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1. Introduction

Let G be a connected reductive group acting on a finite dimensional vector gpace
(everything defined ove€). We assume thal/ is a multiplicity free space, i.e., every
simple G-module appears iP(U), the algebra of polynomial functions dii, at most
once. Thus, as &@-module,

PWHY= P P (1.1)

reAL

whereA is a set of dominant weights arRy] is a simpleG-module oflowestweight—2.
All elements of P, are homogeneous of the same degree, derfgted

Now consider an invariant differential operatBron U. It will act on each irreducible
constituentP; as a scalar, denoted hy,(1). It can be shown thatp extends to a
polynomial function toV, the C-span ofA. Thus,D +— ¢p is @ homomorphism from
PDU)C, the algebra of invariant differential operators, ifV). It is possible to
determine the image of this map. One can show [7] that there is a “shift vegtorV
and a finite reflection groupy € GL(V) such that the following is an isomorphism:

PDW)? = PV : D pp(z)i=cplz— p). (1.2)

Thus, the eigenvalues @ in P(U) are the valuepp(p + 1), A € A4
The identification (1.2) works actually in the much wider contexGefarieties (see [6])
but only multiplicity free spaces have the following important feat®@(U)¢ has a
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distinguished basi®;, A € A;. The construction of th®, goes back to Capelli. Via the
identification (1.2), we get also a distinguished basis= pp, of P(V)".

Itis possible to characterize the elements of this basis purely in terimsathout any
reference ta/. Namely, p, is the uniqueW -invariant polynomial onV of degreet(1)
which has the following interpolation property:

Pilp+ 1) =8, forall e Ay with £(2) < (). (1.3)

Note that this is a purely combinatorial descriptiongf all we need to know ar&,

W, A4, £, andp. The first four of these data are rather rigid but there is some flexibility
for p. In fact, there are many, quite different, examples of multiplicity free spaces for
which V, W, Ay, and¢ are the same buyt is different. This is a motivation for using the
characterization above tefinea family of polynomial, (z; p) for an (almostparbitrary

p € V (a suggestion of Sahi, see [17]).

In general, not much can be said abgutz; p) but we showed in [J]that forp in a
certainnon-trivial subspacé/p of V these polynomials have remarkable properties. The
most important one is the existence of difference operdigrs: € P(V)W, for which all
polynomialsp, = p;.(z; p) are eigenfunctions. More precisely,

Dp(pp) =h(p + X)pa- (1.4)

Thus we can think of the polynomiajs, (z; p), p € Vo, as a good deformation of the
spectral polynomialg; (z).

The central result of the present paper is the Transposition Formula;fat o).
Again, it originates from differential operators. There, “transposition” is the unéaptie
automorphisnD — D of PD(U) with

t
’xizx,' and < 9 ): 9 (1.5)

axi) x|

Transposition commutes with th@-action and induces an automorphismRP(U)°. It
is a natural problem to calculate its effect V)" under the identification (1.2). This
is done in Section 2 and the answer is simply the thap h~ whereh™(z) := h(—z)
(Theorem 2.2).

From now on, we denot® (V) simply by P. In Section 4, we compute the action
of h — h~ onPY with respect to thep,-basis. The result is thiansposition formula
(Theorem 4.3):

@ (—2) = Z(_l)”ﬂ) pu(p+1)gu(z) forallre As. (1.6)
"

1 In fact, the present paper is as a continuation of [9]. For the convenience of the reader we recall all relevant
results in Section 3.
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Here, we used the renormalized polynomials

1
a1 (z; p) 1= ——— pa(z; p). (1.7)
pi(=p: p)

Its proof uses the difference operatdps, an idea which goes back to Okounkov [14]
who proved it for shifted Jack polynomials.

A first consequence of the transposition formula is éwaluation formula(Corol-
lary 4.6)

pi(—p; p) = (=) Mg, (1.8)
where
a(p+ 1) (@(P) + k) w
d), = . 1.9
=11 a(p) [l (@(p) — koo + Do) (1.9)

acAt wedt

Here(a), =a(a+1)---(a +n — 1) is the Pochhammer symba\* and®* are certain
finite sets of linear functions oW (positive roots and pseudoroots, respectively), anis
the multiplicity function determined by. The numbetl, is called thevirtual dimension
since, in the case whep comes from a multiplicity free spac¥, it computes the
dimension of the irreducibl&-moduleP, occurring inP(U) (Theorem 4.8). This result
generalizes a formula of Upmeier [19] who considered multiplicity free spaces attached to
Hermitian symmetric spaces (see below).

As already observed in [14], another consequence of the transposition formula is the
interpolation formula It gives the expansion of an arbitrary polynomiag P in terms
of the p,’s. More precisely, we show in Section 5 (Theorem 5.2):

h@ =Y D Whio+1)pa) (1.10)
reAL
where
R+ =Y (=D p,(o+Mh(p+ ). (1.11)
HEAL

Another consequence (also noticed in [14]) of the transposition formula is the symmetry
G(=p—v)=qu(—p—1), A veEAs (1.12)
(just substitutez = p + v in (1.6)). In Section 6, we define a scalar product®h by
(Pas Pu) = dhbap- (1.13)

Then (1.12) is explained by the fagt, ", g7 ) = g (—p — v).

2 There, the “transposition formula” is called “binomial formula”.
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Let A € End- PY be the algebra generated by all multiplication operaicesP" and
all difference operator®;,, h € P". Then the transformation (1.11) can be used to define
an involutory automorphisniX — X of A which interchanges and D;, (Theorem 5.3).
Moreover, we show thatl is stable under taking adjoints for the auxiliary scalar product

(f.8) =(f".g")

More precisely(h, D,-) is an adjoint pair (Theorem 6.3).

These results are extended in Section 7. For every opeXattafineX ~ by X~ (k) :=
X (h™)~. Let B be the algebra generated by all D,, and D, with & € PWY. In other
words,B is generated byl and.A~. First we observe thd is stable under taking adjoints
X* with respect to the original scalar product (Theorem 7.1). The main result of Section 7
is the construction of 8GLy(C)-action onl5 which incorporates the two automorphisms
X — X andX — X~ For this, let

L:=(—Dy. (1.14)

Then we show thatL, 2¢, L™) forms ansl,-triple (Theorem 7.2). Th@GL,(C)-action is
obtained by integrating the adjoint action of this triple (Theorem 7.3).

In Section 8, we study the effect of operatorgSion the top homogeneous components
of polynomials. More precisely, bot®" and B are filtered by degree. Denote their

associated graded algebras®y andB, respectively. Then thB-module?" is called

the differential limit of the B-module?" . While it is clear thatP” = PW (sinceP is
graded to begin with) we show that al$= B (Theorem 8.3). Therefore, the algebra
B of differenceoperators can be replaced i, an algebra ofdifferential operators
(Proposition 8.1). Unfortunately, so far it seems to be very hard to condrdicectly.

In Section 9, we study another limit, namely the infinitesimal neighborhood of a
particularW-fixed points in V. The transposition formula (1.6) then becomes, in the limit,
abinomial formula(Theorem 9.1):

2+ = > pulp+niP@ (1.15)
HEAL
Oy=£()

Whereqi‘”(z) is a certain renormalization of the top homogeneous componegnt(ef.
Multiplicity free spaces have been classified by Kac [5], Benson and Ratcliff [1], and
Leahy [13]. So far, basically only two classes have been studied in more detail. The case
which got by far the most attention is the so-called classical case. It includes the spaces

when G is the complexification of the isotropy group of a Hermitian symmetric space
andU is the complexification of §*”. Here, the polynomialg; (z; p) are calledshifted

Jack polynomialsince their top homogeneous components are the Jack polynomials. By
now there is a rich literature on these polynomials, and most results of this paper have
been previously obtained in that case, (see, e.g., [10-12,14-18]) even though the results of
Section 7 on th®GLy(C)-action seem to be new even in the classical case.
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The other case, in which the present theory is (mostly) worked out is the semiclassical
case, [8]. This includes, e.g., the action®E, (C) on A2C"*1. Among the few papers
which deal with general multiplicity free spaces are most notably [4,20], and [2].

We found it useful to illustrate most of our results with the caseWigm 1. This case is
pretty elementary but still quite interesting. We could have sprinkled specializations to this
case all over the paper but found it more useful to gather everything in a separate section
at the end of the paper. It is recommended to consult this section frequently in the course
of reading this paper or to even start with it.

