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Summary

Background: The centrosome has a well-established role as
a microtubule organizer during mitosis and cytokinesis. In
addition, it facilitates the union of parental haploid genomes
following fertilization by nucleating a microtubule aster along
which the female pronucleus migrates toward the male pronu-
cleus. Stable associations between the sperm aster and the
pronuclei are essential during this directed movement.
Results: Our studies reveal that the zebrafish gene futile cycle
(fue) is required in the zygote for male pronucleus-centrosome
attachment and female pronuclear migration. We show that
fue encodes a novel, maternally-provided long form of
lymphoid-restricted membrane protein (lrmp), a vertebrate-
specific gene of unknown function. Both maternal lrmp
messenger RNA (mRNA) and protein are highly localized in
the zygote, in a largely overlapping pattern at nuclear
membranes, centrosomes, and spindles. Truncated Lrmp-
EGFP fusion proteins identified subcellular targeting signals
in the C terminus of Lrmp; however, endogenous mRNA local-
ization is likely important to ensure strict spatial expression of
the protein. Localization of both Lrmp protein and lrmp RNA is
defective in fuemutant embryos, indicating that correct target-
ing of lrmp gene products is dependent on Lrmp function.
Conclusions: Lrmp is a conserved vertebrate gene whose
maternally inherited products are essential for nucleus-centro-
some attachment and pronuclear congression during fertiliza-
tion. Precise subcellular localization of lrmp products also
suggests a requirement for strict spatiotemporal regulation
of their function in the early embryo.
Introduction

In many species, including zebrafish, pronuclear congression
during fertilization depends on a microtubule aster that forms
near the male pronucleus [1–3]. This sperm aster is nucleated
by the zygotic centrosome, a structure built from paternally
inherited centrioles and maternally provided pericentriolar
material [2, 4, 5]. During pronuclear congression, the male
pronucleus is associated with the center of this aster at the
centrosome, while astral microtubules attach to the female
pronucleus and facilitate its dynein/dynactin-dependent mi-
gration toward the centrosome and male pronucleus [3, 6–9].
This movement results in the apposition and subsequent
fusion of male and female pronuclei.

Zygotes fromhomozygous futile cycle zebrafish females (fue
embryos) fail to undergo pronuclear congression and fusion
[10]. Here we show that embryos lacking fue products exhibit
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defects in the ability of pronuclei to interact with the sperm
aster. We determine that fue encodes a maternally expressed
long isoform of Lymphoid-restricted membrane protein
(Lrmp). Lrmp is conserved in vertebrate lineages and shares
structural features with proteins that link the nuclear envelope
to the cytoskeleton.We also find that fue/lrmpmessenger RNA
(mRNA) exhibits cell-cycle-dependent subcellular localization
patterns that likely facilitate Lrmp protein enrichment at the
nuclear envelope. Our studies reveal an essential function for
a conserved gene and offer novel insights into mechanisms
of nuclear dynamics in early vertebrate embryos.

Results

Pronuclei Exhibit Defects in Their Interactions with the
Sperm Aster in fue Zygotes

The fue mutation was previously shown to affect pronuclear
migration and fusion ([10]; see Figures S1A and S1B available
online). Formation of a sperm aster is critical for pronuclear
migration in many species [2, 5]. However, analysis of fue
mutants revealed normal astral microtubule growth following
fertilization (Figures S1C–S1F).
The zygotic centrosome resides at the core of the sperm

aster, which is normally in close proximity to the male pronu-
cleus during pronuclear congression [5]. To determinewhether
the centrosome-male pronucleus association is affected in fue
embryos, we conducted antibody labeling for the centrosomal
component g-tubulin. At 10 min postfertilization (mpf) in both
wild-type (WT) and fue embryos, centrosomal material lies
within a few microns of the male pronucleus (Figures 1A, 1C,
and 1E). By 15 mpf in WT embryos, the centrosome is in
complete juxtaposition with the male pronucleus (<1 mm
distance, Figures 1B and 1E and Movie S1). In fue embryos at
the same time point, g-tubulin appears separate from the
male pronucleus, at a distance of 4 to 6 mm (Figures 1D and
1E; Movie S2). These data indicate a failure of the centrosome
to attach to the male pronucleus in fue mutant embryos.
We next examined whether the female pronucleus still

migrates toward the detached centrosome in mutant embryos.
Immediately after fertilization in both WT and fue mutant
zygotes, the female pronucleus is found at a significant distance
from the center of the sperm aster (average distance in both
cases: approximately 25 mm; Figure 1F). By 15 mpf in WT
zygotes, the femalepronucleus isdirectlyadjacent to thecentro-
some, indicating that female pronuclear migration has occurred
and pronuclear fusion is underway (Figures 1B and 1F; Movie
S1). At 15 mpf in fue mutants (Figures 1D and 1F; Movie S2),
the female pronucleus is at a distance from the centrosome
similar to that at 10 mpf, suggesting that the female pronucleus
does not undergo centrosome-directed migration along the
sperm aster. Thus, fue function is required for pronuclei to
interact successfully with the centrosome and the sperm aster.

