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In [6] R. Fernandes has constructed a sequence of secondary characteristic classes of a Lie algebroid whose first ele-
ment coincides with the modular class. In this note we extend Fernandes’ construction and use the general definition of
D. Lehmann [12] in order to produce secondary characteristic classes of a base-preserving morphism of two Lie algebroids.
In particular, like in [6], we get a sequence of secondary characteristic classes whose first element coincides with the mod-
ular class of the morphism [7,9]. We assume that the reader is familiar with Lie algebroids and Lie-algebroid connections
and will consult [6,13,12,14] whenever needed. The framework of the paper is the C∞-category. We mention that other
constructions of secondary characteristic classes of Lie algebroids may also be found in the literature e.g., [2,3,11].

1. Selected topics on A-connections

Let (A, �A, [ , ]A) be a Lie algebroid and V a vector bundle with the same base manifold Mm (m = dim M). By an
A-connection we shall understand an A-covariant derivative ∇ : Γ A × Γ V → Γ V (Γ denotes the space of cross sections of
a vector bundle), written as (a, v) �→ ∇a v , which is R-bilinear and has the properties

∇ f a v = f ∇a v, ∇a( f v) = f ∇a v + �Aa( f )v
(

f ∈ C∞(M)
)
. (1.1)

Accordingly, the value ∇a v(x) depends only on a(x) and on v|Ux where Ux is a neighborhood of x ∈ M . In order to write
down the local expression of ∇ , we take a local basis (bi)

s
i=1 (s = rank A) of Γ A, with the dual basis (b∗i) of Γ A∗ and a

local basis (wu)r
u=1 (r = rank V ) of Γ V . Then, with the notation Ωk(A) = Γ ∧k A∗ for the space of A-forms of degree k and

using the Einstein summation convention, we get

∇bi wu = ωt
u(bi)wt , ωt

u = γ t
iub∗i ∈ Ω1(A), (1.2)

and we say that (ωt
u) is the local connection matrix. Correspondingly, the curvature
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R∇(a1,a2)w = ∇a1∇a2 w − ∇a2∇a1 w − ∇[a1,a2]A w

gets the local expression

R∇(bi,b j)wu = Ωt
u(bi,b j)wt , Ωt

u = dAωt
u − ωs

u ∧ ωt
s ∈ Ω2(A), (1.3)

where dA denotes the A-exterior differential [13]. We will say that (Ωt
u) is the local curvature matrix and a change of the

basis (wu) implies an ad(Gl(r,R))-transformation of (Ωt
u). Like in classical differential geometry, one has the covariant

derivative machinery of V -tensors and tensor valued A-forms and the computation of the dAΩt
u produces the Bianchi

identity that may be written under the form ∇Ωt
u = 0.

In the study of characteristic classes we shall need the direct product of two Lie algebroids pc : Ac → Mc (c = 1,2) and
we recall its definition given in [13]. Consider the pullback bundles π−1

c Ac , where πc is the projection of M1 × M2 on Mc .
Identify

Γ
(
π−1

c Ac
) ≡ {σ : M1 × M2 → Ac/pc ◦ σ = πc} (1.4)

and notice that local bases (b(c)
i ) of Γ Ac have natural lifts to local bases of Γ (π−1

c Ac), which will also be denoted by (b(c)
i ).

Take local cross sections

σ(c) = σ i
(c)b

(c)
i , κ(c) = κ i

(c)b
(c)
i

(
σ i

(c), κ
i
(c) ∈ C∞(M1 × M2)

)
(there is no summation on indices in parentheses) and define the following anchors and brackets

�(c)σ(c) = σ i
(c)�Ac b(c)

i , [σ(c), κ(c)](c) = σ i
(c)κ

j
(c)

[
b(c)

i ,b(c)
j

]
Ac

+ {
σ

j
(c)

[(
ι∗c�Ac b(c)

j

)
κ i

(c)

] − κ
j
(c)

[(
ι∗c�Ac b(c)

j

)
σ i

(c)

]}
b(c)

i ,

where ι∗c is the natural injection of T Mc in T (M1 × M2). In these operations, the M(c−1 mod 2)-variable is just a passive
parameter and, since the anchor and bracket of each Ac are invariant, the results are independent of the choice of the
bases. Thus, the vector bundles π−1

c Ac are Lie algebroids over M1 × M2 and the direct product of the Lie algebroids Ac is
the Whitney sum A = π−1

1 A1 ⊕ π−1
2 A2 endowed with the direct sum of the anchors and brackets of the two pullbacks (in

particular, [b(1)
i ,b(2)

j ] = 0).

Proposition 1.1. Let q : V → M1 be a vector bundle on M1 . Then, any A-connection ∇̃ on the pullback π−1
1 (V ) defines a differentiable

family ∇(x2) (x2 ∈ M2) of A1-connections on V . Conversely, any x2-parameterized, differentiable family of A1-connections on V is
induced by an A-connection on π−1

1 (V ).

Proof. Assume that we have the covariant derivatives ∇̃
σ i

(1)
b(1)

i +σ
j

(2)
b(2)

j
(νu wu), where σ i

(c), ν
u are local, differentiable func-

tions on M1 × M2. Then, the required family of connections on V is given by the covariant derivatives(∇(x2)

ξ ib(1)
i

(
ηu wu

))
(x1) = (∇̃

ξ ib(1)
i

(
ηu wu

))
(x1, x2),

where ξ i, ηu are local, differentiable functions on M1, x1 ∈ M1, x2 ∈ M2 and we use an identification like (1.4) for V . Notice
that, if the local connection matrices of ∇̃ are

ω̃v
u = γ v

(1)iu(x1, x2)b
∗i
(1) + γ v

(2) ju(x1, x2)b
∗ j
(2), (1.5)

the connection ∇(x2) has the matrices γ v
(1)iu(x1, x2)b∗i

(1) with the fixed value of x2. Conversely, if the family ∇(x2) is given,

we get an A-connection ∇̃ by adding the local equations ∇̃
b(2)

j
wu = 0. The local matrices of this connection ∇̃ are the same

as the matrices of ∇(x2) where x2 is allowed to vary in M2. �
In particular, we may apply Proposition 1.1 for M1 = M, M2 = I = {0 � τ � 1}, A1 = A, A2 = T I . Then, an A-connection

∇̃ on π−1
1 (V ) is called a link between the A-connections ∇0,∇1 on V . Formula (1.5) shows that the local connection forms

of ∇̃ are given by

ω̃v
u = ωv

(τ )u + λv
u(x, τ )dτ , (1.6)

where ω(τ) is the local connection matrix at the fixed value τ and λv
u ∈ C∞(M × I). A simple calculation gives the corre-

sponding local curvature forms

Ω̃ v
u = Ω v

(τ )u + Λv
u ∧ dτ , (1.7)

where
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Λv
u = dAλv

u + λw
u ωv

(τ )w − λv
wωw

(τ )u + ∂ωv
(τ )u

∂τ

(the partial derivative with respect to τ is applied to the coefficients of the form).
Now, we present another “selected topic”. Let V → M be a vector bundle of rank r endowed with either a positive,

symmetric tensor g+ ∈ Γ �2 V ∗ or a 2-form g− ∈ Γ ∧2 V ∗ . We shall say that (V , g±) is a quasi-(skew)-metric vector bundle.
Notice that we do not ask rank g± to be constant on M . An A-connection ∇ on V such that ∇g± = 0 will be called a
quasi-(skew)-metric connection. If g± is non-degenerate, the particle “quasi” will not be used and the connection is called
orthogonal for g+ and symplectic for g− . For a Lie algebroid A over M we shall denote by L a generic, integral leaf of the
distribution im �A and by Lx the leaf through the point x ∈ M . In what follows we establish properties of a quasi-(skew)-
metric connection that are relevant to the construction of characteristic classes.

