-‘B_, if j> 0. 
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