futile cycle Encodes a Maternally Expressed Lrmp Long

Isoform
Positional cloning of fue traced themutation to chromosome 4
in a region containing several transcripts including lymphoid-
restricted membrane protein (lrmp) (Figure 2A). Further
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Figure 1. Centrosomes Fail to Attach to Pronu-

clear Envelopes in fue Embryos

(A–D) In vitro fertilized embryos from WT and fue

females fixed and labeled for centrosomes

(g-tubulin antibody, red) and DNA (DAPI, blue)

at 10 (A and C) and 15 mpf (B and D). Asterisks

indicate polar bodies, and male and female pro-

nuclei are indicated with symbols. Scale bar

represents 20 mm and applies to all panels.

Images are projections from confocal z stacks.

(E and F) Distance between centrosomal

g-tubulin labeling and male or female pronuclear

envelopes quantified at 10 and 15mpf. Error bars

indicate 61 SE. See also Figure S1 and Movies

S1 and S2.
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analysis uncovered a molecular lesion in exon 4 of lrmp
consisting of a T-to-A transition predicted to cause a valine
(V)-to-glutamate (E) substitution at residue 246 (Figures 2B
and 2C). Sequence analysis of this portion of Lrmp revealed
that the mutated residue is conserved across species (Fig-
ure 2B). Sequencing of maternally derived complementary
DNA products indicated the presence of two lrmp isoforms,
which differ by 89 base pairs (bp). lrmp+EX36 (lrmp-001 in
Vega) includes a penultimate exon (exon 36) not found in the
shorter isoform (lrmp-EX36) (Figure 2C). The two isoforms
behave similarly in expression studies (see below) and thus
are referred to together as ‘‘Lrmp.’’
Figure 2
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The predicted open reading frame of
zebrafish lrmp is consistent with the
observed 5.1 kilobase (kb) transcript
detected by northern blot analysis
(data not shown). The transcript encodes a protein signifi-
cantly longer (1,447 amino acids) than Lrmp isoforms previ-
ously described in mouse and humans (535 and 555 amino
acids, respectively; [11]). The majority of annotated Lrmp
genes in other vertebrates encompass only the C-terminal
portion of zebrafish Lrmp (Figure 2C; Table S1). However, the
N-terminal half of zebrafish Lrmp is homologous to a novel pre-
dicted protein directly upstream of the annotated lrmp gene in
humans, chick, and several other species (Figure 2C; Table
S1). Moreover, species such as Taeniopygia guttata (zebra
finch), Equus caballus (horse), and Macaca mulatta (rhesus
macaque) have predicted long lrmp transcripts likely
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Figure 3. lrmp Transcripts Show Dynamic Local-

ization Patterns Lost in fue Mutants

(A) Chromogenic in situ hybridization with lrmp

antisense probes in WT (left) and fue mutants

(center) and negative control sense probes

(right).

(B) WT embryos fixed at 5 min intervals and

labeled with g-tubulin antibody (red) and DAPI

(blue), in combination with fluorescent in situ

detection of lrmpmRNA (green). Scale bar repre-

sents 20 mm and applies to all panels in (B). See

also Figure S3.
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equivalent to zebrafish Lrmp (Table S1). Although lrmp
appears to have homologs in all vertebrate lineages, proteins
with significant extended sequence similarity to zebrafish
Lrmp are not found in most invertebrates including Drosophila
and Caenorhabditis elegans, or in yeast and plants (Table S1;
Figures S2A and S2B).

Quantitative RT-PCR analysis shows that zebrafish lrmp is
most highly expressed in early cleavage embryos, decreases
approximately 70% by 4 hr postfertilization (hpf) (coincident
with the midblastula transition [12–14], Figure S3), and cannot
be detected at 24 hpf (data not shown). Thus, zebrafish lrmp
exhibits an expression pattern characteristic of a strict
maternal gene.