Proposition 1.2. Assume that there exists a quasi-(skew)-metric connection ∇ on (V , g±). Then, the following properties hold. 1. If
x ∈ M and k ∈ Γ V is such that k|L(x) ∈ K |L(x) (K = ann g±), then ∇ak(x) ∈ Kx, ∀a ∈ Γ A. 2. q = rank g±|L is constant along each
leaf L and ∀x ∈ M there exists an open neighborhood Ux where V has a local basis of cross sections of the form (sh, tl) (h = 1, . . . ,q, l =
1, . . . , r − q) such that tl|Ux∩Lx ∈ K |Ux∩Lx and the projections [sh] = sh (mod K ) define a canonical basis of the (skew)-metric vector
bundle ((V /K )|Ux∩Lx , g′±), where g′± is non-degenerate and induced by g± . 3. With respect to this basis, the A-connection ∇ has local
equations

∇sh = � k
(1)hsk + �

p
(2)htp, ∇tl = � k

(3)lsk + �
p
(4)ltp, (1.8)

where the coefficients are local 1-A-forms, � k
(3)l(x) = 0 and (� k

(1)h(x)) ∈ o(q), the orthogonal Lie algebra, in the g+-case, (� k
(1)h(x)) ∈

sp(q,R), the symplectic Lie algebra, in the g−-case. 4. The curvature of ∇ has the local expression

R∇ sh = Φk
(1)hsk + Φ

p
(2)htp, R∇tl = Φk

(3)lsk + Φ
p
(4)ltp, (1.9)

where the coefficients are local 2-A-forms and Φk
(3)l(x) = 0, (Φk

(1)h(x)) ∈ o(q) in the g+-case, (Φk
(1)h(x)) ∈ sp(q,R) in the g−-case.

Proof. 1. For any a ∈ Γ A, v ∈ Γ V one has

(∇a g±)x
(

v(x),k(x)
) = (�Aa)x

(
g±(v,k)

) − g±,x
(∇a v(x),k(x)

) − g±,x
(

v(x),∇ak(x)
) = 0. (1.10)

Since (�Aa)x(g±(v,k)) depends only on k|L(x) ∈ ann g± , it vanishes, and we get the required result.
2. ∇g± = 0 is equivalent with the fact that g± is preserved by parallel translations along paths in a leaf L [6], therefore,

g± has a constant rank q along Lx . This implies the existence of bases with the required properties on a neighborhood Ux ∩ L
of x. (In the metric case canonical means orthonormal and in the skew-metric case canonical means symplectic.) Then, take
any extension of such a basis to Ux and shrink the neighborhood Ux as needed to ensure the linear independence of the
extended cross sections.

3. The equality � k
(3)l(x) = 0 is an immediate consequence of part 1. Then, in (1.10), replace v,k by sh, sk . Since the

canonical character of the basis (sh|L) implies g±(sh|L, sk|L) = const., we get

g±,x
(∇ash(x), sk(x)

) + g±,x
(
sh(x),∇ask(x)

) = 0,

whence, (�
j

(1)i(x)) ∈ o(q), sp(q,R), respectively.
4. The (skew)-metric condition (1.10) also implies

�A[a1,a2]A
(

g±(v1, v2)
) = g±(∇[a1,a2]A v1, v2) + g±(v1,∇[a1,a2]A v2),

where a1,a2 ∈ Γ A, v1, v2 ∈ Γ V , whence, after some obvious cancellations we get

�A[a1,a2]A
(
ω(v1, v2)

) = −ω
(

R∇(a1,a2)v1, v2
) − ω

(
v1, R∇(a1,a2)v2

)
. (1.11)

Like in the proof of 3, (1.11) for sh, sk implies (Φ
j
(1)i(x)) ∈ o(q), sp(q,R), respectively. Then, (1.11) for sh, tl together with

part 1 of the proposition implies Φk
(3)l(x) = 0. �

In the theory of characteristic classes we need the Weil algebra I(Gl(r,R)) = ⊕
k�0 Ik(Gl(r,R)), where Ik(Gl(r,R)) is

the space of real, ad-invariant, symmetric, k-multilinear functions (equivalently, invariant, homogeneous polynomials of
degree k) on the Lie algebra of the general, linear group (r = rank V ). Using the exterior product ∧, such functions may be
evaluated on arguments that are local matrices of ∧-commuting A-forms on M with transition functions of the adjoint type
and the result is a global A-form on M (e.g., [14]). Secondary characteristic classes appear as a consequence of vanishing
phenomena encountered in the evaluation process described above. We shall need the following vanishing phenomenon
(see [6]):
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Proposition 1.3. If the bundle V endowed with the form g± has a connection ∇ such that ∇g± = 0 and if R∇(a1,a2)kx = 0 for x ∈ M,
a1,a2 ∈ Γ A, k ∈ ker g±,x, then, ∀φ ∈ I2k−1(Gl(r,R)), one has φ(Φ) = 0, where Φ is the local curvature matrix of the connection ∇ .

Proof. By φ(Φ) we understand the evaluation of φ where all the arguments are equal to Φ . It is known that (with a
harmless abuse of terminology and notation) the required functions φ are spanned by the Chern polynomials

ch(F ) = 1

h!δ
v1...vh
u1...uh

f u1
v1 . . . f uh

vh
(1.12)

(δ...
... is the multi-Kronecker index), which are the sums of the principal minors of order h in det(F − λ Id) (F ∈ gl(r,R)).

With the notation of Proposition 1.2 and since R∇(a1,a2)kx = 0, we have to take

F =
(

Φ(1) 0

Φ(2) 0

)
.

Therefore, ∀x ∈ M , we have ch(F ) = ch(Φ(1)x). It is known that the polynomials c2l−1 vanish on o(q) and on sp(q,R) (in the
first case Φ(1) is skew-symmetric; for the second case see Remark 2.1.10 in [14], for instance). �
2. Secondary characteristic classes

A brief exposition of the classical theory of real characteristic classes may be found in [14]. In this section, we present a
Lie algebroid version of the basic facts of the theory.