2. Transposition of differential operatorson multiplicity free spaces

Let U be a finite dimensional complex vector space. Then the algebrd/) of linear
differential operators with polynomial coefficients has the following presentation: it is
generated by (the directional derivatives) and* (the linear functions) which satisfy
the following relations:

[01,02] =0, [x1,x2]1=0, [0,x]=0(x)
forall 91,02,0 € U, x1,x2,x € U™, (2.1)

This implies that there is a uniqaatiautomorphisnD — ‘D of PD(U) with
9=-0, x=x foralldeU andx e U*. (2.2)

The operatofD is called theransposeof D.

Let G be an algebraic groug acting linearly onU. Then transposition i€ -equi-
variant. It follows, that it induces an antiautomorphism of the algé®aU)¢ of G-in-
variant differential operators.

Now assume that is connected, reductive arid a multiplicity free space. This means
that the algebr& (U) of regular functions is multiplicity free as @-module. Then it
is easy to show thaPD(U)¢ is commutative (in fact, this will be shown below). Thus,
transposition is an automorphismBD(U)¢. The purpose of this section is to calculate
this automorphism explicitly.

To do this, we need first an explicit description of the algeBR(U)° itself. Fix a
Borel subgroupB of G and a maximal toru§' of B. By assumption, the algebfa(U)
decomposes as@-module asP(U) = @Aem P* whereA, C (LieT)* is a certain set
of integral dominant weights arf@* is a simpleG-module withlowestweight —A.

Every D € PD(U)¢ acts onP* as multiplication by a scalar, which is denoted by
cp(r). Let V C (LieT)* be theC-span of AL. Thencp is the restriction of a unique
polynomial function onV (also denoted byp) to A (see [7, Corollary 4.4]). Thus, we
obtain an embedding

PDW)C < P(V): D+ cp (2.3)

which shows, in particular, th&®D(U)¢ is commutative.
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To describe the image of this embedding we need some more notatioR. ek be
the largest parabolic subgroup such that all elements,gfconsidered as charactersiof
extend to characters @f. Let 8 be the sum of all roots in the unipotent radical®fand
let x be the sum of all weights df . Then it is shown in [9, Section 7] that:= %(ﬁ +x)
is an element o¥ . Using this weight, we define a new embedding

PDU)C < P(V): D+ pp (2.4)
where
pp(W) :==cp(v— p). (2.5)
Then we have the following (Harish Chandra) isomorphism:

Theorem 2.1 [7, Theorem 4.8]There is a unique finite subgroug € GL(V) such that
D — pp establishes an isomorphism betwg@R(U)¢ andP(V)W.

Now we can make transposition of invariant differential operators explicit:
Theorem 2.2. Let U be a multiplicity free space fag. Then
pip(v) = pp(—v) foreveryD e PDU)® andv e V. (2.6)
Proof. Using (2.5) we have to prove
cp() =cp(=v—x —p). (2.7)

Let 3(g) be the center of the universal enveloping algelttg) of the Lie algebra of5.
The action ofG on U induces a homomorphisi# : 4(g) — PD(U) which maps3(g) to
PD(U)C. We are going to verify (2.7) first for operators in the imagerof

Letu; be a basis ot/ where eaclu; is a weight vector with weigh;. Letx; € U* be
the dual basis ang := 9/dx;. Consider the decompositign=n® t® n~. Forn € t we
havew (n) = — >, xi(n)x;9;. Thus

W) ==Y xim(=0)xi =Y xim ik +D=—¥m+xm.  (2.8)

If n € n® thenw (n) = Zi# aijx;d;, hencéW (n) = —¥ (). Now observe thag, being
the sum of all weights ot/, is actually a character of all af. Thus, we can define an
antiautomorphisnt of {(g) by () := —n + x(n) for all 5 € g and the discussion above
showed

wE)=w(r®) foralléeU(g). (2.9)

Leté € Z(g) andD = ¥ (£). From the theorem of Poincaré—Birkhoff—-Witt follows that
& decomposes uniquely 8s= &y + &1 with &g € U(t) andég € n~U(g)n. Sincell(t) = S(b),
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we can regardp as a function ort* and write&g(v) for its value atv € t*. In particular,
we have

(80) (v) = &o(=v + x). (2.10)

On the other hand(¢) = (&) + t(£1) with (&) € U(t) andz (&1) € nid(g)n~. Let f be
a lowest weight vector oP*. By definition, it has weight-A. Thus¥ (t(&1)) f = 0, and
we have

'Df =¥ (t(€0) f =) (M) f =&o(A + x) f- (2.11)
Thus
cp(A) =&+ x) forallre AL, (2.12)

Let wo be the longest element of the Weyl groupof G. Then the highest weight of
P is —woh. Thuscp (L) = Eo(—wor). Let p be the half-sum of positive roots @f. By
the (original) Harish Chandra isomorphism, the functiom> & (v — p) is W-invariant.
Fromwop = —p, we get

cp(A) = Eo(—wor) = &o(wo(—1 — p) — p) = &o(—A — 2p). (2.13)

Let L be the Levi complement oP andw; the longest element of its Weyl group.
Then we have the relatigh= p + wy p. SinceA is Zariski dense iV, Equation (2.13)
is valid for all A € V. In particular, we can replaceby —1 — x — . Thus,

cp(=r—x —B) =6+ x+B—2p) =6+ x +wLp— Dp). (2.14)
Now we use the fact thate V andx arew -fixed. Hence
Eo(L+ x +wrp — p) =bo(wr (A + x +p) — p) =&0(A + x). (2.15)

Equations (2.12), (2.14), and (2.15) imply (2.7) for= ¥ (§).
Now we consider the general case. Clearly, there is a unique automorphii® "
such that

o(cp)(v) = cp(—v) forall D e PDWU)C (2.16)

and we have to show thatis the identity. By what we proved abovefixes the subalgebra
Po:={cp | D € ¥3(g)} pointwise. SinceP (t*) is finitely generated as (g) = P(V)V-
module, alsaP (V)Y is a finitely generatedy-module. LetC be the quotient field of
P(V)W. Then we see thdfC: K£(°'] is finite which implies that has finite order.

In the last step, we use that transposition is filtration preserving. More precisely,
PDU)C is filtered by the order of a differential operator aRdV)" is filtered by degree.
The associated graded ring ®D(U)° is P(U @ U*)¢ and transposition induces on
the latter the actionu, @) — (u, —«). The mapD — cp is degree preserving. Thus
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transposition acts on @(V)" by v — —v. This shows that acts on gP (V)" as
identity. Buto has finite order, hence is linearly reductive. This implies séhistthe identity
onPWMWY. O

3. Capdlli polynomials

This section is a synopsis of the essential parts of [9]. We have seen that to every
multiplicity free space there is attached a finite dimensional vector space finite
reflection groupW acting on it and a finitely generated monoid. of dominant weights.
Additionally, we have a linear functiofi. V — C such that (1) = degf for any non-zero
f € P*. These data are by no means unrelated and in [9] we proposed a set of axioms
which we are not going to repeat since we rarely need them directly. From now on we
forget about multiplicity free spaces and consider just structunésw, A, ¢) satisfying
these axioms. Note that all multiplicity free actions are classified [1,5,13]. The ensuing
combinatorial structures are described in [9, Section 8].

InsideV we are going to consider the following objects:

>V A1
o] o] (3.1)
Ay, € A < TV Cc vV

HererI" is the lattice generated by, and A is the submonoid generated by all with
w € W andn € A,. The minimal set of generators df, is denoted byX'V. It forms a
basis of 'Y andV. Also A has a minimal set of generators which is denotedhy It
coincides with the set of albn with w e W, n € XV andé(n) = 1.

Inside the dual spacg" we need the following objects:

po) A
o] o] (3.2
® < I < VvV

Here I' is the lattice dual toI"Y and X is the dual basis o&V. The elements of
@ :=J,wwX are calledpseudorootsAttached to the reflection groupy there is a
unigue root system such that all roots are primitive vectors.

Let +£W be the group generated Ity and—1. Then we define

Vo:= {,o e V |forall w1, w2 € X with w1 € =Ww> holdswi(p) = a)z(p)}. (3.3)

Thus, forp € Vg and for everyw € @ U (—®) we can defing,, := w1(p) wherew; €
+WwnN X. In particular we havé, =k_,, forall w € @.