Subcellular Localization of lrmp mRNA

Whole-mount in situ hybridization showed that lrmp tran-
scripts have an apparently perinuclear localization pattern in
cleavage stage embryos (Figure 3A,
left panel). Consistent with our qRT-
PCR findings, lrmp transcript labeling
decreased by the 512–1,000 cell stage
(3 hpf), although subcellular localization
was still discernible (data not shown).

To examine the lrmp mRNA localiza-
tion pattern in detail, we combined
fluorescent in situ hybridization with
g-tubulin antibody labeling (Figure 3B).
In 5 mpf WT embryos, g-tubulin and
lrmp mRNA localization could not be
reliably detected, likely because mater-
nally derived centrosomal components
have not yet robustly assembled around
the paternally derived centrioles. By
10 mpf, g-tubulin and lrmp mRNA spa-
tially overlap near the male pronucleus
(data not shown, see Figure 1 for
g-tubulin labeling at 10 mpf). Just prior
to pronuclear fusion (15 mpf), lrmp
mRNA colocalizes with g-tubulin,
coating the male pronucleus (Figure 3B,
top row). During pronuclear fusion,
g-tubulin and lrmp mRNA continue to
colocalize as they spread around the
fusing nuclei (20 mpf, Figure 3B, second
row).

As embryos enter mitosis and nuclear
envelopes break down, some lrmp
mRNA remains surrounding the con-
densing DNA, whereas the majority
localizes with g-tubulin at the spindle
poles (25 mpf, Figure 3B, third row). At metaphase, g-tubulin
and lrmp mRNA maintain colocalization at the spindle poles
and also seem to extend onto spindle regions (Figure 3B,
fourth row). As mitosis progresses, lrmpmRNA remains asso-
ciated with centrosomes and appears to be present along the
spindle (Figure 3B, fifth row). By late mitosis, localization of
lrmp mRNA to the spindle is less extensive and the majority
of lrmp transcript labeling again overlaps g-tubulin labeling
(Figure 3B, sixth row). As centrosomes separate, lrmp mRNA
continues to colocalize with g-tubulin near reforming nuclei
(Figure 3B, bottom row). This pattern of localization is repeated
throughout subsequent cell cycles (data not shown).
Parallel experiments using standard or fluorescent in situ

hybridization showed that the lrmp subcellular localization
pattern is entirely lost in fue embryos. Transcripts appear
instead to be ubiquitously distributed throughout the blasto-
disc (Figure 3A, middle panel). Quantitative RT-PCR analysis



Figure 4. Lrmp Protein Localizes to Nuclear Membranes

and Subregions of the Mitotic Apparatus

WT embryos fixed at 5 min intervals and labeled with

g-tubulin antibody (red), anti-LrmpMD antiserum (green),

and DAPI (blue). Scale bars represent 20 mm. See also

Figure S4.
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revealed that lrmp mRNA levels do not differ significantly
between WT and fue embryos (Figure S3), suggesting that
localization but not stability of the lrmp transcript is affected
in mutants. Activated, unfertilized WT eggs, which lack
sperm-derived centrioles, also show ubiquitous distribution
of lrmp transcripts (data not shown). These effects indicate
a dependence of lrmp mRNA localization on fue function and
possibly the presence of centrosomes (see Discussion).

Subcellular Localization of Lrmp Protein
Western blot analysis of cleavage-stage embryos with two
antibodies against zebrafish Lrmp showed a common cross-
reactive band at approximately 200 kDa (Figure S4A). In agree-
ment with lrmp transcript abundance, the 200 kDa band was
robust at cleavage stages but undetectable at 24 hpf. Notably,
the 200 kDa band appeared reduced in fue embryo lysates
compared to WT, and only fue lysates showed faint 160 kDa
bands, suggesting that Lrmp protein is either inefficiently
translated or unstable in mutant embryos.