Consider the direct product Lie algebroid A = A × T �k → M × �k , where

�k =
{

(t0, t1, . . . , tk) ∈ R
k+1 /th � 0,

k∑
h=0

th = 1

}

is the standard k-simplex, A is a Lie algebroid over M and T �k is the tangent bundle of �k endowed with the standard
orientation κ = dt1 ∧ · · · ∧ dtk . Then, ∀Φ ∈ Ω∗(A), the fiber-integral

∫
�k Φ is defined as zero except for the case

Φ = α ∧ κ, α = 1

p!αi1...ip (x, t)b∗i1 ∧ · · · ∧ b∗ip
(
x ∈ M, t ∈ �k)

when ∫
�k

Φ = 1

p!
(∫

�k

αi1...ip (x, t)κ

)
b∗i1 ∧ · · · ∧ b∗ip ∈ Ω p(A)

(bi is a local basis of cross sections of A). The same proof as in the classical case (e.g., [14], Theorem 4.1.6) yields the Stokes
formula:∫

�k

dAΦ − dA

∫
�k

Φ = (−1)deg Φ−k
∫

∂�k

ι∗Φ, ι : ∂�k ⊆ �k. (2.1)

Assume that we have k + 1 A-connections ∇(s) on the vector bundle V → M that have the local connection matrices
ω(α) (α = 0, . . . ,k) with respect to the local basis (wu) of V . Then, the convex combination

∇(t) =
k∑

α=0

tα∇α, t = (
t0, . . . , tk) ∈ �k, (2.2)

defines a family of A-connections parameterized by �k with the corresponding A-connection ∇̃ on π−1
1 (V ) → M × �k

(π1 : M × �k → M). The connection and curvature matrices of ∇̃ will be denoted by ω̃, Ω̃; generally, the curvature ma-
trix of a connection will be denoted by the upper case of the letter that denotes the connection matrix. There exists a
homomorphism

�
(∇0, . . . ,∇k) : Ih(Gl(r,R)

) → Ω2h−k(A),

defined by R. Bott in the classical case, given by

�
(∇0, . . . ,∇k)φ = (−1)[

k+1
2 ]

∫
k

φ(Ω̃), φ ∈ Ih(Gl(r,R)
)
. (2.3)
�
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Moreover, Bott’s proof in the classical case [14, Proposition 4.2.3] also holds in the Lie algebroid version and yields the
following formula

dA
(
�

(∇0, . . . ,∇k)φ) =
k∑

α=0

(−1)α�
(∇0, . . . ,∇α−1,∇α+1, . . . ,∇k)φ. (2.4)

Let ∇ be an A-connection on the vector bundle V → M . As a consequence of the Bianchi identity, ∀φ ∈ Ih(Gl(r,R)),
�(∇)φ ∈ Ω2h(A) is a dA -closed A-form and the A-cohomology classes defined by the A-forms �(∇)φ are called the A-
principal characteristic classes of V [6]. If ∇0,∇1 are two A-connections, formula (2.4) yields

�
(∇1)φ − �

(∇0)φ = dA�
(∇0,∇1)φ. (2.5)

Therefore, the principal characteristic classes do not depend on the choice of the connection.
The A-connection ∇̃ to be used in definition (2.3) of �(∇0,∇1)φ is the link between ∇0,∇1 given by the family of

A-connections

∇(τ ) = (1 − τ )∇0 + τ∇1 = ∇0 + τ D, D = ∇1 − ∇0 (τ ∈ I).

For this link, we have (1.6) and (1.7) where λv
u = 0, ∂ωv

(τ )u/∂τ = α, the local matrix of the connection difference D , and
formula (2.3) yields

�
(∇0,∇1)φ = h

1∫
0

φ(α,Ω(τ), . . . ,Ω(τ)︸ ︷︷ ︸
(h−1)-times

)dτ , (2.6)

where

Ω(τ) = (1 − τ )Ω(0) + τΩ(1) + τ (1 − τ )α ∧ α (2.7)

is the local curvature matrix of the connection ∇(τ ) .
We shall use the Lehmann version of the theory of secondary characteristic classes [12,14]. Let ( J0, J1) be two (proper)

homogeneous ideals of I = I(Gl(r,R)). Define the algebra

W ( J0, J1) = (I/ J0) ⊗ (I/ J1) ⊗ (∧(
I+

)) (
I+ =

⊕
k>0

Ik
)

, (2.8)

with the graduation

deg[φ] J0 = deg[φ] J1 = 2h, deg φ̂ = 2h − 1,

and the differential

d[φ] J0 = d[φ] J1 = 0, dφ̂ = [φ] J1 − [φ] J0 ,

where we refer to the three elements defined by φ ∈ Ih in the factors of W .
Now, take a vector bundle V → M and two A-connections ∇0,∇1 on V such that Jc ⊆ ker�(∇c), c = 0,1. By putting

ρ[φ] J0 = �
(∇0)φ, ρ[φ] J1 = �

(∇1)φ, ρφ̂ = �
(∇0,∇1)φ, (2.9)

we get a homomorphism of differential graded algebras

ρ(∇0,∇1) : W ( J0, J1) → Ω(A)

with an induced cohomology homomorphism

ρ∗(∇0,∇1) : H∗(W ( J0, J1)
) → H∗(A).

The cohomology classes in imρ∗ that are not principal characteristic classes are called A-secondary characteristic classes.
If J is a homogeneous ideal of I(Gl(r,R)), two A-connections ∇,∇′ on V are called J -homotopic connections if there

exists a finite chain of links ∇̃0, . . . , ∇̃n that starts with ∇ , ends with ∇′ and is such that J ⊆ ⋂n
l=0 ker�(∇̃l). By replacing

the usual Stokes’ formula by formula (2.1) in the proof of Theorem 4.2.28 of [14], one gets

Proposition 2.1. (See [12].) The cohomology homomorphism ρ∗(∇0,∇1) remains unchanged if ∇0,∇1 are replaced by J0, J1-
homotopic connections ∇′ 0,∇′ 1 , respectively ( Jc ⊆ ker�(∇c), J c ⊆ ker�(∇′ c), c = 0,1).
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Corollary 2.1. The secondary characteristic classes are invariant by any J0 J1-homotopy of the connections.

Denote by Jodd ⊆ I(Gl(r,R)) the ideal spanned by {φ ∈ I2h−1(Gl(r,R)),h = 1,2, . . .}. As explained in Proposition 1.3, if
∇ is an orthogonal connection for some metric g on the vector bundle V , then Jodd ⊆ ker�(∇). Notice that there always
exist positive definite metrics g on V and corresponding metric A-connections ∇ , ∇g = 0 (e.g., take ∇a = ∇′

�Aa , where ∇′
is a usual orthogonal connection on (V , g)). Furthermore, any two orthogonal A-connections on V are Jodd-homotopic.
Indeed, if ∇,∇′ are orthogonal for the same metric g , then (1 − τ )∇ + τ∇′ (0 � τ � 1) defines an orthogonal link. If
orthogonality is with respect to different metrics g, g′ , then (1 − τ )g + τ g′ is a metric on the pullback of V to M × [0,1]
and a corresponding metric connection provides an orthogonal link between two orthogonal connections ∇̄, ∇̄′ with the
metrics g, g′ , respectively. Thus, there exists a chain of three orthogonal links leading from ∇ to ∇̄ , from ∇̄ to ∇̄′ and from
∇̄′ to ∇′ , which proves the Jodd-homotopy of ∇,∇′ .