Examples. For the rank one case see Section 10. Here we illustrate the notation above
in two examples. In thelassical caseave have:V := C", W := §, (symmetric group),

3 Actually, in [9] we found it more convenient to state the axioms in terms of the equivalent/daia W, ¢).
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Ap:={reZ" | x> --- > A, >0} (partitions), and(A) := ) ; A;. Letey, ..., e, be the
canonical basis of” andzy, ..., z, € (C")V its dual basis. Then we get the following
derived data:

Subsets of/ Subsets o/ v

FV:ZVl F:Zn

ZV={er+ - +e|1<i<n) Y=z —zi+111<i <n}U{z,}

Ar={e; |1<i<n} S ={z; —z; 11<i#j<ntU{z [1<i<n}
A=N" A={zi—zj|1<i#j<n}

Vo={>_i[(n —i)r +sle; | r,s €C}

Observe thatA is a subset ofp. This makes the classical case rather exceptional. It has
been the topic of the papers [10] and [15] among others.

The second example is teemiclassical cas@hen:V :=C", W :={w € S, | w(i) — i
even for alli} (semisymmetric group)y :={r € Z" | A1 > --- > A, > 0} (partitions),
andeé(r) := Y, oqqri- We get the following derived data:

Subsets of/ Subsets of/ v

FV:ZH F:Zn

ZV=fer+---+e|1<i<n} T ={zi —zi+111<i <n}U{zn}

Ay ={e; |ioddU{e;+e; | i odd j even & ={z; —zj|i—jodd U{z |n—ieven
A={AeN"|} i odd*i = X i eventi} A={z;—zjli#j, i—jeven

Vo={>_;[(n —i)r +slej | r,s € C}

The semiclassical case has been investigated in [8].

We are going to need the following non-degeneracy conditiong foig. Let A* :=
{a e Ala(XY)>0}. Then

dominant

. Z<0 +
non-integral} if a(p) ¢ { 7 } foralla e A™. (3.4)

,OEVoiS{

Let P denote the algebra of polynomial functions Bn The next theorem introduces
one of the main objects of the theory: a distinguished basiB'6fwhose elements are
sometimes called Capelli polynomials since they are related to the Capelli identities.

Theorem 3.1[9, Theorem 3.6]Let p € Vp be dominant.

(a) For everyx € A, there is a unique polynomiagh, € P with degp; < ¢(1) and
pi(p + w) = 8;, (Kronecker deltafor all © e A4 with £(u) < £(A).

(b) Foreveryd € N, the set op; with £(1) < d forms a basis of the space pfe P" with
degp <d.

The polynomials vanish, in fact, in many more points than they are supposed to. This is
the content of the Extra Vanishing Theorem:
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Theorem 3.2 [9, Corollary 3.9].Let p € Vp be dominant. Then for any, u € A4 holds
pa(p+ ) =0unlessu € A + A.

Ford e 7Z define the following variant of the falling factorial polynomial:

_[zz=1D---(z—d+1) ifd>0,
[z ¥ dl:= { 1 otherwise. (3-5)
Then, for everyr € I we define the rational function
fo(2) o= Hocol@@ —ko L (@] (3.6)

[Teenle(@) | ()]
One of its main features are the following cut-off properties:
Lemma 3.3[9, Lemmas 3.2 and 5.2.et p € Vy be non-integral and € A.

(8) Assumene Ay butpu:=A2—t ¢ Ay. Thenfr(p + i) =0.
(b) Assumeu € A4 buti:=p+7v¢ Ay Thenfr(—p —pn) =0.

For anyn € V we define the shift operatdi, onP by (T, f)(z) = f(z — ). Then the
difference operator

L:=Y" f£,T,

neA

has very remarkable properties. Since its coefficients are rational functions, it doesn’t act

onP butis does orPV.

Examples. 1. Classical case:

L:Xn:[]_[ w}(zi —)T,,. (3.7)

im1bjz T

2. Semiclassical case:

I = |:H] everlZi —2j —
i odd

r) ( o
H,/;ﬁi Odd(Zi — Zj) Zi — )1

N Z |:l_[k;éj ever(@i — 2k = 1) [ Tzi 0dd(@j — 2k —1)

(2i =) Te;4e;- (3.8
l_[k?gi odd(@i — zk) Hk;éj ever(Zj — 2k) j| G ety G8)

i odd
J even

One of the main properties df is:
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Theorem 3.4[9, Corollary 5.7] Consider: € PV as multiplication operator o®" . Then
(adL)"(h) = 0for n > degh.

Thus, for everyr € P we can define the difference operator
Dy, :=exp(adL)(h). (3.9)

The most important special case is tifference Euler operatoE := D, = ¢ — L. All
these operators are diagonalized by pheMore precisely:

Theorem 3.5[9, Theorem 5.8]Leth € PV. Then
Dp(py)=h(p+Ar)p, forallre A;. (3.10)

In the classical and semiclassical case, these difference operators have been first
constructed explicitly in [10] and [8], respectively. In general, much less is known. The
rough structure oDy, is explained by the following lemma.

Lemma 3.6. There is an expansion

Dy=) bi)T, (3.11)
n

Wherebf; (z) is arational function and; € A with £(n) < degh.

Proof. Thatbf)’ (z) is rational is obvious from the definition. Lét= degh. Then

41
> ;(adL)”(h) (3.12)

Dy=) bA)T, =
n n=0

by Theorem 3.4. ThuB,’; = 0 unlessy is the sum of at mosf elements ofA;. But this
impliesn € A with £(n) <d. O

There is a strong connection between the difference operddgraind Pieri-type
formulas. For this we define for evekye A thevirtual dimensioft as

fi(=p)

dy = (=DW :
Y7y

(3.13)

It can be rewritten as

a(p+2) (©(0) + ko)
d:ll || 3.14
L e L @) ket Dow (344

4 See Theorem 4.8 for an explanation of this term.
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where@™ :={w € @ | w(ZV) > 0}. Thus, the following condition o is designed to
make sure that; is defined and non-zero: we callstrongly dominantf for all « € A™
andw € @t

a(p) ¢ Z<o, w(p) — ke ¢ Z<o, w(p) + ke ¢ Z<o- (3.15)

Remark. All p’s coming from multiplicity free actions are strongly dominant.

Theorem 3.7. Let p be strongly dominant and non-integral. Uet P". Then
d
h(=2)pu(@) = Y (=" bi(—p = j)puse(2) foreverype A, (3.16)
T n+t

Here, the sum runs over those= A with u + 7 € A.
Proof. This is the combination of formulas (7), (8), and (13) of [9]1
Later, we are also going to need the following more explicit Pieri type formula.

Theorem 3.8 [9, Corollary 3.11]LetA € A andk € N. Then

€(z) —L(p + 2

<(Z) k('o ))m(z)= Y. o+ wpa. (3.17)
HEAL
L(u—r)=k

4. Thetransposition formula

In Section 2, we showed the representation theoretic meaning of the transformation
h(z) — h(—z) on P¥. Now, we would like to express it in terms of the bagjs

Difference operators act naturally on function from fb& Now, we consider also
their action on (finite) measures on thight. More precisely, for any € V let§,: P —
C: f = f(v) be the evaluation map (a.k.a. Dirac measure). Then the difference operator
D= Zn ay(z)T, acts ond, by

8uD = ay(v)8,—, (4.1)
n

provided the coefficient functions, are defined in = v. In that case, we hawé, D)(f) =
8,(D(f)). We are interested in measures supported in points of thefgrm u, n € A4
Therefore, we define for everye N the space

My= @ Cs_, 0 and M:=||M,. (4.2)
neAt d
Uw<d
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Proposition 4.1. Let p be strongly dominant and non-integral. Thehis D, -stable for all
h € PY. Moreover, the map

0PV > M:h5_,Dy (4.3)
is an isomorphism of filtere@-vector spaces.

Proof. The non-integrality ofo makes sure thaiD), is defined for every € M. Clearly,
the spaceV is stable for the multiplication operatér Thus it suffices to show thatl is
L-stable. Sinc@_,_,L =3, f3(—p — 1)8—p—u—y, We have to show: for every € A,
holdsu +n € A4 or f;,(—p — n) = 0. But this is a special case of Lemma 3.3(b).