To determine the subcellular localization of Lrmp protein, we
fixed and labeled in vitro fertilized WT embryos to detect
g-tubulin and Lrmp. In WT embryos at 10 mpf, Lrmp protein
is present at both male and female pronuclear membranes
(data not shown). By 15 mpf, when the pronuclei are in close
proximity, Lrmp persists at the nuclear membranes with
enrichment in regions adjacent to centrosomal g-tubulin
(Figure 4, top row). The membrane enrichment flanking
centrosomes becomes more pronounced by 20 mpf during
pronuclear fusion (Figure 4, second row).
Beginning in prophase, a pool of centro-
some-localized Lrmp protein can be detected
on opposite sides of the zygotic nucleus (Fig-
ure 4, third row). At metaphase, Lrmp is
present at the center of centrosomes and
appears to extend along the mitotic spindle
but is absent from condensed chromosomes
(Figure 4, fourth row). During chromosome
segregation, Lrmp protein localizes with DNA
again (Figure 4, fifth and sixth rows), likely as
membrane begins to associate with chromatin
to reform nuclear envelopes [15]. Centrosomal
Lrmp is undetectable at the onset of ana-
phase, though it becomes apparent again by
late mitosis (Figure 4, bottom row). Similar to
the localization of lrmp transcript, this pattern
of Lrmp protein localization is repeated in
subsequent cell cycles (data not shown).
In parallel experiments, localized Lrmp

protein was significantly reduced in mutant
embryos during pronuclear migration and
early cleavage stages (Figure S4B). Western
blot analysis shows that Lrmp protein levels
at 2 hpf are only slightly lower in mutants com-
pared to WT (Figure S4A), suggesting that
the protein localization defect cannot be solely
explained by a reduction in protein levels. In contrast to lrmp
mRNA, Lrmp protein localizes to the pronuclear membrane
even in unfertilized, activatedWT eggs (Figure S4C), indicating
that nuclear envelope targeting of Lrmp protein can occur
independently of centrosomes.
Fluorescent in situ hybridization for lrmp transcript

combined with antibody staining for Lrmp protein corrobo-
rated single-label experiments and provided additional
insights. At prometaphase, when Lrmp protein resides adja-
cent to the condensed DNA, the majority of lrmp mRNA is
concentrated just outside the zone of Lrmp protein, presum-
ably closer to the centrosomes (Figure S4D, top row). In
prometaphase and during early anaphase, there is significant
overlap of lrmp mRNA and protein in regions corresponding
to the spindle. Also during anaphase, Lrmp protein but not
mRNA can been seen at the reforming nuclear membranes
(Figure S4D, second row). By late mitosis (Figure S4D, bottom
row), lrmp mRNA and protein again colocalize robustly to
presumptive centrosomes. Our studies show that lrmp
mRNA targets to centrosomes and spindles during mitosis,
where it may provide a localized source of Lrmp protein at
a time when nuclear membranes are undergoing dynamic
assembly and disassembly (see Discussion).

Lrmp C-Terminal Domains Facilitate Protein Localization
Lrmp belongs to the class of tail-anchored or TA proteins,
which are targeted to membrane compartments posttransla-
tionally [16, 17]. All Lrmp proteins (long or short) contain
a C-terminal MRVI1 domain [18, 19] (Figure 2C, red segments)



Figure 5. C-Terminal Domains of Lrmp Facilitate

Subcellular Targeting

(A) Diagram of EFGP-fusion constructs.

(B) Fusion construct RNAs encoding EGFP::

LrmpCC-TM-L (top row), EGFP::LrmpTM-L

(second row), and EGFP::LrmpCC construct

(bottom two rows) were injected into one-cell

WT embryos. Embryos expressing EGFP were

fixed and processed for DAPI and anti-g-tubulin

immunostaining between 2.5 and 3.5 hpf. White

boxes indicate fields shown at higher magnifica-

tion (right). Scale bar represents 20 mm in all lower

magnification panels.

(C) Summary of results from EGFP::Lrmp

C-terminal protein expression. Low viability (far

right column) manifested as cell division defects

and failure to undergo gastrulation, which led to

embryo lysis. See also Figure S5.
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with a coiled-coil region (CC; Figure 2C, yellow bars) and a
transmembrane segment (TM; Figure 2C, purple bar). Inmouse
and human Lrmp, the TM domain in combination with the
C-terminal luminal (L) domain mediate localization to the ER
membrane, where the C terminus inserts into the endoplasmic
reticulum (ER) lumen with the N terminus exposed in the cyto-
plasm [11, 16].