Now, let (V , g±) be a quasi-(skew)-metric vector bundle that has a K -flat quasi-(skew)-metric connection ∇1 (K =
ann g±). Then, Proposition 1.3 tells us that Jodd ⊆ ker�(∇1). Accordingly (like in the case of the Maslov classes [14]), if we
also take an orthogonal A-connection ∇0 on V , we shall obtain secondary characteristic classes corresponding to the ideals
J0 = J1 = Jodd.

Following [14], Theorem 4.2.26, we may replace the algebra W ( J0, J1) by the algebra

W̃ = R[c2, c4, . . .] ⊗ R
[
c′

2, c′
4, . . .

] ⊗ ∧(ĉ1, ĉ3, . . .), (2.10)

where c� are the Chern polynomials and the accent and hat indicate the place in the three factors of (2.10); the homomor-
phism ρ(∇0,∇1) is defined like on W ( J0, J1), while using orthogonal and quasi-(skew)-metric A-connections, respectively,
and we get the same set of characteristic classes. Then, by the same argument like for [14], Theorem 4.4.37 we get

Proposition 2.2. The A-secondary characteristic classes of (V , g±) are the real linear combinations of cup-products of A-Pontrjagin
classes of V [6] and classes of the form

μ2h−1 = [
�

(∇0,∇1)c2h−1
] ∈ H4h−3(A). (2.11)

The classes μ2h−1 will be called simple A-secondary characteristic classes.

Remark 2.1. If we start with an arbitrary vector bundle (V , g±), a K -flat, quasi-(skew)-metric A-connection ∇1 may not
exist. Furthermore, if ∇1 exists, it may happen that all the secondary characteristic classes vanish. For instance, if we have a
non-degenerate form g− , a usual connection on the bundle of g−-canonical frames produces an A-connection ∇1 such that
∇1 g− = 0 and, since K = 0, we get A-secondary characteristic classes. Because of the Jodd-homotopy of orthogonal connec-
tions, these classes do not depend on the choice of the orthogonal connection ∇0. Moreover, these classes are independent
of the skew-metric connection ∇1 because of the existence of the link (1 − τ )∇1 + τ∇′ 1 between two such connections.
But, the structure group of V may be reduced from the symplectic to the unitary group [14] and a unitary connection ∇̄
on V will be skew-metric and orthogonal simultaneously. From (2.6), and taking ∇0 = ∇1 = ∇̄ , we see that the secondary
characteristic classes above vanish.

3. Characteristic classes of morphisms

Let A be an arbitrary Lie algebroid on M , V , W vector bundles with the same basis M and ϕ : V → W a morphism over
the identity on M . The A-connections ∇V ,∇W on V , W , respectively, will be called ϕ-compatible if ∇W ◦ ϕ = ϕ ◦ ∇V . An
equivalent way to characterize compatibility is obtained by considering the vector bundle S = V ⊕ W ∗ , which is endowed
with the 2-forms

g±
(
(v1, ν1), (v2, ν2)

) = 〈
ν2,ϕ(v1)

〉 ± 〈
ν1,ϕ(v2)

〉
, (3.1)

v1, v2 ∈ V , ν1, ν2 ∈ W ∗ . It suffices to work with one of these forms, but it is nice to mention that both may be used with
the same effect. The pair of A-connections ∇V ,∇W produces an A-connection ∇ S = ∇V ⊕∇W ∗

on S , where ∇W ∗
is defined

by 〈∇W ∗
a ν, v

〉 = (�Aa)〈ν, v〉 − 〈
ν,∇W

a v
〉
, ν ∈ W ∗, v ∈ V .

A straightforward calculation shows that ∇V ,∇W are ϕ-compatible iff either ∇ S g+ = 0 or ∇ S g− = 0. We also notice that
the forms g± have the same annihilator

K = kerϕ × kert ϕ (3.2)

where the index t denotes transposition.
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Proposition 3.1. If V = A, if W = A′ is a second Lie algebroid and if ϕ is a base-preserving Lie algebroid morphism, then there exist
K -flat, ϕ-compatible A-connections (∇,∇′).

Proof. We may proceed like in [6]. Take a neighborhood of M where Γ A,Γ A′ have the fixed local bases (bi), (b′
u). Define

local A-connections ∇U ,∇′ U by asking that

∇U
bi

b j = [bi,b j]A, ∇′ U
bi

b′
u = [

ϕbi,b′
u

]
A′ , (3.3)

then, extending the operators to arbitrary local cross sections in accordance with the properties of a connection. Using the
local expression ϕbi = ϕu

i b′
u , it is easy to check that ϕ ◦ ∇U = ∇′ U ◦ ϕ . If we consider a locally finite covering {Uσ } of M

by such neighborhoods U and glue up the local connections by a subordinated partition of unity {θσ ∈ C∞(M)}, we get
ϕ-compatible, global A-connections ∇,∇′ defined by

∇va(x) =
∑

x∈Uσ

θσ (x)∇Uσ
v a(x), ∇′

va′(x) =
∑

x∈Uσ

θσ (x)∇′ Uσ
v a′(x), (3.4)

where x ∈ M , v ∈ Ax , a ∈ Γ A, a′ ∈ Γ A′ .
Now, we notice that the local connections (3.3) satisfy the following properties

∇U
bi

a = [bi,a]A, ∇′ U
bi

a′ = [
ϕbi,a′]

A′ . (3.5)

Indeed, if we put a = f jb j,a′ = hub′
u , (3.3) and the properties of the Lie algebroid bracket imply (3.5). Furthermore, using

(3.5), it is easy to check the following properties of the global compatible connections (3.4)

∇vk(x) = [ṽ,k]A(x), (3.6)〈∇′∗
v α′(x),a′(x)

〉 = (�A v)
〈
α′,a′〉 − 〈

α′(x),
[
ϕ ṽ,a′]

A′(x)
〉
, (3.7)

∀x ∈ M,k ∈ Γ (kerϕ),a′ ∈ Γ A′,α′ ∈ Γ (kert ϕ) and ṽ = ν ibi is a cross section of Γ A that extends v ∈ Ax . The restrictions put
on k,α′ ensure the correctness of the passage from the covariant derivative to the Lie algebroid bracket and the indepen-
dence of the result on the choice of ṽ . Formulas (3.6), (3.7) imply ϕ(∇vk) = 0, ∇′∗

v α′ ◦ ϕ = 0, which means that kerϕ and
kert ϕ are preserved by the connections ∇,∇′ , respectively.