Lemma 3.6 implies thap preserves filtrations. Since the filtration spaces on both sides
are of the same finite dimension (Theorem 3.1(b)) it suffices to showtlsinjective. If
@) =0 thenbi’(—p) =0 for all t € A4+. Theorem 3.7, applied tp = O, then implies
h=0. O

The following consequence is needed in the proof of Theorem 4.3. A much stronger
result will proved later on (Corollary 4.6).

Corollary 4.2. Let p be strongly dominant and non-integralThen p; (—p) # 0 for alll
IS A+.

Proof. Suppose; (—p) = 0. Using the bijectivity ofp we get for everyt € A afunction
h e PV with §_,Dj, = 8_,—,,. Hence

pi(=p =) =38_p_pupi=38_pDp(ps) =h(p+1)pi(—p)=0. (4.4)
Since—p — A is Zariski dense itV we concludep; = 0 which is not true. O

Itis convenient to renormalizg, such that its value at p becomes 1. Therefore, put

(0) = 2D (4.5)
pr(=p)
Then we can formulate thteansposition formula
Theorem 4.3. Let p be strongly dominant and non-integ&lhen
(=)= (=D Wp,(p+M)gu(z) forallreAy. (4.6)

m

5 See Corollary 4.7.
6 See Corollary 4.7.
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Proof. The polynomialsz, (—z) form also a basis oP". Thus, everyf € PV has an
expansion

f@= " ap(fHgu(=2) (4.7)

HEAL

wherea,, is a linear function orP". We claima,, € M. To see that we evaluate (4.7)
inz=—p — wnand get

8pu(f) =Y ar()ge(p+ )

pu(=p)Fau(H+ D ac(Pgep+ ). (4.8)

L(r)<t(p)

The second equation holds by Theorem 3.1(a). Now the claim follows by induction.
The claim and Proposition 4.1 imply that for everye A there ish, € PV with

degh,, < £(n) anda, (f) =8, Dn, f = (Dp, f)(—p). Applying this to f = g, yields
a,(qx) = (Dpgy)(—p) =hyu(p +2). (4.9)

On the other handy, (z) and(—1)*®g; (—z) have the same top homogeneous component.
Thus we get directly from (4.7) that

au(qy) = (=1)'Ws, , forall &, e Ay with £(1) < £(w). (4.10)

Thus(—1)*™h,, matches the definition gf,, which impliesa, (¢1) = (=1)*® p, (p+ ).
Inserting this into (4.7) and replacindy —z gives formula (4.6). O

Remark. In the classical case, the transposition formula was first proved by Okounkov

in [14] and Lassalle [12] (even in the Macdonald polynomial setting). There it was called

a “binomial theorem” but we prefer to reserve this term to the limiting case discussed
in Section 9. We followed Okounkov's approach to the transposition formula with some

substantial modifications. In particular, we do not need to know the difference operators
very explicitly. The semiclassical case was done in [8].

A first consequence of the transposition formula is the following symmetry result:
Corollary 4.4. Let p be strongly dominant and non-integrallhen
G(—p—v)=qy(—p—2) forallx,veA,. (4.12)

Proof. Evaluate the transposition formula (4.6)4= p + v. Then the right-hand side is
symmetric inx andv. O

7 See Corollary 4.7.
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From this, we derive a Pieri formula for tlgg;:

Theorem 4.5. Let p € Vg be strongly dominant and non-integral. Then

h(=2)qu(2) =Y _ bi(=p — wqui:(z) foreveryh e PV. (4.12)

TeA

Proof. Consider the eigenvalue equation 0y :

Y bE@)gu(z — ) = Dilgy) =h(p +v)qu (2). (4.13)

Now substitute; = —p — u and apply (4.11) to both sides:

D bE(—p = W qutr(—p = v) =h(p + v)gu(—p —v) (4.14)

(if u+t¢ Ay thenb’;(—p —v) =0, see [9, Proposition 6.3]). This implies (4.12) since
—p — A4 is Zariskidense iV. O

By comparing formulas (3.16) and (4.12) we obtain¢haluation formula
Corollary 4.6. Let p € Vg be strongly dominant. Then for all € A, holds
pu(=p) = (=1)"Wd,. (4.15)

Proof. Assume first thap is non-integral. We apply the Pieri formula (3.16)/¢) =
pr(—z) andp = 0. Sincepg = 1 we get

(~1)'®
b'(—p) p1.(z) + lower order terms (4.16)

pi(—=2)-1=
Doing the same thing with (4.12) gives
pi(=2) - 1=b"(—=p)g.(z) + lower order terms (4.17)
Comparing these two formulas proves the evaluation formula. It follows from (3.14) that
both sides of (4.15) are defined wheris just strongly dominant. Thus, we can drop the
non-integrality assumption by a continuity argument

The last argument of the preceding proof gives:

Coroallary 4.7. In Corollary 4.2, Theoremi.3, and Corollary4.4 it suffices to assume that
p is strongly dominant.
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Remark. This refinement is important singe-vectors coming from multiplicity free
spaces are almost never non-integral.

A first consequence of the evaluation formula is the justification of the term “virtual
dimension” ford,..

Theorem 4.8. LetU be a multiplicity free space with ring of functio®¥U) = P, ¢ 4, P*
and associateg-vector as in Sectiof. ThendimP? = 4, anddimU = 2¢(p).

Proof. Let D(U) = D, 4, Ds be the decomposition of the space of constant coefficient
differential operators wher®, is simple with highest weight. Fix A € Ay. If D € D,,
and f € P* then D(f) is a polynomial of degree zero, hence a constant. This way we
get a non-degenerate pairifi, x P* — C. For any basisf; of P* let D; € D, be the
dual basis, i.e.D;(f;) = é&;. ThenD := 3", fiD; is G-invariant and acts as identity
on P*. By definition, the associated polynomia} is p, (see [7], or [9, Section 7]).
We have'D = (-1)*M 3. D, f;, henceD(1) = (=1)*P 3. Di(f;) = (=1)*™ dimP*.
On the other handyp (v) = pp(—v) = p;(—v) by Theorem 2.2. ThUD (1) = pip(p) =
pi(—p) = (—=1)*Pd, which shows dinP* = d.

The second formula is proved similarly. Here we choose a basig UY € P(U).
Let 9; € U C D be its dual basis. Becauge= ), x;9; is the Euler vector field we have
pp(z) =L(z — p). As above we get- dimU ='D(1) = pp(—p) = —2¢(p). O

Remark. In the context of Hermitian symmetric spaces the dimension formula was proved
by Upmeier [19].
5. Theinterpolation formula

In this section we state a formula which allows to expand an arbitisiynvariant
polynomial in terms of the basis,,. For this we need another immediate consequence of
the transposition formula (4.6):
Theorem 5.1. Let p € Vo be dominant. Then the matrix

(D P pup+ 1), e, (5.1)

is an involutory.

Proof. By (4.6), the matrix expresses the involutiérz) — h(—z) of PV in the qu-
basis. O

LetC(p + A1) bAe the set ofC-valued functions o + A4. Forh € C(p + A4) we
define itstransformi € C(p + A4) by

h(p+w) =Y (D" pc(p+mwh(p+7). (5.2)

TEAL
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The sumis finite since all summands witit) > ¢(u) are zero. We consider two subspaces
of C(p + Ay). First, letCo(p + A) be the set of functions with finite support. Secondly,
we consider, via restrictiol?" as subspace @f(p + A4).

Theorem 5.2. Let p € Vo be dominant. Then transformation— 7 has the following
properties

M h=h.
(i) hePV o helCo(p+ AL).
(i) Interpolation formula

h@) =Y (D" Ph(p+ppu(z) forallhep”. (5.3)
HEAL

Proof. Leta,, := (1) @ p,(p +1). Thenh(p + ) = 3", ar,h(p + ) and therefore

h(p+3) = Y auh(p+p) = auparuh(p+1)
", T

m
_ Z[Zamam}h@m. (5.4)
b

By Theorem 5.1, the sum in brackets equalswhich implies (i).
Let x,+v € Co(p + A4) be the characteristic function ¢b + v}. Then

Xp+v = (=D @ p,,. (5.5)

Hencej — h maps a basis alo(p + A, ) to a basis oV which proves (ii).
Finally, (i) implies

hp+1)= Y D W pulp+nh(p+p). (5.6)
HeAL

By (i), ' is a function with finite support. Therefore, the sum (5.6) is over a finite set of
w’s which is independent of. This implies (5.3) since + A is Zariskidense irV. O

The operatolL acts naturally ol (p + I'),

(LYo +2) =D fylp+Mh(p +r—mn), (5.7)
n

provided the coefficients;, (p + 1) are defined, i.e.p is non-integral. Then it follows
from the first cut-off property off,, Lemma 3.3(a), that the quotie@i(p + A;) is
L-stable. LetA be the algebra generated B/ and L in EndC(p + A,). It follows
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thatC(p + A,) is an.A-module. Moreovergy(p + A) andPW are A-submodules. For
everyX € EndcC(p + A4) we defineX by X (h) := X (h).