C. elegans ZYG-12 protein, like zebrafish Lrmp, is required
for centrosome-nuclear attachment and pronuclear migration
[20]. Lrmp and ZYG-12 do not show high levels of sequence
homology but are structurally similar, with a CC domain fol-
lowed by C-terminal TM and short L domains. We tested
whether the zebrafish Lrmp C-terminal domains, as in
C. elegans ZYG-12 and mammalian Lrmp [16, 20, 21], confer
subcellular localization. Several EGFP-Lrmp fusion proteins
were created with regions of the Lrmp C terminus (Figure 6A):
CC, TM, and L domains and intervening regions (WT C
terminus, EGFP::LrmpCC-TM-L), TM, and L domains only
(EGFP::LrmpTM-L), CC and TM domains with the intervening
region (EGFP::LrmpCC-TM), and CC domain with the CC-to-TM
intervening region (EGFP::LrmpCC).
Fusion constructs with and without
exon 36 (Lrmp+EX36 or –EX36) behaved
similarly. Fusion construct mRNAs were
injected into one-cell WT embryos, and
localized EGFP was normally detected
by 2.5 hpf, when specimens were fixed
and additionally labeled to detect
g-tubulin and DNA. In situ hybridization
with EGFP antisense probe showed
that exogenous mRNAs do not localize
(data not shown), indicating that the
observed protein localization patterns
likely reflect direct protein targeting.

The fusion protein with the WT C
terminus (EGFP::LrmpCC-TM-L) local-
ized to nuclear membranes and regions
corresponding to spindles,mirroring the
endogenous Lrmp protein pattern (Fig-
ures 5B, top row, and 5C). The construct
with TM and L domains only (EGFP::
LrmpTM-L) localized to the nuclear
membrane but not the spindle (Figures
5B second row, and 5C). Conversely,
the fusion protein containing the CC
domain but lacking TM and L domains (EGFP::LrmpCC) local-
ized to the spindle and spindle poles, but not to the nuclear
envelope (Figures 5B, third row, and 5C). In addition, EGFP::
LrmpCC unexpectedly targeted to the plasma membrane
and the interior of nuclei (Figures 5B, bottom row, and 5C).
The L domain was dispensable for all observed aspects of
subcellular localization (EGFP::LrmpCC-TM construct, Fig-
ure 5C and Figure S5A).
Interestingly, fusion proteins containing the CC domain

tended to aggregate, particularly in cells with high expression
(e.g., Figure 5B, top row) and caused cell division defects and
defective gastrulation (Figure 5C; data not shown), suggesting
that CC domain-containing proteins or their aggregates inter-
fere with normal cell functions. Expression of the various
constructs in fuemutant embryos yielded localization patterns
similar to those observed when expressed in WT, though
mutants predictably lacked spindles and contained fewer
nuclei (Figure S5B).
Our findings suggest that different regions of the Lrmp C

terminus mediate different aspects of Lrmp targeting



Figure 6. Mutant Oocyte Injection and Rescue

with WT lrmp mRNA

Stage IV oocytes from fue mutant females were

isolated and injected with WT lrmp mRNA.

Following maturation and in vitro fertilization,

embryos were fixed at 1 hpf and labeled for

DNA, g-tubulin, and Lrmp. Examples of weakly

rescued embryos (top row), moderately rescued

embryos (second row), and strongly rescued

embryos (third and fourth rows) are shown.White

box in the third row indicates the region shown at

higher magnification in the fourth row. Embryos

from uninjected fue oocytes, derived from the

same set of mothers and treated in parallel with

injected oocytes, showed the typical mutant

phenotype (bottom row). Scale bars represent

20 mm. See also Table S2.

Current Biology Vol 22 No 10
848
(Figure S5C): the CC domain and/or CC-to-TM regions confer
localization to spindles and centrosomes, as well as the ability
to form aggregates, whereas the TM domain mediates locali-
zation to the nuclear membrane and perinuclear ER. Targeting
by the TM domain also appears to prevent mislocalization of
Lrmp to the plasma membrane and the interior of the nucleus.
We conclude that the overall localization pattern of endoge-
nous Lrmp protein can be recapitulated by the combined
action of CC and TM domains. These results are generally
concordant with previous analyses of ZYG-12 protein domains
in C. elegans [20, 21].