Finally, if we denote S = A ⊕ A′ ∗ and ∇ S = ∇ ⊕ ∇′∗ , we can compute the curvature [R∇ S (a1,a2)(k,α′)](x), which has
components on A and A′ ∗ . The component on A is

(∇a1∇a2 − ∇a2∇a1 − ∇[a1,a2]A )k̃(x)
(3.6)= ([

ã1, [ã2, k̃]A
]

A − [
ã2, [ã1, k̃]A

]
A − [[ã1, ã2]A, k̃

]
A

)
(x) = 0,

where tilde denotes extensions to cross sections and the final result holds because of the Jacobi identity. For the component
on A′ ∗ we get the following evaluation on any a′ ∈ Γ A′:〈(∇′∗

a1
∇′∗

a2
− ∇′∗

a2
∇′∗

a1
− ∇′∗[a1,a2]A

)
α̃′,a′〉(x)

(3.7)= 〈
α̃′,

[
ϕã2, [ϕã1, k̃]A′

]
A′ −

[
ϕã1, [ϕã2, k̃]A′

]
A′ −

[[ϕã1,ϕã2]A′ , k̃
]

A′
〉
(x)

= 0,

where the annulation is justified by the Jacobi identity again. Therefore,[
R∇ S (a1,a2)

(
k,α′)](x) = 0,

which is the meaning of K -flatness. �
Remark 3.1. During the proof of Proposition 3.1 we saw that kerϕ is preserved by ∇ , hence, it is preserved by the parallel
translation along the paths in the leaves L of A. This shows that rankϕ is constant along the leaves L.

Remark 3.2. If we use the definition of ∇′∗ in the left hand side of (3.7) and take into account the relation ann kert ϕ = imϕ
we obtain the following equivalent form of (3.7):

∇′
va′(x) = [

ϕ ṽ,a′]
A′(x) (mod imϕx) ∀x ∈ M, v ∈ Ax. (3.8)

Definition 3.1. A pair of ϕ-compatible A-connections that satisfy the properties (3.6), (3.8) will be called a distinguished pair
(in [6] one uses the term basic connections).

Now, we see that we may use Proposition 2.2 in order to get secondary characteristic classes for the bundle S = A ⊕ A′ ∗
endowed with the quasi-(skew)-metrics (3.1), with a connection ∇1 = ∇ ⊕ ∇′∗ , where (∇,∇′) is a distinguished pair of
A-connections, and with an orthogonal connection ∇0 = ∇ g A ⊕ ∇ g A′ ∗ , where g A, g A′ are metrics on the bundles A, A′ and
∇ g A ,∇ g A′ are corresponding orthogonal connections on A, A′ .
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Definition 3.2. The above constructed secondary characteristic classes of A ⊕ A′ ∗ will be called the characteristic classes of
the base-preserving morphism ϕ . In particular, one has the simple characteristic classes μ2h−1(ϕ) ∈ H4h−3(A).

The secondary characteristic classes of the Lie algebroid A defined in [6] are the simple characteristic classes of the
morphism ϕ = �A : A → T M .

Proposition 3.2. All the characteristic classes of a base-preserving isomorphism ϕ : A → A′ are zero.

Proof. If ϕ is an isomorphism, then g− is non-degenerate and we are in the situation discussed in Remark 2.1. �
Thus, the characteristic classes of a morphism may be seen as a measure of its non-isomorphic character.

Proposition 3.3. The characteristic classes of a base preserving morphism ϕ : A → A′ of Lie algebroids do not depend on the choice of
the orthogonal connection and of the distinguished pair of compatible connections required by their definition.

Proof. The proposition is a consequence of Corollary 2.1. In the previous section we have seen that two orthogonal A-
connections are Jodd-homotopic. On the other hand, take two ϕ-distinguished pairs of A-connections ∇,∇′; ∇̃, ∇̃′ . Then, it
is easy to check that, ∀t ∈ [0,1], (1 − t)∇ + t∇̃, (1 − t)∇′ + t∇̃′ is a ϕ-distinguished pair again. Therefore, Jodd-homotopy
also holds for the corresponding quasi-(skew)-metric connections on S and we are done. �

We also have another consequence of Corollary 2.1:

Proposition 3.4. Two homotopic, base-preserving morphisms ϕ0,ϕ1 : A → A′ of Lie algebroids have the same secondary characteristic
classes.

Proof. By homotopic morphisms we understand morphisms ϕ0,ϕ1 that are linked by a differentiable family of morphisms
ϕτ : A → A′ (0 � τ � 1). The corresponding forms g+,τ on S = A ⊕ A′ ∗ are different, but, still, all the connections ∇1,τ re-
quired in the construction of the secondary classes have skew-symmetric local connection and curvature matrices. Therefore,
the Jodd-homotopy holds and we are done. �
Remark 3.3. In the case of an arbitrary pair of morphisms ϕ0,ϕ1 : A → A′ we can measure the difference be-
tween the secondary characteristic classes as follows. Notice the existence of the bi-characteristic classes μ̄2h−1(ϕ1,ϕ2) =
[�(∇1,∇2)c2h−1] ∈ H4h−3(A) where ∇1,∇2 are A-connections defined on S = A ⊕ A′ ∗ by distinguished, ϕ1,2-compatible
connections respectively. Then, formula (2.4) yields

dA�
(∇0,∇1,∇2)c2h−1 = �

(∇0,∇1)c2h−1 + �
(∇1,∇2)c2h−1 + �

(∇2,∇0)c2h−1,

where ∇0 is an orthogonal connection on S . Accordingly, we get

μ2h−1(ϕ1) − μ2h−1(ϕ2) = μ̄2h−1(ϕ1,ϕ2). (3.9)

In what follows we give explicit local expressions of A-forms that represent the characteristic classes μ2h−1(ϕ). Take
a point x ∈ M and an open neighborhood U of x diffeomorphic to a ball. Assume that (∇U ,∇′ U ) and (∇,∇′) are pairs of
local, respectively global, distinguished, ϕ-compatible A-connections on A, A′ . Then, if 0 � χ ∈ C∞(M) is equal to 1 on the
compact closure V̄ of the open neighborhood V ⊆ U of x and equal to 0 on M\U , then the convex combinations

∇̄ = χ∇U + (1 − χ)∇, ∇̄′ = χ∇′ U + (1 − χ)∇′

define a global pair of distinguished A-connections that coincides with (∇U ,∇′ U ) on V .
Accordingly, in formula (2.11) for S = A ⊕ A′ ∗ we may always use a connection ∇1 such that the expressions (3.3) hold

on the neighborhood V . Then, if we denote

[bi,b j]A = γ k
i jbk,

[
b′

u,b′
v

]
A′ = γ ′ w

uv b′
w ,

�Abi = ρ
j

i

∂

∂x j
, �A′b′

u = ρ
′ j
u

∂

∂x j
ϕ(bi) = ϕs

i b′
s (3.10)

(remember that we use the Einstein summation convention), where xi are local coordinates on M and (bi), (b′
u) are the

bases used in (3.3), we get the following connection matrix of ∇1 on the neighborhood V(
γ k

i jb
∗i 0

t ′ s ′ j ∂ϕs
i ∗i

)
(3.11)
0 (−ϕi γtu + ρu ∂x j )b
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(in (3.11), b∗i is the dual basis of bi ).
Furthermore, let gU , g′ U be local metrics on A, A′ such that (bi), (b′

u) are orthonormal bases and g, g′ arbitrary, global
metrics on A, A′ . Then, define the metrics

χ gU + (1 − χ)g,χ g′ U + (1 − χ)g′

and take an orthogonal connection ∇0 whose components are corresponding orthogonal connections. The connection matrix
of ∇0 on the neighborhood V , with respect to the same local bases like in (3.11), will be of the form(

�
j

i 0

0 −� ′ t
s

)
, (3.12)

where (�
j

i ), (� ′ t
s ) are skew-symmetric matrices of local 1-A-forms.