Theorem 5.3. Assumep is non-integral. ThenX |—>A)A( induces an involutory automor-
phism of A. More precisely, we hav@, = D, andL = —L. Here,m, is the operato?
“multiplication by 4
Proof. The equalitym;, = Dy, is equivalent to

hp(p+1)=Du(p)(p+2) forall peClp+A),re Ay, (5.8)
Now we fix A. Then both sides of (5.8) depend only on the valuep @f finitely many
points, more precisely, in points + p with £(ir) < €(1). Since there is & -invariant

polynomial which has the same values at these points we may aspumB". By
linearity, we may assume = p,.. Then, by (5.5),

hpy = (=D Phx s = (D Ph(p + V)X p40 = h(p + V) Dy (5.9)
and therefore
M (pv) = h(p +v)pv = h(p + v) py = Dp(py). (5.10)

This provesn;, = Dy,. But thenl = (¢ — D¢)" = Dy — £ = —L. This shows in particular
thatX — X mapsA into itself. O

Remark. The non-integrality ofp is needed to make sense of the action.£fon

C(p+ Ay). As already mentioned, the elemept attached to a multiplicity free
representation is never non-integral. It will be a consequence of Proposition 7.4 that
X > X is, in fact, defined for every e V.

6. Thescalar product

Assumep is strongly dominant. The symmetry property (4.11) indicates the presence
of a scalar product o®" . In fact, we define a non-degenerate scalar produ@ 6rby

(Pa, pu) =d).83 Toralld,pe Ay, (6.1)

Thus (ps. gu) = (—=1)®8,, and(gs, gu) = d; *8:,.. For any functiom(z) let h~(z) :=
h(—z). Then we have

8 Sincein), # mj; we are forced to use this notation.
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Theorem 6.1. For all A € A, andh € PV holds
(@ h)=h(p+x) and (g;.h)=h(p+A). (6.2)

Proof. From the interpolation formula (5.3) we obtain

(@)= > (=D R (p + ) (g, pu) = (o + ). (6.3)
w

Moreover, from (4.6), (6.2), and (5.3) we get

(g h) =Y (=D P p.(o+ 1) gu, h)
0

= (D" Wh(p+ W pulo+1) =h(p+ ). (6.4)
0

Remark. In particular, we havey; , g,/) = q,.(—p — 1) which explains the symmetry in
Aandu.

There is also a general expression for the scalar product:

Theorem 6.2. Forall g, h e C":

(g.hy=" duB(p+wh(p+p. (6.5)
HEAL

Proof. Just apply the interpolation formula (5.3)gandi. O

The algebrad is not quite closed under taking adjoints for the scalar product. Therefore,
these will be studied in the next section. Here, we use a slightly modified scalar product:

(. h)" :==(g ,h7). (6.6)
The adjoint of an operato¥ with respect to the scalar product (6.6) will be denotedby
Theorem 6.3. Let p € Vg be strongly dominant. Then for eveXye A the adjointX’ exists
and is again inA. More preciselyh’ = D;,-, andL’ = L. In particular, X — X’ induces

an involutory antiautomorphism of. Moreover,(X)' = (X')" forall X € A.

Proof. By (6.2) we havég,, h)™ = h(—p — ) forall h e PY. Then | claim

(Dy-(f). 8) =(f hg)~ (6.7)
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forall £, g,h e PV. Indeed, it suffices to prove this fgr = ¢;. Then

(Dp-(g1). &) =h(—p —21){gr, &)~ =h(—p —Mg(—p — 1) = (g1, hg)~. (6.8)
Thus the adjoint operator @fis D;,. Then we also have
L'=(—-Dy)=(—t" —Dy)=—D;— ¢ =L.

Finally, (L) = —L = (L')" and(iii)' = D), = mj,— = Dj— = (m,)" which shows the last
claim. O

7. The PGL-action

For any operatoX € End:(P") define the operatoK~ by X~ (g) = X(g7)~. In
particular, ifX =) "_a.(z)T is a difference operator thet™ = Y _a.(—z)T_, is again
a difference operator. For multiplication operators we haye= m,-. On the other side,
L~ is new. Therefore, leB be the algebra generated By, L, andL~. It containsA as
a subalgebra. Moreovex, — X~ induces an involutive automorphism Bf Observe that
A contains only operators composed of shiftsthy A while in B arbitrary shiftst € 'Y
are possible.

For anyX € End-(P") let X* be the adjoint operator (if it exists) with respect to the
scalar product-, -) defined in (6.1). Its relation to the adjoiit is X* = X~'~. Indeed

(Xfo)=(X"f",8") =" X"g) =(f.Xg). (7.1)

Theorem 7.1. Let p € Vp be strongly dominant. Then for eveXye BB the adjoint operator
X* exists and is again i8. More precisely, the following formulas hofdith # € P%):

h* = D, =exp@dL™)(h™),

L*=E —E=L-2(—-L",
(L) =1L",

DZ = Dy.

(7.2)

In particular, X — X* induces an involutive antiautomorphism/®f

Proof. Since D, has an orthogonal eigenbasigs,, it is self-adjoint: D} = D;,. By
Theorem 6.3 we have* = ((h7)")~ = D, . Moreover,

L*=(—-D)*=D, —~Dy=E —E=(—-L)" —(—-1L)
=L—-2(—-L". (7.3)
Finally, (L™)*=L~"=L". O

Remark. Of course,B is still preserved under the other adjoiXit— X’ with (L7) =
(LY * =L* "=E—E =—-L".



214 F. Knop / Journal of Algebra 260 (2003) 194-229

Recall that three elementg, i, f) of a (Lie) algebra are called asi,-triple if the
relations(h, e] = 2¢, [k, f1=—2f, and[e, f]=h hold.

Theorem 7.2. Both(L, 2¢, L) and(—L, 2E, L*) are sl»-triples.

Proof. For everyn € I'V holds [¢, T;;] = €(n)T,,. Hence, by definition ofL, we have
[2¢, L]1=2L. We also gef2E, L]1=[2¢ — 2L, L] = 2L. The equationi2¢, L™= —2L~
follows by applying X — X~ to both sides off2¢, L] = 2L. Moreover, if we apply
X — X* to [2E, L] = 2L we get, according to (7.2]J2E, L*] = —[2E, L]* = —2L*.
Moreover,
[L,L7)=[L,L-20—L*]=2L—-[{—E,L*|=2L—-[¢{,L—-2¢(—L"]1—-L*
=2L—-L—L —(L—20—L")=2¢. (7.4)

Finally,[~L,L*]=[-L,L —20 — L |=—2L+2(=2E. O

Of course, the two triples span the same three dimensional subsjzgide B which
we identify with the Lie algebraly(C) by using the second triple:

0 1 1 0 ¥ 00
—L|—>(0 O)’ 2E|—>(0 _1), L |—><1 O)' (7.5)

Then we also have

213.—><é :i) L.—><j 1) (7.6)

Now we would like to integrate the inneraction onB. For this, letS := Auts. Its Lie
algebra iss. Moreover, if we identifys with skh(C) as above thes gets identified with
PGLy(C). Its elements are invertible 2 2-matrices modulo scalar multiplication which
we write in square brackets. Of particular interest is the involution

1 -1
o= |:0 _1i|eS (7.7)
which maps the twal,-triples into each other:
(L,2¢,L7)=0(—L,2E,L"). (7.8)
Theorem 7.3. The adjoint action o on 5 can be integrated to an algebraiaction.
Proof. First, we show that aglacts locally finitely on53. By Poincaré—Birkhoff-Witt it
suffices to show that fok, 2¢, andL~, separately.
We claim that the elements and L~ act locally nilpotently. It suffices to show this on

the generatord € PV, L, andL~. For L, the assertion follows from Theorem 3.4 (for
and Theorem 7.2 (fok ™). For L~ we apply the automorphisii — X .
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The action of ad2 on difference operators is clearly diagonalizable. This shows
already that ad integrates to arSLy(C)-action. The possible eigenvalues of dda&e
2¢(t), T € I'V. Since these are all even, the actionSif(C) descends to an action of
PGL(C)=S. O

Now we compute the effect of some particular elements on B.