Genetic Rescue by Injection of Wild-Type lrmp mRNA into
fue Oocytes

To test for functional rescue of the fue maternal-effect embry-
onic phenotype by exogenous gene expression, we injected
mRNAs for WT lrmp and other constructs into oocytes
dissected from fue mutant females. Oocytes were then
matured in vitro and fertilized with WT sperm [22]. Embryos
were fixed after approximately 1 hr of development (four-cell
stage in WT) and labeled for g-tubulin, DNA, and Lrmp protein.
Varying degrees of rescue were observed in the resulting
embryos (Figure 6; Table S2). Embryos with weak rescue
showed no detectable localized Lrmp protein but contained
a single DNA mass with g-tubulin in
close proximity (Figure 6, top row),
indicating that pronuclear fusion and
centrosome-nuclear attachment had
occurred. Embryos with moderate res-
cue exhibited these traits as well as
robust nuclear membrane localization
of Lrmp protein (Figure 6, second row).
Embryos exhibiting the greatest degree
of rescue showed normal chromosome
segregation, as reflected by the pres-
ence of a nucleus in each blastomere,
and WT Lrmp and g-tubulin localization
(Figure 6, third and fourth rows). Sibling
in vitro matured uninjected oocytes
gave rise to zygotes with the expected
nucleus-centrosome detachment and
pronuclear congression defects (Fig-
ure 6, bottom row). In preliminary exper-
iments, oocytes injected with RNAs
encoding fue mutant Lrmp or WT
C. elegans ZYG-12 did not show
evidence of rescue (data not shown). Rescue of the fue pheno-
type by WT lrmp mRNA corroborates that lrmp is the gene
affected by the fue mutation.

Discussion

Function of Lrmp in the Early Zygote
Our studies indicate that Lrmp function is required for nuclear-
cytoskeletal interactions that facilitate pronuclear congression
after fertilization. In general, proteins involved in nuclear-
cytoskeletal attachment belong to linker of the nucleoskeleton
and cytoskeleton (LINC) complexes [23], which bridge inner
and outer nuclear membranes (INM and ONM). LINC
complexes include two types of membrane proteins: SUN
(Sad1/UNC-84) domain-containing proteins in the INM and
KASH (Klarsicht/Anc-1/Syne homology) domain proteins in
the ONM [24]. LINC function is essential for nuclear migration
in Drosophila and mouse neuronal cells [25–27], as well as
during pronuclear migration in C. elegans [20, 21].
The domain structures of Fue/Lrmp and KASH proteins

are similar, containing coiled-coil regions adjacent to tail-
anchored membrane insertion motifs at the C terminus. In
addition, the transmembrane and luminal domains of zebrafish
Fue/Lrmp align partially with the KASH domain consensus



Figure 7. Model for Lrmp Function in Early Zebrafish

Development

(A–C) At fertilization, Lrmp protein localizes to pronuclear

membranes and lrmp mRNA accumulates at centro-

somes (A and B). Lrmp facilitates the association of pro-

nuclei to the sperm aster (black arrows indicate direction

of hypothesized minus-oriented motor movement),

promoting pronuclear congression and fusion (C).

(D) Spindle-associated lrmp mRNA may provide a local-

ized source of newly synthesized Lrmp protein to the

reforming nuclear membranes in late mitosis.
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sequence (Figure S5D). Moreover, the C-terminal coiled-coil
and transmembrane domains of both the C. elegans KASH
domain protein ZYG-12 and zebrafish Fue/Lrmp confer
comparable subcellular targeting [20, 21]. These similarities
suggest that Fue/Lrmp may represent a LINC complex
component.

C. elegans ZYG-12 is required to localize the minus-end-
directedmotorproteindynein to thenuclearenvelope [20]where
it facilitates centrosome-male pronucleus attachment aswell as
pronuclearmigration [8, 28]. Aunifyinghypothesis, basedonour
work and previous studies [20, 21, 25, 29], proposes a link
between Fue/Lrmp function and the known role of dynein-
dependent transport along sperm aster microtubules during
pronuclear congression (Figure 7). When astral microtubules
nucleate from the centrosome after fertilization, they first
encounter the male pronucleus where Lrmp at the nuclear
membrane may mediate centrosomal attachment through
minus-end-directed movement (Figure 7A). As sperm aster
microtubules lengthen, they contact the female pronucleus
whereLrmpmayagain facilitatedynein-drivennuclearmigration
toward the centrosome (Figure 7B). These movements lead to
pronuclear apposition and subsequent fusion (Figure 7C).

Multiple Mechanisms Ensure the Dynamic Subcellular
Localization of Fue/Lrmp

lrmp mRNA localizes to precise subcellular regions, suggest-
ing a requirement for strict spatial and/or temporal regulation
of Lrmp protein translation. Lrmp contains
a tail-anchor and such domains are thought
to bind with high affinity to lipid bilayers and
membrane compartments [17]. Localizing
lrmp mRNA just proximal to nuclei may
prevent Lrmp protein insertion into nonnuclear
membranes.
During mitosis, both fue/lrmp mRNA and