If these connections ∇0,∇1 are used, then, along V , the difference matrix α of formula (2.6) is the difference between
the matrices (3.11) and (3.12). Furthermore, we can compute the matrix Ω(τ) by using formula (2.7), where Ω(0) is a
skew-symmetric matrix. The final result may be formulated as follows

Proposition 3.5. If a point x ∈ M is fixed, there exist global representative A-forms Ξ2h−1 ∈ Ω4h−3(A) of the characteristic classes
μ2h−1 such that

Ξ2h−1|V = 1

(2h − 2)!
1∫

0

(
δ
σ1...σ2h−1
κ1lκ2h−1

ακ1
σ1

∧ Ω
κ2
(τ ),σ2

∧ · · · ∧ Ω
κ2h−1
(τ ),σ2h−1

)
dτ , (3.13)

for some neighborhood V of x. In (3.13), the factors are the entries of the matrices α,Ω(τ) given by formulas (3.11), (3.12) and Greek
indices run from 1 to dim A + dim A′ .

Proof. Use the expression (1.12) of the Chern polynomials and the connections ∇0,∇1 constructed above. �
The difficulty in using Proposition 3.5, besides its complexity in the case h > 1, consists in the fact that formula (3.13)

does not define global A-forms; for neighborhoods of different points x1 �= x2 we have different pairs of distinguished
connections ∇̄, ∇̄′ . However, we can use Proposition 3.5 in order to extend a result proven for a Lie algebroid A (ϕ = �A )
in [6]:

Proposition 3.6. The secondary class μ1(ϕ) is equal to the modular class of the morphism ϕ .

Proof. Recall that the modular class of a morphism is defined by μ(ϕ) = μ(A) − ϕ∗μ(A′) ∈ H1(A), where μ(A),μ(A′) are
the modular classes of the Lie algebroids A, A′ , respectively, [7,9,10]. Furthermore, the modular class μ(A) is defined as
follows [5,6,8,10]. The line bundle

∧s A ⊗∧m T ∗M (s = rank A) has a flat A-connection defined, by means of local bases, as
follows

∇bi

((
s∧

j=1

b j

)
⊗

(
m∧

h=1

dxh

))
=

s∑
j=1

b1 ∧ · · · ∧ [bi,b j]A ∧ · · · ∧ bs ⊗
(

m∧
h=1

dxh

)

+
(

s∧
j=1

b j

)
⊗ L�Abi

(
m∧

h=1

dxh

)
, (3.14)

where L is the Lie derivative. Then, for σ ∈ Γ (
∧s A ⊗ ∧m T ∗M) (which exists if the line bundle is trivial; otherwise we

go to its double covering), one has ∇aσ = λ(a)σ where λ is a dA -closed 1-A-form and defines the cohomology class μ(A),
which is independent on the choice of σ .

From (3.14) it follows easily that μ(A),μ(A′) are represented by the A-forms

λ =
∑
i,k, j

(
γ k

ik + ∂ρ
j

i

∂x j

)
b∗i, λ′ =

∑
s,t,h

(
γ t

st + ∂ρ
′ j
s

∂x j

)
b′ ∗s (3.15)

where the notation is that of (3.10). Notice that, even though the expressions (3.15) are local, the forms λ,λ′ are global
A-forms because the connection that was used in their definition is global.

On the other hand, using formulas (3.11), (3.12) and since the trace of a skew-symmetric matrix is zero, we may see that
the A-form Ξ1 defined in Proposition 3.5 is such that Ξ |1V = (λ − ϕ∗λ′)|V , where V is a neighborhood of a fixed point
x ∈ M . Accordingly, there exists a locally finite, open covering {Vα} of M and there exists a family of pairs of A-connections
(∇0α,∇1α) that provide representative 1-A-forms Ξ1α of the characteristic class μ1(ϕ) such that
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Ξ1α|Vα = (
λ − ϕ∗λ′)|Vα . (3.16)

Then, if we take a partition of unity {θα ∈ C∞(M)} subordinated to {Vα} and glue up the families ∇0α,∇1α , like in (3.4),
we get connections ∇0,∇1 that define the representative A-form

Ξ1(x) =
∑

x∈Vα

θα(x)Ξ1α(x) = (
λ − ϕ∗λ′)(x), x ∈ M

of μ1(ϕ). This justifies the required conclusion. �
Example 3.1. An interesting example appears on a Poisson–Nijenhuis manifold (M, P , N), where P is a Poisson bivector field
and N is a Nijenhuis tensor. Then t N : (T ∗M, N ◦ �P ) → (T ∗M, �P ) is a morphism of cotangent Lie algebroids. The modular
class of the morphism t N was studied in [4] and it would be interesting to get information about other characteristic classes
of this morphism.

The calculation of the classes μ2h−1 for h > 1 is much more complicated. One of the difficulties is the absence of a global
construction of a distinguished pair of connections.

Example 3.2. Let ϕ : A → A be an endomorphism of the Lie algebroid A and assume that there exists an A-connection ∇
on A that satisfies condition (3.6) and whose torsion

T∇(a1,a2) = ∇a1a2 − ∇a2a1 − [a1,a2]A, a1,a2 ∈ Γ A,

takes values in K = kerϕ . Then, it is easy to check that the formula

∇′
a1

a2 = [ϕa1,a2]A + ϕ∇a2a1

defines a second A-connection that is ϕ-compatible with ∇ and satisfies condition (3.8). Therefore, (∇,∇′) is a distinguished
pair.

Another difficulty is produced by the complicated character of the expression (3.13). A simple example follows.