Proposition 7.4. The effect ob on the generators df are

o(Ly=—-L, o) =Dy, o(lL7)=L" (7.9)

Proof. We already knowL,2¢, L) =0 (—L, 2E, L*). Thusitremainsto calculate(h).
To this end, writes = o8 where

a:[é _11i|, ﬁ:l:é :i}za[é _01i|crl. (7.10)

The matrix g lies in the Cartan subgroup whose Lie algebr&% Therefore, it fixes
every element of5 which commutes witlt. This impliesg (k) = h. The matrixa acts by
exp(adL) on 5. Hence it sends, by definitioh,to D;,. We concluder (k) = D;,. O

Next we investigate the effect efon the3-moduleP" .

Theorem 7.5. Let p € Vp be strongly dominant. Then for alle A, andd € N holds

1
LD = Y met+wp (7.11)
HeAy
Lw)=Lr)+d
1
LY@ = Y pule+ M. (7.12)

HEAL
L(u)y=L(r)—d

Proof. By Theorem 7.2 we havgE, L] = L, hence[E, L] = dL?. For everyx € Ay
follows that L9 (p,) is a linear combination of thosg,, with £(u) = £(%) +d. On the
other hand, we have? (p;) = (¢ — E)¢(p;) = ¢4 p;, plus lower order terms. Then (7.11)
follows from (3.17).

Using the fact that the dual basis of thg are the(—1)¢g; we get from (7.11)

1
SUONED Pgy = Y0 pulp+ (D Mg, (7.13)
' neAy

L=t —d

which is equivalent to (7.12). 0
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Formulas (7.11) and (7.12) can be expressed more conveniently as generating series:

exptL)py = Y " P p, (o + pwpy (7.14)
HEAL
and
exp(—tL*)g;. = Z O, (04 Mg (7.15)
HEAL

There is a big difference between this two formulas in that the latter, (7.15), is a finite sum.
This means that (7.15) defines an algebraic action of

1 0
[_t 1} (7.16)
onPW¥ . There is also an action of the diagonal matrice§omefined by
£(r)
a 0], a
[0 bi| /) d <E) qn-. (7.17)

Then (7.15) and (7.17) combine to an actiorBethe subgroup of lower triangular matrices
of § = PGLy(C). This action is compatible with that d:

b(xn)y="x("n) forallbeB,XeB, heP". (7.18)

Remark. The action of B on PV is not quite the one which one would obtain by
exponentiating the action of Lie ¢ s c B onP5. The reason is tha, is an eigenvector
of E with eigenvaluel/ () + £(p) and not justZ(r). Therefore, unless(p) is an integer,
the exponentiateff-action is not algebraic. In the geometric case, i.e., wheames from

a multiplicity free action on a vector spatk we have that(p) = 3 dimU (Theorem 4.8)
isin %Z. In that case, one can integrate the Bi@ction to an algebraic action of the lower
triangular matrices irsL(C).

Now we can locate the automorphistn— X~ in S:

Theorem 7.6. The matrix
1 0
y.:[l _1} €B (7.19)

actsashi— A~ onPW and asX — X~ on5.
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Proof. We writey = o with

10 1 0
o1 9 [t 9] o0

Theng(g,) = (=1)'qx (by (7.17)) ande(g;) = Y_, (=1)P =W p, (p+1)g,, (by (7.15)).
The transposition formula (4.6) impliggq,) = ¢, . We concludey (h) = A~ by linearity.
Finally, y(X)(h) = y(X(y(h)=X(H )" =X"(h). O

Remark. One consequence of Theorem 7.6 is the formula
exp(L*)(p2) = (=1 p;. (7.21)
It has the advantage that it works ferwhich are just dominant.

Now we come back to the automorphisim— X of Section 5. Comparing Theorem 5.3
with Proposition 7.4 we see thatinduces on4 exactlyX — X. Now we extend this té:

Theorem 7.7. Let p be non-integral. The@(p + A.) is naturally a3-module. Moreover
the relation(L~)" = L* holds. In particular, we havl = o (X) forall X € B.

Proof. By definition, we have

L™ (W (p+np) = Z fon(=p = wWh(p 4 +n). (7.22)
neAs

Thus, it follows from Lemma 3.3(b) thdt™ and thereford3 acts onC(p + A4).

For every fixed: the valuesL™)" (h)(p + ) andL*(h)(p + 1) depend on only finitely
many values of: which we may interpolate by a linear combinationggfs. This implies,
that it suffices to provéL ~)"(h) = L*(h) for h = p;. We have

LHNpo) = D DA Tpsa) = DL xp00"

= (DD fy(=p = A+ MTptrn
Ui

=Y fa=p=r+mpiy (7.23)
n

SinceD, = £ — L we havef,(z) = —bg(z). Therefore, if we compare (3.16) (with= ¢)
and (3.17) (witht = 1) we get

d
—fn(—p—)\+n)=d—kmfn(p+)\). (7.24)
n

Thus, using (7.12) (witld = 1) we get
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(L)Npa) = D P pay(o +Mgay
n

= — (=1 Md, (=L*)(g:) = L*(p3). (7.25)

8. Thedifferential limit

In this section we consider the effect of our difference operators on the highest degree
component of a polynomial. Le&P<, := {h € P | degh < d}, Py = P<a/P<i-1 and
P := @, Pa, the associated graded algebra. Observe Fhat P (even equivariantly)
sinceP is a polynomial ring.

Now we introduce the degree of an operaXoe 5 as

degX := max{degX () — degh | h e PV }. (8.1)

It is clear that the degree of any difference operator is finite. Bgl = {X € B |
degX < d}. This defines a filtration 0B, i.e., B, is a subspace a8 with B =, B4 and
BuB, € Bye. Let By := B<y/B<a—1 and B := @, By, the associated graded algebra.

The point is now that more or less by constructi@nuf is a faithful B-module. We call it
thedifferential limit since:

Proposition 8.1. EveryX < B acts as a differential operator o& " .

Proof. We may assume tha& € B, is non-zero and that it is represented by a difference
operatorX € B<q. Choose linear coordinates, ..., z, € V". By Taylor’s theorem, the
translation operataf, can be written as differential operator of infinite order:

9
T, =eXp<—ZZi(n)8—z). (8.2)

Therefore, we can also expankl into an infinite order differential operator with
coefficients of bounded degree.

Now leti € P be a polynomial of degreewith highest degree componéntFor an
indeterminate let i, (z) := h(t~1z). Then

he=ht=+ - (8.3)

where “..” means “terms of higher order ii.

Correspondingly, we defin&; by X;(h) := X (h,-1);. This amounts to replacing all
variablesz; by r~1z; and all partial derivative§/dz; by td/9z;. In particular, we have
X:(hy) = X (h);. Now we developX; into a Laurent series in This is possible since the
coefficients ofX have bounded degree. Thus ther&/ig Z with

X, =XtV ... (8.4)
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whereX is a non-zero differential operator. Hence
X(h) =X (hy) =XtV .. (8.5)

This shows that def (h) < degh + N with equality for mosti. Therefore N = d and
X (h) = X(h). ThusX = X is a differential operator. O

For the reminder of this section we assume thét dominant. We show that the pair

(B, PY) is isomorphic to(B, P" ). For this we use the action of the difference Euler
operatorE. Its action onP" is diagonalizable with eigenvalues of the foemt £(1),

d € N. Therefore, letP) := {h € PV | E(h) = (d + £(p))h}. ThenP¥ =P, P} .

A basis of’P‘}"’ is formed by allp; with £(A) =d. Thus Theorem 3.1 implies that

Py, =Pr". (8.6)
i<d

In particular, the projectioriP;" — 73:,V is an isomorphism. This way, we get an
isomorphism (of vector spaces)

vPY =Pry > @ry =r". (8.7)
d d

Now we do the same thing witls. We know from the last section that the action
of adE on B is diagonalizable with integral eigenvalues. Therefore Het= {X € B |
[E,X1=dX}. ThenB =, Bs is a grading of3.