protein products display dynamic subcellular
localization to centrosomes, spindles, and
nuclear membranes (Figure 7D). fue/lrmp
mRNAand protein localization patterns largely
overlap with two exceptions, both occurring
during anaphase when (1) Fue/Lrmp protein
is largely absent from centrosomes and (2)
Fue/Lrmp protein, but not its transcript,
becomes highly localized to reforming nuclear
membranes. These observations are consis-
tent with a model wherein Lrmp protein and
lrmp mRNA are cotranslationally transported
from the centrosome along spindles toward
the assembling nuclear membranes. Such a
mechanism would allow completion of Lrmp
protein, in particular its membrane-anchoring
domain, at the right time and place for correct targeting to
the reforming nuclear envelope. Future studies will address
this possibility.
Our analyses indicate that the C-terminal Fue/Lrmp protein

domains mediate protein localization to centrosomes, spin-
dles, and the nuclear membrane and that the disruption of
these domains results in protein mistargeting. Notably, these
domains are capable of mediating protein targeting indepen-
dent of mRNA localization. Together, these data suggest that
multiple mechanisms, including localized Lrmp translation
and protein-protein interactions, ensure specific enrichment
of Lrmp protein at the nuclear envelope and prevent its ectopic
localization.

Role for Centrosomes and Fue/Lrmp Function in fue/lrmp

mRNA Localization
In unfertilized eggs, fue/lrmpmRNA fails to exhibit any subcel-
lular localization, suggesting that targeting of lrmp mRNA is
dependent on entry of sperm-derived centrioles. It is possible
that the zygotic centrosome acts as an anchoring site for
maternally provided fue/lrmp mRNA. In contrast, unfertilized
eggs show nuclear envelope localization of maternal Fue/
Lrmp protein, indicating that it can readily insert into
membranes independently of lrmp mRNA localization. This is
also indicated by the targeting of overexpressed C-terminal
protein fusions without localization of the injected mRNAs.
By providing a dock for fue/lrmp mRNA localization, the
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centriole and/or centrosome may allow for a more robust and
selective pattern of Fue/Lrmp protein enrichment.

Unexpectedly, lrmp transcripts fail to localize in fue mutant
zygotes. It is possible that the mutation interferes with a key
interaction between Fue/Lrmp protein and fue/lrmp mRNA,
although Fue/Lrmp does not contain recognizable RNA
binding motifs and preliminary RNA-immunoprecipitation
experiments did not reveal differential abilities of mutant and
WT Lrmp protein to associate with lrmp RNA (R.E.L., unpub-
lished data).We favor an alternative scenario wherein localized
Fue/Lrmp activity is required for the formation of a protein
complex or subcellular domain critical for fue/lrmp mRNA
recruitment. Such a structure could be a LINC-associated
complex, the nuclear envelope-centrosome interface, or a
specialized domain of the nucleoplasmic membrane.

A defect in this proposed structure may also contribute to
the reduction in mutant Fue/Lrmp protein localization in fue
zygotes, given that the N-terminal molecular lesion in this
protein would not be expected to interfere directly with the
identified C-terminal protein-targeting domains. Indeed, we
find that Fue mutant protein localizes largely normally when
overexpressed in WT embryos (R.E.L. unpublished data), sug-
gesting that it may be the cellular environment in fue/lrmp
mutants, and not the Fue/Lrmp mutant protein itself, that is
inconducive to proper Fue/Lrmp protein targeting.

Long Lrmp May Have Evolved in an Ancestral Vertebrate

Lineage
Long Lrmp, which we show is maternally provided and involved
in nucleus-centrosome attachment at fertilization in zebrafish, is
present in most analyzed vertebrate species, though it is
often predicted as two or three adjacent transcripts (Table S1).
The presence of Lrmp homologs in vertebrate lineages mirrors
the occurrence of lymphocytes as a vertebrate-specific cell
type [30], suggesting a scenario where a gene encoding long
Lrmp arose in a basal vertebrate lineage and acquired functions
in both fertilization and lymphocytes. Rodent lineages, which
lack paternally inherited centrioles [4], may have maintained
only the shorter, lymphocyte-specific C-terminal Lrmp.

Conclusions

We identify a new form of Lrmp affected in the zebrafish
maternal-effect mutant futile cycle, which is required for
centrosome-pronucleus attachment, and describe a novel
pattern of subcellular targeting for its gene products in the
zygote. In addition to their implications for vertebrate repro-
ductive biology, these studies may offer insights into the role
of lrmp in lymphoid cells [11], lung cancer, and diabetes
susceptibility [31, 32], as well as in muscular dystrophy and
premature aging [33, 34].