Example 3.3. If the Lie algebroids A, A′ have anchors zero, the A-connections are tensors and formula (3.11) gives the local
connection matrices of a global, flat A-connection ∇1 as required in the definition of the characteristic classes (flatness is
just Jacobi identity). In the simplest case A = M × G , A′ = M × G′ where G , G′ are Lie algebras, we may take �

j
i = 0 in

(3.12), which gives a flat metric connection ∇0. Then, formula (2.7) reduces to

Ω(τ) = τ (1 − τ )α ∧ α

where α is the matrix (3.11). Accordingly, like in [14], Theorem 4.5.11, we get the representative A-forms

Ξ2h−1 = 1

(2h − 2)!νhδ
σ1...σ2h−1
κ1...κ2h−1 ακ1

σ1
∧ αλ2

σ2
∧ α

κ2
λ2

∧ · · · ∧ α
λ2h−1
σ2h−1 ∧ α

κ2h−1
λ2h−1

of the classes μ2h−1, where α·
. are the entries of the matrix (3.11) and

νh =
1∫

0

τ (1 − τ )dτ =
2h−2∑
i=1

(−1)h+i+1 2i

4h − i − 3

(
2h − 2

i

)
.

Remark 3.4. So far, we do not have a good definition of characteristic classes of a morphism between Lie algebroids over
different bases. Using the terminology and notation of [10], let us consider a morphism

A
ϕ

B

M
f

N

(3.17)

between the Lie algebroids A, B and assume that the mapping f is transversal to the Lie algebroid B . Then, Proposition 3.11
of [10] tells us that ϕ = f !!

B ◦ϕ′ , where f !!
B : f !!B → B , ϕ′ : A → f !!B are the natural projections of the pullback Lie algebroid

f !!B . Furthermore, Proposition 3.12 of [10] tells that the modular class of the non-base preserving morphism ϕ is equal to
the modular class of the base preserving morphism ϕ′ . This equality may be extended by definition to all the characteristic
classes of ϕ , but it is not clear whether this definition is good (it does not loose information about ϕ) even in the indicated
particular case.
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4. Relative characteristic classes

From Proposition 3.6 and a known result on modular classes [10, formula (2.5)] we see that the first class μ1(ϕ) has a
nice behavior with respect to the composition of morphisms namely, for the morphisms ϕ : A → A′,ψ : A′ → A′′ one has

μ1(ψ ◦ ϕ) = μ1(ϕ) + ϕ∗(μ1(ψ)
)
. (4.1)

In this section we give a proof of (4.1) by means of the definition of the characteristic classes of a morphism and we shall
see why the result does not extend to the higher classes μ2h−1, h > 1. The proof will use a kind of relative characteristic
classes that are interesting in their own right; in particular, we will show that the relative classes defined by the jet Lie
algebroid J 1 A [3] are cohomological images of the absolute characteristic classes of a morphism ϕ : A → A′ .

Like in the definition of the characteristic classes of ϕ we can produce characteristic classes of ψ : A′ → A′′ modulo
ϕ : A → A′ as follows. Take the Lehmann morphism ρ∗(D0, D1) for an orthogonal A-connection D0 on the vector bundle
A′ ⊕ A′′ ∗ associated with a sum of Euclidean metrics g A′ , g A′′ and an A-connection D1 on A′ ⊕ A′′ ∗ , which is the sum of
distinguished A-connections ∇′,∇′′ on A′, A′′ , respectively. Here by a distinguished pair we mean a pair of A-connections
(∇′,∇′′) that satisfies the following properties

ψ∇′
aa′ = ∇′′

a

(
ψa′), a ∈ Ax (x ∈ M), a′ ∈ Γ A′,

∇′
ak(x) = [ϕã,k]A′(x), k ∈ Γ kerψ,

∇′′
a a′′(x) = [

ψϕã,a′′]
A′′(x) (mod imψ), (4.2)

where the sign tilde denotes the extension to a cross section. One can construct a ψ-distinguished pair of A-connections
∇′,∇′′ by replacing the local formulas (3.3) by

∇′ U
bi

b′
j′ = [

ϕbi,b′
j′
]

A′ , ∇′′ U
bi

b′′
j′′ = [

ψϕbi,b′′
j′′
]

A′′ , (4.3)

then gluing the local connections via a partition of unity. (In (4.3) (bi), (b′
i′ ), (b

′′
i′′ ) are local bases of Γ A,Γ A′,Γ A′′ , respec-

tively.)

Definition 4.1. The characteristic A-cohomology classes in imρ∗(D0, D1) will be called relative characteristic classes of ψ

modulo ϕ . In particular,

μ2h−1(ψmod ϕ) = [
�

(
D0, D1)] ∈ H4h−3(A)

are the simple relative characteristic classes.

Proposition 4.1. For h = 1, the relative and absolute characteristic class μ1 of the morphism ψ are related by the equality

μ1(ψ mod ϕ) = ϕ∗μ1(ψ). (4.4)

Proof. By absolute classes we understand characteristic classes μ2h−1(ψ) ∈ H4h−3(A′). The partition of unity argument
given for (3.11) shows that we may assume the following local expressions of distinguished A′-connections on A′, A′′

∇̄′ U
b′

i′
b′

j′ = [
b′

i′ ,b′
j′
]

A′ , ∇̄′′ U
b′

i′
b′′

j′′ = [
ψb′

i′ ,b′′
j′′
]

A′′ . (4.5)

Connections (4.5) induce A-connections ∇̃′, ∇̃′′ and we shall compute the local matrices of the induced connections. By
definition, we have

∇̃′ U
bi

b′
j′ = ∇̄′ U

ϕbi
b′

j′ , ∇̃′′ U
bi

b′′
j′′ = ∇̄′′ U

ϕbi
b′′

j′′

and it is easy to check that the A-connections ∇̃′ U , ∇̃′′ U satisfy conditions (4.2). Therefore, ∇̃′ U , ∇̃′′ U may be used in the

calculation of the relative characteristic classes of ψ mod ϕ . If we denote ϕbi = ϕ
j′
i b′

j′ and use expressions (4.5) and the
properties of the Lie algebroid brackets we obtain the local connection matrices

ω̃′k′
j′ = ϕ∗ω̄′k′

j′ − 〈
dA′ϕk′

i ,b j′
〉
b∗i,

ω̃′′k′′
j′′ = ϕ∗ω̄′′k′′

j′′ − 〈
dA′′ϕk′

i ,ψb j′
〉
b∗i. (4.6)

Formula (4.6) allows us to write down the local connection matrix of the connection D1 = ∇̃′ + ∇̃′′ ∗ required by the
definition of the relative classes. Furthermore, we may assume that the local matrix of the orthogonal connection D0 that
we use is skew-symmetric. Accordingly, and since ψ is a Lie algebroid morphism, (4.6) yields
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�
(

D0, D1)c1 = tr

(
ω̃′k′

j′ 0

0 −ω̃
′′ j′′
k′′

)
= ϕ∗ tr

(
ω̄′k′

j′ 0

0 −ω̄
′′ j′′
k′′

)
= ϕ∗�

(∇̄0, ∇̄1)c1,

where ∇̄1 = ∇̄′ + ∇̄′′ ∗ and ∇̄0 is an orthogonal A′-connection on A′ ⊕ A′′ ∗ . This result justifies (4.4). �
Proposition 4.2. For h = 1, the relative and absolute characteristic class μ1 of the morphisms ϕ,ψ are related by the equality

μ1(ψ ◦ ϕ) = μ1(ϕ) + μ1(ψ mod ϕ). (4.7)