Lemma8.2. Let p be dominant. TheB<, = P, , Bi-
Proof. Let X € B; andh € P.. Then
EX(h)=[E,X)(h)+ XE(h) =dXh) +eX(h) = (d + e)X (h) (8.8)
implies ByP. € Pay+e. In particular, we haveB;Pg. € Pga+e Which showsB¢, 2
@igd B;.
Conversely, letX € B¢; andX = )" X, with X, € B, and N = maxX{n | X, # 0}.
Choosen € P, with Xy (p) # 0. SinceX;(p) € P;4. is either zero or has precisely the

degreei + ¢ we conclude ded (p) = N + e. From the assumption défp) < d + e
follows N < d. This provesX € ,, Bi. O

An immediate consequence of the lemmjs— B, which gives rise to a map

v:B=P B> PB.=B. (8.9)
d d
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Theorem 8.3. Let p be dominant. Then the mapin (8.9) is an isomorphism of algebras.

Moreover, under this isomorphism ti2module?" corresponds to thé-moduleTDW.
More precisely,

v(Xh) =¥ (X)yh) forall XeB,heP". (8.10)

Proof. The relation (XY) = ¥ (X)¥ (Y) has to be proven only faX € B, Y € BB,. But
then it follows fromB; 5, € B4... Similarly, for (8.9) we may assume € 53, andh € P,.
Then it follows fromB; P, C Pyie. O

In view of this theorem it is probably more adequate to Saihe differential “picture”
as opposed the differential “limit” of5. It shows that the difference operators are just
represented differently namely by differential operators.

Next, we study the mapg and ¥ more closely. Givem: € PV, there are two
ways to produce an element - first i, its top homogeneous component, and then
¥ (h). We havey (h) = h precisely ifh is an E-eigenvector. Therefore, considgy, the
top homogeneous component pf. These polynomials are also of high representation
theoretic interest. (See, e.g., [7]. In the classical case they are the Jack polynomials.) They
form a basis of7_>W. Since p, is an E-eigenvector we couldefiney by the property
¥(pa) = pr- _

The same thing works foB: every X € B gives rise to two elements if namely its
top homogeneous componeXitand¥ (X). Moreover,¥ (X) = X if and only if X is an
adE-eigenvector. This holds in particular fdfy, the commutant of£. Hence we have
¥ (Dy,) = Dj, whereD), are certain differential operators. In the classical case, they are the
Sekiguchi—Debiard operators [3,18]. They are simultaneously diagonalized py:the

Dp(p3) =h(p+1)p, forallhePW. (8.11)

Next, we compute the image of tle-triple (—L, 2E, L*).

Proposition 8.4. We have¥ (L) = m; (multiplication byl e Y_)W) and W (E) = E =
£ 4 £(p) whereé is the Euler vector field. The differential operatbi := ¥ (L*) is of
order2 and of degree-1.

Proof. We haveL e By, hence¥ (L) = L. From de@m, — L) = degE < 1 it follows

L = ing = m;. SinceE acts onP)’ by multiplication withd + ¢(p) we have¥ (E) = E =

£ 4 £(p). SinceL* € B_1, the degree oL* is —1. ExpandL; as a Laurent series inas
in the proof of Proposition 8.1. Since the coefficientd.df= L — 2¢ — L~ are rational
functions of degree 1 we have

L =Xot 14 X1+ Xot + -+ (8.12)

where X; is homogeneous of degree-1i. Thus Xo = X1 =0 and Xz = Lx. By
constructionX; is a differential operator of ordér Therefore, the order df* is 2. O
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Now we compare the multiplication operatorsrand .
Theorem 8.5. (a)Leth € PY. Then
¥ (my) = exp(—ade ) (Dy). (8.13)
(b) Conversely, let € P, and choose a lift € PZ,. Then
v tm;) = %(— adL)? (mp). (8.14)
Proof. (a) We have

1 .
mj, = exp(— adL)(Dy) = Z S adL)! (D). (8.15)

Each summand is ad-homogeneous. Therefore,

1— 1, —a=
w (my,) ZE(—adL)d(Dh):ZE(—adL)d(Dh)

i

= exp(—adt ) (Dp). (8.16)

(b) Let R denote the right hand side of (8.14). The sum in (8.15) terminates-at.
Moreover, theth summand is afl-homogeneous of degreéeThis implies¥ (R) = R =
mp=mj. O

Thus we obtained besides thg, and theD;, yet another commutative subalgebrabf
formed by the? ~1(mj,).

Finally, we discuss the geometric situation: létbe a multiplicity free space as in
Section 2. Sinc®" can be identified with the algebra 6finvariant differential operators
onU we can use the symbol map to idenﬂ@w with the algebra o5 -invariant functions
on the cotangent bundle, i.e., wit (U & U")¢. On the other hand we can think i
asW-invariant functions orV, i.e., of functions orv// W.

Now considerPD(U @ UY)°, the algebra ofG-invariant differential operators on
U & U". These act oiGG-invariants and therefore we get a map

@ PD(USUY)’ - PD(V/W). (8.17)
(This is an analogue of the Harish Chandra homomorphism.) Obseng th&D(V / W).

Theorem 8.6. The algebra3 is in the image ofb.
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Proof. The algebra3 is generated by., {m; | h € PV}, andL*. Because of (8.15) we can
replacen;, by D;,. Applying ¥, we see thaB is generated by:;, {Dj, | h € PV}, andL*.
We show that these generators lie in the image of

Choose coordinate&, ..., x,, y1, ..., ya) of U @ UV such that the natural pairing
betweenU andU" is given byg := >, x;yi. Theng is the symbol of the Euler vector
field and therefore (¢) = ¢.

We havePD(U)¢ — PD(U & U")C by letting operators act on the first factor. Thus
we have a map" — PD(V/W) whose image are the differential operatdrg (see [7,
Theorem 4.11]).

Finally, let A := -3, (02/(dx;dy;)) be the Laplace operator. Then it follows from
[2, (1.8)F that®(A) acts on thej, exactly asL*. O

Question. Is the image ofp exactly3?

9. Thebinomial formula

In this section we investigate another limiting case, namely, we are looking at the
infinitesimal neighborhood of a poite XV N VY. We are going to prove a binomial
type formula forp; (z + ).

The setz¥ N VW has usually just one element but there are cases where it is Empty
and there is one case where it consists of two pdith&or the classical or semiclassical
case see the example below.

Let ws € X be the dual element fa, i.e.,

1 ifw=ws,
a)((S)_{O if w e X andw # ws. (.1)
Sincesd is W-invariant we havew(8) € {0, 1} for all € ®. Moreover,w(§) = 1 if and
only if @ € Wws. This impliess € Vp. Let &5 := > Waws and 0% :=¢ — ¢5. These are
W-invariant linear functions oiv.

Examples. 1. Classical caseHere § = (1,...,1), ws(z) = z4, Wws = {z1,...,2n},
Is(z) =Y_; zi = £(z), ande®(z) =0.

2. Semiclassical caseHere § = (1, ...,1), ws(z) = zn, Wws = {z; | n — i even,
ls(z) = Zi:nfi evensis and

if n is odd,

0
5
@)= {Zl’_':l(_l)ilz,- if n is even. (®:2)

9 The py in that paper is oufy .
10 cases Il ¢ odd), IVa, and IVc of [9, Section 8].
11 case V of [9, Section 8].
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Forx e Ay let

C‘§5)=c‘§5)(p) — 1—[ (w(0)+kw)w(x)’ (9.3)

weWws

where(a), :=a(@a+ 1@+ 2)---(a +n — 1) is the Pochhammer symbol. Up to a sign,
this is just the contribution oW ws to fi.(—p). Now we renormalizep; as follows:
®) o ®)
37 (@)= dLA @) =D Pe?4,2). (9.4)

Then the generalizeoinomial formulais:
Theorem 9.1. Lets € VN VY. Then

i@ +H= Y pup+1§P (k) foreveryreAy. (9.5)
HEAL
Ow=L5x)

Proof. To emphasize dependence prwe will also write p; (z; p), etc. Letp’ :=p +
(s/2)8 with s € C. Then it follows from the definitions that

iz p) = pa (z - %8; p) and fi(z; 0= fu (z - %8; p). (9.6)