Experimental Procedures

Fish Maintenance

WT AB, WIK, and fue mutant fish were maintained at 28�C under standard

conditions [35]. Embryos were cultured in E3 medium [36] and staged by

time after fertilization or activation or with standardized morphological

markers [37]. Genotyping of fue mutants was accomplished using flanking

SSLP markers or with lrmp-specific RFLP markers. Experimental proce-

dures using zebrafish have been approved by the animal care oversight

committee at the University of Wisconsin – Madison (protocol number

MO2112-2-08-06).

Positional Cloning of fue

Analysis with genome-spanning DNA markers established linkage of fue

to chromosome 4 between 59.0 and 61.1 cM on the zebrafish MGH
recombinant map. Candidate genes within this region were sequenced,

revealing additional polymorphic markers and uncovering the molecular

lesion in transcript lrmp-001 (gene designation from Vega database, also

listed as NCBI accession #CAI20727).

Immunofluorescence Labeling

Embryos from natural matings or in vitro fertilized eggs [36] were dechorio-

nated and fixed in 4% paraformaldehyde or microtubule fix (for a-tubulin

labeling) as previously described [38]. Anti-LrmpMD serum was used at

1:1,000 and anti-LrmpCT serum at 1:750. Commercial primary and

secondary antibodies were as follows: anti-a-tubulin (Sigma, mouse

monoclonal B5-1-2, 1:2,500), anti-g-tubulin (Sigma, mouse monoclonal

GTU-88, 1:2,000; Sigma, rabbit polyclonal, 1:2,000); goat anti-mouse-Cy3

(Jackson ImmunoResearch, 1:100), goat anti-rabbit-Alexa 488 (Molecular

Probes, 1:100), goat anti-rabbit-Cy3 (Jackson ImmunoResearch 1:100).

DNA was detected by incubation in 0.5 mg/ml DAPI for 10 min or by

mounting in ProLong Gold antifade reagent with DAPI (Invitrogen). Male

and female pronuclear identities after fertilization were inferred based on

the relative proximity of nuclei to centrosomes (male) and polar bodies

(female).

In Situ Hybridization

In situ hybridizations using chromogenic substrates were performed as in

[39]. Fluorescent in situ hybridization for lrmp used anti-DIG-POD antibody

(1:1,000, Roche) and an Alexa Fluor 488 tyramide signal amplification kit

(Invitrogen) as in [38]. All probes were made by in vitro transcription with

T7 or SP6 RNA polymerase (Fermentas) from DNA fragments cloned into

the pGEM-T Easy vector (Promega). Three different lrmp RNA probes

were used, corresponding to exons 2–4, exons 12–17, and exons 27–32 of

zebrafish lrmp, and all showed similar results.

For colabeling of lrmp mRNA and either g-tubulin or Lrmp protein,

dechorionated embryos were fixed in 4% paraformaldehyde overnight

and the standard in situ protocol [39] was conducted through probe hybrid-

ization. Embryos were deyolked and blocked, and then anti-DIG-POD

antibody and primary g-tubulin or Lrmp antibodies were simultaneously

incubated with embryos. The Alexa 488 tyramide kit was used for RNA

probe detection followed without a fixation step by blocking and an anti-

rabbit-Cy3 secondary antibody incubation for g-tubulin or Lrmp antibody

detection.

RNA Injections

mRNA for injection was synthesized using either an mMessage

mMachineSP6 kit (Ambion, for all EGFP fusions) as in [39] or the mMessage

mMachine T7 Ultra kit and manufacturers protocols (Ambion, for full-length

lrmp constructs). All constructs included the full 30 UTR of lrmp. For injec-

tion, RNAs were diluted to 250 ng/ml in 0.1 M nuclease-free KCl. Matured

oocytes and 7–25 mpf embryos were injected with approximately 0.5–1 nl

mRNA solution.

Oocyte Culture and Injection

Dissection of ovaries, in vitro culture of oocytes, and fertilization of matured

eggs were carried out as described in [22], with an injection step during

the maturation period (manuscript in preparation). After fertilization,

embryos developed for 1–2 hr and were then fixed for immunofluorescence

labeling.

Imaging

Fluorescently labeled embryos were imaged with a Zeiss LSM 510 confocal

microscope. Images were processed using ImageJ software, and the Sync

Measure 3D plug-in was employed for distance measurements within z

stacks. Embryos labeled by whole-mount in situ hybridization were imaged

using a Leica FLII microscope, color camera (Diagnostic Instruments Spot

Insight), and Spot imaging software.

Accession Numbers

The NCBI accession number for the gene sequence reported in this paper is

CAI20727.
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