Proof. In the computation of μ1(ψ ◦ ϕ) we may use an A-connection ∇ + ∇′′∗ on A ⊕ A′′ ∗ where, on the specified neigh-
borhood U , ∇ is given by (3.3) and ∇′′ is given by (4.3), while in the computation of μ1(ψ mod ϕ) we shall use the
connections ∇′,∇′′ of (4.3). Thus, the non-zero blocks of the local difference matrix α that enters into the expression of the
representative 1-A-form of μ1(ψ ◦ ϕ) are given by the local matrix of

∇′′ − ∇ = ∇′′ − ∇′ + ∇′ − ∇ (4.8)

and the opposite of its transposed matrix (in spite of the notation, calculation (4.8) is for the connection matrices not for
the connections). Then, if we use orthogonal connections of metrics where the bases used in (4.3) are orthonormal bases
(therefore, with trace zero), formula (4.8) justifies (4.7). �
Corollary 4.1. The characteristic class μ1 of a composed morphism ψ ◦ ϕ,ψ is given by formula (4.1).

Proof. The result is an obvious consequence of formulas (4.4) and (4.7). �
Remark 4.1. Formulas (4.1), (4.4), do not hold for h > 1 because of the more complicated expression of the polynomials
c2h−1 (there is no nice formula for the determinant of a sum of matrices).

We finish by showing the relation between the characteristic classes of the base-preserving Lie algebroid morphism
ϕ : A → A′ and the relative classes defined by the first jet Lie algebroid J 1 A; for ϕ = �A : A → T M this relation was
established in [3].

The first jet bundle J 1 A may be defined as follows. Let D be a T M-connection on A and let Da denote the covariant
differential of a cross section a ∈ Γ A (i.e., Da(X) = D X a, X ∈ Γ T M). The properties of a connection tell us that Da ∈
Hom(T M, A) and, if a(x0) = 0 for some point x0 ∈ M , then Da(x0) : Tx0 M → Ax0 is a linear mapping that is independent of
the choice of the connection D . (This is not true if a(x0) �= 0.) If (xh) are local coordinates of M around x0 and (bi) is a local
basis of Γ A, and if a = ξ i(xh)bi , the local matrix of Da(x0) is (Dhξ i(x0)) (the covariant derivative tensor), which reduces to
(∂ξ i/∂xh(x0)) if ξ i(x0) = 0.

Now, for any point x0 ∈ M , the space of 1-jets of cross sections of A at x0 is

J 1
x0

A = Γ A/
{

a ∈ Γ A/a(x0) = 0,Da(x0) = 0
}

(4.9)

and each a ∈ Γ A defines an element j1
x0

a ∈ J 1
x0

A called the 1-jet of a at x0. With the local coordinates and basis considered
above, we may write

a = ξ i(xh)bi =
(

ξ i(x0) + ∂ξ i

∂xh
(x0)

(
xh − xh(x0)

) + o
((

xh − xh(x0)
)2))

bi .

Hence,

j1
x0

a = ξ i(x0) j1
x0

bi + ∂ξ i

∂xh
(x0) j1

x0

((
xh − xh(x0)

)
bi

)
and

j1
x0

bi, j1
x0

((
xh − xh(x0)

)
bi

) = j1
x0

(
xhbi

) − xh(x0) j1
x0

bi (4.10)

is a basis of the vector space J 1
x0

A such that (ξ i(x0), ∂ξ i/∂xh(x)(x0)) are coordinates with respect to this basis.
A change of the local coordinates and basis of A gives the transition formulas

x̃h = x̃h(xk), ξ̃ i = λi
j

(
xk)ξ j,

∂ξ̃ i

∂ x̃h
= ∂xk

∂ x̃h

(
∂λi

j

∂xk
ξ j + λi

j
∂ξ j

∂xk

)
(4.11)

and may be seen as the composition of the change of the coordinates (xh) with the change of the basis (bi), while the order
of the two changes is irrelevant. This remark allows for an easy verification of the fact that the change of the coordinates



I. Vaisman / Differential Geometry and its Applications 28 (2010) 635–647 647
discovered above in J 1
x0

A has the cocycle property. Accordingly, (4.11) shows that J 1 A = ⋃
x∈M J 1

x A has a natural structure
of a differentiable manifold and vector bundle π : J 1 A → M over M called the first jet bundle of A.

From (4.10), we see that ( j1bi, j1(xhbi)) is a local basis of cross sections of J 1 A at each point of the coordinate neighbor-
hood where xh are defined. This basis consists of 1-jets of local cross sections of A, therefore, the cross sections of J 1 A are
locally spanned by 1-jets of cross sections of A over C∞(M). In the case of a Lie algebroid A, the previous remark allows
us to define a Lie algebroid structure on J 1 A by putting

� J 1 A

(
j1a

) = �Aa,
[

j1a1, j1a2
]

J 1 A = j1[a1,a2]A (4.12)

and by extending the bracket to general cross sections via the axioms of a Lie algebroid. We refer the reader to Crainic and
Fernandes [3] for details. A general, global expression of the Lie algebroid bracket of J 1 A was given by Blaom [1].

Moreover, (4.12) shows that the natural projection π1 : J 1 A → A, π1( j1a) = a is a base-preserving morphism of Lie
algebroids and, if ϕ : A → A′ is a morphism of Lie algebroids, we may define relative characteristic classes of ϕ modulo π1.
Following [3], there exist flat J 1 A-connections ∇ j1

,∇′ j1
on A, A′ , respectively, given by

∇ j1

f j1a1
a2 = f [a1,a2]A, ∇′ j1

f j1a
a′ = f

[
ϕa,a′]

A′ , (4.13)

where a,a1,a2 ∈ Γ A,a′ ∈ Γ A′, f ∈ C∞(M). These connections obviously satisfy conditions (4.2), hence, D1 = ∇ j1 + ∇′∗ j1
is

a J 1 A-connection on A ⊕ A′ ∗ that may be used in Definition 4.1 for the present case. We shall prove the following result

Proposition 4.3. The relative characteristic classes of ϕ modulo π1 are the images of the corresponding absolute characteristic classes
of ϕ by the homomorphism π1∗ : H∗(A) → H∗( J 1 A).

Proof. Here, we have the particular case of the situation that existed in Proposition 4.1 where π1 comes instead of ϕ and
ϕ comes instead of ψ . Therefore, we may construct connections that correspond to (4.5) and the induced J 1 A-connections
and get the corresponding formulas (4.6). If we use the local bases (4.10) of Γ J 1 A, the components ϕk′

i that appear in (4.6)
are constant and (4.6) simply tell us that the local connection forms of the induced connections are the pullback of the
connection forms of the connections (4.5) by π1. Of course, the same holds for the curvature forms, and, if we also use a
J 1 A-orthogonal connection of A ⊕ A′ ∗ that is induced by an A-orthogonal connection, we see that π1∗ commutes with the
Lehmann morphism, which implies the required result. �
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