Hence
4.(z; p/) = Mw(r ,):M”*G_ia)
’ fou(=0'; ) ' fr(—p —s8) 2
fr(=p) s
= —=48). 9.7
fx(—p—s3)q/\(z 2) 6
Since the contributions @ € @ \ Wws anda € A cancel out, we have

fil=p) _ () . ©.8)
Sil=p=s8) P (p+55)

Now we apply the transposition formula (4.6) with instead ofp. We also replace by
z+ (s/2)8. Then we obtain:

(3)

+ 56

P P)a(—z = 58) = YD p 0+ A LED By, 0. (0.9)
m e (p +59)

Let s be a formal parameter. In Equation (9.9), we replaceby 1z, =1, respectively,
and multiply byr“® . Thus, we get
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cia)(p)te(k)qk (—tilz — tilé)

= Pulp+NAO[(=D PP ()" W g, (1712)] (9.10)
"

with

(©)] -1
20— Ca (p+t776)
Au@t) =t 5 i

) . (9.11)
e (p+1718)
Now, we take the limit for — 0. The left hand side of (9.10) becomg@(z + &) while
the expression in brackets on the right hand side tengd&t¢). Finally, we have

(@(p+17%8) + ko) y = (T 0(0) + ko) oy =1 7P+ (9.12)
where again - -” means “terms of higher order in” Thus
Pp+17t)=rb® 4 ... (9.13)
and
Aty =19 0w 4 (9.14)

By the Extra Vanishing Theorem 3.2 only thqsén (9.10) have to be considered for which
T:= X — u € A. Thus the binomial formula (9.5) is proved when we show tat) > 0
forall T € A.

Sincet? is linear we may assum&t) = 1 since those’s generated. Becausé?® is
W-invariant, we may moreover assume that XV. Now consider formula (9.10)
with A = 7. Then the right-hand side has only two non-vanishing terms summands,
corresponding tae = T andu = 0. Thus

e (p)tqr (=17 2 —1718) = Ao(t) — A- (e (p)1gr (17 12). (9.15)

Since the limit lim_, o Ap(¢) exists and;; (z) is a non-constant polynomial of degree 1 also
lim;_.0A.(r) exists. Thereforé® (v) > 0 by (9.14). O

Puttingz = 0, we get as an immediate consequence an evaluation formula:

Corollary 9.2. Forall . € Ay ands € ¥V N VY holds

- (8) 1 ifedn)=0
8) = ’ 9.16
%) {O otherwise. (©-16)
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Remark. Consider the classical case. Then the binomial formula (9.5) is due to Okounkov
and Olshanski [15]. Before that, Lassalle [11] used the binomial formutiefmethe
“generalized binomial coefficientsp, (o + A). We see now that this was only possible
because’ = 0. For arbitrary multiplicity free actions, Yan [20] took another approach to
definep, (o + 1) from the homogeneous polynomiglgs, namely via the formula

1
S @= 3 ple+wpu (9.17)

MEAL
C(—2)=k

which follows readily from (3.17). Yet another construction can be found in [2]. Observe
though, that none of these approaches give the polynomiality nd¥tievariance ofp;..

Also the latter two constructions work only for thoge= Vp which actually come from a
multiplicity free action.

10. Example: therank one case

In this section, we illustrate the main assertions of this paper with the rank one case.
Section 2. Let G = GL,(C) and U = C", the defining representation. The? =
$*(C")V, the space of homogeneous polynomials of degre&. The algebra of invariant
differential operators is generated §y= >, x;(3/9x;), the Euler vector field. The
eigenvalue of onP* is A, hencecs (z) = z.

The parabolicP is the stabilizer of the lin€e; € C". Denote the weights af” by ¢;.
Then the roots in the unipotent radical Bfares; — ¢;. Thus,

1< :
b= E(;(Sl—&)+§8i) = %SL (10.1)

Thuspg (z) =z —n/2. On the other hand, we have

R YA WNEE <V A A SR
g_g;( 8x{)x,_ ;(x,aXi+l>_ £E—n. (10.2)

Thus

pie(2) =p—g—n(2) = —<z - %) —n=—z— % = pe(—2). (10.3)

Section 3. In the rank one case we have

V=C, W=1 A,=N, and £z =z. (10.4)
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Moreover,

SV=A1={1), o=t =X={z}, and A=0. (10.5)
We haveVp = C and putp = s. Thus everyp is non-integral while “strongly dominant”
meanss ¢ —3N.

The polynomialp; € P = C[z] vanishes inz=s,5s +1,...,s + A —1 and is 1 in
z=s+ A. There is indeed only one such polynomial, namely

pi(2) = <Z . s). (10.6)

We havef;(z) =[z —s | t] fort € N. Thus
L=(z—-s)T and E=z—-(z—-)T=(z—5)V+s (10.7)

whereT is the shift operatof (4)(z) = h(z — 1) andV := 1—T. Then an easy calculation
shows

Dy =3 (-1 (Z . S) (V4h) ()7 forall h e Clz]. (10.8)
d=0

The equatiorE (p,) = (s + A) py. is equivalent to the well-known relation

zV(i) - x(i) (10.9)

while Dp(p,) = h(s + 1) p, gives, after using (10.8) and some easy manipulations,
Newton'’s interpolation formula:

o0

1
h(x+2)=) I (V9h)(2) () (10.10)
d=0""

(we substituted + A = x + z). Here(x)y = x(x +1)--- (x +d — 1) is the Pochhammer
symbol. This can be used to rewrite formula (10.8). Sifice 1 — V, we get

Dp= Y (-1" (Z ; S) (V" h)(2)(~1)¢ C;) vd (10.11)

0<d<m

-3

> o (=pme <Z N s__dd) (vmh)(z)] vi. (1012

m=d



F. Knop / Journal of Algebra 260 (2003) 194-229 227

If we apply V* on both sides of (10.10) and then substitute- s +d — z we get the
expression in brackets of (10.12). Thus

9]

Dy :Z(th)(s+d)<z;s>vd. (10.13)

d=0

Section 4. According to (3.13) we have

Caul=2sia =28\ (25— 1+
di = (=1) TR — (=1 ( N )_< N ) (10.14)

which affirms the evaluation formula (4.15). Moreover, in the geometric situation above
with GL,, (C) acting onC" we check Theorem 4.8:

dim §*(C")Y = (” _iﬂ) (10.15)

(sinces = n/2). Furthermore,

[z—s{A] _ (=z2+5n

= = 10.16
q(2) 25 L] ), ( )
Thus, the transposition formula (4.6) reads
G+ < M( )( 2+ 8y
— . 10.17
(25)n Z( b w) (28) ( )

A direct proof boils down, after some manipulations, to the Chu—Vandermonde identity.
Finally, the symmetry statement (4.11) becomes

(2S+l)))\_(2s+)h)u
2s), (29,

(10.18)

which is easily verified directly.

Section 5. The involutivity of the matrix (5.1)

<(—1)“ <A)) (10.19)
) )

is well known. The transformatioln— 7 can be rewritten as

h(s+1) = Z( 1)“( )h(s+u)—( 1* (A ) (s) (10.20)
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where
A=T"1-1 e, AN =hiz+1) —hQ). (10.21)

Then the interpolation formula (5.3) becomes another form of Newton interpolation (with
z=x+3s):

h(x +s) = Z(A“h) (s) <x) (10.22)
n=0 H
Section 6. The scalar product (6.5) is
> (25— 1+
(g, h) = Z < ) “) (A g)(s)(AMh)(s). (10.23)
n=0
Section 7. We have
L™ =—@z+5)T1, (10.24)
L'=@z—-5T —-2z+ @ +)T 1=2(A—=V) +5(A+ V). (10.25)

SinceB is the algebra generated by thle-triple
(z=9T, 22, —(z+5)T1) (10.26)
it is actually isomorphic to the universal enveloping algebral£(fC).

Section 8. We have

_ Z)L — (_]—))L A
pa(2) = a0 and g,(z) = @), 7~
The algebrd is generated by
d d? d
W(L)=z, W(E)=z—+s, W(L*)=1-—5+25—. (10.27)
dz dz2 dz

Moreover, according to (10.13):

0 m

— 1 d
W(Dy)=Dyp=) ﬁ(v'"h)(s +m)z" o

(10.28)

m=0"""
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Section 9. We haves =1, ci‘” = (2s),, and cjf)(z) = z*. Thus, formula (9.5) just
specializes to the classical binomial formula

A a A
z+1 =Z( >z“. (10.29)
u=0 ®
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